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Abstract

In this thesis, it is shown that the classical Lp−stability and Lp−gain is not well-defined
for arbitrary continuous weighted homogeneous systems. By modifying the classical
Lp−norm of signals to be homogeneous w.r.t. some weight vectors, which is called
homogeneous Lp−norm, it is possible to show that every internally stable homogeneous
system has a globally defined finite homogeneous Lp−gain, for p sufficiently large.

With the help of a homogeneous Lyapunov function, homogeneous Lp−stability can be
characterized by a homogeneous partial differential inequality, which in the input affine
case can be transformed to a homogeneous Hamilton-Jacobi inequality. Furthermore,
in this thesis some detailed methods to calculate upper estimates for the homogeneous
Lp−gain are provided from theses inequalities. This also includes the homogeneous
L∞−gain and homogeneous Input-to-State gain.

For feedback interconnected systems, if the weight vectors between plants are matched,
the additive inequality for homogeneous Lp−norm allows the introduction of the ho-
mogeneous small gain theorem for each p, enabling stability analysis on the closed loop
system.

Finally, some homogeneous H∞−controllers can be designed, if the system is affine in
the control input. Without the convenient tools for the linear systems, such homoge-
neous H∞−controllers can only guarantee that the closed loop system has homogeneous
Lp−gain less than some derivable numbers, its optimality can not be guaranteed.

Several short examples are presented within each chapter to illustrate how such homo-
geneous Lp−gain can be calculated. In particular a detailed analysis on the Continuous
Super-Twisting Like Algorithm is included with deeper insight for interested readers.
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Kurzfassung

In dieser Arbeit wird gezeigt, dass die klassische Lp−Stabilität und Lp−Verstärkung
für beliebige stetige, gewichtete homogene Systeme nicht wohldefiniert ist. Indem die
klassische Lp−Norm von Signalen zu einer homogenen Lp−Norm so angepasst wird,
dass diese bezüglich der Gewichtsvektoren homogen ist, ist es möglich zu zeigen, dass
jedes intern stabile homogene System für hinreichend große p eine global definierte
endliche homogene Lp−Verstärkung besitzt.

Mit Hilfe einer homogenen Lyapunov-Funktion kann die homogene Lp−Stabilität durch
eine homogene partielle Differentialungleichung charakterisiert werden, die sich im ein-
gangsaffinen Fall in eine homogene Hamilton-Jacobi-Ungleichung transformieren lässt.
Des Weiteren werden in dieser Arbeit detaillierte Methoden zur Abschätzung von
oberen Schranken für homogene Lp−Verstärkungen aus diesen Ungleichungen abgeleitet.
Dies schließt die homogene L∞−Verstärkung und die homogene Eingangs-Zustands-
Verstärkung ebenfalls ein.

Bei rückgekoppelten homogenen Systemen, bei denen die Gewichtsvektoren zwischen
den Systemen zueinander passend sind, erlaubt die additive Ungleichung für die homo-
gene Lp−Norm die Einführung des homogenen Small-Gain Theorems für beliebige p,
wodurch eine Stabilitätsanalyse des geschlossenen Regelkreises ermöglicht wird.

Weiterhin können homogene H∞−Regler entworfen werden, wenn das System ein-
gangsaffin ist. Da die konventionellen Werkzeuge der linearen Systemtheorie nicht
zur Verfügung stehen, können solche homogenen H∞−Regler nur garantieren, dass der
geschlossene Regelkreis eine homogene Lp−Verstärkung hat, die kleiner als ein bes-
timmbarer Wert ist. Ihre Optimalität kann hingegen nicht garantiert werden.
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In jedem Kapitel werden mehrere kurze Beispiele vorgestellt, um zu veranschaulichen,
wie eine solche homogene Lp−Verstärkung berechnet werden kann. Insbesondere ist
eine detaillierte Analyse des “Continuous Super-Twisting Like Algorithm” mit tieferen
Einblicken für interessierte Leser enthalten.

VI



Acknowledgment

Foremost, I want to thank my supervisor Professor Johann Reger from Technische
Universität Ilmenau (TU Ilmenau) for his guidance of this work and his great support
and helpful advice during my whole studies. I also appreciate the help from Professor
Jaime A. Moreno from Instituto de Ingeniería, Universidad Nacional Autónoma de
México (UNAM), who is the co-author of the main part of my published works on
homogeneous systems, for sharing knowledge on homogeneous systems and providing
helpful suggestion on improvement.

I would like to thank for the financial support by the Thüringer Graduiertenförderung,
which makes the completion of this thesis possible. Furthermore the European Union
Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant
agreement No. 734832 allowed my academical secondments to UNAM, where Professor
Moreno provided much constructive advice on the approach of this thesis.

Further, I would like to thank Dr. Richard Seeber from Technische Universität Graz
(TU Graz) and Professor Leonid Fridman from UNAM, who also provided valuable
advice and support during my study. I am also grateful to the efforts of Dr. Christoph
Weise and Lars Watermann to help reviewing this thesis.

Last but not least, I am thankful for the confidence and the moral support of my family
and my friends.

VII





Contents

1 Introduction 1
1.1 History of the H∞−norm and Homogeneous Systems . . . . . . . . . . 1
1.2 State of the Art: Lp−stability on Homogeneous Systems . . . . . . . . 3
1.3 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 A Review of the Lp−stability, H∞−norm and Robustness for LTI Systems 11
2.1 The q−norm, Lp−stability and H∞−norm . . . . . . . . . . . . . . . . 12

2.1.1 Vector Norm: The q−norm . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Signal Norm: The Lp−norm . . . . . . . . . . . . . . . . . . . . 14

2.2 The Input-Output Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 The Lp−stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 The Lp−stability for Input-Output Maps . . . . . . . . . . . . . 18
2.3.2 The Lp−stability for State Space Models . . . . . . . . . . . . . 19
2.3.3 The H∞−norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 The Hamilton-Jacobi Inequality and Algebraic Riccati Equation . . . . 21
2.5 Computational Solution of the Algebraic Riccati Equation . . . . . . . 24

2.5.1 Linear Matrix Inequality for Algebraic Riccati Inequality . . . . 25
2.5.2 Hamiltonian Matrix for Algebraic Riccati Equation . . . . . . . 26
2.5.3 Matlab© Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Upper estimates for the Lp−gain for Linear Systems . . . . . . . . . . . 28
2.7 Relationship Between the Worst Input and the Storage Function . . . . 30

2.7.1 The L2−gain and the Optimal Storage Function . . . . . . . . . 32
2.7.2 Single-Input Single-Output LTI System using Sinusoidal Worst

Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.3 Multi-Input Multi-Output LTI System using State Space Worst

Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

IX



Contents

2.7.4 Achieving Preset Ratio of the L2−norm of the output over the
input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 H∞−optimal Controller Design . . . . . . . . . . . . . . . . . . . . . . 42
2.8.1 Solution of Partial Differential Equation for Controller Design . 44

2.9 Robustness Analysis based on the Small Gain Theorem . . . . . . . . . 45
2.9.1 Robust Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9.2 Robust Performance . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10 Structured Singular Value and µ Synthesis . . . . . . . . . . . . . . . . 50
2.10.1 Structured Singular Value (Conditioned H∞−norm) . . . . . . . 50
2.10.2 The D−scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.10.3 The µ Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Finite-gain Homogeneous Lp−stability for Input-Output Maps 55
3.1 Weighted Homogeneity for Input-Output Maps . . . . . . . . . . . . . 56
3.2 Incompatibility of Traditional H∞−norm for Homogeneous Input-Output

Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Homogeneous q−norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Homogeneous Lp−norm . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Finite-gain Homogeneous L2−stability . . . . . . . . . . . . . . . . . . 68
3.6 Definition of a Family of Homogeneous H∞−norms . . . . . . . . . . . 70
3.7 Extension to Homogeneous Finite-gain Lp−stability . . . . . . . . . . . 71
3.8 Homogeneous Lp−gain for Continuous Memoryless Input-Output Maps 72
3.9 A Discussion of Inverse of Homogeneous Input-Output Maps . . . . . . 74
3.10 Homogeneous Lp−stability for Interconnected Systems . . . . . . . . . 75

3.10.1 Homogeneous Small Gain Theorem for Feedback Interconnected
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10.2 Homogeneous Lp−gain for Cascaded Homogeneous Systems . . 77
3.11 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Homogeneous Lp−gain for State Space Models 83
4.1 State Space Model for Continuous Homogeneous Dynamics . . . . . . . 84
4.2 Finite-gain Homogeneous L2−stability with State Space Model . . . . . 86
4.3 Upper estimate of Homogeneous L2−gain . . . . . . . . . . . . . . . . . 91

4.3.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Affine Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Extension to Homogeneous Lp−stability . . . . . . . . . . . . . . . . . 97

X



Contents

4.5 Homogeneous L∞−stability and Input-to-State Stability of Homogeneous
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.1 Homogeneous L∞−stability and Input-to-State Stability . . . . 99
4.5.2 Upper estimate of γiss and L∞h−gain . . . . . . . . . . . . . . . 104

4.6 Comparison to Previous Works . . . . . . . . . . . . . . . . . . . . . . 105
4.7 Applicability of Homogeneous H∞−norm to Structured Uncertainty . . 110
4.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.8.1 Scalar SISO system . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.8.2 Continuous Higher Order Differentiator . . . . . . . . . . . . . . 114
4.8.3 First Order Integral Sliding Mode Controller . . . . . . . . . . . 115

5 Homogeneous H∞−controller 117
5.1 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Two Types of Homogeneous H∞−controller . . . . . . . . . . . . . . . 118
5.3 Homogeneous Stablizability and Homogeneous Control Lyapunov Function119
5.4 Homogeneous H∞−norm for Stabilizing Controller . . . . . . . . . . . 121

5.4.1 The L2h−gain for Stabilizing Controller . . . . . . . . . . . . . . 121
5.4.2 Existence of Controller that Minimizes the Value Function . . . 122

5.5 Upper estimate of L2h−gain . . . . . . . . . . . . . . . . . . . . . . . . 125
5.6 Design of H∞h−controller . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.1 Affine in Control Input . . . . . . . . . . . . . . . . . . . . . . . 127
5.6.2 Affine in Control Input and Disturbance Input . . . . . . . . . . 131

5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.1 Scalar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.7.2 Chain Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Case Study: Continuous Super-Twisting Like Algorithm 139
6.1 Traditional H∞−Norm Analysis with State transformation . . . . . . . 139

6.1.1 State Space Model of Continuous Super-Twisting Like Algorithm 140
6.1.2 Parameter Relationship between k1, k2 in the CSTLA . . . . . . 141
6.1.3 Traditional H∞−norm with State Transformation . . . . . . . . 142
6.1.4 Algebraic Riccati Equation with Bounded States . . . . . . . . . 143
6.1.5 Solution with the Hamilton Matrix . . . . . . . . . . . . . . . . 145

6.2 Homogeneous Lp−gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2.1 Homogeneous Storage Function . . . . . . . . . . . . . . . . . . 147
6.2.2 The Lp−gain for Linear Case . . . . . . . . . . . . . . . . . . . 149

XI



Contents

6.2.3 The L2h−gain for Nonlinear Case . . . . . . . . . . . . . . . . . 152
6.3 Simulated Results and Further Observation . . . . . . . . . . . . . . . . 154

6.3.1 Intuition from Figures . . . . . . . . . . . . . . . . . . . . . . . 154
6.3.2 Worst Input that achieves γ′ in Simulation . . . . . . . . . . . . 158
6.3.3 Further Discussion of the Worst Input . . . . . . . . . . . . . . 159
6.3.4 Shifted Frequency Phenomenon . . . . . . . . . . . . . . . . . . 162

7 Conclusion and Future Works 165
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8 Zusammenfassung 169

A Appendix 171
A.1 Recovering storage function from the Hamiltonian Matrix . . . . . . . . 171
A.2 Solution of Discontinuous Vector Filed in Filippov’s Sense . . . . . . . 172
A.3 Jensen’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.4 Hölder’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.5 Young’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.6 Derivation of λ⋆ in Subsection 6.1.5 . . . . . . . . . . . . . . . . . . . . 176
A.7 Algorithms for Search Procedure . . . . . . . . . . . . . . . . . . . . . 181

A.7.1 Algorithms for Proposition 4.1 . . . . . . . . . . . . . . . . . . . 182
A.7.2 Algorithms for the CSTLA System . . . . . . . . . . . . . . . . 182

B Bibliography 189

XII



List of Symbols

The following lists provide an overview of the used variables, functions and abbrevia-
tions. Sporadically and specially used symbols are omitted.

Notation

R and C Sets of real and complex numbers

R≥0 and R>0 Sets of non-negative and positive real numbers

A ≜ B A is defined as B

A ∈ B Set A belongs to set B

∀A For all A

∃A There exists A

A ⇔ B A is equivalent to B, A if and only if B, or A is a sufficient
and necessary condition of B

A ⇒ B A is a sufficient condition of B, or A implies B

A ⇐ B A is a necessary condition of B, or B implies A

XIII



Contents

A⊤ Transpose of A.

AH Hermitian transpose, element-wise transpose and complex
conjugate of A.

A−1 inverse such that AA−1 or A−1A equals identity or identity
matrix.

det (A) determinant of a matrix, which is the multiplication of all
the eigenvalues of A.

trace (A) trace of a matrix, which is the summation of all the
eigenvalues of A.

ρ {A} spectral radius of a matrix, which is the maximal magnitude
of eigenvalue of A.

σ {A} singular value of a transfer function, which is the square root
of eigenvalue of AHA or AAH . σ means the biggest such
singular value, σ the smallest.

µ {A} structured singular value of A, equivalently conditioned
H∞-norm of a plant, detailed in the thesis.

diag (E1, . . . , En) an n× n diagonal matrix with Ei as its ith diagonal element

⌈x⌋p Sign preserving power of a scalar variable x to the power of
p, i.e. ⌈x⌋p = |x|p sign (x).

ντ
κ(x) homogeneous dilation of a vector x with weight vector τ and

variable κ.

|x| absolute value of a scalar x.

∥x∥ any norm of vector x, that satisfies the property of the norm.

XIV



Contents

∥x∥p p−norm of vector x, with p > 0. In particular, p = ∞ is also
allowed.

⟨x, y⟩ inner product of two vectors, which equals to x⊤y.

∥x∥τ,p τ -homogeneous p−norm of vector x, with weight vector τ .

∥x∥Lp
Lp norm of a signal x

⟨x, y⟩s inner product of two signals, which equals to
∫∞

0 x⊤(t)y(t)dt.

∥x∥τ,Lp
homogeneous Lp norm of a signal x, with weight vector τ

Lτ,p homogeneous Lp space, with weight vector τ

Lτ,pe extended homogeneous Lp space, with weight vector τ

∥G∥∞ H∞ norm of a plant.

∥G∥τ,∞ homogeneous H∞ norm of a homogeneous plant, with weight
vector τ .

Abbreviations

ARE Algebraic Riccati Equation

ARI Algebraic Riccati Inequality

CLF Control Lyapunov Function

CSTLA Continuous super-twisting like algorithm

XV



Contents

FTC Finite time convergence

HJI Hamilton-Jacobi inequality

IOM Input-Output Map

LMI Linear matrix inequality

LTI Linear time-invariant

MIMO Multiple-Input Multiple-Output system

RS Robust stability

RP Robust performance

SISO Single-Input Single-Output system

SMA Sliding mode algorithm

SOS Sum of square

SSM State space model

STA Super-twisting algorithm

SMA Sliding mode algorithm

PDE Partial differential Equation

PDI Partial differential Inequality

XVI



1 Introduction

In this thesis, the traditional Lp−norm as well as H∞−norm are modified to be suit-
able for continuous homogeneous systems. They are called homogeneous Lp−norm
and homogeneous H∞−norm. Such tools allow the tuning of continuous homogeneous
systems to achieve a better performance in the sense of the homogeneous H∞−norm
or the homogeneous Lp−gain. Also, the homogeneous small gain theorem with the
homogeneous Lp−gain allows closed-loop stability results for feedback interconnected
system.

1.1 History of the H∞−norm and Homogeneous
Systems

The H∞−norm of a linear time-invariant (LTI) system can be defined by the maximal
singular value of its transfer function along the imaginary axis [19]. When the state
space representation (state space model) is available, it can be calculated by the smallest
real number such that the associated Hamiltonian matrix has no eigenvalues on the
imaginary axis [65].

Unlike the frequency domain analysis from the first method, the latter method comes
from a more fundamental definition, i.e. the H∞−norm (or equivalently L2−gain) of
a system is the supremal ratio of the L2−norm of the output over the L2−norm of
the input in time domain [4]. Whereas the frequency domain analysis only allows
for the calculation of the H∞−norm, the time domain analysis allows the design of
H∞−optimal controllers, H∞−optimal observers or a combination of both. Detailed
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1 Introduction

methods of such time-domain game theorem (mini-max design problem) can be found
in [4].

Whereas the frequency domain analysis applies only for LTI systems, the time domain
analysis allows the application of the H∞−norm (or Lp−gain, similarly defined with
Lp−norm) to nonlinear systems [29, 50, 42]. On the one hand, with the help of the
H∞−norm (L2−gain) small gain theorem one can guarantee the closed loop stability for
an interconnected system [29]. On the other hand, reducing the respective H∞−norm
when designing a controller or observer, the worst case response of the system subject
to worst disturbance can be mitigated, thus its performance can be improved [65].

Furthermore, if an LTI system shows a structured uncertainty (i.e. the uncertainty
in vector field, e.g. the uniformly bounded uncertainty in input, output or state ma-
trix), by taking such uncertainty out of the nominal vector field (through defining new
input and output for such uncertainty), the small gain theorem with H∞−norm can
guarantee robust stability (RS), which naturally indicate nominal stability when the
uncertainty is zero, for the closed loop system [54, 62]. When the performance require-
ment is set, timing the inverse of such requirement prior input or after output, the
small gain theorem with H∞−norm can guarantee further robust performance (RP),
i.e. the performance requirement is met under worst uncertainty [54, 62].

The small gain theorem with H∞−norm alone introduces some conservativeness in
RS or RP, unless the uncertainty is of full rank and complex. The H∞−norm of the
plant pre-multiplied by a D-scaling matrix, which should commute with the structured
uncertainty, and post-multiplied by its inverse allows a less conservative estimate, which
is called structured singular value of the plant. The structured singular value allows
a bigger structured uncertainty and achieve closed loop stability. Thereafter, the so
called µ−synthesis (or D-K iteration) of controller design or observer design provides
a possibility of further optimizing the closed loop system, guaranteeing RS and RP
[62].

Homogeneous systems, to which linear systems also belong, are becoming more popu-
lar. Homogeneous systems are widely used in nonlinear controller and observer design,
e.g. in [46, 1, 40, 6]. Unforced asymptotically stable linear time invariant (LTI) systems,
whose dynamics have homogeneous degree zero, provide exponential convergence glob-
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1.2 State of the Art: Lp−stability on Homogeneous Systems

ally. When the homogeneous degree of the dynamics is negative, then such unforced
stable homogeneous system guarantees global finite time convergence (FTC) [3, 42].
Such homogeneous system, when equipped with a discontinuous vector field (through
discontinuous controller or observer), might further provide FTC in the presence of
non-vanishing input. This property is widely used in sliding mode algorithms (SMA)
[32, 33]. Moreover, some nonlinear systems can be approximated more accurately by
homogeneous systems than by local linearization, thus homogeneous systems are stud-
ied more intensively [21, 27].

In most recent studies of homogeneous systems, e.g.[18, 53, 40, 6, 32, 33, 35, 39, 56,
13, 57, 38, 37, 47], besides the structure of the closed loop system, where some gains
are tunable, a storage function is also provided to prove asymptotic stability with
the Lyapunov method (for a discontinuous homogeneous system, the non-vanishing
input rejection might also be proven). There the range of gains such that the storage
functions serve as Lyapunov functions are studied, i.e. the range of gains such that the
closed loop system is guaranteed to be stable (or reject some non-vanishing input) is
studied. Within this “stable” range of gains, there exists little preference for the choice
of gain, except some experience preference, e.g. the gains often used in [32] for the Super
Twisting Algorithm (STA). In the recent work of [45], the authors derive some gain
preferences based on the describing function approach in order to achieve chattering
reduction for the STA. However, such approach, when applied to a homogeneous system,
is restricted to discontinuous design such as sliding mode algorithms.

To this end, the H∞−norm analysis for possible preferred choice of gain is of interest
to provide some preferred choice of gains within the “stable” range.

1.2 State of the Art: Lp−stability on Homogeneous
Systems

In previous work of [48], the author shows that for smooth and classical homogeneous
systems (i.e. with weight vectors of the states as well as input equal to one and with
non-negative homogeneity degree, in this case the weight vectors for input and output
are equal), having the state variable as output, asymptotic stability of the origin of

3



1 Introduction

the unforced system implies Lp−stability (for p sufficiently large) and Input-to-State
Stability (ISS), both with linear gain. However, [48] does not discuss how to characterize
and estimate the Lp−gain and the ISS-gain.

The authors of [25] considers also continuous classical homogeneous systems (i.e. with
weight vectors of the states equal to one and non-negative homogeneous degree), which
are affine in the input with constant input matrix and whose weight vectors of the
input and the output being equal. It is shown that internal Lyapunov stability of
the unforced system implies L2−stability with finite L2−gain. The novelty consists
in its characterization by means of a homogeneous Hamilton-Jacobi Inequality (HJI).
Meanwhile, a continuous homogeneous H∞−controller is developed by using the HJI,
similar to the derivation for LTI systems, whose L2−gain from input to extended output
of the closed loop system can be mitigated under a calculable constant.

In [24], the author extends the material in [25] by covering a class of continuous weighted
homogeneous systems of arbitrary homogeneity degree, which are still affine in the
input and whose weight vectors of the input and the output being equal. It is shown
that internal stability implies again L2−stability with finite L2−gain, and this can be
characterized by using a homogeneous HJI. Moreover, internal Lyapunov stability is
also shown to imply Lp−stability (for sufficiently large p) with finite Lp−gain (including
p = ∞). However, these results are obtained by imposing severe restrictions on the
weight vectors of the inputs, outputs and states. Again, estimation of the Lp−gains is
not discussed. The continuous homogeneous H∞−controller, similar to that in [25] is
extended for the weighted homogeneous system.

The authors in [1] and [7] discuss ISS and other related properties for general weighted
homogeneous systems, generalizing the results of [48] relating the internal stability of
the unforced system and ISS. However, [1, 7] do not consider Lp−stability for any value
of p, and the linear ISS-gain is not clearly stated. This linear ISS gain issue is clarified
in [5] by using solely homogeneous norms instead of mixture of classical norms and
homogeneous norms. Furthermore, the homogeneous small gain theorem is considered
in both [1, 5]. In [1], by using the classical norm the nonlinear ISS-gain is a K function,
and in [5] external inputs are not introduced.

Authors of [64, 63], with a state transformation, derive a local H∞−norm on the homo-
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1.3 Contribution of this thesis

geneous and discontinuous Super-Twisting Algorithm (STA). There the H∞−norm is
noted as a local norm, thus, for the norm to be valid the input must be restricted within
some sets. The reason for such H∞−norm being local is that the weight vector of the
input and the output are different, therefore the H∞−norm is of non-zero homogeneous
degree. The authors of [61] notice this deficiency. Therefore, they introduce for the
first time a homogeneous H∞−norm of degree zero for the Continuous Super-Twisting
Like Algorithm (CSTLA).

