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Abstract

Schizotypy and psychotic-like experiences (PLE) form part of the wider psychosis

continuum and may have brain structural correlates in nonclinical cohorts. This

study aimed to compare the effects of differential schizotypy dimensions, PLE,

and their interaction on hippocampal subfields and amygdala volumes in the

absence of clinical psychopathology. In a cohort of 367 psychiatrically healthy

individuals, we assessed schizotypal traits using the Oxford-Liverpool Inventory

of Life Experiences (O-LIFE) and PLE using the short form of the Prodromal Ques-

tionnaire (PQ-16). Based on high-resolution structural MRI scans, we used auto-

mated segmentation to estimate volumes of limbic structures. Sex and total

intracranial volume (Step 1), PLE and schizotypy dimensions (Step 2), and their

interaction terms (Step 3) were entered as regressors for bilateral amygdala and

hippocampal subfield volumes in hierarchical multiple linear regression models.

Positive schizotypy, but not PLE, was negatively associated with left amygdala

and subiculum volumes. O-LIFE Impulsive Nonconformity, as well as the two-way

interaction between positive schizotypy and PLE, were associated with larger left

subiculum volumes. None of the estimators for right hemispheric hippocampal

subfield volumes survived correction for multiple comparisons. Our findings

support differential associations of hippocampus subfield volumes with trait

dimensions rather than PLE, and support overlap and interactions between psy-

chometric positive schizotypy and PLE. In a healthy cohort without current psy-

chosis risk syndromes, the positive association between PLE and hippocampal

subfield volume occurred at a high expression of positive schizotypy. Further

studies combining stable, transient, and genetic parameters are required.
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1 | INTRODUCTION

Psychotic-like experiences (PLE) signify psychosis risk, yet only a con-

siderably small portion of persons reporting such transient expres-

sions of psychosis proneness will go on to develop a psychotic

disorder (Linscott & van Os, 2013). PLE are elevated in individuals

displaying schizotypal traits, which are behavioral, emotional, and cog-

nitive characteristics resembling the core symptoms of psychotic dis-

orders along a health-illness spectrum (Claridge & Beech, 1995; Grant,

Green, & Mason, 2018; Kwapil & Barrantes-vidal, 2015). Schizotypy

encompasses the positive, negative, and disorganized dimensions

(Debbané & Barrantes-Vidal, 2015) found in psychotic disorders, with

each trait dimension showing differential associations with psychopa-

thology (Kwapil, Gross, Silvia, & Barrantes-Vidal, 2013), affective

states (Kemp, Gross, Barrantes-Vidal, & Kwapil, 2018), and perceptual

and cognitive outcomes (Ettinger et al., 2015; Ettinger, Meyhöfer,

Steffens, Wagner, & Koutsouleris, 2014).

Past research highlights the multifaceted nature of schizotypy

and its value in the detection of clinical high risk (CHR) states

(Barrantes-Vidal et al., 2013; Flückiger et al., 2016). For example,

increased PLE levels are especially observed in positive schizotypy

(Barrantes-Vidal, Chun, Myin-Germeys, & Kwapil, 2013; Kwapil

et al., 2020), as well as depression and anxiety (Varghese et al., 2011),

demonstrating that the emergence of psychopathology, PLE, and

schizotypal traits are intertwined in a dynamic fashion (Barrantes-

Vidal, Grant, & Kwapil, 2015). The fully dimensional conceptualization

of schizotypy also accounts for the non-pathological phenotypes

(Nelson, Seal, Pantelis, & Phillips, 2013), such as “benign schizotypes”,
that is individuals characterized by high positive schizotypy, but low

negative and disorganized traits (Mohr & Claridge, 2015). Hence, the

positive schizotypy facet (together with low negative and disorganized

facets) is related to higher PLE levels independently of induced stress

states (Grant & Hennig, 2020), while the emergence of distressing

PLE outside of familiar positive traits may convey increased psychosis

vulnerability (Debbané & Barrantes-Vidal, 2015). PLE distress is

reduced at higher schizotypy in nonclinical subjects (Kline

et al., 2012), suggesting that PLE occurring in the context of specific

trait dimensions could relate to health or resilience in schizotypy.

