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1. Introduction

Optical diffusers are key elements in 
various applications as diverse as illu-
mination,[1–3] imaging,[4–7] screens,[8] 
microscopy,[9–13] colorants,[14–16] spectros-
copy,[17–19] photovoltaics,[20–22] or wavefront 
shaping.[23–25] Their main use is to spread 
light across a large solid angle, thereby 
minimizing or ideally removing glares or 
high-intensity bright spots.[26,27]

A variety of optical diffusers based on 
different concepts have been developed and 
are commonly employed, among which 
are volume diffusers[28–30] like opal glass, 
microstructured surface diffusers[31–35] 
like ground glass, and holographic dif-
fusers.[36–39] Volume diffusers based on 
Rayleigh scattering of deep-subwavelength 
scatterers provide an almost Lambertian 
light distribution, but at the cost of low 
energy efficiency. Microstructured surface 
diffusers offer relatively high transmission 
efficiencies, but only limited control over 
the spatial distribution of scattered light. 

Conventional optical diffusers, such as thick volume scatterers (Rayleigh 
scattering) or microstructured surface scatterers (geometric scattering), lack 
the potential for on-chip integration and are thus incompatible with next-
generation photonic devices. Dielectric Huygens’ metasurfaces, on the other 
hand, consist of 2D arrangements of resonant dielectric nanoparticles and 
therefore constitute a promising material platform for ultrathin and highly 
efficient photonic devices. When the nanoparticles are arranged in a random 
but statistically specific fashion, diffusers with exceptional properties are 
expected to come within reach. This work explores how dielectric Huygens’ 
metasurfaces can implement wavelength-selective diffusers with negligible 
absorption losses and nearly Lambertian scattering profiles that are largely 
independent of the angle and polarization of incident waves. The combination 
of tailored positional disorder with a carefully balanced electric and magnetic 
response of the nanoparticles is shown to be an integral requirement for the 
operation as a diffuser. The proposed metasurfaces’ directional scattering 
performance is characterized both experimentally and numerically, and their 
usability in wavefront-shaping applications is highlighted. Since the meta-
surfaces operate on the principles of Mie scattering and are embedded in a 
glassy environment, they may easily be incorporated in integrated photonic 
devices, fiber optics, or mechanically robust augmented reality displays.
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Holographic diffusers are carefully engineered surface diffusers 
that offer high transmission efficiencies and tailored spatial light 
distributions. However, their optical response is usually very sen-
sitive to the incidence angle and polarization, and since most 
surface diffusers require a defined index contrast at their surface, 
they cannot readily be deployed in changing environments.

Rapid developments in nanotechnology and an ever-growing 
push for miniaturization drive the reimplementation of con-
ventional optical elements with ever smaller footprints. The 
need for efficient and ultrathin optical diffusers becomes par-
ticularly more pressing with the continuous replacement of 
conventional light bulbs by flat light sources. Conventional 
optical diffusers are bulky[8,24,40–43] and lack the capability to be 
integrated into flat photonic devices.[44–46] Metasurfaces, con-
sisting of designed optical nanoparticles arranged in a planar 
fashion, can overcome this limitation and enable optical devices 
with a subwavelength thickness.[47–55]

Disordered metasurfaces constitute an auspicious material 
platform for the diffusion of light.[56–58] Concentrating initially on 
ordered arrangements of plasmonic nanoresonators, various dis-
ordered metasurfaces were described in the literature and shown 
to support wavelength-selective diffuser functionalities while 
exhibiting additional unique features such as a tailorable scat-
tering profile,[59–61] or a large optical memory effect due to their 
flatness and isotropic disorder.[62] Furthermore, their use as polari-
zation-independent[63] and high-information-capacity[64] wavefront 
shaping elements and artificial chiral media[65] was explored.

More recently, the focus in metasurface research shifted 
toward all-dielectric implementations,[44,66–72] which offer the 
additional advantages of low losses, enhanced in-plane cou-
pling, and a multipolar response. As such, dielectric disordered 
metasurfaces were demonstrated to allow for high-numerical-
aperture wavefront-shaping with a large memory effect[56] and 
structural color generation[16,73] with an improved insensitivity 
concerning the viewing angle.

Moreover, dielectric Huygens’ metasurfaces[74–78] show a par-
ticularly rich optical response.[79–84] In such metasurfaces, the 
electric and magnetic moments that are excited in the scattering 

elements by a normally incident plane wave have equal scat-
tering strength. This electromagnetic duality symmetry con-
dition[85–87] results in a suppressed zeroth-order reflectance in 
periodic structures. Previously, we demonstrated the emer-
gence of a disorder-induced phase transition in positionally 
disordered dielectric Huygens’ metasurfaces.[88] We observed 
that the zeroth-order transmittance reduces to zero for a critical 
degree of positional disorder. Since a perfect optical diffuser 
requires the suppression of both the zeroth-order reflectance 
and transmittance, the disorder-induced phase transition takes 
a central role in the present work.

Another advantage of resonant metasurfaces is their ability 
to simultaneously implement different optical functionalities 
at different wavelengths.[89] While most commercially available 
diffusers are broadband, efforts to render their performance 
wavelength-selective are, with a few exceptions,[90,91] so far lim-
ited to the use of colored glass as diffuser material. However, 
colored glass only introduces absorption and does not alter 
the scattering characteristics of the diffuser. Thus, a diffuser 
that diffuses at one or a discrete set of wavelengths only, while 
letting all other wavelengths pass undisturbed, would offer 
intriguing new opportunities in applications such as fluores-
cence microscopy, augmented reality displays,[92] or holographic 
displays[93] with interactive features.

In this work, we demonstrate that disordered dielectric 
Huygens’ metasurfaces allow for the realization of wavelength-
selective and nearly perfect optical diffusers. We consider a per-
fect diffuser to exhibit zero absorption losses and a Lambertian 
scattering profile, both in transmission and reflection, that is 
independent of the incidence angle and polarization. The real-
ized metasurface diffusers have only a subwavelength thick-
ness, which is crucial for a large memory effect, and feature a 
robust planar surface, which favors their use not only in solid 
matrices, but also in various liquids and gasses. Furthermore, 
already very small pixel sizes of a few square micrometers are 
sufficient to achieve the desired diffuser performance, which 
is of particular interest in application areas such as integrated 
optics, fiber optics, or displays.
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Figure 1. What is a perfect optical diffuser? a) Artistic impression of a positionally disordered metasurface with a scattering profile (orange; scattered 
intensity I per unit solid angle dΩ = sinθdφdθ) that hardly changes when excited by generic TE-polarized (blue) or TM-polarized (red) plane waves.  
b,c) The azimuthal (b) and polar (c) scatterance show the fraction of the incident intensity I0 per unit angle that is scattered along all polar or azimuthal 
angles, respectively, when the metasurface is excited by a normally incident plane wave near (saturated colors) or off (desaturated colors) its resonance 
wavelength. Scatterances of ideal scatterers are shown for comparison. d) The diffuse scatterance, as a function of the incidence angle θin of a plane 
wave, is the efficiency with which a metasurfaces redistributes the incident energy across all diffuse directions Σ. For reference: (b–d) show simulations 
of the soft-core uniform metasurface type for the overlapping resonance case with resonant (λ = 1.38 μm) and off-resonant (λ = 1.52 μm) excitation.
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Figure 1 illustrates the properties of a perfect optical diffuser 
and motivates the physical quantities which we will use for its 
characterization. The artistic impression in Figure  1a depicts a 
positionally disordered metasurface with a scattering profile, 
intensity per solid angle dI/dΩ, that hardly changes for different 
plane wave excitations. Since we do not aim for a particular 
application scenario, we will compare our metasurfaces with 
ideal scatterers that show equal hemispherical transmittance 
and reflectance. In particular, we consider a Lambertian surface 
and a Hertzian dipole for reference. For an easier comparison 
of shapes, we normalize the scattering profile by the incident 
intensity I0 and integrate over all azimuthal (Figure 1b) or polar 
(Figure  1c) angles. Note that since the differential solid angle 
dΩ  ∝ sin(θ) vanishes along the polar axis, Figure  1c inherits 
the sin(θ) factor and Figure 1b effectively excludes contributions 
from regular directions (here: zeroth-order transmission and 
reflection). Figure 1b and Figure 1c show the simulated optical 
response of a fabricated metasurface with a disordered arrange-
ment as depicted in Figure 1a when the metasurface is excited 
directly at or slightly off its resonance wavelength by a normally 
incident plane wave. Clearly, the optical response is almost inde-
pendent of the incident polarization, and for off-resonant exci-
tation, the metasurface scatters considerably less light along 
diffuse directions, that is, nonregular directions. The scattering 
profile is highly uniform along the azimuthal direction, slightly 
asymmetric along the polar direction, and has a shape similar 
to the reference scatterers. Last, Figure 1d shows the integral of 
the normalized scattering profile across all diffuse directions. 
This quantity measures how efficiently a metasurface diffuses 
the incident energy. As the incidence angle increases, less light 
is scattered along diffuse directions. However, while holographic 
diffusers typically only accept incidence angle deviations of a few 
degrees, the presented metasurface allows a few tens of degrees.