In [28] it is shown that if a system is finite-gain L2−stable (or L2−stable), then it is
ISS (or integral ISS). And if it is ISS (or integral ISS), then it is finite-gain L2−stable
(or L2−stable) under some homeomorphic change of coordinate on input and output.
That is, the study in [28] assumes one stability and derives the other stability.

1.3 Contribution of this thesis

In this thesis, extending the results from [25, 24, 61], a new homogeneous Lp−stability
concept (including the case of p = ∞) as well as Input-to-State Stability (ISS) is
introduced for an arbitrary continuous weighted homogeneous system, based on homo-
geneous Lp−norms for input and output signals. Every stable homogeneous system
has finite homogeneous Lp−gains with p sufficiently large, that relates linearly and
globally the homogeneous norms of the input and the output variables. This extends
the well-known situation for linear systems. The so defined homogeneous Lp−norms
can then be used in the traditional manner for e.g. controller design to minimize the
effect of perturbations, as it happens in the H∞−control problem, or for parameter
optimization, as illustrated in our previous work [61].

Then contrary to [25, 24], for all homogeneous L2−stable systems, a systematic method
to calculate an upper estimate for such homogeneous Lp−gain (including homogeneous
ISS gain and homogeneous L∞−gain) is proposed. A simplified method, which corre-
sponds to solving the Hamilton-Jacobi inequality, is also provided, when the system is
input affine. In LTI systems, where the method for homogeneous systems also applies,
it enables the calculation of the classical Lp−gain for p > 1.
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1 Introduction

Furthermore, similar to the traditional H∞−controller design, a homogeneous H∞−
controller design based on a control Lyapunov function (CLF) is proposed. We propose
a static state-feedback homogeneous H∞−controller, which is highly dependent on the
choice of the CLF, when the system is affine in control input.

Within each Chapter, some examples are included to show how such homogeneous
Lp−gain can be calculated for some simple homogeneous systems. Also a detailed
analysis on the Continuous Super-Twisting Like Algorithm (CSTLA) is extended from
[61].

The final aspects of this work are a discussion of the inverse of homogeneous systems,
the homogeneous Lp−gain for cascaded homogeneous system as well as the closed-
loop stability for feedback homogeneous systems (homogeneous small gain theorem).
Whereas both [1, 5] use the (linear or nonlinear) ISS-gain to check the closed loop
stability, the homogeneous small gain theorem in this thesis adopts any homogeneous
Lp−gain (when it exists, including L∞h−gain and also homogeneous ISS-gain) to verify
closed loop stability.

In summary, in this thesis

1. Modifications of the traditional Lp−norm and the finite-gain Lp−stability to
be suitable for homogeneous systems are proposed, defined as the homogeneous
Lp−norm and the finite-gain homogeneous Lp−stability.

2. All continuous memoryless homogeneous Input-Output Maps are shown to have
a finite and global homogeneous Lp−gain for p ≥ 1.

3. With the help of the state space model, all continuous asymptotically stable
homogeneous systems are shown to have a finite and global homogeneous Lp−gain
for some p sufficiently large, including homogeneous L∞−gain and homogeneous
ISS gain.

4. When a control input is present, all continuous homogeneously stabilizable sys-
tems are shown to have finite and global homogeneous Lp−gain with any homo-
geneous stabilizing controller. If the vector field is affine in the control input, a
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continuous stabilizing homogeneous H∞−controller based on some choice of CLF
is proposed.

5. Systematic methods to calculate an upper estimate for the above mentioned ho-
mogeneous Lp−gain are proposed under various assumptions with the help of
a homogeneous partial differential inequality (PDI) (or so called dissipation in-
equality in [50]) and a storage function, which serves as Lyapunov function or
control Lyapunov function without disturbance input. A method to calculate
the homogeneous L∞−gain and ISS-gain based on some homogeneous Lp−gain
is also included.

6. A homogeneous small gain theorem for feedback interconnected system is pro-
posed together with a homogeneous Lp−gain for cascaded homogeneous systems.

1.4 Outline

The structure of this thesis is arranged in the following:

• In Chapter 2, the traditional H∞−norm of an LTI system as well as its application
on robustness (i.e. RS, RP, µ synthesis) are revisited. Especially, the role of stor-
age functions (serving as Lyapunov function when undisturbed) on the prediction
of worst disturbance (as well as the construction of an optimal H∞−controller) is
emphasized. Meanwhile, a state-feedback method based on the HJI and storage
function is proposed, to achieve a preset actual ratio of L2−norm of output over
input less than the H∞−norm of the closed loop system without monitoring the
ratio.

• In Chapter 3, the definitions of the traditional Lp−norm and Lp−gain, which are
revisited and proven to be unsuitable in the general for homogeneous systems,
are modified to be suitable for arbitrary continuous homogeneous systems. Prop-
erties of this homogeneous Lp−norm are discussed, e.g. the additive inequality.
All continuous homogeneous memoryless Input-Output Maps are shown to have
finite and global homogeneous L2−gain (homogeneous H∞−norm). Furthermore,
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1 Introduction

the inverse of the homogeneous Input-Output Map and the homogeneous small
gain theorem (using homogeneous Lp−gain) for interconnected systems are also
included.

• In Chapter 4, after the introduction of intermediate states and a homogeneous
storage function (which serves as Lyapunov function without input), all asymp-
totically stable continuous homogeneous systems are shown to have a finite and
global homogeneous L2−gain for some L−scaled weight vector and degree (or
have finite and global homogeneous Lp−gain for p sufficiently large). Further,
the methods of calculating an upper estimate of the homogeneous H∞−norm by
solving a PDI (or so called dissipation inequality in [50]) are presented. For the
input-affine case the method consists of solving the HJI.

• In Chapter 5, it is shown that any continuous stabilizing homogeneous controller
for a continuous homogeneous system leads to a finite homogeneous L2−gain in
the closed loop system for some L−scaled weight vector and degree (a natural
extension from Chapter 4). Furthermore, when the system is affine in control
input, then similar to the H∞−controller design for LTI systems, an optimal
continuous homogeneous H∞−controller for continuous stabilizable homogeneous
systems w.r.t. a particular CLF is proposed. That is, for each CLF that satisfies
the PDI (or so called dissipation inequality) for some L−scaled weight vector and
degree, the proposed stabilizing homogeneous controller achieves the minimum
of such PDI w.r.t. each state. Thus it achieves the smallest upper estimate for
the homogeneous L2−gain for the closed loop system from input to the extended
output w.r.t. the chosen CLF.

• In Chapter 6.1, as a counter example, a local H∞−norm, unpublished deriva-
tion similar to that in [64, 63], on the continuous Super-Twisting like algorithm
(CSTLA) is included. The CSTLA is a continuous extension of the Super-
Twisting algorithm (STA) studied in [64, 63], whose model, with homogeneous
degree set free to a range, includes both the linear case and the STA case. Then
in Chapter 6.2, the homogeneous Lp−gain for the CSTLA, material in [60], is
included. Here the homogeneous Lp−gain is well defined for all cases except for
STA. Therefore it provides a good comparison with the results from Chapter 6.1
in the linear case. Some interesting intuitions and insights from figures are also
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included for the interested reader.

• In Appendix A, the method for reconstructing the storage function out of a Hamil-
tonian matrix for LTI systems, solution of discontinuous vector field in the sense
of Filippov, some inequalities used throughout this thesis, detailed derivation of
the example in Chapter 6.1, and some interesting figures for example in Chapter
6.2 are included.
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2 A Review of the Lp−stability,
H∞−norm and Robustness for LTI
Systems

The idea to apply the H∞−norm to optimize the feedback controller for uncertain plants
has been first brought up in [59]. Since then, frequency domain analysis, operator and
approximation theory, spectral factorization, and Youla–Kučera parametrization are
developed for the H∞−norm analysis [4, 41].

The H∞−norm is associated with robustness. For an LTI system, where uncertainty of
the state model exists, the uncertainty can be dispatched into additive or multiplicative
parts (e.g. higher order dynamics or parameter variations) around a nominal model.
Such uncertainty, represented as ∆, can be taken out from the nominal system by
introducing extra in- and outputs. Thereafter with the small gain theorem, one can
decide which degree of the uncertainty is tolerated without breaking the stability of
the system, equivalently ensuring Robust Stability [54]. Furthermore, after scaling the
inverse of the desired performance requirement before input or after output, Robust
Performance can also be guaranteed for the LTI system under the worst case uncertainty
[62]. Moreover, when the uncertainty is structured, then using the structured singular
value, which involves D−scaling around the nominal plant, can improve the accuracy
of the uncertainty allowance [65].

With the state space model, the mini-max design problem can be solved for the opti-
mal linear feedback controller (H∞−controller) in the sense that it minimizes the worst
L2−gain from input to output with the help of a partial differential inequality (PDI, or
so called dissipation inequality in [50]). Detailed analysis can be found in [4]. Similarly,
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2 A Review of the Lp−stability, H∞−norm and Robustness for LTI Systems

a H∞−observer as well as a combination of both H∞−controller and H∞−observer
can be derived from the corresponding HJI [4]. Combing such H∞−controller or
H∞−observer design with the structured uncertainty, the µ−synthesis is developed,
which can further increase the uncertainty allowance and optimize the robust perfor-
mance of the H∞−controller and H∞−observer design.

In this Chapter, we shall revisit some basic concepts on the traditional H∞−norm
(also Lp−gain analysis and synthesis methods) and the robustness concept derived
from it. The traditional H∞−norm when applied on a nonlinear system usually gives
local results for small signal, therefore most analysis of robustness of nonlinear systems
guarantee local robustness around an equilibrium [29]. Yet with the introduction of the
global homogeneous H∞−norm, such concept or approaches could be directly migrated
to continuous homogeneous system, where some results similar to the LTI system can
be derived.

2.1 The q−norm, Lp−stability and H∞−norm

First of all, a norm for a linear space SL should satisfy the following properties

Definition 2.1 (Norms on linear spaces [15]). A function ∥ · ∥ : SL → R≥0 is a norm
on SL if it satisfies the following properties:

positive definiteness: u ∈ SL and u ̸= 0 ⇒ ∥u∥ > 0.

homogeneity: ∥κu∥ = |κ| ∥u∥ , ∀κ ∈ R,∀u ∈ SL.

triangle inequality: ∥u1 + u2∥ ≤ ∥u1∥ + ∥u2∥ , ∀u1, u2 ∈ SL.

12



2.1 The q−norm, Lp−stability and H∞−norm

2.1.1 Vector Norm: The q−norm

Among all norms for vector spaces, the vector q−norm is adopted in this thesis,
namely

Definition 2.2 (Vector norm: q−norm [29, 50]). For q ≥ 1, the q−norm of a vector
u ∈ Rm is defined as

∥u∥q ≜

(
m∑

i=1
|ui|q

) 1
q

. (2.1)

For the case of q = 2, it can also be written as

∥u∥2 =
√
u⊤u ≜

√
⟨u, u⟩ ,

which is associated with the concept of inner product of two vectors. When q = ∞, the
q−norm is further defined as

∥u∥∞ ≜ max
i

|ui| , i = 1, · · · ,m .

All vector norms give a measure of the size of the vector in some sense. In particular,
the 2−norm of a vector ∥u∥2, which is also called Euclidean norm, gives the Euclidean
distance between the point u and the origin.

Remark 2.1 (Equivalence between all vector norms [15]). All norms on a linear space
are equivalent [15]. For the q−norm, this means that for any q1, q2 ≥ 1, there exist two
positive numbers cl and cu, s.t.

cl ∥u∥q1
≤ ∥u∥q2

≤ cu ∥u∥q1
, ∀u ∈ Rm .

Remark 2.2 (Inequality between q−norm). From (A.5), we have for q ≥ 1, ∥u∥q ≤
∥u∥1. When 0 < q < 1, the operator ∥ · ∥q can be defined similar to (2.1), yet it is
no longer a norm, since it violates the triangle inequality in Definition 2.1. For such
operator ∥ · ∥q defined for all q > 0, we have ∥u∥q ≥ ∥u∥1 when 0 < q < 1. In general,
we have ∥u∥q2

≥ ∥u∥q1
for q1 > q2 > 0.
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2 A Review of the Lp−stability, H∞−norm and Robustness for LTI Systems

2.1.2 Signal Norm: The Lp−norm

Before defining the Lp−norm for a signal u, in order for the norm to exist, we first
introduce the Lp−space as

Definition 2.3 (The Lp−space [50]). For p ≥ 1 the set Lp consists of all signals
u : [0,∞) → R, which are measurable and satisfy

∫∞
0 |u(t)|p dt < ∞.

For multivariable signals u : [0,∞) → Rn the signal space Ln
p consists of all measurable

signals such that ∫ ∞

0
∥u(t)∥p dt < ∞ ,

where ∥·∥ is any norm in Rn. The Lp−spaces are Banach spaces (i.e. complete normed
linear spaces)[50].

In the rest of the thesis, we omit the superscript of n in Ln
p when there is no ambiguity.

Then a norm for signal u ∈ Lp can be similarly defined as Definition 2.1 by

Definition 2.4 (Signal norm: Lp−norm [29, 50]). For p ≥ 1, the Lp−norm of a signal
u ∈ Lp is defined as

∥u∥Lp
≜
(∫ ∞

0
∥u(t)∥p dt

) 1
p

,

where ∥ · ∥ can be any vector norm. When p = ∞, the L∞−norm is defined as

∥u∥L∞ ≜ ess sup
t≥0

∥u(t)∥ ,

that is the supremal value of some norm of the vector u(t) along all time. In this thesis,
the vector q−norm in (2.1) is adopted inside the integral, i.e.

∥u∥Lp
=
(∫ ∞

0
∥u(t)∥p

q dt
) 1

p

=
∫ ∞

0

(
m∑
i

|ui(t)|q
) p

q

dt


1
p

. (2.2)

Since all vector norms are equivalent from Remark 2.1, the Lp−norm in (2.2) exists
and is finite. When p = q is chosen, this becomes

∥u∥Lp
=
(∫ ∞

0
∥u(t)∥p

p dt
) 1

p

=
(∫ ∞

0

m∑
i

|ui(t)|p dt
) 1

p

,
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2.1 The q−norm, Lp−stability and H∞−norm

here the summation operator and integral operator can interchange. For the case of
p = q = 2, it can also be written as

∥u∥L2
=
(∫ ∞

0
u⊤(t)u(t) dt

) 1
2
≜ ⟨u, u⟩ 1

2
s .

i.e. the Lp−norm of a measurable signal u equals the square root of the inner product
of the same signal. When p = q = ∞, the L∞−norm is defined as

∥u∥L∞ = ess sup
t≥0

∥u(t)∥∞ = max
i

ess sup
t≥0

|ui(t)| , i = 1, · · · ,m .

In particular, the L2−norm of a measurable signal ∥u∥L2
when q = 2 gives the measure

of the energy of such signal in the engineering sense. Note that when a different q is
chosen in (2.2), all the conclusions around the Lp−norm remain valid, yet their value
for the same signal u can vary. This is shown in the following example.

Example 2.1. For the signal

u(t) = 1
t+ t0

, t0 > 0 ,

its Lp−norm is

∥u∥Lp
=
(∫ ∞

0

1
|t+ t0|p

dt
) 1

p

=
(∫ ∞

t0

1
sp

ds
) 1

p

,

with s = t+t0. Since the signal is a scalar signal, all q−norms equal the absolute value.
Thus we have

∥u∥Lp
=


(

s1−p

1−p

∣∣∣∞
t0

) 1
p

when p > 1(
ln(s)|∞t0

) 1
p when p = 1

=


t

1−p
p

0

(p−1)
1
p

when p > 1

∞ when p = 1

For p = ∞, ∥u∥Lp
=
∣∣∣ 1

t0

∣∣∣ by definition.

It is apparent that the Lp−norm for the same signal u is different under different p.
Further, for the same p, using different q−norm inside the Lp−norm as in (2.2) gives
also a different value. Yet, they are equivalent, this is shown in the following remark.
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2 A Review of the Lp−stability, H∞−norm and Robustness for LTI Systems

Remark 2.3 (Equivalency of Lp−norm with different q). The values of the Lp−norm
defined by (2.2) with different choice of q are equivalent, since for any q1, q2 ≥ 1

(∫ ∞

0
∥u(t)∥p

q1
dt
) 1

p ≤
(∫ ∞

0
cp

2 ∥u(t)∥p
q2

dt
) 1

p

= c2

(∫ ∞

0
∥u(t)∥p

q2
dt
) 1

p

, ∀u ∈ Lp .

This is clear from Remark 2.1. Similarly, we have the other side of the inequality as

β
(∫ ∞

0
∥u(t)∥p

q2
dt
) 1

p ≤
(∫ ∞

0
∥u(t)∥p

q1
dt
) 1

p

, ∀u ∈ Lp .

Thus the Lp−norm adopting different q are equivalent.

Definition 2.5 (Extended Lp−space [50]). Define truncated signal uT of the signal u
to the interval [0, T ] as

uT (t) =

u(t) 0 ≤ t ≤ T

0 t > T

for each T ∈ R≥0. Then the extended Lp−space (Lpe−space in short) consists of all
measurable signals u, s.t. uT ∈ Lp for all 0 ≤ T < ∞. Naturally Lp ⊂ Lpe, since the
Lp−space is restricted to the case of T = ∞ and the latter is not [50]. Note that Lpe is
a linear space, but not a Banach space.

Remark 2.4 (Relationship between Lp−space [15]). If a signal u belongs to the L1−space
and the L∞−space, then it also belongs to the Lp−space for all p ∈ [1,∞] [15, Fact
in Page 17]. Figure 2.1 from [15, Fig. II.1 in Page 17] shows the Venn diagram of
relationship of L1−space, L2−space and L∞−space.

L1

L∞

L2

Figure 2.1: Venn diagram from [15].

Further in Lpe−space, we have L∞e ⊂ Lpe ⊂ L1e [15, Exercise 4 in Page 17]. In other
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2.2 The Input-Output Map

words, if a signal u belongs to the extended Lp1−space, then it also belongs to the ex-
tended Lp−space for any 1 ≤ p ≤ p1.
An example is the step function, whose L∞−norm exists, yet any Lp−norm is un-
bounded. For extended space, since the L∞−norm for its truncated signal exists, the
step function belongs to all extended Lp−space for any p ≥ 1.

2.2 The Input-Output Map

A system can be represented as an Input-Output Map, or when necessary can even be
generalized to Input-Output Relation [50]. In this thesis, the Input-Output Maps are
adopted when the intermediate state for the system is not available for some reason.

Definition 2.6 (Input-Output Map [50]). An Input-Output Map G : y = G(u) is
defined as a mapping from input signal u ∈ Lpe to an output signal y ∈ Lpe.

Naturally, all Input-Output Maps in this thesis are assumed to be causal and time-
invariant, i.e.

Definition 2.7 (Causal Input-Output Map [50]). An Input-Output Map G : y = G(u)
is called causal if and only if

∀u, v ∈ Lpe s.t. uT = vT ⇒ (G(u))T = (G(v))T , ∀T ∈ R≥0 .

That is the output of the Input-Output Map G in any interval [0, T ] depends only on
the input over the same interval [0, T ].

Definition 2.8 (Time-invariant Input-Output Map [50]). An Input-Output Map G :
y = G(u) is called time-invariant if

y = G(u) ⇒ y̌ = G(ǔ), where ǔ(t) = u (t+ Td) , y̌(t) = y (t+ Td) ,

for all u ∈ Lpe and Td ∈ R≥0. That is, for all inputs and its outputs of the Input-Output
Map G, the delayed inputs produce the same outputs delayed by the same constant.
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2.3 The Lp−stability

After defining the Lp−norm for signals as well as Input-Output Map, the ratio of the
Lp−norm of the output over the input is of interest.

2.3.1 The Lp−stability for Input-Output Maps

With the tool of the Lp−norm, we can introduce the concept of Lp−stability for an
Input-Output Map G, namely

Definition 2.9 (Lp−stability [50]). An Input-Output Map G : y = G(u) is called
Lp−stable if

u ∈ Lp ⇒ y = G(u) ∈ Lp .

It is called finite-gain Lp−stable if there exists a finite constant γ > 0 and β ≥ 0, s.t.

∥(G(u))T ∥Lp
≤ γ ∥uT ∥Lp

+ β , ∀T ∈ R≥0 , ∀u ∈ Lpe .

It is clear that if G has a finite Lp−gain then it is Lp−stable, i.e. by limiting u ∈ Lp

and letting T → ∞, we have

∥G(u)∥Lp
≤ γ ∥u∥Lp

+ β , ∀u ∈ Lp . (2.3)

The smallest value of γ = γ′ s.t. (2.3) is satisfied is called the Lp−gain of the Input-
Output Map G.

The Lp−stability for general nonlinear systems might have a nonlinear gain, i.e. the
linear gain of γ ∥uT ∥Lp

in (2.3) is replaced by a K∞ function (radially unbounded strictly
increasing function) γ

(
∥uT ∥Lp

)
[28].

Definition 2.10 (Linear Input-Output Map). An Input-Output Map G is linear if

y = G(u) ⇒ G(κu) = κy , ∀u ∈ Lpe ,∀κ ∈ R .
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This definition is solely from the input-output perspective, i.e. the process inside the
Input-Output Map G is omitted. Then we have

Proposition 2.1 (Finite-gain Lp with zero bias [50]). If a linear Input-Output Map G
is Lp−stable, then β = 0 in (2.3).

Proof. If an Input-Output Map G is linear, then a linearly scaled input κu (κ ̸= 0)
results in an output that is scaled by the same constant as κy, thus (2.3) becomes

∥κy∥Lp
≤ γ∥κu∥Lp + β , ∀u ∈ Lp ,

which is
∥y∥Lp

≤ γ ∥u∥Lp
+ β/κ, ∀u ∈ Lp . (2.4)

From (2.3), the inequality (2.4) is satisfied for any κ ̸= 0, we conclude β = 0 for a linear
Input-Output Map.

2.3.2 The Lp−stability for State Space Models

If the Input-Output Map G can be described by a state space model (SSM) Σ, e.g.

Σ :

ẋ(t) = f (x(t), u(t)) ,

y(t) = h (x(t), u(t)) ,
(2.5)

with the intermediate state x(t) ∈ Rn, then it is necessary to include the initial value
of the state x0 = x(0) in Definition 2.9 for Lp−stability. In the rest of the thesis, the
dependency on time in SSM might be dropped without ambiguity.

Definition 2.11 (Lp−stability for the state space model [50]). The system Σ (2.5) is
finite-gain Lp−stable if there exists a nonnegative constant γ, and for each initial value
x0 there exists a constant β(x0) s.t.

∥y∥Lp
≤ γ ∥u∥Lp

+ β(x0) , ∀u ∈ Lp . (2.6)
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The smallest value of γ = γ′ s.t. (2.6) is satisfied is called the Lp−gain of the system
Σ of (2.5).

Note that from definition of Lp−stability for state space models, γ should be indepen-
dent of the initial state. Only the term β depends on the initial state.