Previous studies demonstrated that trait schizotypy and PLE cor-

relate with cortical changes in areas consistently observed in clinical

psychosis. They found brain structural variation in prefrontal (Pfarr &

Nenadi�c, 2020) and parietal regions (Meller et al., 2020; Modinos

et al., 2010), and cortical surface variation in parietal and temporal

regions (Evermann, Gaser, Besteher, Langbein, & Nenadi�c, 2020) asso-

ciated with psychosis phenotypes. Further alterations in the non-

clinical psychosis continuum also include hippocampal activity

(Modinos et al., 2018). These findings suggest that subclinical psycho-

sis prone phenotypes show brain correlates in regions affected in clin-

ical psychosis, which are not necessarily a sign of vulnerability but

could also indicate compensatory processes (Kühn, Schubert, &

Gallinat, 2012; Mohr & Claridge, 2015). Investigating brain regions

involved in psychosis pathophysiology may facilitate the demarcation

of vulnerable or disease progressive states.

Abnormalities of medial temporal lobe hippocampal (HC) and

amygdala structures observed in schizophrenia (van Erp et al., 2016),

propose neuroanatomical targets for psychosis spectrum research

(Lieberman et al., 2018). Hippocampal subfield analyses point to

volume reductions in the cornu ammonis (CA) and dentate gyrus

(DG) sections (Haukvik, Tamnes, Söderman, & Agartz, 2018;

Nakahara, Matsumoto, & van Erp, 2018), which are paralleled by

functional studies indicating CA1 and possibly also subiculum hyper-

activity (operationalized as increased cerebral blood volume) in

patients (Schobel et al., 2013, 2009; Talati et al., 2014). Volume reduc-

tions in total hippocampal volume and subfields might already be

present at disease onset (Briend et al., 2020) and, more importantly,

already at CHR stages preceding disease onset (Ganzola, Maziade, &

Duchesne, 2014; Wood et al., 2010), although findings are not

entirely consistent across cohorts (for a review see Walter

et al., 2016).

Post mortem studies in schizophrenia show differential involve-

ment of CA1, CA3, and DG subfields (Bobilev, Perez, &

Tamminga, 2020; Perez et al., 2020), which is supported by differen-

tial associations between HC segments and positive and negative clin-

ical symptoms in in vivo studies. Left CA2/3 and CA4/DG (Kawano

et al., 2015) and subiculum (Haukvik et al., 2015) volumes show

inverse associations with negative symptom severity in schizophrenia.

Further studies report CA1 and CA2/3 (Kühn et al., 2012) and sub-

iculum (Mathew et al., 2014) volume deficits in association with

positive symptoms of psychosis. Mathew et al. (2014) found negative

correlations between both the total positive symptoms and the

hallucinations scale scores based on the positive and negative syn-

drome scale (PANSS, Kay, Fiszbein, & Opler, 1987) for schizophrenia

and CA4/DG, presubiculum, subiculum, and whole HC volumes. A

noticeable asymmetry in clinical subjects (Baglivo et al., 2018;

Velakoulis et al., 2006; Wood et al., 2010) also suggests that such

pathological alterations are more readily observable in the left

hemisphere.

Further examinations of HC volumes as potential biological

markers have emerged in the nonclinical part of the psychosis spec-

trum, too. A developmental study demonstrated flattened bilateral

hippocampal volume trajectories in adolescents with elevated psycho-

metric disorganized schizotypy (Derome et al., 2020). Recently we

reported that HC subfields are altered by the interaction of negative

and disorganized schizotypy dimensions, which predicted volumetric

reductions in anterior and whole left HC (Sahakyan et al., 2021).

Structural effects in schizotypy and ultra-high risk (UHR) states are

also paralleled by functional alterations, such as augmented right hip-

pocampal perfusion in high positive schizotypy (Modinos et al., 2018)

and increased hippocampal perfusion in UHR (Allen et al., 2018, 2015;

Bossong et al., 2019). Hypermetabolism spreading from the CA1

subregion could explain gradual hippocampal atrophy (Schobel

et al., 2013, 2009).

Contemporary automated segmentation methods also provide

high-resolution structural delineation of the amygdala. In the wider

limbic system investigations show bilateral whole amygdala volume

reductions in first-episode psychosis (FEP) (Watson et al., 2012), as
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well as smaller amygdala subnuclei in CHR and FEP (Armio

et al., 2020). Superimposed organizational patterns suggest demar-

cated ventral HC (CA1 and subiculum) connectivity with the amygdala

(Strange, Witter, Lein, & Moser, 2014). Emotion recognition is a func-

tional amygdala substrate showing alterations in schizophrenia (Mier

et al., 2014), adolescents at UHR (Bartholomeusz et al., 2014), and

schizotypy (Statucka & Walder, 2017; Wang et al., 2018). Other stud-

ies have shown significant negative relationships between blunted

affect and left amygdala activation in schizophrenia patients during

positive affect processing (Rahm et al., 2015), and left amygdala and

hippocampal volumes and parent-rated negative schizotypal traits in

typically developing children and adolescents (Evans et al., 2016).