In the following discussion, we first elaborate on the design 
and fabrication of four dielectric Huygens’ metasurfaces with 
different degrees of positional disorder. Then, we experimen-
tally and numerically study their spectral features in the zeroth-
order transmission and reflection for oblique and normal 
incidence. This spectral analysis provides insight into the fun-
damental working mechanisms of our metasurfaces. We also 
statistically evaluate the spatial distribution of transmittance 
and phase values, as well as induced dipole moments across 
the metasurface plane. Here we observe opportunities for wave-
front shaping with disordered metasurfaces and show that posi-
tional disorder effectively maintains the electromagnetic duality 
symmetry. Finally, we conclude with a detailed numerical and 
experimental study of the directional transmission and reflec-
tion of all disordered metasurfaces for different incidence 
angles and excitation wavelengths.

2. Results and Discussion

2.1. Metasurface Types and Resonance Cases

We devised four metasurface types with various degrees of posi-
tional disorder, which we labeled as array, perturbed array, soft-
core uniform and hard-core uniform. Each metasurface type 
represents a unique 2D arrangement of identical nanocylinders 

made of amorphous silicon and embedded in amorphous silicon 
dioxide. The array metasurface type is a square lattice with a lat-
tice constant of a, which we consider a perfectly ordered reference 
structure for the remaining disordered metasurface types. The 
perturbed array is based on a square lattice, where a random vector 
translates each lattice point with a magnitude <a/2. The uniform-
type metasurfaces are obtained from a generalized Matérn point 
process[88,94,95] which generates isotropic and homogeneous point 
distributions. While the hard-core uniform type only enforces a 
minimum clearance radius around each nanocylinder, the soft-
core uniform type also enforces a linearly increasing probability 
of finding any other nanocylinder in an annulus spanning from 
the clearance radius to a radius of one lattice constant.

Furthermore, we designed two resonance cases for which the 
effective electric dipole resonance (ED) and magnetic dipole reso-
nance (MD) of the nanocylinders of a metasurface type are either 
spectrally overlapping at a wavelength of about 1.4 μm or sepa-
rate at about 1.5 μm (MD) and 1.6 μm (ED). We fixed the nano-
cylinder diameter and height in each resonance case and targeted 
the same average density ρ = 1/a2 for all metasurface types.

A full description of all metasurface types and resonance 
cases can be found in the Experimental Section (“Metasurface 
Types and Resonance Cases”), which also provides technical 
details on the design strategies and the geometric parameters 
of the fabricated metasurfaces. In the fabrication, we applied 
a process based on electron-beam lithography and reactive-ion 
etching, which is further specified in the Experimental Section 
(“Fabrication”). Technical details about all experiments and sim-
ulations are listed in the Experimental Section (“Experiments” 
and “Simulations”, respectively).
Figure 2 shows pair correlation functions and scanning elec-

tron microscopy images of the disordered metasurface types. 
The 2D pair correlation function rr( )g  compares the local particle 
density at the point rr  of a particle system with that of an ideal 
gas, where rr  is measured with respect to an arbitrary reference 
particle of the system. The radial pair correlation function g(r) 
is the azimuthal average of rr( )g . The corresponding structure 
factors are shown in Figure S1, Supporting Information, and 
their numerical computation and relationship with the pair 
correlation function are outlined in the Experimental Section 
(“Pair Correlation Function and Structure Factor”).

While the perturbed array maintains the long-range order 
of the underlying array[96] (Figure  2b), the uniform-types 
exhibit a long-range order that is comparable to an ideal gas 
(Figure  2c and Figure 2d), and a short-range order that is 
almost entirely limited to a length scale of a few lattice con-
stants (Figure 2a for r/a < 2). At this point, it can already be 
expected that the optical response of the array-type metasur-
faces will be dominated by their crystal-like structure, and that 
the isotropy of the uniform-type metasurfaces will translate to 
an insensitivity concerning the polarization and orientation of 
an incident plane wave.

2.2. Zeroth-Order Transmission and Reflection

This section discusses the influence of positional disorder on 
the spectral and spatial features in the zeroth-order transmis-
sion and reflection of all metasurfaces.

Adv. Mater. 2022, 34, 2105868
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We begin with the particularization of the physical set-
ting (Figure  1a): We assume a Cartesian coordinate system 
rr xx yy zzˆ ˆ ˆx y z= + + , where zẑ is normal to the metasurface and 
points into the direction of transmission. The metasurface is 
embedded in a homogeneous, isotropic medium with refractive 
index n. The plane wave wavevector kk is expressed in terms of 
its polar θ ∈ [0, π] and azimuthal φ ∈ [−π, π] propagation angle

kk kk, ˆ ,0kθ φ θ φ( ) ( )=  (1)

θ φ θ φ θ φ θ( ) ( ) ( )( ) ( ) ( )= + +kk xx yy zzˆ , sin cos ˆ sin sin ˆ cos ˆ  (2)

where k0 = 2πn/λ is the wavenumber and λ the vacuum wave-
length. It can be shown that the electric field vectors of TE (MMkk) 
and TM (NNkk) polarized plane waves

MM rr MM MM kk zzi ˆ ˆ ˆ ˆ/sinkk
kk rr

kk kk
i ·e θ( ) ( )= = ×  (3)

NN rr NN NN kk MMˆ ˆ ˆ ˆ
kk

kk rr
kk kk kk

i ·e( ) = − = ×  (4)

form a complete basis in homogeneous, isotropic media.[97]

With this, we may write the electric field of a TE or TM polar-
ized incident plane wave in terms of

EE rr
MM rr
NN rr

X: TE
X: TM

kk

kk
in
X

in
X in

in

E( ) ( )
( )= 


  (5)

where in
XE  is its amplitude and kkin its wavevector. Considering 

the possibility of polarization conversion from X to Y, we may 
define the generalized transmission coefficient as

MM rr EE rr

NN rr EE rr

1 · Y: TE

· Y: TM
kk

kk

kk

X,Y

in
Xt

E

( ) ( )
( ) ( )

=






∗

∗  (6)

where EE is the electric field transmitted by the metasurface, ·  is an 
area-averaging integral across the metasurface plane, and kk is the 
direction of the transmitted plane wave. For brevity, we refer to the 
zeroth-order co-polarized transmission coefficient simply as trans-
mission coefficient t, and define the transmittance T and phase ϕ as:

argk
X,X 2

int t T t tϕ ( )= = =  (7)

The zeroth-order reflection coefficient r and the reflectance 
R  =  |r|2 are defined analogously to Equations (6) and (7), in 
which kkin must be replaced by its reflection.

Furthermore, by omitting the integrals in Equation (6), we 
obtain from Equation (7) the transmission coefficient profile 

rr( )t , the transmittance profile rr( )T  and the phase profile rr( )ϕ . 
We quantify the spatial distribution of transmittance and phase 
values with means µ µϕ,T



 and variances σ σϕ,2 2
T



, where the ring 
accents emphasize the circular nature of the phase angle and 
the usage of corresponding circular moments. See Experi-
mental Section (“Probability Density Functions”) for a detailed 
description of these statistical quantities.