Remark 2.5 (Properties of β(x0) for linear SSM). The SSM Σ (2.5) is called linear if
its vector field and output function are linear functions, i.e.

f(κx, κu) = κf(x, u) , h(κx, κu) = κh(x, u) , ∀κ ∈ R , ∀x ∈ Rn ,∀u ∈ Rm .

In the rest of the thesis, ∀x ∈ Rn ,∀u ∈ Rm is denoted as ∀ (x, u) ∈ Rn+m. Under such
case, the linearly scaled input κu together with linearly scaled initial value κx0 result in
linearly scaled trajectory κx as well as output κy for all inputs and initial values. Note
that this does not stand if the initial value is not scaled by the same constant κ, unless
x0 = 0. Then with similar reasoning from Proposition 2.1, It is easy to show that, if
SSM Σ (2.5) is linear and finite-gain Lp−stable, then β (κx0) = κβ(x0) for all κ (i.e. β
is a linear function). Especially when κ = 0, β(0) = 0.

It is also possible to build a linear Input-Output Map with a SSM, whose vector field
and output function are not linear, but homogeneous. This shall be brought up in
Example 4.1. Under such case, β(x0) is a homogeneous function of degree 1, and we
still have β(0) = 0 for Remark 2.5.
In this Chapter, we revisit the classical concept of finite-gain Lp−stability, thus we
assume that the vector field and output function of SSM Σ (2.5) are linear.

Moreover, the Input-Output Map G obtained from the LTI SSM (2.5) is linear only
for x0 = 0. The corresponding fact for LTI systems ẋ = Ax + Bu, y = Cx + Du is
well-known (A,B,C,D being constant matrices of appropriate dimension), since the
output of the Input-Output Map G: y(t) = CeAtx0 + C

∫ t
0 e

A(t−s)Bu(s)ds + Du(t) is
linear in input u(·) only when x0 = 0.
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2.4 The Hamilton-Jacobi Inequality and Algebraic Riccati Equation

2.3.3 The H∞−norm

The H∞−norm of an LTI system can be interpreted either in frequency domain (max-
imum amplitude of square root of transfer function times its complex conjugate) or as
the maximum L2−gain from input to output in the time domain [4]. As discussed in
Remark 2.5, when the state starts from origin, we have β(0) = 0, which could spare
us the problem of dealing with the initial value related constant term. Therefore the
H∞−norm can be defined from (2.6) in a fractional form with the state starting from
the origin.
As an extension of Definition 2.9 and Definition 2.11, the H∞−norm is defined as

Definition 2.12 (H∞−norm [29, 50]). The H∞−norm for an Input-Output Map (a
SSM) G : y = G(u) (when x0 = 0) is defined as

γ′ = ∥G∥∞ ≜ inf
γ

∣∣∣∣∣∣ sup
∥u∥L2

̸=0,u∈L2

∥y∥L2

∥u∥L2

≤ γ

 .

That is, the ∥G∥∞ is the smallest γ s.t. (2.3) and (2.6) are satisfied. It is also the
supremum of all ratios of the L2−norm of the output over the input for the Input-
Output Map (SSM) when ∥u∥L2

̸= 0. In nonlinear systems, such norm might be valid
for a neighbourhood around the equilibrium, i.e. serves as local norm for small signals
[29, 50, 42].
Therefore, minimizing the H∞−norm for an LTI system suppresses the biggest ratio of
the L2−norm of the output over the input under a worst input [65].

2.4 The Hamilton-Jacobi Inequality and Algebraic
Riccati Equation

In this section, we include a method to calculate the H∞ norm for an LTI SSM in the
time domain. This method does not involve frequency domain analysis, which is not
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applicable to nonlinear systems. For an LTI SSM

Σl :

ẋ = Ax+Bu ,

y = Cx+Du ,
(2.7)

where each constant matrix A,B,C,D meets its appropriate dimensions we have

Lemma 2.1 (The H∞−norm for LTI SSM from the algebraic Riccati equation [65]).
For the asymptotically stable system Σl (2.7) when u ≡ 0, if there exists a number
γ > σ (D) and a symmetric and positive definite (p.d.) matrix P , s.t. the following
algebraic Riccati equation (ARE) is satisfied

P
(
A+BR−1D⊤C

)
+
(
A+BR−1D⊤C

)⊤
P+PBR−1B⊤P+C⊤

(
I+DR−1D⊤

)
C = 0 ,

(2.8)
where R ≜ γ2I −D⊤D, then ∥G∥∞ < γ from Definition 2.12.

Proof. Since the LTI system Σl (2.7) is assumed to be asymptotically stable, therefore
there exists a p.d. symmetric and constant matrix P = P⊤ > 0 from the converse
Lyapunov Theorem [3], such that V (x) ≜ x⊤Px > 0, ∀x ∈ Rn\{0} and its Lie
derivative along the vector field of system Σl (2.7), i.e. dV (x)

dt
= Vx (Ax+Bu) is negative

definite when u ≡ 0 and for all x ∈ Rn\{0}. Here Vx represents the partial derivative
of V (x) w.r.t. x, i.e. Vx = ∂V (x)/∂x = 2x⊤P . We define a value function with such
V (x) as

J(Vx, x, u, γ) ≜ Vx (Ax+Bu) + y⊤y − γ2u⊤u . (2.9)

When there is no ambiguity, we might omit some parameter for readability, e.g. denoting
as J(Vx, x, u) when γ is fixed. Expanding J(Vx, x, u), we have

J(Vx, x, u) = 2x⊤P (Ax+Bu) + (Cx+Du)⊤ (Cx+Du) − γ2u⊤u

= x⊤
(
PA+ A⊤P

)
x+ 2x⊤PBu+ x⊤C⊤Cx+ u⊤D⊤Du+ 2x⊤C⊤Du− γ2u⊤u .

(2.10)
Here we replace the D⊤D − γ2I with −R, (2.10) becomes

J(Vx, x, u) = x⊤
(
PA+ A⊤P + C⊤C

)
x+ 2x⊤

(
PB + C⊤D

)
u− u⊤Ru . (2.11)

Note that R is p.d. and invertible since σ (D) < γ. Here, the inequality J(Vx, x, u) ≤ 0
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leads to a partial differential inequality (PDI).

If we can maintain J(Vx, x, u) ≤ 0, ∀ (x, u) ∈ Rn+m with some constant γ, then
∫ ∞

0
J(Vx, x, u) dt = V (x(∞))−V (x0)+

∫ ∞

0
∥y(t)∥2

2 dt−γ2
∫ ∞

0
∥u(t)∥2

2 dt ≤ 0 . (2.12)

Suppose that u ∈ L2, then from the above inequality derived from J(Vx, x, u) ≤ 0, we
have

∥y∥2
L2

− V (x0) ≤ V (x(∞)) − V (x0) + ∥y∥2
L2

≤ γ2 ∥u∥2
L2
,

from Jensens’ inequality (A.6), this is equivalent to

∥y∥L2
≤ γ ∥u∥L2

+
√
V (x0) , ∀u ∈ L2 ,

which indicates that if u ∈ L2 then y = G(u) ∈ L2, combined with Definition 2.9 and
Definition 2.11, then the system Σl (2.7) is finite-gain L2−stable with β(x0) =

√
V (x0).

Thus guaranteeing J(Vx, x, u) ≤ 0, ∀ (x, u) ∈ Rn+m with some finite γ indicates that
the L2−gain of system Σl (2.7) is upper bounded by such γ. From now on, the in-
tegral problem ∥y∥L2

≤ γ ∥u∥L2
+ β(x0) of signal space is transferred into a problem

J(Vx, x, u) ≤ 0 in the vector space of (x, u) ∈ Rn+m.

Again inspecting inequality (2.11), since the matrix R is p.d., there exists an input
u⋆(Vx, x, γ) that maximizes the value of J(Vx, x, u, γ) w.r.t. u, i.e.

J(Vx, x, u, γ) ≤ J (Vx, x, u
⋆(Vx, x, γ)) , ∀x ∈ Rn

Setting the partial derivative of J(Vx, x, u) against u to zero leads to

0 = ∂J(Vx, x, u)
∂u

= Vx (Ax+Bu) + y⊤y − γ2u⊤u

∂u
= 2

(
PB + C⊤D

)⊤
x− 2Ru ,

which has one unique solution since R is invertible, thus u⋆(Vx, x, γ) is

u⋆(Vx, x, γ) = R−1
(
PB + C⊤D

)⊤
x . (2.13)
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Plugging u⋆(Vx, x, γ) back into (2.11) we have the Hamilton-Jacobi inequality (HJI)

J (Vx, x, u
⋆(Vx, x))=x⊤

(
PA+A⊤P+C⊤C

)
x+x⊤

(
PB+C⊤D

)
R−1

(
PB+C⊤D

)⊤
x =

x⊤
(
P
(
A+BR−1D⊤C

)
+
(
A+BR−1D⊤E

)⊤
P+PBR−1B⊤P+C⊤

(
I+DR−1D⊤

)
C
)
x .

In order to maintain J(Vx, x, u, γ) ≤ J (Vx, x, u
⋆(Vx, x, γ), γ) ≤ 0, ∀(x, u) ∈ Rn+m, we

need to satisfy the following algebraic Riccati inequality (ARI)

P
(
A+BR−1D⊤C

)
+
(
A+BR−1D⊤E

)⊤
P+PBR−1B⊤P+C⊤

(
I+DR−1D⊤

)
C ≤ 0 .

(2.14)
From (2.8), the inequality (2.14) is satisfied with γ and P . And for any γ̌ > γ the
inequality (2.14) still stands, since from (2.10) all other terms in J(Vx, x, u, γ) are the
same except the last term, which satisfies −γ̌2u⊤u < −γ2u⊤u for u ̸= 0m.

Therefore, when ARE (2.8) is satisfied for some γ and P , then for all γ̌ ≥ γ, we have
J(Vx, x, u, γ̌) < J(Vx, x, u, γ) ≤ 0, ∀ (x, u) ∈ Rn+m. The system Σl (2.7) is finite-gain
L2−stable from Definition 2.9 and Definition 2.11 with L2−gain upper bounded by
such γ, i.e. ∥G∥∞ < γ.

The above proof of Lemma 2.1 only shows half the story, i.e. for γ s.t. the ARE (2.8) is
satisfied for some p.d. and symmetric P , then any γ̌ ≥ γ also satisfies the ARI (2.14),
apparently with the same P .
The other half of the story is that when the system is asymptotically stable, then there
exists a γ′, s.t. the ARE (2.8) is satisfied for some p.d. and symmetric P , and for any
γ̌ < γ, there does not exist any p.d. and symmetric P , s.t. the ARE (2.8) is satisfied
[4]. And such value is the H∞−norm, i.e. γ′ = ∥G∥∞.

2.5 Computational Solution of the Algebraic Riccati
Equation

There are several methods to calculate the solution γ and P of the ARE (2.8). Here we
include two well known methods, which involve only matrix calculation [65]. Thereafter,
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some frequently used solvers are also presented.

2.5.1 Linear Matrix Inequality for Algebraic Riccati Inequality

We can use the linear matrix inequality (LMI) to solve for γ and matrix P in ARI
(2.14) , i.e. J (Vx, x, u, γ) ≤ 0 [65] by solving

min γ ≥ 0 s.t. ∃P = P⊤ > 0 and


A⊤P + PA PB C⊤

B⊤P −γI D⊤

C D −γI

 ≤ 0 . (2.15)

All eigenvalues of the above matrix should have negative real part. Note that the
matrix can be partitioned into


A⊤P + PA PB C⊤

B⊤P −γI D⊤

C D −γI

 ≤ 0 .

From Schur complement [65, 54], it is equivalent to the following both matrices being
negative semi-definite (n.s.d.)

−γI D⊤

D −γI

 ≤ 0 ,

A⊤P + PA+
[
PB C⊤

] −γI D⊤

D −γI

−1 B⊤P

C

 ≤ 0 .

First by simple row addition of the first matrix, we have−γI D⊤

0 −γI + γ−1D⊤D

 =
−γI D⊤

0 −γ−1R

 ≤ 0 ,

which is always true from p.d. of R (i.e. σ (D) < γ). Further the inverse of the following
matrix can be rewritten as [54]

−γI D⊤

D −γI

−1

=
−γR−1 −R−1D⊤

−DR−1 −γ−1I − γ−1DR−1D⊤

 .
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Then the second matrix can be expanded as

A⊤P + PA+
[
PB C⊤

] −γR−1 −R−1D⊤

−DR−1 −γ−1I − γ−1DR−1D⊤

B⊤P

C

 ≤ 0 ,

which gives us exactly (2.14) after further expansion.

Another way is to take the LMI directly from (2.10), i.e. J(Vx, x, u, γ) ≤ 0 without
taking supremum w.r.t. u, i.e.

min γ ≥ 0 s.t. ∃P = P⊤ > 0 and
A⊤P + PA+ C⊤C PB + C⊤D

B⊤P +D⊤C D⊤D − γ2I

 ≤ 0 . (2.16)

This can be verified by directly multiplying two vectors before and after, i.e.

[
x⊤ u⊤

] A⊤P + PA+ C⊤C PB + C⊤D

B⊤P +D⊤C D⊤D − γ2I

x
u

 ≤ 0 ,

which is equivalent to (2.10), the dimension of the LMI in (2.16) is actually smaller
than that in (2.15).

2.5.2 Hamiltonian Matrix for Algebraic Riccati Equation

Compared to solving the LMI, a simpler method of solving the ARE is to check simply
the eigenvalues of the Hamiltonian matrix, associated with ARE (2.8), given by

H ≜

 A+BR−1D⊤C BR−1B⊤

−C⊤
(
I +DR−1D⊤

)
C −

(
A+BR−1D⊤C

)⊤

 . (2.17)

When H has no eigenvalue on the imaginary axis, the solution of the symmetric and
p.d. P can be derived from the eigenvectors of the Hamiltonian matrix H. This is
shown in Appendix A.1 [65].
The advantage of the Hamiltonian matrix compared to the LMI is that the Hamiltonian
matrix H is devoid of the storage function P , then only an iteration of γ is sufficient,
whereas in the same time the LMI need to solve for both γ and P which satisfies the
LMI (2.15) or (2.16).
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Not only the value of the H∞−norm γ is of interest to us, but also the matrix P

(i.e. the storage function V (x) = x⊤Px) is of importance, since the input u⋆(Vx, x, γ)
that maximizes J(Vx, x, u, γ) in (2.13) depends also on P . This is more apparent in
controller or observer design.
Note that γ′ is the infimum of all γ s.t. the Hamiltonian matrix H has no eigenvalue on
the imaginary axis, then the γ′ when plugged in H might push some of its eigenvalues
onto the imaginary axis, under such case the magnitude of elements in P might explode
to infinite. Therefore for practical reason, a sub-optimal ARE can be computed instead,
i.e.

P
(
A+BR−1D⊤C

)
+
(
A+BR−1D⊤C

)⊤
P +PBR−1B⊤P +C⊤

(
I+DR−1D⊤

)
C+ϵI = 0 ,

(2.18)
where ϵ is a tiny number, e.g. 10−7 is enough for approximate computation of γ′, then
plugging this γ′ back to the ARE (2.8), the matrix P solved from Appendix A.1 is
bounded. Now the Hamiltonian matrix is

H ≜

 A+BR−1D⊤C BR−1B⊤

−C⊤
(
I +DR−1D⊤

)
C − ϵI −

(
A+BR−1D⊤C

)⊤

 .
Or the γ′ for ARE (2.8) can be first derived, then for the same ARE (2.8) plug in the
γ = ϵ+ γ′ and solve for P as in Appendix A.1.

2.5.3 Matlab© Solver

In Matlab©, ARE (2.8) can be solved by function icare, which is available after 2019a
version. Yet during development of [62], its predecessor function care fails when the
Hamiltonian matrix persistently succeeds to give correct results.

The function mincx in Matlab©’s robust control toolbox can solve the above LMI.
Yet, the matrix P need to be solved during LMI verification for each γ. This is com-
putationally inferior than the Hamiltonian method in (2.17), whose matrix P can be
recovered as shown in A.1 after finding γ′ first.

Therefore, we recommend checking the eigenvalue of Hamiltonian matrix H and build
the P as shown in A.1, the Hamiltonian matrix H has no unknown P in it, so the
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speed of convergence on γ is fast. The only function needed in this approach is eig
in Matlab©, which provides higher precision than the icare, care and mincx. The
building of P afterwards according to A.1 is also more precise.

A frequency domain solver norm can also be used to derive the H∞−norm for an LTI
SSM.

2.6 Upper estimates for the Lp−gain for Linear Systems

One such upper estimate of the Lp−gain for linear systems is provided in [15, Theorem
22, Page 113], which involves the state-transition matrix of linear systems. For example,
if the state-transition matrix for a system y = G(u) is Π(t, s), then the output can be
derived by the convolution of the state-transition matrix and input as

y(t) =
∫ ∞

−∞
Π(t, s)u(s) ds , ∀ t ∈ R .

For such system to be causal, we must have Π(t, s) = 0 when t < s. And when
u(s) = δ (s− λ) , λ ≥ 0, it is clear that y(t) = Π(t, λ) is also the impulse response of
output from time λ for such linear system. Then suppose there exist two finite positive
numbers as ∫ ∞

−∞
∥Π(t, s)∥ ds ≤ c∞ < ∞ , ∀ t ∈ R ,∫ ∞

−∞
∥Π(t, s)∥ dt ≤ β < ∞ , ∀ s ∈ R ,

where here the ∥·∥ is any matrix norm [15]. Then for any fixed p, the Lp−gain defined
in (2.3) is upper bounded by γ < β

1
p c

p−1
p∞ . For LTI systems, such state-transition matrix

can be written as Π(t, s) = Π (t− s), thus β = c∞, and [15] predicts that all Lp−gains
for such LTI systems are upper bounded by the L1−norm of the state-transition matrix,
i.e.

γ <
∫ ∞

−∞
∥Π(t)∥ dt . (2.19)

Such upper estimate of the Lp−gain is valid for all p ≥ 1, in Figure 2.2 of the next
example, such upper estimate is a pretty good one for a linear system.

Another upper estimate for the Lp−gain is provided in [29, Theorem 5.1] for time-
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varying exponentially stable nonlinear systems, with Lipschitz-continuous vector
field and continuous output. For example, if the nonlinear system

ẋ = f(t, x, u) , y = h(t, x, u)

is exponentially stable at equilibrium x = 0 when u ≡ 0, there exists a Lyapunov
function V (t, x), s.t. for all x ∈ Rn

β ∥x∥2 ≤ V (t, x) ≤ c2 ∥x∥2 ,

∂V

∂t
+ ∂V

∂x
f(t, x, 0) ≤ −c3 ∥x∥2 ,∥∥∥∥∥∂V∂x
∥∥∥∥∥ ≤ c4 ∥x∥ .

(2.20)

And further for all (x, u) ∈ Rn+m

∥f(t, x, u) − f(t, x, 0)∥ ≤ L ∥u∥ ,
∥h(t, x, u)∥ ≤ η1 ∥x∥ + η2 ∥u∥ ,

then for all p ≥ 1 the Lp−gain is upper bounded by

γ ≤ η2 + η1c2c4L

βc3
. (2.21)

Note that, similar to the upper estimate (2.19), the upper estimate (2.21) is valid for
all p ≥ 1. Yet, unlike the optimal quadratic Lyapunov function solvable from a PDE
(2.8), the Lyapunov function in (2.20) does not have a clear preference for a smaller
upper estimate in (2.21).

Example 2.2. Take an example of the state space model as follows

ẋ =
−k 1

3 1

x+
1 −1
1 1

u = Ax+Bu ,

y =
1 2
2 −1

x = Cx ,

when k ∈ [1.1, 2], the state matrix remains Hurwitz.
Figure 2.2 shows the L2−gain by using norm in Matlab© that provides the H∞−norm
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Figure 2.2: Comparison between upper estimates of Lp−gain for Example 2.2.

of the above system. In the left sub-figure, the comparison between L2−gain and the
upper estimate for all Lp−gain from (2.19) (denoted as STM, from state transition
matrix) are plotted, where the state transition matrix for the above system is

Π(t) =

Ce
AtB , t ≥ 0

0 , t < 0
.

We use the matrix 2−norm in (2.19). On the other hand, the right sub-figure shows
two other upper estimates from (2.21) with two different choices of Lyapunov function
V (x). The one denoted as VL adopts the Lyapunov function V (x) = x⊤Px from the
solution of the following Lyapunov equation

PA+ A⊤P = −I .

In Matlab© this is solved with lyap function. And the other VH adopts the quadratic
Lyapunov function from the solution of the PDE (2.8) with γ being the L2−gain from
the system. It is clear that the choice of Lyapunov function affects the value of upper
estimate, yet both provides bigger upper estimates than (2.19).

2.7 Relationship Between the Worst Input and the
Storage Function

In the proof of Lemma 2.1, the state-feedback input u⋆(Vx, x, γ) in (2.13) is shown to
always maximize J(Vx, x, u, γ) for each x ∈ Rn when the storage function V (x) = x⊤Px
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is in quadratic form.
Among which, when the γ = γ′, i.e. γ takes the value of the L2−gain of the system,
and the matrix P is the solution to the ARE (2.8) with the same γ, u⋆(Vx, x, γ

′) in
(2.13) serves also as the worst input in time domain with nonzero initial value,
i.e. with this input the ratio of L2−norm of the output over the input equals to the
L2−gain [65].

Definition 2.13 (Worst input in the sense of L2−gain). The set of worst inputs for
SSM (2.5) with initial value x0 in the sense of L2−gain is defined as

U(x0) =
{
u(t, x0) ∈ L2

∣∣∣∣∣ ∥y∥L2

∥u∥L2

= γ′
}
, (2.22)

i.e. the ratio of L2−norm of output over the worst input for system (2.5) equals the
L2−gain.

Suppose that a worst input u⋆ (x0, t) is known, then κu⋆ (κx0, t) is still the worst input
for the κ-scaled initial value, since the magnitude of the output is also κ-scaled from
linearity and the ratio of (4.13) is unchanged. With the choice of quadratic storage
function V (x), the worst input u⋆(Vx, x, γ

′) from (2.13) is linear in the state. On
the contrary, if we choose a non-quadratic storage function, then the input which
maximizes the J(Vx, x, u) in (2.9) is

u(Vx, x, γ) = R−1
(
B⊤V ⊤

x +D⊤Cx
)

stops being the worst input for an LTI system for the same reason. In this case, the
PDI Vx (Ax+Bu) + y⊤y − γ2u⊤u ≤ 0 cannot be transformed into the ARI (2.14).
In the development of homogeneous H∞−norm in later Chapters, the u(Vx, x, γ) is
linear in state as long as the homogeneous storage function is of degree 2, not necessarily
being quadratic.
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2.7.1 The L2−gain and the Optimal Storage Function

In previous sections, some methods to calculate the value of H∞−norm of LTI systems
(2.7) are shown, e.g. by solving the Hamiltonian matrix associated with the ARE. In
the proof of Lemma 2.1, a state dependent worst input u⋆(Vx, x, γ) from (2.13) that
maximizes the value function J (Vx, x, u, γ) is derived, such input using γ = γ′ and P

as the solution of ARE (2.8) with the same γ gives the actual worst input from any
initial value [65, 4]. This enables us to verify the corresponding γ, since the H∞−norm
(or L2−gain) is the supremal value of the ratio of of L2−norm of the output over the
input from Definition 2.9 and Definition 2.11.