Additionally, asymmetric amygdalar surface volumes in CHR with

violent ideation (Feng et al., 2019) implicate a relationship with

aggression and impulsivity.

This study aims to explore interactions between schizotypy dimen-

sions and PLE in a general population cohort in association with HC sub-

fields and amygdala volumes. We hypothesize that left medial temporal

lobe structures show differential associations with schizotypy dimensions

and PLE, as well as their interaction. Based on previously described pat-

terns of volume reductions in incipient and early psychosis patients, we

predict that positive schizotypy and PLE are associated with left CA1 vol-

ume reduction. Further, we expect PLE, positive and negative schizotypy

dimensions to associate with subiculum, CA2/3 and CA4/DG volume

reductions, and amygdala volume to vary as a function of impulsive and

negative schizotypy dimensions. Based on a previous study (Sahakyan

et al., 2021), we predict that interactions between PLE and the disorga-

nized schizotypy dimension are associated with left medial temporal lobe

volume reductions. Associations in volumes of the right hemisphere are

explored without hypotheses.

2 | METHODS

2.1 | Study cohort

This study included 367 German language proficient individuals (aged

18 to 40) from the general community, volunteering in response to

university-based email circulation, local and online advertisements. Par-

ticipants were screened by phone using structured clinical interview for

DSM-IV (Wittchen, Wunderlich, Gruschwitz, & Zaudig, 1997), and

selected for study inclusion if no history of mental health, neurological or

chronic medical conditions were present. This study protocol was in

agreement with the Declaration of Helsinki (World Medical

Association, 2013) and approved by the local ethics committee of the

Medical School of the Philipps-University of Marburg. Participants pro-

vided written informed consent, completed phenotype self-report mea-

sures online, and received financial compensation upon study

completion. Overall, 383 participants initially participated. Following

exclusion of 16 individuals due to insufficient T1-image quality or incom-

pleteness of survey data, full phenotyping and HC volume estimates

were available from 367 (238 [64.85%] females, 129 males [35.15%])

healthy adults (Mean age = 23.85, SD = 3.75 years, min = 18,

max = 39) included in the analysis. In this study, we extended the sample

previously described in Sahakyan et al. (2021). Seven (1.91%) participants

scored PLE equal to or above the CHR screening criteria applied in previ-

ous studies (Chen et al., 2016; Ising et al., 2012). CHR was ruled out in all

four out of seven (51.14%) participants who also agreed to follow-up

assessments with Schizophrenia Proneness Instrument (Adult version)

(Schultze-Lutter, Addington, Ruhrmann, & Klosterkötter, 2007). The

mean laterality quotient according to the Edinburgh Handedness Inven-

tory (Oldfield, 1971) was 78.65 (SD = 53.22), and mean intelligence quo-

tient (IQ) estimated by the Mehrfachwahl-Wortschatz-Test B

(Lehrl, 2005) was 116.38 (SD= 14.02, min= 92, max = 145), a compara-

tively brief estimate of general cognitive capacity mainly employed to

rule out IQ < 80 in this sample.

2.2 | Imaging data acquisition and preprocessing

T1-weighed brain images were obtained with a 3-T Siemens Tim Trio

magnetic resonance scanner (Siemens, Erlangen, Germany) using a

12-channel quadrature head coil and MPRAGE sequence with a dura-

tion of 4:26 min (TE = 2.26 ms, TI = 900 ms, TR = 1900 ms). Homoge-

neity bias correction and tissue segmentation were conducted using

Computational Anatomy Toolbox for SPM, (CAT12.7, r1598, Gaser,

Dahnke, Kurth, & Luders, in review) in SPM12 (version 12, v7771,

Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimag-

ing, London, UK) running in Matlab (R2017a, The Mathworks Inc.).

Images were both visually checked for artifacts as well as undergoing

the standard quality assurance protocol for image homogeneity

implemented in CAT12 software. Hippocampal regions of interest vol-

umes were estimated in unsmoothed native gray matter images.