Last, we define the diffuse scatterance as

d
d

d
cos d

0
∫ ∫ θ( )=

Ω
Ω = Ω

∑ ∑
ΩQ

I

I
QD  (8)

where � kk kk{( , ) ˆ ( , ) ˆ }iiθ φ θ φΣ = ≠  represents all possible directions 
excluding countably many kk̂ i, and QΩ is the directional scatter-
ance as defined by Equation (12). We call Σ the set of diffuse 
directions and kk̂ i the regular directions. Moreover, we chose the 
rather uncommon term scatterance as hypernym for transmit-
tance and reflectance as to emphasize on the radiometric ter-
minology and the unification of the half-spaces. Consequently, 
we use the diffuse scatterance to measure how efficiently a 
metasurface redistributes light from regular directions across 
all diffuse directions. For a fair comparison between different 
metasurface types, we consider all diffraction orders of the 
array as the regular directions of the array-type metasurfaces, 

Adv. Mater. 2022, 34, 2105868

Figure 2. Pair correlation functions (PCFs) of disordered metasurface types. a)  Radial and b–d) 2D pair correlation functions of the perturbed array 
(b), soft-core uniform (c), and hard-core uniform (d) metasurface types for the overlapping resonance case. Corresponding scanning electron micro-
scopy images of fabricated metasurfaces are placed above (b–d) with scale bars of 1.6 μm. The values in (b) are ten times larger than indicated by the 
color bar. All distances are normalized with respect to the lattice constant a = 800 nm of the array.
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and the directions along which a flat surface refracts or reflects 
an incident plane wave (i.e., the zeroth orders of the array) as 
the regular directions of the uniform-type metasurfaces. In 
the absence of gain and absorption loss, for negligible cross-
polarization, and if only the zeroth orders can be excited, the 
diffuse scatterance simplifies to QD = 1 − T − R. See Sections S1 
and S2, Supporting Information, for a detailed derivation of the 
quantities involved in Equation (8).

2.2.1. Spectral Features for Oblique Incidence

Figure 3 shows experimental transmittance spectra of all metas-
urfaces types and resonance cases for TE or TM polarized plane 
wave excitation with incidence angles θin  ≤ 20° and φin  = 0°. 
Here, all angles are measured with respect to air, and the lattice 
vectors of the array-type metasurfaces are aligned with xx yyˆ , ˆ . In 
the following discussion, we always refer to the transmittance 
values at resonance wavelengths.

The array behaves as expected:[80] In the overlapping reso-
nance case and for normal incidence (Figure 3a, θin = 0°), the 

ED and MD are in spectral overlap. Due to this equal electric–
magnetic response, negligible absorption, and discrete rota-
tional symmetry of the arrangement, the reflectance is sup-
pressed, and consequently, the transmittance is near one. As 
the incidence angle increases, the ED and MD shift apart and 
separate at about 15° (TE) or 10° (TM), while the transmittance 
reduces to near zero. In the separate resonance case (Figure 3b) 
and for TM polarization, the ED and MD shift toward each 
other and overlap at about 13.5°, which leads to a high trans-
mittance due to the generalized Brewster effect.[98] The com-
paratively narrow resonances at wavelengths of about 1.25 and 
1.30 μm in Figure 3a, and 1.40 and 1.45 μm in Figure 3b, are 
higher-order lattice modes that are not excited under normal 
incidence. These experimental transmittance spectra are in 
excellent agreement with simulations (Figure S2, Supporting 
Information).

The resonance wavelengths of the perturbed array are almost 
identical to those of the array. However, the presence of posi-
tional disorder significantly reduces the transmittance when 
the ED and MD are in spectral overlap (compare Figure  3a 
and Figure 3c for θin  < 10° and Figure  3b and Figure 3d at 

Adv. Mater. 2022, 34, 2105868

Figure 3. Experimental transmittance spectra for oblique incidence. a–h) Transmittance spectra of the array (a,b), perturbed array (c,d), soft-core uni-
form (e,f), and hard-core uniform (g,h) metasurface type for the overlapping (a,c,e,g) and separate (b,d,f,h) resonance case with TE- or TM-polarized 
plane wave excitation. The dashed lines indicate the onset of the lowest diffraction orders in the array (top to bottom: (1, 0), (0, ±1), (−1, 0)).
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θin = 13.5°), and slightly broadens and increases the transmit-
tance when the ED and MD are spectrally separate.

The uniform-types show only minuscule differences 
compared to each other, but a much stronger insensitivity 
regarding the incidence angle and polarization when com-
pared to the array-types. In the overlapping resonance case 
(Figure 3e and Figure 3g), the transmittance is near zero, and 
the ED and MD hardly shift as the incidence angle increases. 
In the separate resonance case (Figure 3f and Figure 3h), the 
transmittance is considerably higher, and the ED and MD are 
spectrally much broader than in the perturbed array. Extended 
simulations confirm the observed trends for incidence angles 
of up to 45° (Figure S3, Supporting Information)

In summary, the uniform-type metasurfaces of the overlap-
ping resonance case exhibit properties which make them prom-
ising candidates for perfect diffusers. On the one hand, they 
show a near-zero transmittance, which is a necessary, though 
insufficient, requirement for a high diffuse scatterance. On 
the other hand, they are highly insensitive to the incidence 
angle and polarization, which is interesting for applications 
that require a large numerical aperture. The following subsec-
tion and “Theory of Disordered Huygens’ Metasurfaces” in the 

Experimental Section provide deeper insight in the physical 
mechanisms that lead to the observed effects.

2.2.2. Spectral Features for Normal Incidence

In this subsection, we sort all metasurface types according to 
their degree of positional disorder, identify those which are 
close to a disorder-induced phase transition,[88] and provide a 
more detailed description of how positional disorder influences 
their zeroth-order transmission and reflection spectra. In the 
following discussion, we focus on TE polarized plane wave exci-
tation under normal incidence.

First, consider the transmittance and phase spectra of 
the overlapping resonance case for increasing wavelengths 
(Figure 4a and Figure 4c). For the array-type metasurfaces, the 
transmittance remains relatively high while the phase shows 
normal dispersion and a cumulative phase change of about −2π. 
For the uniform-type metasurfaces, the transmittance reaches 
near zero when the phase exhibits anomalous dispersion, and 
the cumulative phase change is almost zero. Alternatively, 
we may imagine the corresponding transmission coefficient 

Adv. Mater. 2022, 34, 2105868

Figure 4. Spectra for normal incidence. a–h) Experimental and simulated transmittance (a,b), phase (c,d), reflectance (e,f), and diffuse scatterance 
(g,h) spectra for the overlapping (a,c,e,g) and separate (b,d,f,h)  resonance cases with TE-polarized plane wave excitation under normal incidence. 
Experimental spectra were measured in an incoherent white-light spectroscopy setup and a Fourier transform interferometer. The error bars show the 
spatial mean and standard deviation of experimental transmittance and phase profiles, which were measured in an imaging phase-shifting interfer-
ometer. The labels MD and ED indicate the resonance wavelength of the magnetic and electric dipole resonance, respectively. Here, we evaluated the 
special case QD = 1 − T − R.
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spectra ( ) ( ) exp it Tλ λ ϕ λ( )( )=  as parametric curves in the 
complex plane (cf., Figure S4a, Supporting Information). For 
the array-type metasurfaces, t(λ) circles once around the origin 
of the complex plane, whereas for the uniform-type metasur-
faces, the curve remains in one quadrant of the complex plane 
and only approaches the origin near the resonance wavelength. 
The same behavior was observed in metasurfaces similar to 
the perturbed array type,[88] where a gradual increase in posi-
tional disorder results in a continuous transformation of t(λ) 
from a curve that circles the origin to a curve that resides in one 
quadrant. This implies the existence of a critical degree of posi-
tional disorder, at which t(λ) passes exactly through the origin 
and an abrupt disorder-induced phase transition from normal 
to anomalous dispersion occurs. In other words, increasing 
positional disorder first decreases the transmittance at the reso-
nance wavelength to zero, but then increases it again once the 
phase transitioned to anomalous dispersion. With this, we sort 
the metasurface types in the sequence of increasing positional 
disorder: array, perturbed array, soft-core uniform, hard-core 
uniform. Furthermore, soft-core uniform shows the smallest 
transmittance at resonance and is therefore closest to the dis-
order-induced phase transition.