From [4] it is clear that any γ > γ′ = ∥G∥∞ serves as an upper bound of the L2−gain,
with which value the inequality in Definition 2.9 and Definition 2.11 is still true. How-
ever, the uniqueness of γ′ is that such L2−gain can be actually reached, e.g. through
the worst input from (2.13) with the optimal γ and P . An interesting dilemma exists
here: If the system is asymptotically stable, when

γ < γ′ There does exist no p.d. P , s.t. the ARE (2.8) is satisfied [4]. Yet some input
can incur such ratio of the L2−norm of the output over the input equal to γ < γ′.

γ > γ′ There exists a p.d. P (γ), s.t. the ARE (2.8) is satisfied [4]. However, since γ′ is
already the upper bound of all ratios of the L2−norm of the output over the input
for all u ∈ L2, there exists no input u that can achieve the ratio of the L2−norm
of the output over the input with γ > γ′. So the input u⋆(Vx, x, γ) from (2.13)
using the P (γ) is not actually the worst input in the sense of L2−gain, i.e. it can
not incur the ratio of the L2−norm of the output over the input equals to γ′ let
alone γ > γ′.

γ = γ′ There exists a p.d. P (γ′), s.t. the ARE (2.8) is satisfied. The worst input then is
predicted by (2.13) using P (γ′), which is the worst input in the sense of L2−gain
for any initial value.

Clearly, the optimal P (γ′) serves a special role in predicting the state-feedback worst
input. The problem is: Is it possible to construct an input in state space such that
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we can maintain its ratio of the L2−norm of the output over the input equals to some
predetermined γ < γ′?

In order to show the idea, we need to introduce two functions. The first function is the
ratio of the L2−norm of output y, incurred by a particular input u, over the L2−norm
of the input u, both truncated to t ∈ [0, T ] as

Γ(t) =
∥yT ∥L2

∥uT ∥L2

=
∣∣∣∣∣
∫ T

0 y⊤(t)y(t) dt∫ T
0 u⊤(t)u(t) dt

∣∣∣∣∣
1
2

, when u(0) ̸= 0 , T > 0 , u ∈ Lpe .

Then we can replace the truncation time constant T by t, then Γ(t) serves as the
running record of ratio of the L2−norm of output y over input u up to time t. Note
that Γ(t) is upper bounded by γ′, which is the worst L2−gain achievable, when x0 = 0
[50], since the L2−gain also applies to truncated input and output from Definition 2.9
and Definition 2.11. Γ(t) exists for every uniformly bounded input in finite dimension.
The second function is defined as

ζ2 (Vx, t) = max
{
Vx(x(t)) (Ax(t) +Bu(t)) + y(t)⊤y(t)

u⊤(t)u(t) , 0
}
, when u(t) ̸= 0 . (2.23)

Function ζ(Vx, t) is a memoryless function of both storage function and time (it is also
a function of the state, input and output, but we stress the importance of dependency
on storage function). It is also the number that ensures J (Vx(x(t)), x(t), u(t)) = 0
when γ = ζ(Vx, t) for any u(t) ̸= 0. When ζ(Vx, t) ̸= 0, γ = ζ(Vx, t) in (2.23) guar-
antees J (Vx(x(t)), x(t), u(t)) = 0, when ζ(Vx, t) = 0, then Vx(x(t)) (Ax(t) +Bu(t)) +
y(t)⊤y(t) < 0, thus in both case J (Vx(x(t)), x(t), u(t)) ≤ 0 with γ = ζ(Vx, t).

Note that ζ(Vx, t) does not allow u(t) = 0. For Γ(t), we need only the measurable
input’s initial value u(0) ̸= 0.

Remark 2.6 (Relationship between ζ(Vx, t) and Γ(t)). For LTI systems (2.7) whose
L2−gain is γ′, let the storage function V (x) = x⊤Px adopt the matrix P as the solution
of ARE (2.8) with γ = γ′. Then suppose ζ(Vx, t) takes the value of constant γ < γ′

along trajectory of system for time t ∈ [0, T ] (by adopting some particular u(t)), then
from definition

Vx(x(t)) (Ax(t) +Bu(t)) + y(t)⊤y(t) − γ2u⊤(t)u(t) = 0 .
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This indicates that J (Vx(x(t)), x(t), u(t)) = 0 for t ∈ [0, T ]. From the inequality (2.12),
we have

∫ T

0
J(Vx, x, u) dt = V (x(t)) − V (x0) +

∫ T

0
∥y(t)∥2

2 dt− γ2
∫ T

0
∥u(t)∥2

2 dt = 0 .

Under such assumption, the function Γ(t) equals

Γ2(t) =
∥yT ∥2

L2

∥uT ∥2
L2

=
γ2 ∥uT ∥2

L2
+ V (x0) − V (x(t))
∥uT ∥2

L2

= γ2 + V (x0) − V (x(t))
∥uT ∥2

L2

.

When

x0 = 0 , it is clear that Γ(t) ≤ γ, since V (x(t)) ≥ 0. Furthermore, if the state trajectory
is uniformly bounded (i.e. V (x(t)) < ∞ for all t ∈ [0, T ]) and ∥uT ∥L2

→ ∞ or
if the state trajectory reaches origin periodically, then Γ(t) converges to γ from
below or reaches it from below periodically. This is shown in Example 2.3.

x0 ̸= 0 , if |V (x0) − V (x(t))| < ∞ for t ∈ [0, T ] and ∥uT ∥L2
→ ∞ or V (x0)−V (x(t)) =

0 periodically, then Γ(t) converges to the value of γ or touches it periodically. This
is shown in Example 2.4.

When ζ(Vx, t) is not kept constant, then the relationship between ζ(Vx, t) and Γ(t) is
not clear.

The introduction of ζ(Vx, t) provides a possibility to obtain the ratio of the L2−norm
of output y over input u at γ < γ′. This is shown in Example 2.5.

The function Γ(t) has the physical meaning of a running record of the ratio of the
L2−norm of output y over input u up to time t when x0 = 0. When x0 ̸= 0, the effect
of initial value on the output might nullify this physical meaning. In order to retain
such physical interpretation for non-zero initial value, it is important to energize the
state s.t. either the initial value is periodically reached or state is uniformly bounded
and ∥uT ∥L2

→ ∞.
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2.7.2 Single-Input Single-Output LTI System using Sinusoidal
Worst Input

For Single-Input Single-Output (SISO) LTI systems, the bode plot may inform us about
the biggest gain in amplitude for sinusoidal input, which also equals the L2−gain, as well
as the frequency of such worst sinusoidal input. This is shown in the next example.

Example 2.3 (SISO system with frequency worst input). Take a SISO second order
system as

ẋ =
−2 −7

1 −1.5

x+
0
1

u
y =

[
1 0

]
x .

Calculating the H∞−norm from u to y using function norm from Matlab© (frequency
domain analysis) or by the method of the Hamiltonian matrix leads to γ′ = 0.7593.
From the latter method, the optimal storage function that ζ(Vx, t) uses is

V (x) = x⊤P (γ′)x = x⊤

0.2847 0.0656
0.0656 1.9953

x .
From the bode plot, the biggest gain happens at ω = 1.9895 rad/s. All simulations in
this chapter adopt sampling period of 10−5s using forward Euler integration.
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Figure 2.3: The worst sinusoidal input achieving γ′ = 0.7593 for Example 2.3.

The evolution of the trajectory when uT = sin(ωt), t ∈ [0, 10s] is shown in Figure 2.3,
where the newly defined function Γ(t) and ζ(t) = ζ (Vx, t) is also shown on the right
sub-figure. In Figure 2.3, it is clear that with the worst input ζ

(
2x⊤P (γ′), t

)
stays
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Figure 2.4: The other sinusoidal input achieving Γ = 0.4636 for Example 2.3.

almost always at γ′ except for the first half period and several short time slot where u
is close to zero. On the other hand, Γ(t) is rising slowly towards γ′ and is fluctuating
below it. Another ζN(t) is added for comparison reason. It shows ζ

(
2x⊤P (1.1γ′) , t

)
,

i.e. with the storage function that solves the ARE (2.8) for γ = 1.1γ′, which is

VN(x) = x⊤P (γ)x = x⊤

 0.1995 −0.1097
−0.1097 1.2012

x , γ = 1.1γ′ .

Interestingly, ζN reaches the value of γ = 1.1γ′ = 0.8353, which reflect some similarity
to Figure 2.4 introduced later. It is clear that such non-optimal storage function does
not help understanding or predicting Γ(t) with worst sinusoidal input.

Another simulation with uT = sin(2ωt), t ∈ [0, 6s] is shown in Figure 2.4. From the
function bode from Matlab©, the gain of amplitude, which is also the ratio of the
L2−norm of output over this sinusoidal input, is γf = 0.4636. Now Γ(t) is fluctuating
around γf (sometimes trespassing it). Here ζ(t) is behaving quite differently. It still
reaches γ′, yet more of the time it is staying below that value.

2.7.3 Multi-Input Multi-Output LTI System using State Space
Worst Input

For multi-input multi-output (MIMO) systems the worst sinusoidal input is not that
simple to find. Although the value of the H∞−norm (L2−gain) is readily derivable
from the singular value of the transfer function in frequency domain, the phase shift
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and amplitude for worst sinusoidal input in each channel is not apparent. Under such
case, the worst input u⋆(Vx, x, γ) from (2.13) can be a useful tool.

Example 2.4 (MIMO system with initial value and state space worst input). Here we
extend Example 2.3 to MIMO by simply introducing another input and output,

ẋ =
−2 −7

1 −1.5

x+
1 0
0 1

u
y =

1 0
0 1

x .
(2.24)

Calculating the H∞−norm from u to y using function norm from Matlab© or by the
method of Lemma 2.1 leads to γ′ = 0.8678. The optimal storage function is

V (x) = x⊤P (γ′)x = x⊤

0.3254 0.0766
0.0766 2.2807

x .
The worst input that can achieve such L2−gain γ′ = 0.8678 is

u⋆(Vx, x, γ
′) = R−1(γ′)

(
P (γ′)B + C⊤D

)⊤
x =

0.4320 0.1017
0.1017 3.0282

x . (2.25)

When we use sinusoidal input for both inputs, we could also achieve similar figure as
Figure 2.4. Yet we wish to show some different approaches.
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Figure 2.5: Using worst input u⋆(Vx, x, γ
′) with initial value achieving γ′ = 0.8678 for

Example 2.4.

The simulation of the system using worst input u⋆(Vx, x, γ
′) (2.25) with initial value

at x0 = [2, 4]⊤ is shown in Figure 2.5. It is clear that using the worst input, ζ(t) =
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Figure 2.6: Using input u(x) in (2.26) with initial value achieving Γ = 0.7443 for Ex-
ample 2.4.

ζ
(
2x⊤P (γ′), t

)
equals to γ′ for all time. Again, ζN(t) = ζ

(
2x⊤P (1.1γ′) , t

)
is plotted

with storage function

VN(x) = x⊤P (γ)x = x⊤

 0.2291 −0.0735
−0.0735 1.4848

x , γ = 1.1γ′ .

In contrast to ζ(t) = γ′ for all time (which stands out against Figure 2.3, whose ζ(t)
does not always stay at γ′ with sinusoidal input), ζN(t) is fluctuating around γ′.

In Figure 2.5 we can see that the magnitude of y is shrinking slowly. This is because
the closed loop dynamics

ẋ = Ax+Bu⋆(Vx, x, γ) =
(
A+BR−1

(
PB + C⊤D

)⊤)
x

are stable. The eigenvalues of the closed loop matrix have small negative real part.
Another contributor is the simulation discretization of the forward Euler algorithm.
The shrinking magnitude of the state contributes to the function Γ(t), trespassing the
value of γ′ from time to time.

In both examples, we wish to stress that with the optimal storage function V (x) for γ′

we might be able to better understand the general behaviour of the dynamics.
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With this in mind, we develop another input by

u(x) =
R−1(1.1γ′)

(
P (γ′)B + C⊤D

)⊤
+ 0.62B−1

 0 1
−1 1

x
=
 0.3570 0.7040
−0.5360 3.1226

x .
(2.26)

This feedback control keeps the poles of the closed loop dynamics at −0.0102±0.5055j.
If we use the R−1(1.1γ′)

(
P (γ′)B + C⊤D

)⊤
only, then the state might converge fast.

On the other hand if we use R−1(0.9γ′)
(
P (γ′)B + C⊤D

)⊤
, the closed loop system

might diverge if u is not saturated.
The simulation with u(x) from (2.26) is shown in Figure 2.6. Actually, it is more similar
to that of Figure 2.3 than 2.4. Based on the figures above, we could say that ζ (Vx, t)
might not be helpful in predicting Γ(t) (which converges to 0.7443), unless the input
achieves the worst gain γ′. Now the problem turns to be whether we can construct an
input that achieves a gain γ < γ′ with the help of function ζ (Vx, t).

2.7.4 Achieving Preset Ratio of the L2−norm of the output over
the input

As brought up in Remark 2.6, we would like to try maintain J(Vx, x, u, γ) = 0 for a
certain γ < γ′ by a feedback input u(x), where

J(Vx(γ′), x, u(x), γ) = 2x⊤P (γ′) (Ax+Bu(x)) + y⊤y − γ2u⊤(x)u(x)
= x⊤

(
P (γ′)A+A⊤P (γ′)+C⊤C

)
x+2x⊤

(
P (γ′)B+C⊤D

)
u(x) − u⊤(x)R(γ)u(x) .

(2.27)
We stress again that the storage function P (γ′) is from the optimal storage function and
R(γ) uses γ < γ′. It is clear that, since J(Vx(γ′), x, u(x), γ) is a scalar value function,
when u ∈ Rm and m > 1 the solution of u(x) that maintains J(Vx(γ′), x, u(x), γ) = 0
from (2.27), when it exists, might not be unique. Under such circumstance, we need to
add some restriction on u(x) for easier implementation.

Example 2.5 (MIMO system starting from origin). For system (2.24) in Example 2.4,
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we first include the simulation from the input

u1(t) = 0.1 sin (2.2926 t) , u2(t) = sin (2.2926 t+ π/2) , t ∈ [0, 20 s] .

Its simulation is shown in Figure 2.7.
Then after the first two periods, we replace the sinusoidal input with the input u(x)
that maintains J(Vx(γ′), x, u(x), γ) = 0 from (2.27) for t ∈ [Tc, 20 s] , Tc = 4π/2.2926 s.
To simplify the problem, after setting u1(t) = 0, t ∈ [Tc , 20 s], J(Vx(γ′), x, u(x), γ) = 0
could again give us two solutions for u2(x), i.e.

u2s =
−x⊤

(
PB2 + C⊤D2

)
+
√
x⊤Qx

D⊤
2 D2 − γ2 , u2b =

−x⊤
(
PB2 + C⊤D2

)
−
√
x⊤Qx

D⊤
2 D2 − γ2 ,

Q =
(
PB2 + C⊤D2

) (
PB2 + C⊤D2

)⊤ −
(
D⊤

2 D2 − γ2
) (
PA+ A⊤P + C⊤C

)
,

Note that from Lemma 2.1, γ′ > σ {D}. Yet with γ < γ′, the relationship between γ and
σ {D2} is undetermined. Since matrix PA+A⊤P + C⊤C ≤ 0 (J (Vx(γ′), x, 0, γ) ≤ 0),
thus when γ ≤ σ {D2}, matrix Q > 0. On the contrary, when γ > σ {D2}, matrix Q
can be indefinite since it is a summation of a p.s.d. matrix and a n.s.d. matrix. When
x⊤Qx is negative, this part is discarded in the solution u2s, u2b to maintain a realizable
input, which means u2s = u2b under this case. A better yet more complicated method
can be designed, e.g. without nullifying u1.
As mentioned above, the system needs to be energized instead of being allowed to con-
verge for Γ(t) to counteract the effect of initial value. Therefore, we use the Algorithm 1.

Algorithm 1 Procedure of simulation for Example 2.5
Record the ym = maxt∈[0,Tc] ∥y(t)∥∞. ▷ Such ym remains unchanged.
repeat

repeat
u2(t) = u2s(x)

until |u2(t)| < 0.1 ▷ Take the smaller input until the input is too small.
repeat

u2(t) = u2b(x)
until |y(t)|∞ > ym ▷ Take the bigger input until the output is too big.

until t > 20 s

Two simulations of γ < γ′ are shown in Figure 2.8 and 2.9. The difference is that x⊤Qx
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Figure 2.7: Using sinusoidal input u achieving Γ = 0.7499 for Example 2.5.
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Figure 2.8: Using value function induced input u achieving Γ = 0.4339 for Example
2.5.

is sometimes negative in the simulation for Figure 2.8, and it is in practice positive
(i.e. Q is still indefinite, but the trajectory of x avoids the case of x⊤Qx < 0) for Figure
2.9. We can see that Γ(t) converges towards γ in both simulations. This is achieved
without setting any error feedback of error Γ(t) − γ, but by solving for the input that
maintains J(Vx, x, u, γ) = 0, which is equivalently keeping ζ (Vx, t) = γ.

Another interesting observation is that this method also works with non-optimal P (κγ′),
κ > 1, where the cases of κ = 1.1 , 2 , 10 are simulated. That is, the ARE (2.8) is solved
with γ = κγ′, κ > 1. With u(x) ensuring J(Vx(κγ′), x, u(x), γ) = 0 for γ < γ′, Γ(t) still
converges towards γ with a bigger error than when κ = 1. The error though it exists,
remains insignificant. This method might be quite tolerant with κ > 1 for LTI SSM.

We introduce this example in order to show that the value function does not only give
the upper bound of all running L2−gains. In fact it is able to guide us through the
behaviour of the dynamics. This properties will be brought up again in homogeneous
systems.
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Figure 2.9: Using value function induced input u achieving Γ = 0.2893 for Example
2.5.

2.8 H∞−optimal Controller Design

For a controller design problem, suppose the LTI SSM with control input u as

Σc :

ẋ = Ax+Buu+Bww

y = Cx+Dw .

Here x ∈ Rn is still the state, u ∈ Rm now the control input, w ∈ Ro the disturbance,
and y ∈ Rr still the output to be minimized. Let each matrix A,Bu, Bw, C,D satisfy
their respective dimension. A stabilizable controller can be designed if the pair (A,Bu)
is stabilizable [50]. Further among such stabilizing controllers, an H∞−optimal con-
troller can be designed by solving a mini-max optimization problem [4]. The name is
derived from the viewpoint that the disturbance input w serves as a maximizer in the
sense of maximizing the value function, since the variable w is a downward parabola in
the value function J(Vx, x, u, w), similarly built as (2.10) by

J(Vx, x, u, w) ≜ Vx (Ax+Buu+Bww) + y⊤y+ θ2u⊤u− γ2w⊤w , V = x⊤Px , (2.28)

where θ > 0 is some positive constant. The extremum of (2.28) w.r.t. w is now
a maximum due to the continuity of J(Vx, x, u, w) as well as for each fixed x, u,
limw→±∞ J(Vx, x, u, w) → −∞. And the control input u serves as minimizer, since
the variable u forms an upward parabola in J , and from the continuity of J(Vx, x, u, w)
as well as for each fixed x,w, limu→±∞ J(Vx, x, u, w) → ∞. This allows the existence
of saddle point solution for J for the worst disturbance w⋆ and the optimal u⋆ [4, 41],
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i.e.

J(Vx, x, u
⋆, w) ≤ J(Vx, x, u, w) ≤ J(Vx, x, u, w

⋆) , ∀ (x, u, w) ∈ Rn+m+o .

Here, the inequality J (Vx, x, u, w
⋆) ≤ 0 also consists a PDI [4].

Note that the value function (2.28) includes the control input u in the extended output
z⊤ = [y⊤, θu⊤] , θ ̸= 0. Hereafter, we denote [y⊤, θu⊤]⊤ by (y, θu) when there is no
ambiguity. The controlled output z need to include the control input, since for system
with infinite gain margin (i.e. the loop transfer function does not cross the negative
real axis in Nyquist plot or the pole lotus does not enter the right-hand plane), for any
stabilizing u(x) = Kx multiplied by a large constant α > 0, then A − αBK is also
asymptotically stable. However, such u is ineffective in an energy sense, and should
not be considered as a good design. On the other hand, including control input u in
the extended output z⊤ = [y⊤, θu⊤], θ ̸= 0 allows a saddle point solution for u.
Therefore using the H∞−optimal controller provides a power-effective control that can
suppress the L2−gain from the worst w to extended output z.

Similar as the analysis from Lemma 2.1, taking the partial derivative from J w.r.t u
leads to the optimal feedback controller as

u⋆(Vx, x) = θ−2B⊤
u P (γ′)x , (2.29)

which depends on the optimal storage function corresponding to the worst gain γ′. The
worst disturbance in the time domain remains

w⋆(Vx, x, γ
′) = R−1(γ′)

(
P (γ′)Bw + C⊤D

)⊤
x .

Therefore, reflecting Section 2.7 where the worst state-feedback disturbance is studied,
we have a natural incentive to find the smallest γ′ and its corresponding optimal storage
function. They clearly determine the structure of the H∞−optimal controller u⋆(Vx, x)
through the solution of V that solves J(Vx, x, u, w) ≤ 0 for the smallest γ′. More
analysis on the topic of the mini-max algorithm based on different knowledge of the
state as well as in the discrete-time case can be found in [4].
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2.8.1 Solution of Partial Differential Equation for Controller Design

Similar to Section 2.5.2, the method to solve the PDE J(Vx, x, u, w) = 0 (2.28) by the
Hamiltonian matrix is included here. The value function in (2.28) expands into

J(Vx, x, u, w) = 2x⊤P (Ax+Buu+Bww)+(Cx+Dw)⊤ (Cx+Dw)+θ2u⊤u−γ2w⊤w

= x⊤
(
PA+ A⊤P

)
x+ 2x⊤PBuu+ 2x⊤PBww + x⊤C⊤Cx+ w⊤D⊤Dw

+ 2x⊤C⊤Dw + θ2u⊤u− γ2w⊤w .
(2.30)

It is easy to verify that

J(Vx, x, u
⋆, w⋆) = x⊤

(
P
(
A+BwR

−1D⊤C
)

+
(
A+BwR

−1D⊤C
)⊤
P

+P
(
BwR

−1B⊤
w − θ−2BuB

⊤
u

)
P + C⊤

(
I +DR−1D⊤

)
C
)
x ,

where we still have R = γ2I −D⊤D, and the corresponding Hamiltonian matrix is

H =
 A+BwR

−1D⊤C BwR
−1B⊤

w − θ−2BuB
⊤
u

−C⊤
(
I +DR−1D⊤

)
C −

(
A+BwR

−1D⊤C
)⊤

 .
After solving for the smallest γ′, s.t. the Hamiltonian matrix has no eigenvalue on the
imaginary axis, then matrix P can be recovered as shown in Appendix A.1.

Similar to the LMI in (2.16), J(Vx, x, u, w) ≤ 0 can also be solved by the LMI

min γ ≥ 0 s.t. ∃P = P⊤ > 0 and


A⊤P + PA+ C⊤C PB PM + C⊤D

B⊤P θ2I 0
M⊤P +D⊤C 0 D⊤D − γ2I

 ≤ 0 .