2.3 | Assessment of trait schizotypy

Schizotypal traits were measured using the German version of the

Oxford-liverpool inventory of feelings and experiences (O-LIFE, Mason,

Claridge, & Jackson, 1995). Based on 104 items the O-LIFE measures

scores on four individual dimensions, which reflect the heterogeneous

positive (UnEx), negative (IntAn), disorganized (CogDis), as well as behav-

iorally odd (ImpNon) facets of schizotypy. UnEx corresponds to percep-

tual anomalies and magical thinking, while CogDis taps into attention

and thought aberrances reflecting disorganized symptoms of psychosis.

The IntAn dimension measures anhedonic phenomena related to social

and physical activities, and ImpNon refers to impulsive and socially non-

conforming behavior (Mason et al., 1995; Mason & Claridge, 2006).

Descriptive statistics of sample characteristics and dimensional internal

consistencies are shown in Table 1.

2.4 | Assessment of PLE

PLE were assessed using the 16-item version of the Prodromal Ques-

tionnaire (PQ-16) (Ising et al., 2012), which provides a total PLE score
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on a two-point scale (answers “true” =1, “false” = 0), and a measure of

distress severity induced by PLE (“none” =0 to “severe” =3). Cut-off

scores of 6 on the total PLE scale and 9 on the distress scale have been

identified as sufficient detection criteria for psychosis proneness (Chen

et al., 2016; Ising et al., 2012). All questionnaires were completed online

(www.soscisurvey.de, Leiner, 2019) and inspected for PLE above the

recommended screening cut-off after study completion.

2.5 | Hippocampal subfield volume estimation and
extraction

We selected six bilateral limbic regions that were of a priori interest.

These included the HC subfields labeled subiculum, cornus ammonis

(CA)1, CA2/3, CA4/dentate gyrus (DG), SR/SL/SM (stratum radiatum

[SR], stratum lacunosum [SL], stratum moleculare [SM]) as well as the

whole amygdala. We used the novel segmentation tool implemented in

CAT12.7, which uses the CoBra (Computational Brain Anatomy Labora-

tory at the Douglas Institute, Verdun, Canada) atlas (Winterburn

et al., 2013) based on high-resolution (1 mm isotropic voxel size) images

of HC subfields and amygdala (manual segmentation described in Entis,

Doerga, Feldman, & Dickerson, 2012; atlas described in Treadway

et al., 2015). Figure 1 displays subfield segmentations and Table 2 shows

summarized average volumes across all subjects. Merging HC subfields,

such as CA2/3, into a single label circumvents reliability issues related to

particularly small subfields sizes. This offers a robustness advantage

when anatomical segmentation is based on T1 images only.

3 | STATISTICAL ANALYSIS

3.1 | Phenotype associations with amygdala and
hippocampal subfield volumes

HC and amygdala volumes were analyzed with hierarchical linear

regression models in R (Version 3.6.3, R Core Team, 2020) in RStudio

(Version 1.1.463, RStudio Team, 2016). We conducted 12 separate

models, using the six bilateral volumes as dependent variables. Two-

tailed correlations between subfield volumes and variables sex and

total intracranial volume (TIV) (all p' s < .05) were significant, but non-

significant for age (all p' s > .05). Sex (0 = male, 1 = female) and TIV

were entered at the first step for the covariate models. In the second

step, trait schizotypy dimensions (UnEx, CogDis, IntAn, ImpNon) and

PLE (PQ-16) scores were entered simultaneously (main effects models),

followed by the phenotype interaction terms of PLE � schizotypy

dimension in the third step. We standardized dependent and indepen-

dent variables, compared models using analysis of variance (ANOVA),

and examined two-way interactions using the Johnson-Neyman

method through the PROCESS macro (Hayes, 2018). Since phenotype

scales correlated (Table 1), multicollinearity at each step was controlled

for by observation of variance inflation factor (>5 criterion) and toler-

ance (<0.1 criterion) using the olsrr package (Hebbali, 2020) in R. We

chose to test left medial temporal lobe regions (hippocampal subfields

and amygdala), since our recent investigation on schizotypy (Sahakyan

et al., 2021) indicated effects in the left hemisphere. Since we did not

have an a priori hypothesis for right hemispheric subfields, we applied

false detection rate (FDR) correction for multiple comparisons for right-

sided models.

4 | RESULTS

4.1 | Main analysis

In our analysis of the differential effects of trait schizotypy and PLE

on HC subfield volumes, we observed significant effects for single

schizotypy dimensions as well as a two-way interaction among trait

and PLE scales. To facilitate comparisons between scales, we report

standardized regression coefficients (β) with their individual p-values

(Table 3).