In the separate resonance case (Figure  4b and Figure 4d), 
increasing positional disorder always increases the transmit-
tance at the resonance wavelengths, while the phase spectra 
flatten and the phase remains in the anomalous dispersion 
regime. Similar to the discussion of the overlapping resonance 
case, this behavior is best understood in the complex plane 
(cf., Figure S4b, Supporting Information): The array metasur-
face type possesses a curve t(λ) that does not circle the origin, 
which corresponds to a state that already exceeds the critical 
degree of positional disorder. Consequently, any increase in 
positional disorder drives the system only further away from 
the phase transition, and the effects mentioned above can 
be observed.

Moreover, the reflectance and diffuse scatterance spectra of 
the separate resonance case show that at the resonance wave-
lengths (Figure  4f and Figure 4h), increasing positional dis-
order reduces the reflectance and increases the diffuse scatter-
ance. However, even for the maximal positional disorder (hard-
core uniform), the lowest reflectance still amounts to about 5% 
and the highest diffuse scatterance only to about 60%. This is 
in stark contrast to the reflectance and diffuse scatterance in 
the overlapping resonance case (Figure 4e and Figure 4g): The 
reflectance at the resonance wavelength is zero for all metasur-
face types, and the diffuse scatterance approaches one near the 
critical degree of positional disorder (soft-core uniform). As the 
wavelength is tuned away from the resonance, the diffuse scat-
terance reduces significantly. For example, nearly 80% of the 
incident light passes undisturbed through the soft-core uniform 
metasurface at λ = 1.6 μm. This demonstrates the wavelength-
selective diffuser functionality of the disordered metasurfaces, 
which could be further engineered, for example, by including 
carefully tailored higher-order multipoles.[81]

With this, we conclude that the soft-core uniform metasur-
face type of the overlapping resonance case is most suitable for 
the operation as a perfect diffuser. The remaining question of 
how the metasurfaces redistribute the incident energy along 
the diffuse directions will be addressed in Section 2.3.

2.2.3. Spatial Features for Normal Incidence

In the remainder of this section, we focus on the overlapping res-
onance case and study spatial statistics for resonant (λ = 1.38 μm)  
and off-resonant (λ = 1.52 μm) excitation by a TE polarized plane 
wave under normal incidence. More precisely, we statistically 
evaluate the spatial transmittance and phase profiles as well as 
the effective dipole moments that are induced in the nanocylin-
ders of each metasurface type (see “Effective Dipole Moments” in 
the Experimental Section). With this study, we aim to characterize 
the influence of positional disorder in Huygens’ metasurfaces, 
and provide a basis for the discussion of how such metasurfaces 
may be employed in wavefront shaping applications.

First, we obtained transmittance and phase profiles, con-
structed kernel density estimates of their 2D probability 
density functions (PDFs), and computed marginal PDFs by 
integrating over one variable of the 2D PDFs.[99] The pro-
files are displayed in Figure S5, Supporting Information, for 
reference. Figure  5a and Figure 5b show experimental and 
simulated PDFs f(ϕ, T), where metasurface types are color-
coded, and excitation wavelengths and mean values are indi-
cated by marks. The differences between experiment and 
simulation in terms of the mean values are mainly due to 
a slight mismatch in the resonance wavelengths, which can 
also be seen in Figure  4a and Figure 4c near the excitation 
wavelengths. In the simulations, we computed rr( )t  with a 
spatial resolution of about λ/3 and accounted for the limited 
numerical aperture (NA = 0.25) and the camera pixel size 
(5  μm, square) of the experimental setup with the applica-
tion of corresponding low-pass filters. We want to empha-
size that the phase distributions are indeed uniform on a 
microscopic level (Figure S6d–g, Supporting Information), 
and that the following distributions mainly result from the 
local spatial averaging of the transmitted electric field. The 
marginal PDFs of the phase f(ϕ) (Figure  5c and Figure 5d) 
closely resemble wrapped normal distributions, and the vari-
ances in the simulated phase agree well with the experiment. 
The marginal PDFs of the transmittance f(T) (Figure 5e and 
Figure 5f ) slightly deviate from a folded normal distribu-
tion, and the variances in the simulated transmittance are 
systematically smaller than in the experiment. However, this 
is most likely due to external influences in the experiment, 
as for example imperfections in the sample and the excita-
tion beam. With these limitations in mind, we consider our 
simulations to predict the spatial transmittance and phase 
distributions of all metasurface types realistically, which will 
be the basis for a detailed study of directional transmission 
and reflection in Section 2.3.

To reveal the influence of positional disorder on the mean 
and standard deviation of the transmittance and phase pro-
files, we assembled scatter plots (Figure  6a and Figure 6b) 
from the experimental data in Figure 5 and from a few addi-
tional measurements near the resonance wavelength as indi-
cated by the error bars in Figure  4a and Figure 4c. The sole 
purpose of these additional measurements is to visualize 
the wavelength-sensitivity of the statistical quantities near 
the resonance.

Figure 6a relates the standard deviation of the transmittance 
(σT) with that of the phase (σ ϕ



). For off-resonant excitation, 
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both σT and σ ϕ
  increase with increasing positional disorder. As 

the excitation wavelength is tuned to the resonance, the array-
type metasurfaces exhibit a positive correlation between σT and 
σ ϕ
 . In contrast, the uniform-type metasurfaces show that σ ϕ



 
increases almost independently of σT. For resonant excitation, 
we observe that σ ϕ

  is higher the closer a metasurface is to the 
disorder-induced phase transition.

However, it should be noted that the primary cause for this 
increase in σ ϕ



 may not be a positional disorder, but rather a 

vanishing mean transmittance (μT). Figure  6b shows that σ ϕ


 
and μT are strongly correlated and follow a relationship that is 
almost independent of positional disorder: As μT decreases to 
zero, the distribution of rr( )ϕ  becomes more uniform and σ ϕ

  
follows with an exponential increase.

Furthermore, note that perturbed arrays with varying 
degrees of positional disorder constitute an exciting platform 
for wavefront shaping applications that require both amplitude 
and phase modulation in transmission. The high similarity 

Adv. Mater. 2022, 34, 2105868

Figure 6. The influence of positional disorder on spatial statistics. a,b) Scatter plots for the overlapping resonance case with TE polarized plane wave 
excitation under normal incidence, showing the standard deviation of experimental phase profiles with respect to the standard deviation (a) and mean 
(b) of the corresponding transmittance profiles, and c) the mean (marks) and standard deviation (error bars) of simulated effective dipole moments 
that are induced in the nanocylinders of a metasurface. The circles and crosses indicate resonant (λ = 1.38 μm) and off-resonant (λ = 1.52 μm) excita-
tion. The dots show additional measurements near the resonance. The data in (a,b) correspond to the error bars in Figure 4a and Figure 4c. The gray 
line in (c) indicates the equal electric and magnetic moment condition.

Figure 5. Probability density functions (PDFs) of transmittance and phase profiles. a,b) The maximum maxτλ fτλ(ϕ, T) of the PDFs fτλ of all metasurface 
types τ (encoded by different colors) for the overlapping resonance case with resonant (λ = 1.38 μm) and off-resonant (λ = 1.52 μm) excitation (encoded 
by different marks) by a TE-polarized plane wave under normal incidence. c–f) Marginal PDFs, that is, integrals of fτλ(ϕ, T) along ϕ or T, where shaded 
areas result from kernel density estimates and solid lines show wrapped (c,d) and folded (e,f) normal distributions with matching means and variances. 
a,c,e) Experimental (EXP) and b,d,f) simulated (SIM) data.
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in the σT–σ ϕ


-dependencies (Figure  6a) of the perturbed array 
and the array suggests that they perform equally well in zeroth 
order. As will be shown later, the perturbed array does indeed 
scatter more light along diffuse directions than the array, but 
this can be taken into account in simulations, and some appli-
cations may even benefit from it, as for example transmission 
holograms where a higher numerical aperture or a more uni-
form intensity distribution could be achieved. Additionally, the 
phase spectrum (Figure  4c) of the perturbed array is almost 
identical to that of the array, whereas the transmittance at the 
resonance wavelength (Figure  4a) is a function of the degree 
of positional disorder. Hence, we may see positional disorder 
as an additional degree of freedom in the design of wavefront 
shaping applications.