This can be seen by directly applying two vectors before and after the matrix, i.e.

[
x⊤ u⊤ w⊤

] 
A⊤P + PA+ C⊤C PB PM + C⊤D

B⊤P θ2I 0
M⊤P +D⊤C 0 D⊤D − γ2I



x

u

w

 ≤ 0 ,

which is equivalent to J(Vx, x, u, w) ≤ 0 from (2.30).
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2.9 Robustness Analysis based on the Small Gain
Theorem

Aside from the stability analysis of the nominal plant, robust stability studies the
stability of the uncertain dynamics. Such uncertainty can be fluctuation of voltage,
failure of implementation, or false measurement. Then we are interested in the question,
to which degree such uncertainty is tolerated without breaking the stability of the closed
loop system, and when such uncertainty’s bound is known, how to design the state-
feedback controller, s.t. the margin of stability is the largest.

2.9.1 Robust Stability

The concept of robust stability is illustrated by an example.

G

∆U

ϕ y
ϖι

Figure 2.10: Robust stability

Example 2.6 (Robust stability under structured uncertainty). Extending Example 2.4
with structured uncertain dynamics

ẋ1 = (−2 + δ1(t))x1 − 7x2 + u1 ,

ẋ2 = (1 + δ1(t))x1 + (−1.5 + δ2(t))x2 + u2 ,

y = x ,

(2.31)

where δ1(t), δ2(t) represent time-varying, yet uniformly bounded uncertainties in plant
with bounds |δ1(t)| < δ1, |δ2(t)| < δ2.

In [62] it is shown that such structured uncertainty can always be extracted from the
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2 A Review of the Lp−stability, H∞−norm and Robustness for LTI Systems

nominal dynamics by introduction of extra inputs and outputs, denoted here as ι and
ϖ, as in Figure 2.10. For system (2.31), the plant can be written in the following
SSM

G :


ẋ =

−2 −7

1 −1.5

x+

1 0

1 1

 ι+

1 0

0 1

u ,
ϖ = x .

There the paramterized uncertainty form a diagonal matrix ∆U , i.e.

∆U : ι =
δ1(t) 0

0 δ2(t)

ϖ = ∆Uϖ .

As shown in Figure 2.10, ϖ is the output of the plant to ∆U and ι is the input from
∆U to the plant. Calculating the H∞−norm from ι to ϖ using function norm from
Matlab© leads to 1.1109. Therefore from the small gain theorem, if ∥Gι→ϖ∆U∥∞ ≤
∥Gι→ϖ∥∞ ∥∆U∥∞ < 1, then the system is robustly stable under such uncertainty. In
this sense, the uncertainty ∥∆U∥∞ < 1/1.1109 = 0.9002 is allowed.

Remark 2.7 (Value of ∥∆U∥∞ in Example 2.6). Since ∆U is a time-varying Input-
Output Map, we can define the H∞−norm for the structured uncertainty as

∥∆U∥∞ ≜ sup
∥ϖ∥2 ̸=0,∆U

∥∆Uϖ∥2
∥ϖ∥2

,

where we also take the supremum of ∆U .

Remark 2.8 (Importance of estimating the nominal plant). Note that the δ1(t), δ2(t)
represent the uncertain dynamics, which should be centered at the nominal dynamics.
That means we should expect δ1(t) actually being able to reach its limits ±δ1 as close as
possible, not necessarily zero-centering in statistical sense. Such estimation impacts the
performance of the H∞−controller or observer design. A huge overestimation of the
bound of the uncertainty might force the H∞−optimal design to cope with an unrealistic
worst case. Then its overall performance might be compromised to some degree.
Therefore accurate estimations of nominal dynamics as well as the bound of the uncer-
tainty are important for H∞−controller or observer design.
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Remark 2.9 (For H∞−analysis, the controller K should not be taken out). Some
readers might also find an other depiction of block diagram Figure 2.11 in a form that
includes the plant P , controller K and uncertainty ∆U . Yet as discussed in Section
2.8, the roles of controller u and disturbance w or uncertainty ∆U are different. There-
fore for the robust stability in the H∞−analysis in Figure 2.11, the controller should be
integrated into the plant to form G.
In an LTI system with unity feedback controller design forming the loop gain PK, the
small gain theorem indicates that if ∥PK∥∞ < 1, then the closed loop system is stable.
This is a sufficient but not necessary condition for closed-loop stability.
First of all, with ∥PK∥∞ < 1 the gain margin exists, yet phase margin does not exist.
It is more demanding for K to stabilize plant P .
Secondly, when using inequality ∥PK∥∞ ≤ ∥Pu→y∥∞ ∥K∥∞ < 1, s.t. demanding ∥K∥∞ <

1/ ∥Pu→y∥∞ is again more restrictive for controller design from the first inequality.
Therefore, in most H∞−analysis, the controller K should be integrated within the plant
to form a G, and the robust stability in H∞−analysis shall focus mostly on the uncer-
tainty ∆U and the nominal plant G.

From the small gain theorem, ∥Gι→ϖ∆U∥∞ < 1 is sufficient for robust stability. Yet the
inequality ∥Gι→ϖ∆U∥∞ ≤ ∥Gι→ϖ∥∞ ∥∆U∥∞ might introduce great conservativeness,
when ∆ is a real diagonal matrix (structured uncertainty) instead of being a full complex
matrix. This is where the structured singular value µ∆(G) and the µ synthesis comes
into play [62]. This shall be discussed in the next section.

2.9.2 Robust Performance

Extending the idea of robust stability, we are able to impose a performance requirement
into the ∆G diagram, that is, if we wish e.g. the transfer function from input u to
output y to be shaped below a transfer function ωP . When the subscript P stands for
performance, then we can put a block ω−1

P after output y or before input u as shown
in Figure 2.11. Here we include such additional scaling into the dynamic of G to form
G′. Then ∆ is

∆ =
∆U 0

0 ∆P

 . (2.32)
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G

∆U

∆P

ω−1
P

y

y′

u
ϖι

Figure 2.11: Robust performance

By using the small gain theorem to guarantee robust performance, we need to scale ∆P

and ∆U to the same H∞−norm, e.g. to the number 1.

Example 2.7 (Robust stability and performance under structured uncertainty). Ex-
tend Example 2.6. If we adopt ωP after output y as

ωP =
0.1s+15

s+6 0
0 0.2s+20

s+10

 ,
which means that by robust performance we are asking for

∥∥∥G(s)ω−1
P

∥∥∥
∞

=
∥∥∥∥∥∥
 s+6

0.1s+15Gu1→y1(s) s+6
0.1s+15Gu1→y2(s)

s+10
0.2s+20Gu2→y1(s) s+10

0.2s+20Gu2→y2(s)

∥∥∥∥∥∥
∞
< 1 ,

under the condition of ∥∆∥∞ < 1. Then one necessary condition is that each entry of
G(s)ω−1

P has H∞−norm less than 1, so that we must have e.g. Gu1→y1(s) < 0.1s+15
s+6 [65].

In the nominal state, the nominal performance requirement can be fulfilled by applying
root locus, pole placement or others method. Yet robust performance is much more
demanding with ∥∆∥∞ < 1. We need to include the intermediate states in the dynamics
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ω−1
P and extend the system into

G′ :



ẋ =



−2 −7 0 0

1 −1.5 0 0

1 0 −150 0

0 1 0 −100


x+



1 0 1 0

1 1 0 1

0 0 0 0

0 0 0 0


 ι
u



ϖ
y′

 =



1 0 0 0

0 1 0 0

10 0 −1440 0

0 5 0 −450


x

Calculating the H∞−norm of G′ using function norm from Matlab© leads to 1.5411.
However, this requirement for the ∥∆∥∞ < 1/1.5411 is not realistic, ∥∆P ∥∞ can not be
compromised for robust performance. Thus we could extract δ1, δ2 to the input matrix
of ι or output matrix of ϖ, and examine to which value is the uncertainty tolerated for
robust performance. The SSM is now

ẋ =


−2 −7 0 0
1 −1.5 0 0
1 0 −150 0
0 1 0 −100

x+


1 0 1 0
1 1 0 1
0 0 0 0
0 0 0 0


 ι
u

 ,

ϖ
y′

 =


δ1 0 0 0
0 δ2 0 0
10 0 −1440 0
0 5 0 −450

x .

After setting δ1 = 0.553, δ2 = 0.553, ∥G′∥∞ = 1 by using function norm from Matlab©.
Note that the allowance of δ1, δ2 is smaller than that in Example 2.6, since we are re-
quiring robust performance and robust stability at the same time. Also, allowing δ1 ̸= δ2

might give a better bound, since their impacts are different in the uncertain model.

Contrary to ∆U being structured, e.g. being a diagonal real matrix, ∆P is a full complex
matrix. There is no conservativeness in the robust performance requirement.
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2.10 Structured Singular Value and µ Synthesis

The concept of structured singular value µ is brought up by Doyle in [16]. At the same
issue of the same journal, Safonov [49] introduces a similar idea called “multivariable
stability margin” km, which is exactly the inverse of µ∆(G) [54].

G

∆

G

∆

DD−1

D−1D

Figure 2.12: D−scaling in µ synthesis

2.10.1 Structured Singular Value (Conditioned H∞−norm)

From the small gain theorem from left sub-figure in Figure 2.12, for closed loop stability
the sufficient condition is ∥G∆∥∞ < 1. Yet, instead of asking for ∥G∥∞ < 1/ ∥∆∥∞,
the singular structured value is defined as

Definition 2.14 (Structured singular value [54]). Let G be a complex matrix (transfer
function in Fourier domain) and let ∆ = diag {∆i} denote a set of complex matrices
with σ (∆) ≤ 1 and with a given block diagonal structure (in which some of the blocks
may be repeated and some may be restricted to be real). The real non-negative function
µ∆(G), called the structured singular value, is defined by

µ∆(G) ≜ 1
max {km : det (I − kmG∆) = 0} , for structured ∆ , σ (∆) ≤ 1 . (2.33)

If no such structured ∆ exists then µ∆(G) = 0.

It is shown in [65] that in LTI systems ρ(G) ≤ µ∆(G) ≤ σ(G) = ∥G∥∞. When
∆ = diag{δI : δ ∈ C}, then µ∆(G) = ρ(G) and when ∆ is a full complex matrix, then
µ∆(G) = ∥G∥∞ [65].
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If we have µ∆(G) < 1/ ∥∆∥∞, then robust performance and robust stability can be
guaranteed at the same time. When ∥∆∥∞ = 1, this is simply µ∆(G) < 1. The value
of µ∆(G) is not simple to find, thus an upper bound for it is proposed by using the
so-called D−scaling.

2.10.2 The D−scaling

When there exist more than one δ in uncertainty, e.g. in Example 2.6 and 2.7, the
value of µ∆(G) is between the two bounds. In order to calculate µ∆(G) in (2.33), a
D−scaling tool is developed [54] for matrices D that commute with ∆, namely D∆ =
∆D. Adding D and D−1 between each side of G and ∆, D−1∆D = ∆ from the
property of commutation, the transformed system is shown in right sub-figure of Fig
2.12. Therefore we have an upper bound of µ∆(G) as

µ∆(G) ≤ inf
D
σ
(
D−1GD

)
.

The function mussv from Robust Control toolbox in Matlab© may help calculate
such value. Note that since ∆ is in diagonal form as in (2.32), the D−scaling is also in
diagonal form as

D =
DU 0

0 I

 .
which means the D−scaling that commutes with the full complex matrix ∆P can be
picked as identity matrix.

Example 2.8 (D−scaling). Revisiting Example 2.7, by using Matlab© function mussv,
we see that δ1 ≤ 0.8208, δ2 ≤ 0.8208 can guarantee the µ∆(G) < 1. The allowance of
δ1, δ2 is bigger as shown in Example 2.7.

As shown in Figure 2.13, collected during development of [62], the D−scaling redis-
tributes the transfer function from u to ϖ and that from ι to y to achieve a smaller
peak in both transfer functionw along the imaginary axis. This in turn reduces the
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singular value of D−1GD, i.e.

D−1GD =
D−1

U 0
0 I

Gι→ϖ Gu→ϖ

Gι→y Gu→y

DU 0
0 I


=
D−1

U Gι→ϖDU D−1
U Gu→ϖ

Gι→yDU Gu→y

 .
The D−scaling should satisfy Gu→ϖ(jω) < DU(jω) < 1/Gι→y(jω), under the as-
sumption of Gι→y(jω)Gu→ϖ(jω) < 1 , ∀ω > 0 [62]. If there exists some ω, s.t.
Gι→y(jω)Gu→ϖ(jω) ≥ 1, then robust performance can not be met. The D−scaling
might also adjustGι→ϖ toD−1

U Gι→ϖDU . The effect depends on the choice ofD−scaling.
The D−scaling in Figure 2.13 from [62] is fitted by using fitmagfrd function with
order of 2 in Matlab© to mimic the transfer function of DU(jω) = αGu→ϖ(jω) +
(1 − α) /Gι→y(jω), with α ∈ (0, 1) by a transfer function of order 2. Increasing the
intermediate state of D−scaling might help in accelerating the D-K iteration, yet the
dimension of the combined system also grows bigger, which increases the calculation
expense during the ARE calculation in the H∞−controller design or observer design
remarkably.

100 101
−100

−50

0

50

100

rad/s

dB

G−1
ι→y

Gu→ϖ

DU

Figure 2.13: D−scaling between G−1
ι→y and Gu→ϖ in [62]

Remark 2.10. The reason for µ∆(G) ≤ ∥G∥∞ is that, when u might be freely chosen
to be the worst input as shown in proof of Lemma 2.1, the input ι is correlated to ϖ.
Since for ι, u ∈ L2

∥G∥∞ ≜ sup
∥(ι,u)∥L2

̸=0

∥(y,ϖ)∥L2

∥(ι, u)∥L2

.
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On the other hand with a structured uncertainty ∆U , for u ∈ L2

µ∆(G) ≤ inf
DU

sup
∥u∥L2

̸=0,ι=∆U ϖ

∥∥∥(y,D−1
U ϖ

)∥∥∥
L2

∥(DU ι, u)∥L2

.

The extra input ι is depending on the structure of ∆U , highly correlated with output ϖ.
Therefore, under such ∆G diagram from Figure 2.12, the D−scaling provides a less
conservative estimate of robustness.

2.10.3 The µ Synthesis

P

∆

K

DUD−1
U

Figure 2.14: D−scaling in µ synthesis.

In previous sections and examples, we do not emphasize on controller or observer design
with G. Instead we treat the system as if the controller or observer is already included.
Here the µ synthesis or so-called D-K iteration involves an iteration for controller (K) or
observer (O) design process andD−scaling design process. This is shown in Algorithm 2
together with Figure 2.14 [54]. The design of the controller K = arg minD ∥G(PD, K)∥∞
can be chosen as the H∞−optimal controller design in section 2.8. The design of
observer alone can be found in [62], and the design of the observer together with the
controller can be found in [4], where the solution of two AREs are needed. Note that
the introduction of the D−scaling inevitably increases the dimension of K or O, since
the SSM of the plant is enlarged with extra state from DU and D−1

U and thus the
state-feedback controller in (2.29) has also a bigger dimension [62].
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Algorithm 2 D-K iteration for µ synthesis
D = I ▷ Initialize the D matrix
PD = D−1PD
K = arg minD ∥G(PD, K)∥∞ ▷ Controller or Observer design
µc = µ∆ (G(P,K))
D = arg minD ∥D−1G(P,K)D∥∞ ▷ Find the new D−scaling matrix D for the
G(P,K)
repeat

µp = µc ▷ Save the µc of last round
PD = D−1PD
K = arg minD ∥G(PD, K)∥∞ ▷ Controller or Observer design
µc = µ∆ (G(P,K))
D = arg minD ∥D−1G(P,K)D∥∞ ▷ Find the new D−scaling matrix D for the

G(P,K)
until |µc − µp| /µp < 10−7
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3 Finite-gain Homogeneous
Lp−stability for Input-Output Maps

As pointed out in [29, 50], the H∞−norm (the linear L2−gain) can be applied to
nonlinear systems. Though with the traditional definition, such H∞−norm is usually
valid in a neighbourhood of the equilibrium for small signal input, namely being a local
norm.

On the other hand, homogeneous dynamics as a special class of nonlinear systems
have some interesting properties. In [25, 24], the authors apply a global and constant
H∞−norm on continuous homogeneous dynamics, whose weight vectors of the input
and the output are all equal. Yet this case is a rather special case of all continuous
homogeneous systems, therefore few further studies can be found on this aspect.

In [61], the authors noticing the deficiency of [64, 63], build a family of homogeneous
H∞−norms that provides a measurement of the input-output relationship globally for
all continuous homogeneous systems with arbitrary in- and output weights.

In this Chapter, we introduce the concept of the homogeneous Lp−norm for a signal
and the homogeneous Lp−gain for homogeneous Input-Output Maps, among which
homogeneous L2−gain (homogeneous H∞−norms) is emphasized. Actually the homo-
geneous Lp−gain can be correlated to the homogeneous L2−gain by scaling the weight
vector. The properties of the homogeneous Lp−norm are studied and stability analysis
for feedback interconnected systems is also included in the homogeneous small gain
theorem.

The materials in this Chapter are published in [60].
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3.1 Weighted Homogeneity for Input-Output Maps

First of all, we recall the definition of the weighted homogeneity for functions.

Definition 3.1 (Weighted homogeneity for functions [3]). Fix a set of coordinates
u = (u1, · · · , um)⊤ in Rm and y = (y1, · · · , yr)⊤ in Rr. Let τu = (τu1 , · · · , τum)⊤,
τy = (τy1 , · · · , τyr)⊤ be an m-tuple and r-tuple of positive real vectors.

• The one-parameter family of dilations ντu
κ , ν

τy
κ (associated with weight τu, τy) are

defined by

ντu
κ (u) ≜ (κτu1u1 , · · · , κτumum)⊤ , ∀u ∈ Rm ,∀κ > 0 ,
ντy

κ (y) ≜ (κτy1y1 , · · · , κτyryr)⊤ , ∀ y ∈ Rr ,∀κ > 0 .

The positive real numbers τui
, τyj

are called the weight vectors of ui, yj, respec-
tively.

• A function yi = hi(u) : Rm → R is said to be τu− homogeneous of degree khi
= τyi

if
hi (ντu

κ (u)) = κτyihi(u) , ∀u ∈ Rm ,∀κ > 0 .

The functions hi(u) as in Definition 3.1 remains homogeneous, when the weight vector
τu is scaled by any positive real constant L, yet with degree Lkhi

scaled by the same
constant. This can be verified with simple replacement of κ = κ̃L. In another word,
the function yi = hi(u) : Rm → R is Lτu- homogeneous of degree Lkhi

. This scaling L
of weight vector and degree is frequently used in the rest of this thesis.

Then we shall define a homogeneous Input-Output Map as

Definition 3.2 (Homogeneous Input-Output Map). An Input-Output Map G is called
homogeneous with degree d = −τt ∈ R, if for each input u and its output y, the dilated
input together with scaled time t̃ for all κ > 0 as

u(t) → ũ(t̃) = ντu
κ (u(t)) ,

t → t̃ = κτtt ,
(3.1)
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result in the corresponding dilated output with scaled time as

y(t) → ỹ(t̃) = ντy
κ (y(t)) ,

t → t̃ = κτtt .
(3.2)

Here the same weights τu and τy apply for signals u and y.

Similarly, the homogeneous degree d can be scaled by any positive real number L
together with the weight vectors τu, τy, verifiable again with simple replacement of
κ = κ̃L.

The definition of homogeneous Input-Output Map by (3.1) and (3.2) is unprecedented.
When the weighted homogeneous Input-Output Map is dynamical, most previous works
define its homogeneous degree from the vector field [3], and those definitions meet
Definition 3.2 [35] (to be shown in next Chapter). Therefore, the definition of the
homogeneous Input-Output Map is extended as in Definition 3.2. Particularly, when
τt = 0 , τui

= ℓ for all i = 1, · · · ,m (τu = ℓ1m in short) and τy = ℓ1r, then the
Input-Output Map G is a linear Input-Output Map.

3.2 Incompatibility of Traditional H∞−norm for
Homogeneous Input-Output Maps

For motivation purpose, we shall probe how the traditional H∞−norm behaves when
applied to the homogeneous Input-Output Map by the next example.

Example 3.1 (Traditional H∞−norm on scalar homogeneous Input-Output Map).
We take a simple scalar homogeneous Input-Output Map G from input u to output y
with weights Lτu, Lτy and degree of −Lτt. We apply the traditional H∞−norm on this
Input-Output Map, i.e.

γ† ≜ sup
∥u∥L2

̸=0 ,u∈L2

∥y∥L2

∥u∥L2

. (3.3)

Hereafter, we shall apply superscript † when the traditional H∞−norm is used. Each
particular input ∥ue∥L2

̸= 0 results in an output ye(·) = G (ue(·)), the ratio of the L2
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norm of output over the L2 norm of the input is denoted as Γe = ∥ye∥L2/∥ue∥L2. From
(3.1) and (3.2) in Definition 3.1, the dilated input ũe with dilated time t̃ produce the
output ỹe = G (ũe), whose L2−norms are

∥ũe∥Lp
=
(∫ ∞

0

∣∣∣ũe(t̃)
∣∣∣p dt̃

) 1
p

= κτu+ τt
p

(∫ ∞

0
|ue(t)|p dt

) 1
p

= κτu+ τt
p ∥ue∥Lp

,

∥ỹe∥Lp
= κτy+ τt

p ∥ye∥Lp
.

The ratio of the L2 norm of output ỹe over the L2 norm of the input ũe is now

Γκe =
∥ỹe∥L2

∥ũe∥L2

= κL(τy−τu)γe . (3.4)

When

τy = τu then Γκe is constant under homogeneous dilation. A continuous homogeneous
system in [25, 24] restricts the weight vectors similar as τy = ℓ1r, τu = ℓ1m.

τy ̸= τu then Γκe is unbounded. This is apparent when τy > τu, κ → ∞ or when
τy < τu, κ → 0. Thus the traditional H∞−norm (3.3), which is the upper bound
for all Γκe, is also unbounded. This means that when τy < τu, a smaller signal
incurs a bigger value of Γe, and when τy > τu a bigger signal does the same.

Apparently, the traditional H∞−norm does not provide us any beneficial information
about this simple scalar homogeneous Input-Output Map G, unless the scalar Input-
Output Map G is linear, namely when τy = τu.

Further, for a multi-input single-output Input-Output Map, if the weight vectors of
the input τu ̸= ℓ1m for any ℓ > 0, then ∥u∥L2

is no longer homogeneous w.r.t. the
weight by choosing one of the input ui (which should be able to impact the output y,
i.e. ∥y∥L2

̸= 0 when ∥ui∥L2
̸= 0, or else this input is non-relevant for this Input-Output

Map), where τui
̸= τy. Similar to (3.4), the gain from such input ∥ui∥L2

̸= 0, ∥uj∥L2
= 0

for all j ̸= i to output y is unbounded. Since the traditional H∞−norm is taking the
supremum of all inputs, where the above input is only a subset of it, the traditional
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H∞−norm is also unbounded.
For multi-input multi-output (MIMO) Input-Output Maps, only note that from defini-
tion ∥y∥L2

is smaller if some output channels are excluded, i.e. ∥yi∥L2
≤ ∥y∥L2

,∀ y ∈ L2

from definition. Then choose one output yi, (whose weight vector is different from at
least one of the input uj, and such input uj should be able to impact this output yi, or
else this Input-Output Map can be considered as a combination of linear Input-Output
Maps), then the H∞−norm of such MIMO system from u to y is greater or equal to Γe

from such ∥uj∥L2
̸= 0 to its output yi, which is already unbounded from the analysis

above.
Therefore, the traditional H∞−norm (3.3) for the homogeneous Input-Output Map can
be bounded only if τu = ℓ1m, τy = ℓ1r for some ℓ > 0, in accordance to the studies in
[25, 24]. This is also true for the Lp−gain from (2.3).