The main effect of positive schizotypy (UnEx) showed a significant

association with left amygdala and subiculum volume reductions

TABLE 1 Descriptive statistics of psychotic-like experiences (PLE) and schizotypy dimensions with Spearman correlation coefficients

Mean SD Min Max Skew Kurtosis UnEx CogDis IntAn ImpNon Total Crobach's α

O-LIFE scale

UnEx 1.86 2.46 0 16 2.31 7.16 0.45** 0.08 0.33** 0.60** .75

CogDis 5.21 4.31 0 21 0.96 0.56 0.35** 0.19** 0.81** .84

IntAn 4.06 3.51 0 19 1.59 3.02 0.02 0.58** .77

ImpNon 6.10 2.88 0 15 0.44 0.09 0.53** .58

Total 17.23 8.69 3 54 0.88 0.82 .85

PQ-16

PLE 1.08 1.51 0 9 1.97 4.88 0.54** 0.46** 0.11* 0.30** 0.52** .62

PLE distress 1.17 1.89 0 15 2.66 10.59 0.52** 0.45** 0.10 0.29** 0.51** .60

Abbreviations: CogDis, cognitive disorganization; ImpNon, impulsive nonconformity; IntAn, introvertive anhedonia; O-LIFE, Oxford-Liverpool Inventory of

Life Experiences; PQ-16, Prodromal Questionnaire; UnEx, unusual experiences.

**pFDR<.001. *pFDR < .05 (two-tailed).

5078 EVERMANN ET AL.

http://www.soscisurvey.de


(Table 4). ImpNon was also positively associated with left subicular

volume (Table 3). We did not find any effect of the negative (IntAn)

and disorganized (CogDis) dimensions on HC subfield volumes. For the

sake of completeness, results of exploratory analyses of right medial

temporal lobe volumes are shown in Table S3. In summary, model

regressors of right hemispheric HC subfield models did not survive

FDR-correction.

Left subiculum subfield volume increase was associated with the

two-way interaction of positive schizotypy and PLE, which signifi-

cantly explained volume variability beyond main effects (Table 4b).

Examination of regression slopes showed that PLE levels were signifi-

cantly associated with a predicted subiculum volume increase at

higher positive schizotypy levels. This moderation effect occurred in

high positive schizotypy (observed UnEx score ≥ 6.95 equalling

UnExmean + 2.07 � SD) (Figure 2).

4.2 | Exploratory analyses

Based on the two-way interaction's significance interval, we used

UnEx ≥ 6.95 as a cut-off to conduct an exploratory subgroup compari-

son of state and trait profiles (Figure 2). The high positive schizotypy

subgroup (n = 20) showed significantly higher trait levels in all other

schizotypy facets, PLE, and PLE associated distress (Table S1). UnEx

and PLE showed the largest correlation in our sample (r = .54,

p < .001). Hence, within the entire sample, the possibility of a covert

nonlinear association was explored with a polynomial regression

model (Belzak & Bauer, 2019), exchanging the interaction term for a

quadratic UnEx term, which produced a comparable model (Table S2).

5 | DISCUSSION

The aim of this study was to investigate state and trait psychosis

prone phenotypes within the nonclinical section of a putative psycho-

sis spectrum of neurobiological abnormalities (Nelson et al., 2013;

Siever & Davis, 2004; Taylor, Calkins, & Gur, 2020). By examining

individuals considered psychiatrically healthy rather than at CHR, we

aimed to decouple HC variability from psychopathological states.

This objective also underlines the importance of finding psychosis

biomarkers applicable to the entire psychosis spectrum. For this

TABLE 2 Means and standard deviations (SD) for left and right
hemispheric subfield volumes

Mean volume (SD) (mm3)

Left hemisphere Right hemisphere

Amygdala 1,733.22 (186.06) 1,733.30 (180.93)

CA1 1,016.14 (107.16) 1,074.99 (118.91)

CA2/3 208.21 (29.01) 236.46 (30.55)

CA4/DG 728.15 (79.10) 731.99 (82.62)

Subiculum 512.98 (56.91) 537.91 (59.56)

SR/SL/SM 548.60 (58.76) 562.14 (64.55)

Abbreviations: CA, cornu ammonis; DG, dentate gyrus; SL, stratum

lacunosum; SM, stratum moleculare; SR, stratum radiatum.