Finally, to obtain a clearer picture of how positional disorder 
affects the response of individual nanocylinders, we simulated 
the induced effective electric and magnetic dipole moments in 
100 central nanocylinders of each metasurface type and evalu-
ated their mean and standard deviation (Figure 6c). For off-res-
onant excitation, the induced moments are small in magnitude, 
they deviate from the equal electric–magnetic moment condi-
tion (gray line), and positional disorder slightly increases their 
standard deviation. On the other hand, the standard deviations 
are much larger for resonant excitation, but also significantly 
more nanocylinders are at or close to the equality condition. As 
a result, the combination of resonant excitation and positional 
disorder can greatly spread the induced dipole moments, but 
the collective response of all nanocylinders remains close to the 
electric–magnetic equality condition.

2.3. Directional Transmission and Reflection

This section first presents the simulated directional trans-
mission and reflection of the disordered metasurface types 
and studies their response to different excitations, before 
we evaluate the experimental directional transmission of all 
metasurface types for similar excitations. We do not aim for 
a strict comparison of simulated and experimental results 
since the simulations assume a homogeneous background, 
whereas the experiments involve reflections at air/substrate 
interfaces and other technical complications. Instead, we 
introduce the simulations in the sense of an ideal model 
that provides a theoretical understanding of the involved 
physical processes and assesses the performance of the 
fabricated metasurfaces with respect to the ideal situation. 
We consider resonant and off-resonant TE polarized plane 
wave excitation for normal and oblique incidence. Corre-
sponding data for TM polarized excitation can be found in 
the Supporting Information.

In the following, we define several quantities which are 
closely related to standard radiometric quantities, and are based 
on the transmitted EE rr( )T  and reflected EE rr( )R  electric field on 
the respective side of a metasurface. We want to emphasize 
that this involves the total electric field and not the scattered 
field formalism as known from Mie theory. From plane wave 
expansions of the electric fields (Section S1, Supporting Infor-
mation) and a careful evaluation of the area-average ·  of the 
time-averaged Poynting vector SS rr( ) across the metasurface 

plane, we obtain an integral expression for the area-averaged 
intensity = SS zz| ·ˆ |I , where the integrand can be interpreted as a 
directional intensity

=
≥
<







kk kk

kk

d ( )

d d

d

d d

( ) 0

( ) 0

2 2 T

R

I

k k k k

I k

I kx y x y

z

z
 (9)

that unifies the transmitted IT and reflected IR directional inten-
sities resulting from EET  and EER , respectively. Furthermore, we 
are able to relate the directional intensity with the area-averaged 
radiance L
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where dΩ = sin(θ)dφdθ is the unit solid angle.
Motivated by this relationship, we define the directional scat-

terance / 0Q L I=Ω , the directional transmittance TQΩ , and the 
directional reflectance RQΩ
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where I0 is the intensity of an arbitrarily polarized incident 
plane wave, and the subscript Ω indicates units of inverse stera-
dians. While ( , )Q θ φΩ  is the fraction of the incident intensity 
scattered along (θ, φ) into a projected unit solid angle, kk( )QΩ  
can be understood as the normalized intensity recorded in the 
back-focal-plane of a lens that collects the light scattered off 
the metasurface.

A full integral over QΩ yields the scatterance Q = QT + QR, 
which is simply the sum of the hemispherical transmittance QT 
and the hemispherical reflectance QR. Note that in the absence 
of gain and absorption loss, Q = 1 due to energy conservation. 
While the scatterance may not be very useful on its own, its dif-
ferential representations allow computation of how efficiently a 
metasurface scatters into a given solid angle.

With this, we further define the azimuthal scatterance Qφ 
and the polar scatterance Qθ

∫φ
φ
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θ φ θ θ φ( )( ) ( ) ( ) ( )= =θ

π

π

−
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d
, sin cos dQ

Q
Q  (14)

which have units of inverse radians and can be interpreted as 
marginal integrals of QΩ , or as the azimuthal and polar con-
tributions to Q. Since QΩ typically contains strong speckles, 
we found Qφ and Qθ to be the most reliable measures for the 
comparison of the shape of QΩ with that of an ideal scatterer. 
Other similarity measures, as for example normalized cross-
correlations, tend to produce results which are dominated by 
the speckle pattern.
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In order to provide absolute values on how much energy 
flows into a given solid angle, we define the cumulative integral 
of Qθ as the sectorial scatterance Q(θ)

∫θ θ θ θ( )( ) ( )= ′ ′ + ∆
θ

θ d
0

Q Q  (15)

where the piece-wise constant function Δ(θ) (Equation (S39), 
Supporting Information) is an integration constant that 
accounts for jump discontinuities in the critical points θ ∈ {0, π}  
such that Q(π) = Q. In other words, Q(θ) is the fraction of 
the incident intensity scattered into a spherical sector with a 
half-angle of θ. Consequently, we find that ( /2)T π=Q Q  and 

( ) /2RQ Q Qπ π( )= − .
As ideal scatterers, we consider a Lambertian surface with 

a directional scatterance of ( , ) 1/(2 )LQ θ φ π=Ω  and a Hertzian 
dipole with ( , ) 3/(4 ) | cos( ) |HQ θ φ π θ=Ω .

Last, since the contributions of TE and TM polarized scat-
tered waves are additive, they can easily be separated as in 
Q = QTE + QTM, where Q may stand for any of the previously 
defined scatterance variables.

2.3.1. Simulated Scatterance

Figure  7 shows the simulated scatterance of the disordered 
metasurface types for TE polarized plane wave excitation with 
incidence angles of θin = {0°, 30°, 60°} and φin = 0°. Here, all 
propagation angles are measured with respect to the back-
ground medium (SiO2). Furthermore, since the directional 
scatterance kk( )QΩ  in Figure  7a and Figure 7b is mirror-sym-
metric with respect to the kx–kz-plane, we display transmission 
only for ky  > 0 and reflection only for ky  < 0. Figure S7, Sup-
porting Information, shows the corresponding situation for TM 
polarized excitation.

For resonant excitation and normal incidence, the directional 
scatterance QΩ (Figure 7a, θin = 0°) of the uniform-type metas-
urfaces is highly uniform along the azimuthal angle, while that 
of the perturbed array shows a weak azimuthal dependency. As 
the incidence angle increases, the uniform-type metasurfaces 
transmit slightly more light along directions perpendicular to 
the incident wave, while the perturbed array scatters increas-
ingly more light along regular directions. The same trends can 
be observed for off-resonant excitation (Figure  7b), with the 
exception that already at normal incidence, most light is scat-
tered along regular directions. Note that the regular directions 
can also be seen as peaks in the polar scatterance Qθ (Figure 7c 
and Figure 7d), or as jumps in the sectorial scatterance Q(θ) 
(Figure  7e and Figure 7f). For example, the height of the step 
Q(θin) represents the fraction of the incident energy that is con-
tained in the zeroth order in transmission.

In summary, we observe a redistribution of energy from dif-
fuse directions toward regular directions as the incidence angle 
increases, or as the excitation wavelength is tuned away from 
the resonance. This demonstrates that the presented metasur-
faces heavily rely on the excitation of matched dipole moments 
to achieve a high diffuse scatterance. However, since these 
metasurfaces were designed to have equal electric and mag-
netic dipole moments for normal incidence, it may be possible 

to achieve a high diffuse scatterance with an optimized nano-
cylinder arrangement for other incidence angles as well.

For resonant excitation and increasing incidence angle, the 
polar scatterance (Figure 7c) of the uniform-type metasurfaces 
remains almost unchanged and comparable to a Hertzian 
dipole for up to about θin ≤ 30°. The perturbed array performs 
similarly well at normal incidence since it adequately sup-
presses the zeroth orders (cf., Figure  7e). At larger incidence 
angles, however, the polar scatterance of the perturbed array 
significantly reduces along diffuse directions as the higher 
diffraction orders of the underlying array become available as 
new radiation channels. These diffraction orders can be seen 
as additional peaks in the polar scatterance, and are not present 
in the uniform-type metasurfaces. Interestingly, for large trans-
mission angles θ ∈ [45°, 90°], the polar scatterance of all disor-
dered metasurface types even exceeds that of a Hertzian dipole 
and is comparable to a Lambertian surface (cf., Figure  1c). 
However, this surplus in transmission also implies less energy 
in reflection.