3.3 Homogeneous q−norm

During studies of homogeneous systems, some important results appear more concise
under a so-called homogeneous vector norm, which is modified from the traditional
norm similar to Definition 2.2 to be suitable for homogeneous systems, namely consid-
ering the weight vector [3].

Definition 3.3 (Homogeneous vector norm: τ−homogeneous q−norm [3]). A τu−
homogeneous q−norm (qh−norm for short) for a vector u ∈ Rm is a mapping from a
vector space into a non-negative real number Rm 7→ R≥0, i.e. for any q ≥ 1

∥u∥τu,q ≜

(
m∑

i=1
|ui|

q
τui

) 1
q

. (3.5)

In particular, when q = ∞

∥u∥τu,∞ ≜ max
i

{
|ui|

1
τui

}
. (3.6)

Remark 3.1. The τ -homogeneous norm ∥·∥τ,q is τ -homogeneous of degree 1 and it
is positive definite. If q ≥ max τu, the qh−norm ∥u∥τu,q is continuously differentiable
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on Rn \ {0}. This is not needed in this thesis. However, ∥·∥τ,q is in general not a
norm in the usual sense, since it is not 1−homogeneous in the classical sense, i.e. with
τ = 1n. When τ = 1n the τ -homogeneous q−norm becomes the usual q−norm in
Rn. In that case, for q ≥ max τx = 1 the triangle inequality in Definition 2.1 is valid,
i.e. ∥x+ y∥1n,q ≤ ∥x∥1n,q + ∥y∥1n,q. In the general case, as it will be shown later in
Lemma 3.3, the triangle inequality is replaced by the additive inequality (3.10).

Remark 3.2 (Effect of weight vector scaling on τ−homogeneous q−norm). For most
studies about homogeneous systems, scaling the weight vector and degree by L > 0 has
no impact on their results (e.g. stability results). Yet in this thesis such scaling does
matter, e.g. after applying such scaling the Lτ -homogeneous q−norm is related to the
original τ−homogeneous q/L−norm by

∥u∥Lτu,q =
(

m∑
i=1

|ui|
q

Lτui

) 1
q

=
(

m∑
i=1

|ui|
q/L
τui

) 1/L
q/L

= ∥u∥1/L

τu,q/L
. (3.7)

for 0 ≤ L ≤ q. Usually, there is no need to relate Lτ−homogeneous q−norm back to
τ−homogeneous q−norm, so any scaling L > 0 on weight vectors is allowed. Therefore,
in this thesis, it is important to fix the weight vector and degree from the beginning, in
order for the results to be consistent.

Remark 3.3 (Companion vector and relationship between τ−homogeneous q−norm
and traditional q−norm). First, we introduce the sign preserving power of a scalar u
to the power of ϑ ∈ R\ {0} as

⌈u⌋ϑ = |u|ϑ sign(u) .

Note that the partial derivative of the sign preserving powers ⌈u⌋ϑ and absolute value
|u|ϑ with ϑ, u ∈ R \ {0} is

∂ ⌈u⌋ϑ

∂u
= ϑ |u|ϑ−1 ,

∂ |u|ϑ
∂u

= ϑ ⌈u⌋ϑ−1 .

Apparently u = 0 is a singular point for the partial derivative when ϑ < 1, elsewhere
the partial derivative is smooth. When ϑ = 0, the sign preserving power should be
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3.3 Homogeneous q−norm

understood as a set-valued function [53]

⌈u⌋0 =


1 when u > 0

[−1, 1] when u = 0

−1 when u < 0

.

Such perception is necessary to derive a solution for discontinuous systems (Solution in
Filippov’s sense, refer to A.2), yet in this thesis we study in most case the continuous
version, i.e. ϑ ̸= 0.
For a vector u ∈ Rm and a (weight) vector τu > 0, define the companion vector of u as

u
1

τu ≜
[
⌈u1⌋

1
τu1 , · · · , ⌈um⌋

1
τum

]⊤
.

Note that the mapping u 7→ u
1

τx is a homeomorphism, and when mini {τui
} ≤ 1 it is a

diffeomorphism. For homogeneous norms it is possible to associate the qh−norm (3.5)
of u with the q−norm of its companion vector by

∥u∥τu,q =
∥∥∥u 1

τu

∥∥∥
p
. (3.8)

Note also the relation of the qh−norm with the inner product of companion vector by

∥u∥q
τu,q =

n∑
i=1

|ui|
q

τui =
〈
u

q
2τu , u

q
2τu

〉
=
∥∥∥u q

2τu

∥∥∥2

2
.

This bears a relationship with the homeomorphic coordinate change in [28, Definition
7].

Lemma 3.1 (Equivalence between τ−homogeneous q−norms). All τ−homogeneous
q−norms, with the same weight vector τ , are equivalent, in the sense that if ∥·∥τu,α

and ∥·∥τu,β are two different homogeneous q−norms with α ≥ 1, β ≥ 1, then there exist
positive constants c1 and c2 such that for all u ∈ Rn

c1∥u∥τu,β ≤ ∥u∥τu,α ≤ c2∥u∥τu,β .

Proof. This is easily seen using relation (3.8) in Remark 3.3. Since q−norms are equiv-
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3 Finite-gain Homogeneous Lp−stability for Input-Output Maps

alent [15] as brought up in Remark 2.1, i.e. c1∥u∥β ≤ ∥u∥α ≤ c2∥u∥β, then

c1∥u∥τu,β = c1
∥∥∥u 1

τu

∥∥∥
β

≤ ∥u∥τu,α =
∥∥∥u 1

τu

∥∥∥
α

≤ c2
∥∥∥u 1

τu

∥∥∥
β

= c2∥u∥τu,β .

Interestingly, the constants c1 and c2 relating two homogeneous q−norms are the same
as the ones for the q−norms.

A natural question arises about the relationship between different homogeneous norms
with possibly different weight vectors. The following Lemma clarifies this (and this is
a special case of [5, Lemma 9]).

Lemma 3.2 (Relationship between τ−homogeneous q−norm with different r). Con-
sider two homogeneous norms ∥·∥τ1,α and ∥·∥τ2,β, with (possibly) different weight vectors
τ1 and τ2. Then, there exist two K∞ functions α1 (·) and α2 (·) such that

α1
(
∥x∥τ2,β

)
≤ ∥x∥τ1,α ≤ α2

(
∥x∥τ2,β

)
, ∀x ∈ Rn . (3.9)

Proof. Since homogeneous norms are continuous, positive definite and radially un-
bounded, it follows from a classical result [29, Lemma 4.3] that there exist K∞ functions
µ1,α (·), µ2,α (·) and µ1,β (·), µ2,β (·) such that ∀x ∈ Rn

µ1,α

(
∥x∥β

)
≤ ∥x∥τ1,α ≤ µ2,α

(
∥x∥β

)
,

µ1,β

(
∥x∥β

)
≤ ∥x∥τ2,β ≤ µ2,β

(
∥x∥β

)
.

Using the properties of K∞ functions it follows that

µ1,α ◦ µ−1
2,β

(
∥x∥τ2,β

)
≤ ∥x∥τ1,α ≤ µ2,α ◦ µ−1

1,β

(
∥x∥τ2,β

)
.

This establishes the result.

In particular, a relationship between q−norms and τ−homogeneous q−norms is ob-
tained from (3.9) by setting τ1 = 1n or τ2 = 1n. Relation (3.7) represents one example
of this general relation, when τ2 = λτ1 or vice versa. Note that τ−homogeneous
q−norms w.r.t. different weights r are usually not equivalent (different from Remark
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3.3 Homogeneous q−norm

3.1), since in general α1 (·) and α2 (·) are not linear functions (e.g. (3.7) in Remark
3.2).

The τ−homogeneous q−norm of a vector in Rn satisfies the triangle inequality in Def-
inition 2.1 when τ = 1n and p ≥ 1. For other cases we have instead the following
additive inequality.

Lemma 3.3 (Additive inequality for homogeneous q−norm). The τ−homogeneous
q−norm satisfies the following inequality for two vectors x, y ∈ Rn, with q ≥ 1,

∥x+ y∥τ,q ≤ max
{
1, 2

1
min τ

− 1
q

} (
∥x∥τ,q + ∥y∥τ,q

)
. (3.10)

Proof. Using the definition, we have

∥x+ y∥τ,q =
(

n∑
i=1

|xi + yi|
q
τi

) 1
q

≤
(

n∑
i=1

(|xi| + |yi|)
q
τi

) 1
q

≤
(

n∑
i=1

max
{
1, 2

q
τi

−1} |xi|
q
τi +

n∑
i=1

max
{
1, 2

q
τi

−1} |yi|
q
τi

) 1
q

≤
(
max

{
1, 2

q
min τ

−1
}) 1

q

(
n∑

i=1
|xi|

q
τi +

n∑
i=1

|yi|
q
τi

) 1
q

≤ max
{
1, 2

1
min τ

− 1
q

} (
∥x∥τ,q + ∥y∥τ,q

)
.

The second inequality comes from (A.8), the fourth inequality comes from (A.7) for
q ≥ 1. When q = ∞, we have instead

∥x+ y∥τ,∞ = max
i

{
|xi + yi|

1
τi

}
≤ max

i

{
(|xi| + |yi|)

1
τi

}
≤ max

{
1, 2 1

min τ
−1
}(

max
i

{
|xi|

1
τi

}
+ max

i

{
|yi|

1
τi

})
≤ max

{
1, 2 1

min τ
−1
} (

∥x∥τ,∞ + ∥y∥τ,∞
)
.

Remark 3.4 (Additive inequality and triangle inequality for qh−norm). If min τ > 1,
then there exists some q ∈ [1,min τ ], s.t. the inequality (3.10) is again in the form
of triangle inequality as in Definition 2.1, i.e. ∥x+ y∥τ,q ≤ ∥x∥τ,q + ∥y∥τ,q for all q ∈
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3 Finite-gain Homogeneous Lp−stability for Input-Output Maps

[1,min τ ]. This is always possible by scaling the weight vectors by L > max {1, 1/min τ}.
Note that the value of the qh−norm is changed with such L−scaling on weight vector
τ as shown in Remark 3.2.

3.4 Homogeneous Lp−norm

Similar to the introduction of the τ−homogeneous vector q−norm for a vector, we also
need to extend the traditional Lp−norm in signal space to be applicable to homogeneous
Input-Output Map G of arbitrary weight vectors for input and output.
First, as the Definition 2.3, we introduce the τ−homogeneous Lp−space

Definition 3.4 (τ−homogeneous Lp−space). For p ≥ 1 the set Lτ,p consists of all
signals u : [0,∞) → R, which are measurable and satisfy

∫∞
0 |u(t)|

p
τ dt < ∞.

For multivariable signals u : [0,∞) → Rn the signal space Ln
τ,p consists of all measurable

signals such that ∫ ∞

0
∥u(t)∥p

τ,q dt < ∞ ,

where ∥·∥τ,q is the τ−homogeneous q−norm in Rn. From the Lemma 3.1, all τ−
homogeneous q−norms are equivalent, thus when u ∈ Ln

τ,p for some q, it is also true
for all q ≥ 1.

Compared to Definition 3.4, the weight vector τ is part of the definition of τ−homogeneous
Lp−space. Again, we omit the superscript of n in Ln

τ,p when no ambiguity exist. Sim-
ilarly, the extended τ−homogeneous Lp−space can be defined as the set of all signals
s.t. uT ∈ Lτ,p for any T ∈ [0,∞), which is denoted as u ∈ Lτ,pe.

Definition 3.5 (The τ−homogeneous Lp−norm of a signal). Define a mapping from
a signal u ∈ Lτ,p to a real non-negative number that provides a continuous measure of
size for such a signal with its weight vector τu, defined by

∥u∥τu,Lp
≜
(∫ ∞

0
∥u(t)∥p

τu,q dt
) 1

p

. (3.11)
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3.4 Homogeneous Lp−norm

Mentioned in Definition 3.4, when u ∈ Lτ,p the τ−homogeneous Lp−norm in (3.11)
exists and is finite for all q ≥ 1. When p = ∞, this is

∥u∥τu,L∞ = sup
t≥0

∥u(t)∥τu,q , (3.12)

that is the supremum of the τ−homogeneous vector q−norm for the vector u(t) for all
time. Such definition is a natural extension of the vector homogeneous norm in finite
dimension in Definition 3.3 to signals in infinite dimensional space.

Lemma 3.4. The Lτ,p−space is a linear signal space, i.e. if x, y ∈ Lτ,p then ax+ by ∈
Lτ,p for any a, b ∈ R.

Proof. For the proof the generalization of the weak triangle inequality is used [55]

f (x+ y) ≤ f (2x) + f (2y) , ∀x, y ∈ [0,∞) , (3.13)

where f is a class K function defined on [0,∞) (monotonically increasing function).
Consider

∫ ∞

0
∥ax(t) + by(t)∥p

τ,q dt =
∫ ∞

0

(
n∑

i=1
|axi(t) + byi(t)|

q
τi

) p
q

dt

≤
∫ ∞

0

(
n∑

i=1
(|axi(t)| + |byi(t)|)

q
τi

) p
q

dt

≤
∫ ∞

0

(
n∑

i=1
|2a|

q
τi |xi(t)|

q
τi +

n∑
i=1

|2b|
q
τi |yi(t)|

q
τi

) p
q

dt

≤
∫ ∞

0

(
A

n∑
i=1

|xi(t)|
q
τi +B

n∑
i=1

|yi(t)|
q
τi

) p
q

dt

≤ (2A)
p
q

∫ ∞

0

(
n∑

i=1
|xi(t)|

q
τi

) p
q

+ (2B)
p
q

∫ ∞

0

(
n∑

i=1
|yi(t)|

q
τi

) p
q

dt

= (2A)
p
q

∫ ∞

0
∥x(t)∥p

τ,q dt+ (2B)
p
q

∫ ∞

0
∥y(t)∥p

τ,q dt < ∞ ,

where A = maxi

{
|2a|

q
τi

}
and B = maxi

{
|2b|

q
τi

}
, and we apply several times inequality

(3.13) to the monotonically increasing function |·|r, r > 0. This concludes the proof for
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3 Finite-gain Homogeneous Lp−stability for Input-Output Maps

finite p. For p = ∞ it is similar from (3.12)

sup
t≥0

∥ax(t) + by(t)∥τ,q = sup
t≥0

(
n∑

i=1
|axi(t) + byi(t)|

q
τi

) 1
q

≤ sup
t≥0

(
n∑

i=1
(|axi(t)| + |byi(t)|)

q
τi

) 1
q

≤
(

sup
t≥0

[
n∑

i=1
|2a|

q
τi |xi(t)|

q
τi

]
+ sup

t≥0

[
n∑

i=1
|2b|

q
τi |yi(t)|

q
τi

]) 1
q

≤
(
A sup

t≥0

[
n∑

i=1
|xi(t)|

q
τi

]
+B sup

t≥0

[
n∑

i=1
|yi(t)|

q
τi

]) 1
q

= (2A)
1
q sup

t≥0
∥x(t)∥τ,q + (2B)

1
q sup

t≥0
∥y(t)∥τ,q < ∞ .

Remark 3.5 (Equivalence of Lph−norm with the same weight vector). It is apparent
from Lemma 3.1, that the τ−homogeneous Lp−norm (3.11) are equivalent for different
choice of q.

Remark 3.6 (Effect of weight scaling on Lph−norms). Similar to Remark 3.2, scaling
the homogeneous degree d = −τt, and the weight vectors τx, τu, τy by a positive constant
L ≤ min {p, q}, affects the value of the homogeneous Lp−norm (3.11) of the involved
signals, i.e. for u ∈ LLτ,p

∥u∥Lτu,Lp
=
(∫ ∞

0
∥u(t)∥p

Lτu,q dt
) 1

p

=
(∫ ∞

0
∥u(t)∥p/L

τu,q/L
dt
) 1/L

p/L

= ∥u∥1/L

τu,Lp/L
.

Note that the ∥u∥1/L

τu,Lp/L
uses the τu−homogeneous q/L−norm instead of the (original)

homogeneous q−norm, which have different values. Nonetheless, it implies that for any
L ≤ min {p, q} the spaces LLτ,p and Lτ,p/L are identical, i.e. u ∈ LLτ,p ⇔ u ∈ Lτ,p/L. Al-
though the two spaces are identical, the power of 1/L indicates that the Lτ−homogeneous
Lp−norm is not equivalent to the τ−homogeneous Lp/L−norm.

The triangle inequality in Definition 2.1 is valid for τ−homogeneous Lp−norm when
τ = 1n, i.e. for two signals x, y ∈ Lp, ∥x+ y∥1n,Lp

≤ ∥x∥1n,Lp
+ ∥y∥1n,Lp

. For other
cases, the more general additive inequality is valid.
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3.4 Homogeneous Lp−norm

Lemma 3.5 (Additive inequality for τ−homogeneous Lp−norm). The τ−homogeneous
Lp−norm satisfies the following inequality for two signal x, y ∈ Lτ,p, with q ≥ 1, for all
p ≥ 1 (including the case p = ∞)

∥x+y∥τ,Lp
≤ max

{
1, 2

1
min τ

− 1
q

} (
∥x∥τ,Lp

+ ∥y∥τ,Lp

)
. (3.14)

Proof. First of all, signal x + y ∈ Lτ,p from Lemma 3.4. Then similar to the classical
proof of the triangle inequality for Lp−norm, we have

∥x+y∥p
τ,Lp

=
∫ T

0
∥x(t)+y(t)∥p

τ,q dt =
∫ T

0
∥x(t)+y(t)∥τ,q ∥x(t)+y(t)∥p−1

τ,q dt

≤ max
{
1, 2

1
min τ

− 1
q

} ∫ T

0

(
∥x(t)∥τ,q + ∥y(t)∥τ,q

)
∥x(t)+y(t)∥p−1

τ,q dt

≤ max
{
1, 2

1
min τ

− 1
q

}(∫ T

0
∥x(t)∥p

τ,q dt
) 1

p

+
(∫ T

0
∥y(t)∥p

τ,q dt
) 1

p


·
(∫ T

0
∥x(t)+y(t)∥p

τ,q dt
) p−1

p

= max
{
1, 2

1
min τ

− 1
q

} (
∥x∥τ,Lp

+ ∥y∥τ,Lp

)
∥x+y∥p−1

τ,Lp
.

From here (3.14) follows immediately. The first inequality derives from Lemma 3.3,
the second inequality comes from Hölder’s inequality (A.9). From (3.10) as well as
definition of homogeneous L∞−norm (3.12), it is also easy to derive that

∥x+y∥τ,L∞ = sup
t≥0

∥x(t)+y(t)∥τ,q ≤ max
{
1, 2

1
min τ

− 1
q

}(
sup
t≥0

∥x(t)∥τ,q +sup
t≥0

∥y(t)∥τ,q

)
≤ max

{
1, 2

1
min τ

− 1
q

} (
∥x∥τ,L∞ +∥y∥τ,L∞

)
.

Or simply (3.14) is also valid when p = ∞.

Remark 3.7 (Additive inequality and triangle inequality for Lph−norm). From Re-
mark 3.4, by L−scaling on the weight vector τ , there always exists some q ∈ [1,min τ ],
s.t. (3.14) appears in the form of triangle inequality as in Definition 2.1, i.e. ∥x+y∥τ,Lp

≤
∥x∥τ,Lp

+ ∥y∥τ,Lp
for all p ≥ 1, q ∈ [1,min τ ] , ∀x, y ∈ Lτ,p. Note that, with the

L−scaling on the weight vector τ , the value of the Lph−norm is also changed as shown
in Remark 3.6.
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3 Finite-gain Homogeneous Lp−stability for Input-Output Maps

Remark 3.8 (Relationship between homogeneous Lp−norm and traditional Lp−norm).
Similar to Remark 3.3, introduce the companion signal of u (·) as

u
1

τu (t) =
[
⌈u1(t)⌋

1
τu1 , · · · , ⌈um(t)⌋

1
τum

]⊤
. (3.15)

It is clear that the Lph−norm equals the traditional Lp−norm for its homeomorphic
mapping, namely ∥u∥τy ,Lp

=
∥∥∥u 1

τu

∥∥∥
Lp

.

Remark 3.9 (Relationship between Lτ,p−spaces). As a direct consequence from Re-
mark 2.4, if a signal u ∈ Lτu,1 ∩ Lτu,∞, then u ∈ Lτu,p for p ∈ [1,∞] by simply using
its companion signal in Remark 3.8.
Further, in extended τu−homogeneous Lp−space with finite T , we have Lτu,∞e ⊂ Lτu,pe ⊂
Lτu,1e for similar reasons.

3.5 Finite-gain Homogeneous L2−stability

Similar to the L2−stability, the finite-gain homogeneous L2−stability for homogeneous
Input-Output Map can be defined as

Definition 3.6 (Finite-gain homogeneous L2−stability). The Input-Output Map G is
called Lτ−homogeneous L2−stable if

u ∈ LLτu,2 ⇒ y ∈ LLτy ,2 .

The map G is said to be finite-gain Lτ−homogeneous L2−stable (finite-gain L2h−stable
in short), if there exists a finite constant γL > 0 and a finite constant βL ≥ 0, s.t.

∥(G(u))T ∥Lτy ,L2
≤ γL ∥uT ∥Lτu,L2

+ βL , ∀T ∈ R≥0 , u ∈ LLτy ,2e ,

then the L2h−gain of G is defined as

γ′
L ≜ inf {γL | ∃ βL such that (3.16) holds} .
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3.5 Finite-gain Homogeneous L2−stability

Similar to the classical situation [50], if G has finite Lph−gain then it is automatically
Lph−stable. By taking u ∈ LLτu,2 ⊂ LLτu,2e and letting T → ∞, we obtain

∥G(u)∥Lτy ,L2
≤ γL ∥u∥Lτu,L2

+ βL , ∀u ∈ LLτu,2 , (3.16)

implying that G(u) ∈ LLτy ,2.

In the rest of this thesis, the subscript L might not be repeatedly added on other
functions for readability purpose. Note that L2h−stability (3.16) agrees with finite-
gain L2−stability for LTI system [29, 50], when τt = 0, Lτu = 1m, Lτy = 1r.

Proposition 3.1 (Finite-gain L2h−stability with zero bias). If a homogeneous Input-
Output Map G is finite-gain L2h−stable, then βL = 0 in (3.16) if Lτt ̸= −2.

Proof. Since (3.16) is true for all u ∈ LLτu,2, then (3.16) is also true for the dilated
input and dilated output with dilated time as in (3.1) and (3.2), i.e.