F IGURE 1 Visualization of hippocampal subfield and amygdala segmentation using CoBra atlas (Winterburn et al., 2013) implemented in
computational anatomy toolbox (CAT12.7, Gaser et al., in review). For display purposes the model on the left shows smoothed volumes of the
hippocampal formation with (left hemisphere) and without (right hemisphere) the amygdala. CA, cornu ammonis; DG, dentate gyrus; SR, stratum
radiatum; SL, stratum lacunosum (SL); SM, stratum moleculare. This figure was prepared with 3D Slicer (https://www.slicer.org) and MRIcroGL
(https://www.mccauslandcenter.sc.edu/mricrogl/)
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purpose, we chose schizotypy, which represents stable personality

dimensions, and PLE that are putatively transitory in nature

(Barrantes-Vidal et al., 2015).

In the main effect analyses, UnEx, that is, positive schizotypy, was

a significant estimator of left amygdala and subiculum volume

decrease. Additionally, left subicular volume was positively associated

with impulsive nonconformity (ImpNon). The modest internal consis-

tency of ImpNon was comparable to previous reports from an online

community sample, which also suggested that ImpNon does not dilute

the classical three-factor model of schizotypy (Polner et al., 2019).

Our findings support the utility of ImpNon as a separate psychosis

phenotypic estimator for brain structural variation. Consistent with

previous findings suggesting that failure to distinguish between

positive and negative schizotypy dimensions could result in reduced

estimator robustness (Barrantes-Vidal, Gross, et al., 2013; Barrantes-

Vidal, Lewandowski, & Kwapil, 2010), we found differences in the

direction between the regressors that reflect the unique explanatory

contribution of each schizotypy dimension. The significant main effect

of the positive dimension is not confirmed by our previous study

(Sahakyan et al., 2021) with the Multidimensional Schizotypy Scale

(MSS; Kwapil, Gross, Silvia, Raulin, & Barrantes-Vidal, 2018). This

inconsistency may be attributed to differences between psychometric

instruments that provide three (MSS) or four (O-LIFE) phenotype

dimensions entered as model predictors. If the positive O-LIFE dimen-

sion reflects the core components of psychosis as supported by

associations with dopamine regulating gene variants (Grant, Gabriel,

Kuepper, Wielpuetz, & Hennig, 2014), its impact on hippocampal

volume estimation would be expectedly higher. A topographical orga-

nization of effects for dopamine-related schizotypy facets may also be

linked to anterior–posterior differences in the density of D2 dopamine

receptors in hippocampal subfields (Dubovyk & Manahan-

Vaughan, 2019). A clinical study showed that hippocampal hypertro-

phy in FEP responds to antipsychotic treatment, notably in, for exam-

ple, CA3 and CA4 (Li et al., 2018). Thus, although positive schizotypy

did not consistently associate with subfield volumes, variations in spe-

cific hippocampal regions may be featured in positive schizotypy to a

higher degree. This is supported by findings for the specific effect of

polygenic risk on the volume of the left CA2/3 (Alnæs et al., 2019),

suggesting a link between hippocampal subfields, genetics, and possi-

bly schizophrenia endophenotypes.

While the main effect of positive schizotypy on left subiculum

volume was negative, the interaction with PLE was associated with

larger volumes. Variations of PLE may signify a dynamic state within

the positive schizotypy dimension. A longitudinal behavioral study

found that the expression of transient subclinical psychotic features is

influenced by time-invariant traits (Rössler, Hengartner, Ajdacic-Gross,

Haker, & Angst, 2013). Against a backdrop of a schizotypal predisposi-

tion for stress response (Grattan & Linscott, 2019; Soliman et al.,

2011), PLE could indicate an ongoing susceptibility to latent states

and stressors (Barrantes-Vidal, Chun, et al., 2013; Rössler et al., 2013),

genetic and environmental influences (Barkhuizen, Pain, Dudbridge, &

Ronald, 2020; Brambilla et al., 2014). Extending this to neurobiological

measures demonstrated that the positive relationship between PLE

and left subicular volume depended on increased positive trait

schizotypy. In those individuals with PLE at higher positive schizotypy

predicting enlarged subiculum volumes, levels of disorganized and impul-

sive traits, and distress severity were augmented. Thus, expressions con-

sistent with “benign” or “happy schizotypy” (Grant & Hennig, 2020;