For resonant excitation and increasing incidence angle, the 
sectorial scatterance (Figure 7e) further reveals that the fraction 
of cross-polarized light QTM(180°) decreases faster in the per-
turbed array than in the uniform-type metasurfaces.

2.3.2. Experimental Scatterance

Figure 8 shows the experimental scatterance of all metasurface 
types for TE polarized plane wave excitation with incidence 
angles of θin  = {0°, 10°, 20°} and φin  = 0°. Here, all measure-
ments were performed in transmission, and all propagation 
angles are measured with respect to air. We intentionally did 
not normalize the experimental data with respect to the back-
ground medium of the simulations, since the total internal 
reflection at the substrate–air interfaces in the experiments, 
as discussed in the following paragraphs, cannot be resolved 
unambiguously and would therefore lead to misleading com-
parisons. Figure S8, Supporting Information, shows the corre-
sponding situation for TM-polarized excitation.

The directional scatterance in Figure  8a and Figure 8b was 
measured in a back-focal-plane-imaging setup with the proce-
dure described in the Experimental Section (“Experiments”). The 
array metasurface type demonstrates the limitations of the exper-
imental setup. Ideally, the array should exhibit only one Dirac-
delta-like peak, but the transfer function of the collecting micro-
scope objective and secondary reflections from the substrate led 
to a broadening of the zeroth-order peak and the emergence of 
a secondary peak. However, it should be noted that the transfer 
function is nearly diffraction-limited and that one might easily 
overestimate its full width at half maximum (kFWHM/k0 ≈ 0.005 at 
λ = 1.38 μm) due to the clipped logarithmic color scale.

Furthermore, in the following discussion, it should be kept 
in mind that scattered waves with polar angles of about θ  ≥ 
44° experience total internal reflection at the substrate–air 
interfaces. These secondary waves may again be scattered by 
the metasurface or exit on the sides of the substrate. However, 
this appears to be rather a technological complication than a 
fundamental limitation, which could be lifted by designing 
the directional scatterance of the embedded metasurface 
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such that it vanishes in the region of total internal reflec-
tion, or more trivially, by operating the diffuser in an index-
matched environment. The ability to tailor the reciprocal 
space with positional disorder has already been demonstrated 
in hyperuniform plasmonic metasurfaces.[60] While there was 
recent progress in the efficient generation of point distribu-
tions with a prescribed pair correlation functions or structure 
factor,[100,101] it remains the question of how to efficiently and 
accurately compute the directional scatterance from the struc-
ture factor of a dense and highly resonant metasurface, that 
is, beyond the Born approximation. In this context, the fol-
lowing experimental results may be seen as a first step toward 
realizing a perfect optical diffuser.

Overall, the directional scatterance in the experiment 
(Figure  8a and Figure 8b) shows the same dependency on 
the incidence angle and the excitation wavelength as in the 
simulation (Figure  7a and Figure 7b). It is also higher and 
more isotropic in the uniform-type metasurfaces than in the 
perturbed array.

For resonant excitation and large polar angles, the experi-
mental polar scatterance (Figure 8c) of the uniform-type metas-
urfaces appears similar to a Hertzian dipole, which can be seen 
as a constant offset with respect to the Hertzian dipole curve. 
However, the sectorial scatterance (Figure  8e) suggests that 
the uniform-type metasurfaces hardly exceed 25% hemispher-
ical transmittance. The perturbed array shows a much higher 

Adv. Mater. 2022, 34, 2105868

Figure 7. Simulated scatterance for TE-polarized excitation. a–f) The directional QΩ  (a,b), polar Qθ (c,d), and sectorial Q(θ) (e,f) scatterance of the 
perturbed array, soft-core uniform, and hard-core uniform metasurface type for the overlapping resonance case with resonant (λ = 1.38 μm) (a,c,e) or 
off-resonant (λ = 1.52 μm) (b,d,f) excitation by a TE-polarized plane wave incident under θin ∈ {0°, 30°, 60°}. The column and row titles indicate all 
parameter combinations. In (a,b), ky > 0 shows transmission and ky < 0 reflection. In (e,f), QTM shows the contribution of cross-polarized light to Q = 
QTE + QTM. All wavenumbers are normalized with respect to the magnitude of the wavevector k0 in SiO2.
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hemispherical transmittance, mostly due to a high zeroth-
order transmittance. The lower hemispherical transmittance 
in the experiment may be explained by secondary waves that 
are mainly scattered back into the hemisphere associated with 
reflection, or which are guided to the sides of the substrate.

Nevertheless, the experimental results show that the fab-
ricated uniform-type metasurfaces strongly suppress the 
zeroth-order transmittance, scatter similarly to a Hert-
zian dipole, tolerate a wide range of incidence angles, and 
are wavelength-selective.

3. Conclusion

We have presented the particle statistics of three types of dis-
ordered metasurfaces, where the particle positions were taken 
from a perturbed square array or a generalized Matérn point 
process. We chose these methods since they guarantee a min-
imum distance between any pair of particles and allow the 
generation of a few million particle positions with relatively 
little computational effort. Although generalizations of the 
collective-coordinate method[100] can generate particle positions 

Adv. Mater. 2022, 34, 2105868

Figure 8. Experimental scatterance for TE polarized excitation. a–f) The directional QΩ  (a,b), polar Qθ (c,d), and sectorial Q(θ) (e,f) scatterance of 
the array, perturbed array, soft-core uniform, and hard-core uniform metasurface type for the overlapping resonance case with resonant (λ = 1.38 μm) 
(a,c,e) or off-resonant (λ = 1.52 μm) (b,d,f) excitation by a TE polarized plane wave incident under θin ∈ {0°, 10°, 20°}. All graphs show transmission 
(kz ≥ 0, θ ≤ 90°). The column and row titles indicate all parameter combinations. All wavenumbers are normalized with respect to the magnitude of 
the wavevector k0 in air.
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with a prescribed structure factor, which may be the most direct 
approach to reciprocal space engineering, it is yet unclear how 
to accurately predict the optical response of our resonant meta-
surfaces from the structure factor. Due to this circumstance, 
we followed a heuristic approach where we targeted the same 
average particle density in all metasurfaces and investigated 
two uniform particle distributions with similar but distinct 
short-range order.

We experimentally studied the zeroth-order transmittance of 
all proposed metasurfaces for oblique incidence. The uniform-
type metasurfaces showed spectral features which are virtually 
independent of the incidence angle and polarization.

Experimental and simulated spectra at normal incidence pro-
vided a deeper physical understanding of the interplay between 
positional disorder and the excited electric and magnetic dipole 
resonances. Near the disorder-induced phase transition, we 
observe that the diffuse scatterance approaches one, indicating 
that no light is scattered along the zeroth order in transmission 
and reflection. However, for off-resonant excitation, most of the 
light is transmitted along the zeroth order. This is a first indica-
tion that metasurfaces with critical disorder may be employed 
as wavelength-selective diffusers.

We also studied the spatial distribution of transmittance 
and phase values and induced effective dipole moments. Here, 
we saw that perturbed arrays might be suitable for wavefront 
shaping, and that uniform positional disorder effectively pre-
serves the equality of the electric–magnetic induced moments.

Finally, we characterized the directional transmission and 
reflection of our metasurfaces. On the one hand, we performed 
accurate simulations to cover the full reciprocal space for the 
situation where the metasurface is embedded in a homoge-
neous background medium. Here we observe scattering pro-
files similar to Lambertian surfaces or Hertzian dipoles. As the 
incidence angle increases, the scattering profiles mostly main-
tain their shape along diffuse directions, but increasingly more 
energy resides in the regular directions.

On the other hand, we performed experimental measure-
ments, which include an additional glass–air interface that 
leads to total internal reflection. We did not account for this in 
our design, as it would require reciprocal space engineering. 
However, to overcome the influence of total internal reflec-
tion, it would suffice to limit the scattered light to a cone with 
a half-angle equal to the critical angle. As this relaxes the 
necessity to scatter along large angles, one may also employ 
nanoparticles with a more directional far-field emission. Nev-
ertheless, considering this difference with respect to the simu-
lations, we observe the same effects as theoretically predicted, 
but with a slightly reduced hemispherical transmittance of 
about 25%.

In summary, we have presented the theoretical basis and 
experimental proof of concept for the design and fabrication of 
disordered metasurfaces that may be employed as wavelength-
selective perfect diffusers.