∥ỹ∥Lτy ,L2
≤ γL ∥ũ∥Lτu,L2

+ βL , ∀u ∈ LLτu,2 . (3.17)

The L2h−norm of ỹ is

∥ỹ∥Lτy ,L2
=
∣∣∣∣∫ ∞

0

∥∥∥ỹ(t̃)
∥∥∥2

Lτy ,q
dt̃
∣∣∣∣ 1

2
=
∣∣∣∣∫ ∞

0
κ2 ∥y(t)∥2

Lτy ,q dt̃
∣∣∣∣ 1

2

= κ

∣∣∣∣∫ ∞

0
κLτt ∥y(t)∥2

Lτy ,q dt
∣∣∣∣ 1

2
= κ1+ Lτt

2 ∥y∥Lτy ,L2
.

(3.18)

That is, the L2h−norm of dilated output ∥ỹ∥Lτy ,L2
equals the L2h−norm of ∥y∥Lτy ,L2

scaled by κ1+Lτt/2. Such scaling also applies to input ∥ũ∥Lτu,L2
. Then (3.17) is equivalent

to
∥y∥Lτy ,L2

≤ γL ∥u∥Lτu,L2
+ βL/κ

1+ Lτt
2 , ∀u ∈ LLτu,2 . (3.19)

The arbitrariness of κ implies βL = 0 when Lτt ̸= −2, more specifically, when Lτt <

−2, κ → ∞ and when Lτt > −2, κ → 0. For LTI systems, similar observations can be
found in Proposition 2.1 with τt = 0, Lτu = 1m, Lτy = 1r [50].
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3 Finite-gain Homogeneous Lp−stability for Input-Output Maps

3.6 Definition of a Family of Homogeneous H∞−norms

From Definition 3.6 we may define the homogeneous H∞−norms as

Definition 3.7 (Definition of a family of homogeneous H∞−norms). If the homoge-
neous Input-Output Map G is finite-gain L2h−stable, we propose a family of homoge-
neous H∞−norm (H∞h−norm in short) for G when Lτt ̸= −2 as per

γ′
L ≜ inf

γ
∣∣∣∣∣∣ sup
∥u∥Lτu,L2

̸=0,u∈Lτ,2

∥y∥Lτy ,L2

∥u∥Lτu,L2

≤ γ

 . (3.20)

From Proposition 3.1, when G is homogeneous and Lτt ̸= −2, from finite-gain L2h−
stability we have βL = 0. It is clear that the family of H∞h−norms equals the L2h−gain,
when the L2h−gain is defined in inequality, the H∞h−norm is defined in fraction. On
the other hand, if (3.20) is finite, G also has finite homogeneous L2h−gain γ′

L.

Since the L2h−norm in Definition 3.5 only involves the weight vector of the signal, yet
for homogeneous Input-Output Map defined in Definition 3.3, there exists the effect of
time scaling described by (3.1) and (3.2). We shall discuss the H∞h−norm in (3.20)
for both cases.
From the signal point of view, i.e. without considering the time scaling, γ′

L in (3.20)
is of homogeneous degree 0, since the homogeneous degrees of the L2h−norm in the
numerator and the denominator of the right hand side of (3.20) are both 1. When
considering the signal u and y as input and output for some homogeneous Input-Output
Maps, i.e. with time scaling, the value of (3.20) still remains unchanged, since both the
numerator and denominator are scaled by the same coefficient κ1+Lτt/2 as described by
(3.18).
Therefore the norm in (3.20) retains constant for any input and its dilation. Again for
LTI system with degree τt = 0, when choosing Lτu = 1m, Lτy = 1r, the homogeneous
H∞−norm (3.20) is the traditional H∞−norm.

In contrast to Section 3.2, where the classical H∞−norm is valid only when τu =
ℓ1m, τy = ℓ1r for some ℓ > 0, the H∞h−norm (3.20) is constant for dilated input.
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Remark 3.10 (Weight vector for input and output must be positive). Since τyi
and τui

are assumed to be all positive real numbers in Definition 3.1, the Lph−norm of a signal
in Definition 3.5 as well as the H∞h−norm of the Input-Output Map in Definition 3.7
is thus well defined. Note that, in sliding mode with discontinuous vector field the weight
vectors for some inputs are allowed to be zero. This is not allowed for Definition 3.7,
so is not considered in this thesis.

Remark 3.11 (L−scaling allows different interpretation of L2h−norm). With different
scaling L, the physical meaning as well as the value of such homogeneous H∞−norm
in Definition 3.7 is different, refer to Remark 3.6. We fix p = 2 and allow the scaling
L on (τu, τy,−τt), since

• The traditional H∞−norm is associated with the worst L2−gain. When there also
exists other Lp−gain [50], they are not frequently discussed. The two upper esti-
mations for either linear systems or exponentially convergent nonlinear systems
are brought up in Section 2.6.

• The partial differential inequality (PDI) (4.6) used in next section with state space
model is mostly associated with the quadratic term of the input and the output.
Therefore, in order to assemble the similarity, we adopt the L2h−norm in Defi-
nition 3.5.

As reflected in [50], the Lp−gain of LTI systems has different value for different p when
it exists, the H∞h−norms (3.20) with different L−scaled weight are also different both
in physical meaning and in value.

3.7 Extension to Homogeneous Finite-gain Lp−stability

The L2h−stability with L−scaled weight from Definition 3.6 can be extended to Lph−
stability with original weight, i.e.

Definition 3.8 (Finite-gain homogeneous Lp−stability). The Input-Output Map G is
called finite-gain τ−homogeneous Lp−stable (finite-gain Lph−stable in short), if there
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exists a finite constant γp and a finite constant βp, s.t.

∥y∥τy ,Lp
≤ γp ∥u∥τu,Lp

+ βp , ∀u ∈ Lτ,p , (3.21)

then the Lph−gain of G is defined as

γ′
p ≜ inf {γp | ∃ βp such that (3.21) holds} .

Since the inequality (3.16) with zero bias, ∥y∥Lτy ,L2
≤ γL ∥u∥Lτy ,L2

can be rewritten
as

∥y∥1/L

τy ,L2/L
≤ γL ∥u∥1/L

τu,L2/L
, ∀u ∈ LLτ,2

from Remark 3.6. Thus the Lτ−homogeneous L2−gain γL is correlated to the τ−
homogeneous Lp−gain γp by γp = γL

L , L = 2/p. This will be brought up again from the
perspective of Partial Differential Inequality in the next Chapter.

3.8 Homogeneous Lp−gain for Continuous Memoryless
Input-Output Maps

A function g : Rm → Rr can be viewed as an operator G that assigns to every input
signal u (·) the output signal y (·) = G (u (·)) given by y(t) = g(u(t)), i.e. the output y(t)
depends only on the present value of the input u(t), and not on its past or future, and
thus it is called memoryless. It is homogeneous if g (ντu

κ u) = ντy
κ (g(u)) for every u ∈ Rm

and κ > 0. This means that each component function gi : Rm → R, i = 1, · · · , r, is
τu−homogeneous of degree τyi

. According to Definition 3.1 the operatorG is of arbitrary
homogeneous degree d. We assume that the function g is continuous w.r.t. u. We first
introduce the following lemma.

Lemma 3.6 (Simplified from [13, 8]). Suppose ϕ(u) and χ(u) are continuous real-
valued homogeneous functions of degree m > 0 w.r.t. weight vector τu, and ϕ(u) is
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positive definite. Then for all u ∈ Rm, with the surface S = {u : ϕ(u) = 1}
(

min
S
χ(u)

)
ϕ(u) ≤ χ(u) ≤

(
max

S
χ(u)

)
ϕ(u) .

With Lemma 3.6, we can show the following Theorem.

Theorem 3.1 (Existence of Lph−gain for all continuous memoryless Input-Output
Maps). A continuous memoryless Input-Output Map y = g(u) is finite-gain Lph−stable
with zero bias, for every 1 ≤ p ≤ ∞. Its Lph−gain is the same for all values of
1 ≤ p ≤ ∞ and it can be calculated as

γ = max
∥u∥τu,q=1

∥g(u)∥τy ,q . (3.22)

Proof. As assumed, the function y = g(u) is continuous in the input u. Using the
notation from (3.15), y

1
τy is also a continuous function of the input u since τy > 0.

Then setting χ(u(t)) = ∥g(u(t))∥τy ,q and ϕ(u(t)) = ∥u(t)∥τu,q, both are continuous
homogeneous functions of u with degree 1. And both are positive definite, therefore
from Lemma 3.6, we have

∥y(t)∥τy ,q ≤
(

max
S

∥g (u(t))∥τy ,q

)
∥u(t)∥τu,q , (3.23)

where the surface S =
{
u : ∥u∥τu,q = 1

}
is the homogeneous unit sphere w.r.t. u. Since

the Input-Output Map is time invariant and memoryless, maxS ∥g(u)∥τy ,q is a constant
independent of time t, denote it as γ = maxS ∥g(u)∥τy ,q as in (3.22). Then we have for
all u ∈ Lτu,p

∥y∥τy ,Lp
=
(∫ ∞

0
∥y(t)∥p

τy ,q dt
) 1

p ≤ γ
(∫ ∞

0
∥u(t)∥p

τu,q dt
) 1

p

= γ ∥u∥τu,Lp
,

which means that the memoryless Input-Output Map G is finite-gain Lph−stable from
Definition 3.8 with β = 0. Such Lph−gain can be achieved by the particular u⋆ that
maximizes the value max∥u∥ru,q=1 ∥g(u)∥ry ,q. Thus the Lph−gain equals γ for all 1 ≤
p < ∞. For the case of p = ∞, (3.23) suffices since the operator G is memoryless.
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3 Finite-gain Homogeneous Lp−stability for Input-Output Maps

3.9 A Discussion of Inverse of Homogeneous
Input-Output Maps

The inverse of a LTI Input-Output Map is simple to derive, if its transfer function or
state space model is available. This is probably not true for homogeneous Input-Output
Map with non-zero homogeneous degree.

Proposition 3.2 (Homogeneous degree of inverse of homogeneous Input-Output Map).
If a homogeneous Input-Output Map G has an inverse, its inverse G−1 has the same
homogeneous degree as G.

Proof. The cascade of G−1G means that u(t), the input of G, is reconstructed at the
output of G−1. Suppose that the homogeneous degree of G is d1 and that of G−1 is d2.
When the input is homogeneously dilated, e.g. in Fig. 3.1, we use the scalar case to
simplify the notation, as κτuu

(
κ−d1t

)
, from (3.1) and (3.2). The output of G becomes

κτyy
(
κ−d1t

)
. For the output of G−1 to be a reconstruction of the input of G, i.e. again

κτuu
(
κ−d1t

)
, the homogeneous degree of G−1 must be d2 = d1.

This is also true for the cascade ofGG−1, i.e. disregard of left inverse or right inverse.

G G−1
u(t) y(t) u(t)

G G−1
κuu(κ−d1 t) κyy(κ−d1 t) κuu(κ−d1 t)

Figure 3.1: Inverse of homogeneous Input-Output Map G

The topic of properties of the inverse of homogeneous Input-Output Maps is seldom
studied or discussed. So not a lot is known about it, and left to possible future re-
search.
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3.10 Homogeneous Lp−stability for Interconnected
Systems

One of the most important applications of the classical Lp−stability concept is in
the study of the Lp−stability of interconnected systems. A central result, with many
consequences in robust control, is the small-gain theorem. It provides a sufficient con-
dition for the finite-gain Lp−stability of the negative feedback interconnection of two
finite-gain Lp−stable systems, in terms of their Lp−gains [15, 50, 29]. Moreover, it is
well-known that two finite-gain Lp−stable systems connected in cascade or in parallel
leads to a finite-gain Lp−stable system. Note that, since the classical Lp−norms are
not equivalent, there is a small-gain theorem for each p.

In this section we obtain the corresponding small-gain theorems for each p and the result
for cascade systems derived from the homogeneous Lp−stability concepts introduced
in the previous sections for general homogeneous systems.

3.10.1 Homogeneous Small Gain Theorem for Feedback
Interconnected Systems

Since the additive inequality as shown in Lemma 3.5 is different from the traditional
triangle inequality in Definition 2.1 for traditional Lp−norm, so the homogeneous small
gain theorem with interconnected system is also in a different form.

− P1

P2 +

u1

u2

e1 y1

e2

y2

Figure 3.2: Homogeneous small gain theorem

Theorem 3.2 (Homogeneous small gain theorem). For two homogeneous Input-Output
Maps P1 and P2, interconnected as shown in Figure 3.2, if the weight vectors of P1, P2
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3 Finite-gain Homogeneous Lp−stability for Input-Output Maps

are matched, i.e. the weight vector for output of P2 and input of P1 being τ1 ∈ Rn1
>0 and

the weight vector for output of P1 and input of P2 being τ2 ∈ Rn2
>0, and further both P1

and P2 are Lph−stable for some p ∈ [1,∞] with gain γ1, γ2 and bias β1, β2 as in (3.21)
respectively, then the interconnected system is Lph−stable if

γ1γ2 <
1
c1c2

, (3.24)

where
c1 = max

{
1, 2

1
min τ1

− 1
q

}
, c2 = max

{
1, 2

1
min τ2

− 1
q

}
.

Proof. Shown in Figure 3.2, the interconnected system has two inputs u1(t) ∈ Rn1 , u2(t) ∈
Rn2 , whose weight vectors are τ1, τ2. We have

e1 = u1 − y2 , y1 = P1(e1) ,
e2 = u2 + y1 , y2 = P2(e2) .

From the additive inequality (3.14) as well as the assumption of P1, P2 being Lph−stable
as in (3.21), then assuming u1 ∈ Lτ1,p, u2 ∈ Lτ2,p, the homogeneous Lp−norm of e1 is

∥e1∥τ1,Lp
= ∥u1 − y2∥τ1,Lp

≤ max
{

1, 2
1

min τ1
− 1

q

}(
∥u1∥τ1,Lp

+ ∥y2∥τ1,Lp

)
≤ c1

(
∥u1∥τ1,Lp

+ γ2 ∥e2∥τ2,Lp
+ β2

)
.

Similarly
∥e2∥τ2,Lp

≤ c2
(
∥u2∥τ2,Lp

+ γ1 ∥e1∥τ1,Lp
+ β1

)
.

Combining both inequalities, we have

∥e1∥τ1,Lp
≤ c1

[
∥u1∥τ1,Lp

+ γ2c2
(
∥u2∥τ2,Lp

+ γ1 ∥e1∥τ1,Lp
+ β1

)
+ β2

]
= c1 ∥u1∥τ1,Lp

+ γ2c1c2 ∥u2∥τ2,Lp
+ γ1γ2c1c2 ∥e1∥τ1,Lp

+ γ2c1c2β1 + c1β2 .

When (3.24) is true, then we have

∥e1∥τ1,Lp
≤ 1

1 − γ1γ2c1c2

(
c1 ∥u1∥τ1,Lp

+ γ2c1c2 ∥u2∥τ2,Lp
+ γ2c1c2β1 + c1β2

)
.
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Similarly, the homogeneous L2−norm of e2 is bounded by

∥e2∥τ2,Lp
≤ 1

1 − γ1γ2c1c2

(
c2 ∥u2∥τ2,Lp

+ γ1c1c2 ∥u1∥τ1,Lp
+ γ1c1c2β2 + c2β1

)
.

Thus the closed loop system is Lph−stable. Since the additive inequality (3.14) is also
valid for p = ∞, so the above bound is also true for p = ∞.

A classical use of the small-gain theorem leads to a robustness interpretation: If P1 is
the nominal system and P2 an uncertainty, the stability of P1 is preserved for all P2

with sufficiently small gain satisfying (3.24). It is important to note that no restriction
on the homogeneity degrees of P1 and P2 is imposed, i.e. they can be different.

Remark 3.12. Due to the scaling property of the weight vectors and the degree of
homogeneity, it is always possible to achieve min {τ1, τ2} > 1 as noted in Remark 3.4.
Then choosing q ∈ [1,min {τ1, τ2}], we recover the well-known small-gain condition
γ1γ2 < 1 in (3.24).

3.10.2 Homogeneous Lp−gain for Cascaded Homogeneous
Systems

In the homogeneous small gain theorem the cascaded system must have matching weight
vector. If there exists a cascaded system as in Figure 3.3, we can derive a similar result
of existence of Lph−gain. However, if the weight vectors are related as τy1 = ℓτu2 , ℓ > 0,
i.e. the weight of output of G1 equals the weight of the input of G2 multiplied by some
positive integer, we can conclude the following

G1 G2
u1 y1 u2 y2

Figure 3.3: Homogeneous Lp−gain for cascaded homogeneous system.

Theorem 3.3 (Homogeneous Lp−gain for cascaded homogeneous system). Let two ho-
mogeneous systems G1, G2 be cascaded as in Figure 3.3 with weight vector correlated as
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τy1 = ℓτu2 , ℓ > 0. If G1 has τ−homogeneous Lp−gain γ1 and G2 has ℓτ−homogeneous
Lp−gain γ2 for some p ∈ [1,∞], then the cascade system G2G1 has Lph−gain γ1γ2 with
weight vector of the input and the output being τu1 and ℓτy2.

Proof. From definition of the Lph−stability (3.21), we have for u1 ∈ Lτu1 ,p

∥y2∥ℓτy2 ,Lp
≤ γ2 ∥u2∥ℓτu2 ,Lp

+ β2 = γ2 ∥y1∥τy1 ,Lp
+ β2

≤ γ2
(
γ1 ∥u1∥τu1 ,Lp

+ β1
)

+ β2 = γ1γ2 ∥u1∥τu1 ,Lp
+ γ2β1 + β2 .

(3.25)

Thus the Lph−gain of the cascaded system G2G1 is γ1γ2 with input weight vector τu1

and output weight vector ℓτy2 .

Note that for both interconnection results, the common signals have to have compatible
weights. For system in Figure 3.2 this means that τy2 = τe1 = τ2 and τy1 = τe2 = τ1.
For the cascaded system in Figure 3.3 this is relaxed to τy1 = ℓτu2 , ℓ > 0.

Remark 3.13. Note that for both Theorem 3.2 and Theorem 3.3, the homogeneous
degree for subsystems can be different. This results from the fact that the Lph−gain is
an input-output relationship and the behaviour within each sub homogeneous system does
not matter from the input-output perspective. When P1, P2 have different homogeneous
degrees (even of different sign), the closed loop system in Figure 3.2 does not behave
homogeneously any longer, yet the conclusion of Theorem 3.2 and Theorem 3.3 remain
true. Such behavior is also observed in [5], where the homogeneous small gain theorem
does not consider inputs and allows different degrees for each sub-system.

3.11 Examples

We include some simple examples of the H∞h−norm of continuous memoryless homo-
geneous functions.
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Example 3.2 (H∞h−norm of continuous memoryless homogeneous function). Con-
sider the homogeneous function y(u) = u1u2, with weight vector Lτu = (L, 2L) , Lτy =
3L. From Theorem 3.1, the Input-Output Map formed by this continuous homogeneous
function is finite-gain L2h−stable, and its H∞h−norm can be found by finding the max-
imum of the following function when q = 2

γ2
L = max

∥u∥=1

∥y∥2
Lτy ,2

∥u∥2
Lτu,2

= max
∥u∥=1

|u1u2|
2

3L

|u1|
2
L + |u2|

1
L

. (3.26)

This can be easily derived by a search program on the unit sphere w.r.t. u.

Here we use another method. For the value of such homogeneous function of zero degree
we may set one variable to 0,±1, and set the other variable to R. Since we have only
two variables, such approach is more convenient. The right hand side of (3.26) becomes

γ2
L

∣∣∣
u1=±1

= |u2|
2

3L

1 + |u2|
1
L

or γ2
L

∣∣∣
u1=0,u2 ̸=0

= 0 .

The case of u1 = 0 is excluded, since the other case is positive, which is surely bigger
than zero. The extremum of γ2

L

∣∣∣
u1=±1

along u2 ∈ R can be found by taking its partial
derivative against x2 equal to zero, which gives us

2
3L

⌈u2⌋
2−3L

3L

(
1 + |u2|

1
L

)
− 1

L
⌈u2⌋

5−3L
3L(

1 + |u2|
1
L

)2 = 0 .

The solutions happens to be at u2 = ±2L. Therefore we have the extremum of (3.26)
at

|u1| = κL, |u2| = 2Lκ2L ,∀κ > 0

and the value is

γL = 2 1
3

3 1
2

= 0.7274 . (3.27)

Figure 3.4 shows the value of

ζL = max
∥u∥=1

∥y∥Lτy ,2

∥u∥Lτu,2

with the coordinate of u1 = sin θ, u2 = cos θ. As shown by (3.27), the value of γL for this
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example is always 0.7274, independent of the scaling factor L. Further, the function
y(u) = u1u2 can be homogeneous with weight Lτu = (L,L) , Lτy = 2L. It is easily
verified that γL = 1/

√
2 in this case is also independent of L.

0 1 2 3
0

0.2

0.4

0.6

0.8

θ

ζ L

L = 1
L = 3

L = 0.1
0.7274

Figure 3.4: ζL for homogeneous memoryless Input-Output Map in Example 3.2 along
unit sphere.

Example 3.3 (H∞h−norm of continuous memoryless homogeneous Input-Output Map).
Take another simple example of memoryless homogeneous Input-Output Map

y(t) =
⌈
c1 ⌈u1(t)⌋3 + c2 ⌈u2(t)⌋2

⌋ 1
3 ,

where the weight vector is Lτu = (2L, 3L) , Lτy = 2L. From Theorem 3.1, it is finite-
gain L2h−stable and its H∞h−norm can be found by finding the maximum of the fol-
lowing function

γ2
L = max

∥u∥=1

∥y∥2
Lτy ,2

∥u∥2
Lτu,2

= max
∥u(t)∥=1

∣∣∣c1 ⌈u1⌋3 + c2 ⌈u2⌋2
∣∣∣ 1

3L

|u1|
1
L + |u2|

2
3L

. (3.28)

Similar to Example 3.2, we would like to show the analytical results of γ2
L for all (c1, c2)

and L. When u1 = 0, u2 ̸= 0,

γ2
L

∣∣∣
u=(0,u2)

=

∣∣∣c2 ⌈u2⌋2
∣∣∣ 1

3L

|u2|
2

3L

= c
1

3L
2 .

Similarly, when u1 ̸= 0, u2 = 0, γ2
L|u=(u1,0) = c

1
3L
1 . From homogeneity, any point of

(ũ1 ̸= 0, ũ2) can be dilated to two cases: u1 = ±1, and u2 = ũ2κ
3L ∈ R by choosing

κ = |ũ1|−
1

2L , and since the homogeneous degree of right hand side of (3.28) is zero,
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therefore

γ2
L

∣∣∣
u=(ũ1,ũ2)

= κ0 γ2
L

∣∣∣
u=
(

±1,ũ2|ũ1|− 3
2
) =

∣∣∣±c1 + c2 ⌈u2⌋2
∣∣∣ 1

3L

1 + |u2|
2

3L

,

whose extremum, when it exists, can be found by setting its partial derivative against
u2 to zero, which is

1
3L

⌈
±c1 + c2 ⌈u2⌋2

⌋ 1−3L
3L 2c2 |u2|

(
1 + |u2|

2
3L

)
= 2

3L ⌈u2⌋
2−3L

3L

∣∣∣±c1 + c2 ⌈u2⌋2
∣∣∣ 1

3L ,

simplified into
c2 ⌈u2⌋

6L−2
3L = ±c1 .