F IGURE 2 Prediction of left subicular volume by psychotic-like experiences [PLE; assessed by prodromal questionnaire (PQ-16)] is
moderated by high levels of positive trait schizotypy (scores ≥6.95) as measured by the Unusual Experiences (UnEx) scale of the Oxford-Liverpool
Inventory of Life Experiences (O-LIFE) (a). Side B displays mean levels of negative (IA), disorganized (CD), impulsive (IN) traits, PLE and PLE
distress severity (Dis) in a subgroup (n = 20) with positive schizotypy levels ≥6.95 compared with the rest of the sample (n = 347). Bar graphs
show statistically significant group differences based on the Mann–Whitney U test, *pFDR < .01, **pFDR < 0.001, SEM = standard error of the
mean. This figure was preprared with the ggplot2 package (Wickham, 2016)
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Mohr & Claridge, 2015), which could explain the observed positive corre-

lation between PLE and schizotypy do not match the phenotype pres-

ented in this study, but rather point toward increased psychosis

proneness.

The amygdala, together with the subiculum, showed an unex-

pected negative association with positive schizotypy. Based on rodent

studies, a linkage between these two regions is supported by substan-

tial inputs to the amygdala from the (temporal end of the) CA1, and

the subiculum (Pitkänen, Pikkarainen, Nurminen, & Ylinen, 2000).

With anterior–posterior functional differentiation, the anterior subre-

gion of the subiculum is especially connected to the ventral striatum,

midbrain, and amygdala (Chase et al., 2015). This hippocampus-mid-

brain-striatum-network shows reduced connectivity in schizophrenia

(Gangadin, Cahn, Scheewe, Hulshoff Pol, & Bossong, 2021). Volume

changes in both subfields could be related to functional findings, and

more multimodal imaging studies in the psychosis spectrum are

required to investigate such linkages (Liu et al., 2020; Wang

et al., 2015; Wang et al., 2020).

We did not find the association between positive schizotypy and

CA1 region. CA1 volume change may especially demarcate CHR tra-

jectories as it was the only HC subfield bilaterally associated with pro-

gressive global symptomatic deterioration in UHR individuals

(Ho et al., 2017). An association between the anterior HC, which

includes CA1, and negative schizotypy was dependent on high disor-

ganized schizotypy measured by the MSS (Sahakyan et al., 2021). Still,

in alignment with our findings, no main effect of the positive dimen-

sion was present. This may reflect results from nonclinical individuals

displaying persistent PLE, suggesting that cognitive deficits may be

more relevant for poorer outcomes than merely positive PLE (Brett,

Peters, & McGuire, 2015). In UHR individuals, CA1 and subiculum

volumes were positively correlated with verbal performance (Vargas

et al., 2018), and subicular volume was also associated with negative

symptoms in schizophrenia and cognitive deficits in bipolar disorder

(Haukvik et al., 2015). Examining how cognitive endophenotypes

(Siddi, Petretto, & Preti, 2017) relate to medial temporal lobe struc-

tures (Antoniades et al., 2018) in the nonclinical psychosis spectrum

may help close a gap in the literature.

Contrary to expectations, we did not find that amygdala volume

is related to negative or impulsive trait expressions. Previous studies

investigating the amygdala across the psychosis spectrum connote

mixed evidence including no volume abnormalities in unaffected and

affected relatives of patients with bipolar disorder (Hajek et al., 2009),

but also variable volume abnormalities across samples of adults, and

children and adolescents at high risk of schizophrenia (Ganzola

et al., 2014). Moreover, amygdala enlargements were associated with

negative symptoms and depressive symptoms in prodromal syn-

dromes (Bartholomeusz et al., 2014), and also found in first-episode

affective psychosis compared to controls (Velakoulis et al., 2006),

while other studies report volume reduction in FEP (Armio

et al., 2020), and first episode schizophrenia (but not bipolar disorder)

(Watson et al., 2012). Notably, some studies demonstrate left

amygdalar volume reductions in FEP but not in high-risk individuals

compared with controls (Bois et al., 2015; Witthaus et al., 2010).

The null finding adds to these inconsistencies, suggesting that a rela-

tionship with negative schizotypy in children and adolescents (Evans

et al., 2016) is not confirmed in young adults. This study instead indi-

cates an inverse relationship with specifically positive features in non-

clinical adults, while also being the first to suggest that, contrary to

predictions, amygdala volume is not associated with the impulsive

trait dimension. Building on previous clinical studies that assessed

psychotic symptoms using the PANSS (Kawano et al., 2015; Kühn,

Musso, et al., 2012; Mathew et al., 2014), we could neither confirm

associations between negative schizotypy and CA2/3 or CA4/DG.