4. Experimental Section
Metasurface Types and Resonance Cases: Table  1 summarizes the 

targeted and actual geometric parameters of all metasurface types for 
both resonance cases. Due to fabrication requirements, a minimum 

edge-to-edge distance of dmin  = 80 nm was implemented between all 
nanocylinders. Each fabricated metasurface covered an area of 2 × 2 mm2  
and contained more than 6 million nanocylinders.

The center coordinates of the nanocylinders in the array metasurface 
type are the vertices of a square lattice

Zpp xx yyˆ ˆ ,a i j i jij ( )= + ∈  (16)

where xx̂  and yŷ  are Cartesian unit vectors. The center coordinates in 
the perturbed array PPij  were drawn uniformly from a disk-shaped area 
centered on each pp ij

( )( ) ( )= + Φ + ΦRij ij ij ij ijPP pp xx yycos ˆ sin ˆ  (17)

= − −
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πΦ = Vij ij2  (19)

where Uij, Vij ∈ [0, 1] are samples from a standard uniform distribution.
The center coordinates in the uniform-type metasurfaces were taken 

from a generalized Matérn III point process.[94,95] In this process, points 
from an initial Poisson point process were deleted with a probability 
f(r), where r is the distance between any pair of points. The following 
deletion probability was employed
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where α = d + dmin, βsoft-core = a and βhard-core = α.
Since all metasurface types of a given resonance case possess very 

similar average nanocylinder densities and short-range order (compare 
r/a < 2 in Figure 2a), it can be expected that the spectral positions of their 
electric and magnetic resonances will as well be rather similar. With this 
consideration in mind, the optical response of the array metasurface type 
was designed first, and then it was verified that the remaining metasurface 
types meet the design goals. More precisely, a gradient-based optimization 
method was used to determine d, h, and a such that in the spectral vicinity 
of the MD and ED, the transmitted intensity was either maximized and the 
phase underwent a smooth 2π change (overlapping resonance case), or 
the intensity was minimized (separate resonance case).

Fabrication: Electron-beam lithography and reactive-ion etching 
were used to structure a commercially available wafer consisting of a 
1  mm-thick amorphous silicon dioxide substrate and a 500  nm-thick 
amorphous silicon cover layer (Tafelmaier Dünnschicht-Technik GmbH).

First, the thickness of the amorphous silicon layer was reduced to 
220  nm via argon-ion-beam etching (Oxford Ionfab 300). Then, the 
wafer was covered with a 30 nm-thick layer of chromium via ion beam 
deposition (Oxford Ionfab 300) and a 100  nm-thick layer of electron 
beam resist (maN 2401) via spin-coating. The resist was exposed in a 
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Table 1. Targeted and actual (in square brackets) geometric parameters 
for the overlapping and separate resonance case.

Nanocylinder Resonance case

Overlapping Separate

Diameter d nm 490 [468] 600 [582]

Height h nm 220 [213] 220 [211]

Lattice constant a nm 800 [800] 900 [900]

Density, soft-core ρ μm−2 1.56 [1.51] 1.23 [1.12]

Density, hard-core ρ μm−2 1.56 [1.55] 1.23 [1.22]
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variable-shaped electron-beam lithography system (Vistec SB 350) and 
developed in a tetramethylammonium hydroxide solution (AZ MIF 726) 
for 40  s at room temperature. The resulting resist mask was etched 
into the chromium layer via argon ion-beam etching and further into 
the amorphous silicon layer by means of inductively coupled plasma 
reactive-ion etching (Sentech SI-500 C) with carbon tetrafluoride. The 
chromium mask and any residual resist were removed with a cerium-
based chromium-etching solution and acetone. Finally, the wafer was 
covered with a 540 nm-thick layer of spin-on glass (Futurrex IC1-200).

Experiments: Four different setups were used for the optical 
characterization of all fabricated metasurfaces.

All zeroth-order transmittance T(λ), reflectance R(λ), and diffuse 
scatterance QD(λ) spectra were measured in a custom-built incoherent 
white-light spectroscopy setup with a numerical aperture of 0.044 and 
full control over the incidence angle and polarization. The reflectance 
spectra were normalized with respect to a silver mirror. Here, the special 
case QD = 1 − T − R was evaluated.

All phase spectra ϕ(λ) were measured in a custom-built Fourier-
transform interferometer[102,103] for normal incidence.

All transmittance rr( )T  and phase rr( )ϕ  profiles were measured in a 
custom-built phase-shifting interferometer for normal incidence and 
selected wavelengths. A standard four-step Carré method was used 
for phase retrieval.[104] The imaging part of this setup had a numerical 
aperture of about 0.25 and an effective resolution of about 5 μm.

The directional scatterance kk( )QΩ  was obtained from the Fourier 
plane of a long-working-distance microscope objective (Mitutoyo 
NIR HR 50X, 0.65  NA), where kkd ( )/[d d ]2I k kx y  was measured for each 
metasurface and the empty setup. The latter provided the incident 
intensity I0. The metasurfaces were placed in the front focal plane of the 
microscope objective and rotated as to set the incidence angle, reaching 
a maximum angle of about 20° before touching the microscope objective. 
Due to this rotation and the limited numerical aperture of the objective, 
slightly different parts of the kk -space were observed. The dynamic range 
of the camera (Xenics Xeva-1.7-640-TE3) was artificially extended with 
a method similar to high-dynamic-range imaging: A sequence of n  = 
0…23 images with exposure times of 2n μs were obtained, which were 
chosen such that no pixel was overexposed at 1 μs and the noise floor 
was observed at 223 μs. First, all intensity values which did not lie within 
15 85%…  of the dynamic range of the camera were excluded, then the 
remaining intensity values were scaled by 2−n, and finally the resulting 
image was constructed by taking the per-pixel-median of the valid and 
scaled intensity values.

Simulations: For the design of the resonance cases and the retrieval 
of actual geometric parameters, a finite element method (COMSOL 
Multiphysics) was used to simulate the transmission coefficient of the 
array metasurface type. To retrieve the actual geometric parameters, 
a least-square fit was performed on the experimental transmittance 
spectra for selected incidence angels θin  ∈ {0°, 10°, 15°} and both TE 
and TM polarization.

In all other cases, the local-coordinate T-matrix method was 
used. The local-coordinate T-matrix method is a reliable tool for the 
simulation of the electromagnetic response of a large cluster of small 
particles.[88,105]

Any electromagnetic field in a homogeneous environment can be 
expanded in terms of vector spherical harmonics (VSH), which are 
solutions of the vector Helmholtz equation in spherical coordinates. 
The incident field and the scattered field of an isolated object can be 
expanded in terms of[106]

a k b k
j m j

j

jm jm jm jmEE rr NN rr MM rrsca
1

(3) (3)( ) ( )( ) = ∑ ∑ +
=

∞

=−
 (21)

p k q k
j m j

j

jm jm jm jmEE rr NN rr MM rrinc
1

(1) (1)( ) ( )( ) = ∑ ∑ +
=

∞

=−
 (22)

where NN and MM are the electric and magnetic vector spherical harmonics, 
a and b the respective scattering coefficients, and p and q the respective 
incident coefficients.

The transition matrix (T-Matrix) is a tensor that relates the incident 
field with the scattered field of one particle in its local-coordinate frame 
of reference[106,107]
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The T-matrix describes the electromagnetic response of the particle 
and is equivalent to the polarizability tensor in Cartesian coordinates.[108] 
In this work, the T-matrix (or equivalently the polarizabilities) of the 
nanocylinders was calculated up to the octupolar order (j = 3) by exciting 
them with the VSH sources[109] in a commercial Maxwell equation solver 
(JCMsuite).[110] Note that for a homogeneous sphere in a homogeneous 
background medium, the T-matrix can be calculated analytically. For 
such particles, the T-matrix is a diagonal matrix and the elements are 
the well-known Mie coefficients with a minus sign according to the 
formulation used in Equations (21) and (22).[106,111]

For a cluster of particles with known T-matrices, the incident field 
at the local coordinate of one particle is given by the global incident 
field and the scattered field of all other particles. This requires the 
representation of local coordinates in each other’s frame of reference 
and, hence, the application of the VSH addition theorem.[112,113] 
Therefore, to compute the global scattered field of the cluster, a linear 
set of equations must be solved to obtain the final effective scattering 
coefficients aaeff  and bbeff . This method is called the local-coordinate 
T-matrix method.[105]

For a periodic structure, the final scattering coefficients are equal and 
the equations simplify, but the coherent long-range interaction made 
the convergence of the coefficients a difficult task that required special 
care.[114]

For the simulation of the zeroth-order transmission and reflection 
coefficients of the disordered metasurfaces, roughly 152 nanocylinders 
were used and the global scattered field was sampled in a square 
area that lies parallel and in a distance of 376  nm with respect to the 
metasurface plane. This distance ensured that the sampling plane 
does not intersect the circumscribing sphere of any nanocylinder. The 
sampling area was slightly smaller than the metasurface area to avoid 
the influence of effects stemming from the edges of the finite-sized 
metasurfaces. The number of considered nanocylinders were deemed 
to be sufficient for an accurate description of the metasurfaces’ optical 
response. This is demonstrated by Figure S6a, Supporting Information, 
which shows the diffuse scatterance of the soft-core uniform metasurface 
as a function of its size.

For the simulation of the directional scatterance, metasurface sizes of 
at least (125 μm)2 were used to ensure a satisfactory spectral resolution. 
A cut-and-stitch approach was used since such large metasurfaces are 
computationally expensive to simulate in one run. In particular, the total 
metasurface was split into smaller, overlapping patches and each patch 
was simulated as described in the previous paragraph. The overlaps 
were chosen such that the sample areas of all patches can directly be 
stitched together.

Effective Dipole Moments: For an axially symmetric (e.g., spheres, 
cylinders, etc.), small, and isolated scatterer in a homogeneous 
nonmagnetic background medium, which is illuminated by plane wave 
fields EEinc and HHinc  along the axis of symmetry, the excited electric pp and 
magnetic mm dipole moment can be defined as[115]

εα α= =mmpp EE HHe
inc

m
inc  (24)

where αe and αm is the electric and magnetic polarizability, respectively, 
and ε = ε0εback is the permittivity of the background.

For a spherical particle, the maximum theoretical polarizability occurs 
at the resonance wavelength, and the corresponding maximum electric 
p0 and magnetic m0 dipole moment can be written as[116]

6 i 6 i
0

0
3 0

0
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E
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where E0 is the amplitude of the incident field, k is the wavenumber, and 
/Z µ ε=  the impedance of the background medium. These values were 

used for normalization.
When there are multiple scatterers, the coupling and rescattering 

of the particles modifies the scattering coefficients, and the effective 
dipole moments can be defined based on the effective scattering 
coefficients[108,117]

ε π= −pp aai 6 ,effeff 3 1 1k
F  (26)

π= −mm bbi 6 ,effeff 3 1 1Zk
F  (27)

where
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Theory of Disordered Huygens’ Metasurfaces: For a periodic 
arrangement of dipolar particles, illuminated by a y-polarized plane 
wave, the zeroth-order transmission and reflection coefficient can be 
calculated as[117,118]
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where A  = a2 is the unit cell area, and py,eff and mx,eff are the effective 
electric and magnetic dipole moments along the y and x-axis, 
respectively. In an ordered Huygens’ metasurface (py,eff/ε + Zmx,eff = 0), 
the electric fields radiated by the electric and magnetic dipoles interfere 
constructively in transmission and destructively in reflection, resulting in 
|t| = 1 and r = 0 for any excitation wavelength. At resonance, it is found 
that the scattered wave, which is generated by all dipoles, is twice as 
strong as the incident wave but out of phase ( 1 2 1it e= + = −π ). Section 
S3, Supporting Information, provides a more detailed description of 
ordered Huygens’ metasurfaces.

If these particles are then brought into an arrangement with isotropic 
and uniform disorder, the zeroth-order transmission and reflection 
coefficient may be estimated via

t
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,effε ε≈ − + +  (32)

where · A is an area average of the induced moments in all particles. 
It was shown that lattice variations modulate the effective electric 
and magnetic moments symmetrically.[117] Therefore, it can be safely 
assumed that the equality of the electric and magnetic response is 
maintained in the presence of isotropic and uniform disorder. In other 
words, the main components of the electric and magnetic moments in a 
disordered Huygens’ metasurface still satisfy, in average

p
Zmy

x
A

0,eff
,effε + ≈  (33)

The cross induced moments px,eff and my,eff are the result of local 
random anisotropy. However, due to the uniform positional disorder, 
these moments vanish in average

0,eff ,effm py A x A
≈ ≈  (34)

With this, the transmission and reflection coefficients reduce to a 
form that is similar to the periodic case

t
k
E

p
Zmy

x
A

1 i
2 0

,eff
,effε≈ + −  (35)

r 0≈  (36)

Note that Figure  4e shows the vanishing reflectance and, in 
particular, r = 0 at the resonance wavelength λ = 1.38 μm. Furthermore, 
since increasing positional disorder reduces the magnitude of the 
average effective moments (see Figure 6c), it is possible to obtain t = 0 
at resonance for a critical degree of positional disorder. More precisely, 
the magnitude of the average effective dipole moments must reduce 
to one half of that in the periodic case, such that the incident wave 
interferes destructively with the zeroth-order component of the scattered 
wave ( 1 0it e= + =π ). Last, these relationships can also be observed in  
Figure S6b and Figure S6c, Supporting Information, which show the 
mean and standard deviation of the induced moments in the complex 
plane. Note that the presence of higher-order multipoles led to 
deviations from the presented theoretical description.

Pair Correlation Function and Structure Factor: The 2D pair correlation 
function rr( )g  and the structure factor ( )S ν  of a system of identical 
particles are related via Fourier transformations[119]

g S e
R

rr 1 1 1 drri2 ·

2

∫ρ ν ν( ) ( )= + −  π ν  (37)

∫ν ρ [ ]( ) ( )= + − π ν−

R
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2

S g e  (38)

where ρ is the average particle density.
The scattering intensity S of N particles at positions rrn

ν
η ν
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i2 ·
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e
n

N
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is an estimate of the structure factor S in the sense that its ensemble 
average S  over a large number of realizations tends toward S when all 
particles are considered[119]
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This allows estimation of the pair correlation function g

g e
R
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1
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2
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The radial pair correlation function g(r) and the radial structure factor 
S(ν) are the azimuthal averages of rr( )g  and ( )S ν
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π

π

−

xx yy1
2

cos ˆ sin ˆ dg r g r r  (42)

S S xx yy1
2

cos ˆ sin ˆ d∫ν π ν φ ν φ φ( )( ) ( )( ) = +
π

π

−

 (43)

where xx̂  and yŷ  are Cartesian unit vectors.
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Probability Density Functions: The standard f , folded 
ˇ
f , and wrapped 



f  normal distribution[120] of a random variable x D∈  were defined as
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The first raw moment (mean) μx and the second central moment 
(variance) 2

xσ  of x are defined as
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where f is an arbitrary probability density function and the estimates 
required N samples xn of x.

The mean and variance of the folded normal distribution are related 
to the parameters of the underlying standard normal distribution via a 
transcendental system of equations
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2 2 2 2
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where erf(·)  is the error function.
For the wrapped normal distribution, the first raw moment (circular 

moment) of exp iz x( )=  may be considered instead

∫µ µ σ( )= = ≈ ∑
σ µ− +

=
; , d 1i 2

i

1

i
2

e f x x e
N

ez
x

n

N
x n



D
 (51)

and the mean angle 


xµ  and circular variance 
 2

xσ  of x

µ µ µ σ σ µ( )( )= = = = −




arg 2ln2 2
x z x z  (52)

are identical to the parameters of the underlying standard 
normal distribution.

In the kernel density estimation of a 2D probability density function 
f(x,y), an uncorrelated bivariate standard normal distribution was used 
as kernel 

f x y
N

f x x h f y y h
n

N

n x n y, 1 ; , ; ,
1

( )( ) ( )≈ ∑
=

 (53)

where (xn, yn) are N samples of (x, y), and the constants hx and hy are 
carefully chosen kernel bandwidths. Furthermore, a nonuniform fast 
Fourier transformation was used in the estimation, and the correct 
folding or wrapping at the boundaries of the domain of f was accounted 
for.
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