Other studies report functional specialization in these regions compat-

ible with cognitive impairments (Haukvik et al., 2018; Vargas

et al., 2018). One study of first-episode schizophrenia did not confirm

HC subfield volume correlations with negative or total PANSS scores,

but instead found a positive relationship between right CA1 volume

and positive PANSS score (Hýža, Kuhn, Češková, Ustohal, &

Kašpárek, 2016). Across the psychosis continuum, relationships

between different symptom domains and HC subfields are emerging—

especially in the nonclinical part—with variable consistency. There is a

likely dependency between structural and functional brain changes

associated with behavioral and clinical characteristics, but causal

mechanisms are subject to longitudinal studies. These are required to

explain the occurrence of larger regional hippocampal volumes in the

healthy part of the psychosis spectrum.

The main effects of disorganized and negative schizotypy dimen-

sions on subfield volumes were nonsignificant, partially supporting

the explanation that high positive schizotypy is the main driver. In the

light of previous findings demonstrating that prediction of prodromal

outcomes was explained by additive effects of positive and negative

schizotypy (Barrantes-Vidal, Gross, et al., 2013), this may suggest that

within individuals displaying increased positive schizotypy, these

proneness profiles are not wholly enough expressed to effect notice-

able differences across all longitudinal volumes utilized in this study.

Consistent with this explanation, interactions between positive, nega-

tive, and disorganized dimensions reach significance in the anterior,

but not the posterior portion of the hippocampus (Sahakyan

et al., 2021), supporting an anterior–posterior gradient of pathological

hippocampal volume changes in clinical subjects (McHugo

et al., 2018). This may also explain the lack of expected associations

for the interaction between the disorganized dimension and PLE in

left hippocampal subfields. Apart from longitudinal, opposed to ante-

rior/posterior subdivisions, usage of different automated segmenta-

tion methods may further explain inconsistencies.

In this study, HC subfield volume correlates corresponded to psy-

chosis phenotypes absent of a clinically manifest vulnerability. Nota-

bly, this does not necessitate exemption from vulnerability in the form

of genotypes associated with PLE and schizotypy (Legge et al., 2019;

Meller et al., 2019), or hippocampal subfield volumes (Alnæs

et al., 2019; van der Meer et al., 2020). As indicated by moderation, in

healthy participants with PLE not indicative of CHR, the effect on HC

subfield volume was trait schizotypy driven. The present findings

imply a sensitivity of the limbic structures to time-invariant traits

rather than PLE. It was also shown that the PLE-trait interaction effect
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is captured by the quadratic trait term. This finding suggests that peak

expressions of PLE featured in higher positive schizotypy correlate

with hippocampal volume variation in healthy individuals. Nonethe-

less, unusual experiences in the context of positive schizotypy and

PLE might not be interchangeable phenomenological entities. We

advocate a phenotype distinction based on transience (PLE) and sta-

bility (traits) (Fonseca-Pedrero & Debbané, 2017; Seiler, Nguyen,

Yung, & O'Donoghue, 2020). However, to our best knowledge, no

assessment of the discriminant validity between positive psychomet-

ric schizotypy and PLE so far exists.

This study has some limitations. The first one being that a lack of

associations between PLE and medial temporal structures above the

schizotypal traits may be explained by comparatively small effect sizes

or reduced PLE persistence (Dominguez, Wichers, Lieb, Wittchen, &

van Os, 2011; Hanssen, Bak, Bijl, Vollebergh, & van Os, 2005; Nelson,

Fusar-Poli, & Yung, 2012). Since the PQ-16 does not provide a mea-

sure of PLE persistence, longitudinal investigations are required to

address this issue. There was a considerable overrepresentation of

females and an absence of psychopathology in the present cohort,

limiting comparability with other studies reporting expectedly

higher CHR screening rates in the general population (McDonald

et al., 2018).

This study was also the first to use CAT12 automated segmenta-

tion for HC subfield delineation. This achieves an alternative route to

limbic subfield characterization compared to anterior and posterior

HC subdivisions applied elsewhere (McHugo et al., 2018; Sahakyan

et al., 2021). Our findings from a novel toolbox call for replication so

that results from different HC subfield volumetry methods will

expectedly accumulate. We propose that future studies involving PLE

could explore (and control for) variance explained by positive

schizotypy, PLE distress, or persistence. Etiological studies involving

endophenotypes capturing genetic psychosis liability, especially in

association with medial lobe structures, could benefit from incorporat-

ing individual differences.
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