This gives us the maximum at

γ2
L

∣∣∣
u=
(

±κ2L,±κ3L|c1/c2|
3L

6L−2
) = c

1
3L
1

∣∣∣∣∣1 +
∣∣∣∣c1

c2

∣∣∣∣ 1
3L−1

∣∣∣∣∣
1−3L

3L

.

In summary, we have

γ′
L = max

c
1

6L
1 , c

1
6L
2 , c

1
6L
1

∣∣∣∣∣1 +
∣∣∣∣c1

c2

∣∣∣∣ 1
3L−1

∣∣∣∣∣
1−3L

6L

 ,

which happens respectively at

u =
(
±κ2L, 0

)
,
(
0,±κ3L

)
,

(
±κ2L,±κ3L |c1/c2|

3L
6L−2

)
, ∀κ > 0 .

Figure 3.5 shows the value of

ζL
L = max

∥u(t)∥=1

∥y∥L
Lτy ,2

∥u∥L
Lτu,2

with the coordination of u1 = sin θ, u2 = cos θ with c1 = 1, c2 = 2.
For L = 1, γ′

L
L = c

1
6
2 = 1.1225 at u =

(
0,±κ3L

)
.

For L = 0.1, γ′
L

L = c
1
6
1

∣∣∣∣1 +
∣∣∣ c1

c2

∣∣∣ 1
3L−1

∣∣∣∣
1−3L

6
= 1.1646 at u =

(
±κ2L,±κ3L |c1/c2|

3L
6L−2

)
.

Besides Theorem 3.1, a discontinuous (but not singular) memoryless homogeneous
Input-Output Map G could also have a finite H∞h−norm.
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0 1 2 3
0.2

0.4

0.6

0.8

1

1.2

θ

ζ
L L

L = 0.1
L = 1

Figure 3.5: ζL
L for homogeneous memoryless Input-Output Map in Example 3.3 along

unit sphere with c1 = 1, c2 = 2.

Example 3.4 (H∞h−norm of discontinuous memoryless homogeneous). Take another
example of memoryless homogeneous Input-Output Map y(t) = u1(t)2sign (u2(t)), with
weight vector of Lτu = (L,L) , Lτy = 2L. Note that y(t) is discontinuous for u1(t) ̸=
0, u2(t) = 0. Yet, with the similar approach shown above, it is easily verified that γL = 1
when u1 = κL, u2 → 0.

Apparently, the H∞−norm in Example 3.2 and Example 3.4 is independent of the
choice of L, while the γL of Example 3.3 is dependent on L. We show both possibilities
in these three examples.
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Space Models

In Chapter 3 we introduce the family of Lph−gain for Input-Output Maps, where the
examples that we presented are memoryless and whose homogeneous degree can be
freely assigned. On the one hand, finding the L2h−gain γ′

L as per Definition 3.7 for
Input-Output Maps is difficult if it has dynamics. On the other hand, most works
on homogeneous systems start with a state-space model (SSM) [25, 24, 48]. Thus in
this chapter, the concept of the family of H∞h−norm (or Lph−gain) for Input-Output
Map is extendeds to SSM, where the intermediate states allow the use of the Lyapunov
function.

We first introduce the continuous homogeneous SSM to be used in the rest of this the-
sis and extend the definition of weighted homogeneity for an Input-Output Map to be
suitable for SSM. Then a partial differential inequality (PDI, or so called dissipation
inequality in [50]) is shown to be connected to the L2h−stability for SSM. Thereafter,
we show that every continuous homogeneous asymptotically stable SSM has a finite
H∞h−norm. Meanwhile, the previous works in [48, 25, 24] that apply Lp−gain or
H∞−norm on homogeneous systems are compared with the results in this thesis. Es-
pecially, the homogeneous L∞−stability and Input-to-State Stability are also included
for interested readers.

The materials in this Chapter are published in [60].
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4 Homogeneous Lp−gain for State Space Models

4.1 State Space Model for Continuous Homogeneous
Dynamics

Consider the following SSM for continuous homogeneous dynamics

Σh :

ẋ = f(x, u) ,

y = h(x, u) ,
(4.1)

where x ∈ Rn is the state, u ∈ Rm is the input and y ∈ Rr is the output to be
minimized. By continuous we mean that the vector field f(x, u) is continuous in x, u

and the function h(x, u) in continuous in x and u. With the SSM, we can extend
Definition 3.1 by adding

Definition 4.1 (Weighted homogeneity for SSM [3]). Fix a set of coordinates x =
(x1, · · · , xn)⊤ in Rn. Let τx = (τx1 , · · · , τxn)⊤ be an n-tuple of positive real numbers.

• The one-parameter family of dilation ντx
κ (associated with weight vector τx) is

defined as

ντx
κ (x) ≜ (κτx1x1, · · · , κτxnxn)⊤ , ∀x ∈ Rn, ∀κ > 0

and denote ντ
κ(x, u) =

(
ντx

κ (x)⊤, ντu
κ (u)⊤)⊤

. The numbers τxi
are called the ho-

mogeneous weight of xi.

• The homogeneous degree of function hi(x, u) can be attributed as weight vector of
output yi, i.e. khi

= τyi
.

• The vector field f(x, u) in Σh (4.1) is said to be τ -homogeneous of degree d if each
component fi is τ -homogeneous of degree kfi

= d+ τxi
, that is,

fi (ντ
κ(x, u)) = κd+τxifi(x, u), ∀ (x, u) ∈ Rn+m, ∀κ > 0, ∀ i = 1, · · · , n . (4.2)

or
f (ντ

κ(x, u)) = κdντ
κ (fi(x, u)) , ∀ (x, u) ∈ Rn+m, ∀κ > 0 .
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4.1 State Space Model for Continuous Homogeneous Dynamics

For homogeneous dynamics ẋi = fi(x, u), as in (4.2), we have d = −τt in accor-
dance with Definition 3.1 [35], since

dxi

dt = fi(x, u) ⇔ κτxi dxi

κτt dt = κd+τxifi(x, u) = fi (ντ
κ(x, u)) .

The Input-Output Map formed by system Σh (4.1) is homogeneous of degree d, if
its vector field f(x, u) is homogeneous of degree d with the same weight vectors.

From homogeneity, the origin is an equilibrium when u ≡ 0. Further from assumption
of continuity, we have mini {τxi

} + d > 0 as well as τyi
= khi

> 0 by Theorem 4.1 in [8].
In the rest of this thesis, mini {τxi

} is denoted as min τx without ambiguity.

Remark 4.1. From another aspect, for the system Σh (4.1), if the initial value x0 =
x(0), input and time are dilated for system Σh (4.1) along

x0 → x̃0 = ντx
κ (x0) ,

u(t) → ũ(t̃) = ντu
κ (u(t)) ,

t → t̃ = κτtt ,

(4.3)

for any κ > 0, then this leads to the trajectory and output for system Σh (4.1) being
dilated as per

x(t) → x̃(t̃) = ντx
κ (x(t)) ,

y(t) → ỹ(t̃) = ντy
κ (y(t)) ,

t → t̃ = κτtt .

(4.4)

That is, for each initial value x0, if the input is u, let the trajectory and output be x, y.
Then for all κ > 0, the dilated initial value x̃0 and dilated input ũ with dilated time t̃
as in (4.3) results in the dilated trajectory x̃ and dilated output ỹ with dilated time t̃ as
in (4.4).

Remark 4.2. As shown in Proposition 3.1, the Input-Output Map formed by system
Σh (4.1) is homogeneous only when x0 = 0, under which case, the dilation of (4.3) and
(4.4) infers (3.1) and (3.2).

Example 4.1 (A linear Input-Output Map with nonlinear vector field and output
function). As brought up in Remark 2.5, it is possible to build an Input-Output Map G

85



4 Homogeneous Lp−gain for State Space Models

with a SSM with nonlinear vector field and output function. Take the example of the
following continuous homogeneous scalar SSM

ẋ = −x− ⌈x⌋ 1
2 u+ bu2 ,

y = ⌈x⌋ 1
2 + u ,

with weight vectors τy = τu = 1, τx = 2 and degree d = 0. From Remark 4.1, it is clear
that this SSM forms a linear Input-Output Map from input-output perspective. When
scaling the input by κ, the initial value needs to be scaled by κ2 in order for the output
to be linearly scaled by the same constant κ. Since τt = −d = 0, there exists no scaling
on time.

4.2 Finite-gain Homogeneous L2−stability with State
Space Model

With the SSM available, Definition 3.6 needs to be extended to include the initial value
x0. Similar to Definition 2.11, we have the following

Definition 4.2 (Finite-gain L2h−stability for SSM). The system Σh (4.1) is called
finite-gain L2h−stable if there exists a finite constant γL and for each initial value x0 a
finite constant βL(x0), s.t.

∥y∥Lτy ,L2
≤ γL ∥u∥Lτu,L2

+ βL(x0), ∀u ∈ LLτu,2 . (4.5)

Definition 3.6 covers the Input-Output Map, which contains the SSM system. Since
Definition 4.2 requires that one constant γL satisfies (4.5) for all x0 with βL(x0), thus
when x0 = 0, Definition 4.2 infers Definition 3.6 from Remark 4.2.

Remark 4.3 (Homogeneous degree of βL(x0)). In contrast to Proposition 3.1, where
βL = 0 if the homogeneous Input-Output Map G is finite-gain L2h−stable, with initial
value of state x0 the homogeneous degree of βL(x0) as a function of x0 should be 1 +
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4.2 Finite-gain Homogeneous L2−stability with State Space Model

Lτt/2 when the system Σh (4.1) is finite-gain L2h−stable. The derivation is similar to
derivation of (3.19), thus not repeated here.

For the H∞−norm in Definition 3.7 to be applicable to L2h−stability in Definition 4.2,
we need βL(x0) = 0. This is true from Remark 4.3. Such requirement is also found in
LTI systems, i.e. for the Definition 3.7 to be valid, the trajectory should evolve from
the origin [65, 50, 29]. We shall define another H∞h−norm with the help of a Partial
Differential Inequality.

Definition 4.3 (Upper estimate of H∞h−norm). The continuous homogeneous system
Σh (4.1) has a finite L2h−gain (H∞h−norm) less than γL, if there exists a positive
definite continuously differentiable τx−homogeneous storage function V (x) of degree
2 − Ld > 0 with V (0) = 0, such that the following value function J satisfies

J(Vx, x, u) ≜ Vxf(x, u)+∥y∥2
Lτy ,q −γL

2 ∥u∥2
Lτu,q +ϵ ∥x∥2

Lτx,q ≤ 0 , ∀ (x, u) ∈ Rn+m (4.6)

for some ϵ ≥ 0.

Note that (4.6) consists a partial differential inequality (PDI, or so called dissipation in-
equality in [50]). The γL in Definition 4.3 inferring existence of H∞h−norm (L2h−gain)
in Definition 3.7 is shown in the following theorem. We first need the definition of zero-
state detectability.

Definition 4.4 (Zero-state detectability [50]). The system Σh (4.1) is called zero-state
detectable, if when u(t) = 0, y(t) = 0,∀ t ≥ 0 implies limt→∞ x(t) = 0.

Then we have the following theorem:

Theorem 4.1. If the condition of Definition 4.3 is satisfied, then the system Σh (4.1)
is finite-gain L2h−stable and has the H∞h−norm in Definition 3.7 less or equal to
γL. When ϵ > 0, the unperturbed system Σh (4.1) is globally asymptotically stable at
the origin. When ϵ = 0, if system Σh (4.1) is further zero-state detectable, then the
unperturbed system Σh (4.1) is also globally asymptotically stable at the origin.
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4 Homogeneous Lp−gain for State Space Models

Proof. The proof is similar to that in Lemma 2.1. From Definition 4.3, ensure (4.6) for
all time leads to
∫ ∞

0
J(Vx, x, u) dt = V (x(∞)) − V (x0) + ∥y∥2

Lτy ,L2
− γL

2 ∥u∥2
Lτu,L2

+ ϵ ∥x∥2
Lτx,L2

≤ 0 .

Therefore for all input u ∈ LLτu,2, we have

∥y∥2
Lτy ,L2

≤ V (x(∞)) + ∥y∥2
Lτy ,L2

≤ γL
2 ∥u∥2

Lτu,L2
+ V (x0) − ϵ ∥x∥2

Lτx,L2

≤ γL
2 ∥u∥2

Lτu,L2
+ V (x0) .

From Jensen’s inequality (A.6), we have

∥y∥Lτy ,L2
≤ γL ∥u∥Lτu,L2

+
√
V (x0) , ∀u ∈ LLτu,2 . (4.7)

Thus, the system Σh (4.1) is finite-gain L2h−stable from Definition 4.2. Note that
the homogeneous degree of βL(x0) =

√
V (x0) w.r.t to x0 is 1 − Ld/2 = 1 + Lτt/2, as

predicted in Remark 4.3. When x0 = 0, V (0) = 0 as assumed in Definition 4.3, then
from (4.7) and Definition 3.7

γ′
L = sup

∥u∥Lτu,L2
̸=0,u∈LLτu,2

∥y∥Lτy ,L2

∥u∥Lτu,L2

≤ γL ,

therefore γL is an upper bound for the H∞h−norm γ′
L in Definition 3.7. Further, (4.6)

with u ≡ 0 reads

∂V (x)
∂x

f(x, 0) ≤ − ∥h(x, 0)∥2
Lτy ,q − ϵ ∥x∥2

Lτx,q , ∀x ∈ Rn .

When ϵ = 0, V (x) is a weak Lyapunov function. Since V (x) is of homogeneous degree
2−Ld and positive definite, it is also radially unbounded from homogeneity. Then from
zero-state detectability and LaSalle’s Invariance principle, the origin is the globally
asymptotically stable equilibrium for the unperturbed system Σh (4.1) [30].
When ϵ > 0, V (x) is a strict Lyapunov function, and Lyapunov’s theorem implies global
asymptotic stability of the origin x = 0 for the unperturbed system, without assuming
detectability.

Since LTI systems also belong to continuous homogeneous systems, Theorem 4.1 is also
true for LTI systems. Similar conclusions can be found in [50]. Further the converse
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4.2 Finite-gain Homogeneous L2−stability with State Space Model

of Theorem 4.1 is also true for LTI systems. That is, a stable and causal LTI system
has finite H∞−norm, which can be derived with the help of transfer function in Hardy
space [59] or with the help of SSM [65].

However, the converse of Theorem 4.1 with classical H∞−norm is not always true for
nonlinear systems. Namely, if the system Σh (4.1) is globally asymptotically stable, the
classical H∞−norm might not exist. This is shown in Example 3.1 when each element
of the weight vectors of the input and the output are not all equal. On the contrary,
we would like to show that such converse theorem is true for the family of H∞h−norm.
In order to do that, we first introduce the following lemma

Lemma 4.1 ([13, 22]). Let ψ(x) and ω(x) be two continuous real-valued homogeneous
functions of degree s > 0 w.r.t. weight vector τ , where ω(x) is positive definite, and

{x ∈ Rn\ {0} : ω(x) = 0} ⊆ {x ∈ Rn\ {0} : ψ(x) < 0} .

Then there exists positive real numbers γ⋆ and c > 0 such that for all γ ≥ γ⋆ and all
x ∈ Rn\ {0} it holds ψ(x) − γω(x) < −c ∥x∥s

τ,q.

With the Lemma we prove the following Theorem.

Theorem 4.2. If the unperturbed continuous homogeneous system Σh (4.1) is lo-
cally asymptotically stable, then the condition from Definition 4.3 is met for L <

2/ (d+ max τx). Therefore system Σh (4.1) is finite-gain Lτ−homogeneous L2−stable
and has a finite H∞h−norm.

Proof. By restricting the system Σh (4.1) to be continuous and asymptotically stable,
a continuously differentiable, strict Lyapunov function Vl(x) of homogeneous degree
2 − Ld > max (Lτx) (effectively L < 2/ (d+ max τx)) when u ≡ 0 exists. This is
a direct consequence of [3, Theorem 5.8] and [47]. Due to this homogeneous, strict
Lyapunov function when u ≡ 0, there exist c1 > 0 such that V̇l(x, 0) of homogeneous
degree 2 satisfies (Corollary 5.4 in [3])

V̇l(x, 0) ≤ −c1 ∥x∥2
Lτ,q , ∀x ∈ Rn ,
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4 Homogeneous Lp−gain for State Space Models

for any q ≥ 1. Since ∥h(x, 0)∥2
Lτy ,q is also a homogeneous positive semi-definite function

of x with degree 2, there also exists c2 > 0, such that

∥h(x, 0)∥2
Lτy ,q ≤ c2 ∥x∥2

Lτ,q , ∀x ∈ Rn .

Thus with this Vl(x), any V (x) = aVl(x) with a > a = c2+ϵ
c1

guarantees that for all
x ∈ Rn\ {0}

∂V (x)
∂x

f(x, 0) + ∥h(x, 0)∥2
Lτy ,q + ϵ ∥x∥2

Lτx,q ≤ (−ac1 + c2 + ϵ) ∥x∥2
Lτx,q < 0 . (4.8)

Then define two homogeneous value functions

ω(x, u) ≜ ∥u∥2
Lτu,q ,

ψ(x, u) ≜ ∂V

∂x
f(x, u) + ∥h(x, u)∥2

Lτy ,q + ϵ ∥x∥2
Lτx,q .

Both are continuous in x or u and have the homogeneous degree 2 w.r.t. L−scaled
weight vector. Clearly ω(x, u) ≥ 0 and ω(x, u) = 0 ⇔ u = 0, if we can ensure that
ψ(x, 0) < 0, then according to Lemma 4.1 such finite γL exists, when γ > γL, (4.6) is
satisfied. Such V and γL satisfy the Definition 4.3. From Theorem 4.1, the system Σh

(4.1) is finite-gain L2h−stable and such finite γL is an upper bound for the H∞h−norm
γ′

L in Definition 3.7. Therefore the H∞h−norm for system Σh (4.1) is also finite.
Note that here ψ(x, 0) < 0 is equivalent to (4.8), which is shown above to be valid for
every storage function Vl(x) (strict homogeneous Lyapunov function when u(·) = 0)
and a > a.

Remark 4.4 (Relationship between Definition 4.3 and Definition 3.7). Definition 4.3,
which derive the upper bound of H∞h−norm from storage function and vector field, is
a subset of Definition 3.7, since

• Definition 4.3 is not applicable to the systems where non-observable unstable states
exist, whereas Definition 3.7 for such systems from solely input-output perspective
might still be applicable.

• In Theorem 4.2, Definition 4.3 predicts the existence of only a subset of Defini-
tion 3.7, i.e. with L < 2/ (d+ max τx). This restriction results from the use of
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a continuously differentiable storage function V (x) from the converse Lyapunov
Theorem, whereas Definition 3.7 does not impose such restriction from an input-
output perspective.

That is, Definition 4.3 infers Definition 3.7, but not necessarily the other way around.

Remark 4.5 (Construction of the storage function for the Partial Differential Inequal-
ity inequality). The PDI in Definition 4.3 depends on the construction of a storage
function. Although there is no general method to obtain storage functions, for certain
classes of homogeneous systems the recent work [58] provides a methodology to construct
them, using generalized homogeneous forms and the sum of squares (S.O.S.) technique.
When we have a smooth V (x) of homogeneity degree p − d satisfying inequality (4.6),
it is possible to build another smooth storage function V

p′−d
p−d (x) of homogeneous degree

p′ − d for p′ > p. On the contrary, for p′ < p the differentiability of function V
p′−d
p−d (x)

at x = 0 might be lost.

Remark 4.6 (The role of ϵ). The ϵ ≥ 0 in (4.6) serves similarly to the sub-optimal
ARE brought up in (2.18) for LTI systems.

4.3 Upper estimate of Homogeneous L2−gain

In [48, 25, 24], the classical Lp−gain or the H∞−norm is shown to exist for some
particular continuous homogeneous systems, where τu = ℓ1m, τy = ℓ1r, ℓ > 0. Yet no
systematic method is provided to estimate their value.
Contrary to the previous works of [48, 25, 24], the authors of [61] provide a general
method and a simplified method to calculate an upper estimate of the H∞h−norm
for the Continuous Super-Twisting-like Algorithm (CSTLA). In [60], such method is
generalized to all continuous homogeneous systems Σh (4.1).
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4.3.1 General Case

Proposition 4.1 (Upper estimate of L2−gain for system Σh (4.1)). When the condition
of Definition 4.3 is met for system Σh (4.1), for each V the smallest γ⋆

L(V ) that satisfies
(4.6) is

γ⋆
L(Vx) =

√
max

∥(x,u)∥=1
ζ(Vx, x, u) ,

ζ(Vx, x, u) =
Vxf(x, u) + ∥y∥2

Lτy ,q

∥u∥2
Lτu,q

, ∥u∥ ≠ 0 .
(4.9)

The homogeneous real-valued function ζ(Vx, x, u) can be written as ζ (x, u) since Vx is
also a homogeneous function of x.

Proof. It is easy to see that for γL ≥ γ⋆
L from (4.9) when substituted into (4.6) guar-

antees that J(Vx, x, u) ≤ 0. On the other hand, any γL < γ⋆
L leads to the value

function being indefinite. Therefore γ⋆
L in (4.9) is the smallest γL that can maintain

J(Vx, x, u) ≤ 0 for this storage function V at all time.
When u = 0, γL has no impact on the value of J . When u ̸= 0, both numerator and
denominator of ζ in (4.9) are of homogeneous degree 2. Therefore ζ(x, u) is a homoge-
neous function of degree 0, whose value in the whole space Rn+m\ {0} can be projected
onto the unit sphere. This is due to that by definition of homogeneity we have

ζ
(
νLτ

κ (x, u)
)

= κ0ζ(x, u)

for all κ > 0, then from any point (x, u) ∈ Rn+m\ {0} we can find κ with x′
i =

κLτxixi, u
′
j = κLτujuj, such that (x′, u′) is on the unit sphere by solving

n∑
i=1

κ2Lτxix2
i +

m∑
j=1

κ2Lτuju2
j = 1 . (4.10)

When κ → 0, the left hand side of (4.10) converges to 0 (vector weight is positive).
When κ → ∞, it diverges to ∞. By continuity of functions there exists a solution of
κ which makes the left hand side equal to 1 such that ζ (x′, u′) = ζ(x, u). Thus, we
need to search only on the unit sphere of (x, u) to probe the value of ζ in Rn+m\ {0}.
Actually, the value of ζ(Vx, x, u) can be found on any closed surface that encloses the
origin. The proof is straightforward.
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The detailed procedure to search the value of max∥(x,u)∥=1 {ζ(x, u)} is described in A.7.1
for the interested reader.

4.3.2 Affine Case

Now consider the continuous homogeneous system Σh (4.1) being affine in u, and the
output being devoid of u, i.e.

Σha :

ẋ = f(x) + g(x)u ,

y = h(x) ,
(4.11)

where g is a homogeneous n×m matrix-valued function of x.
From homogeneity, the homogeneous degree of f(x) must match that of g(x)u, i.e. τxi

−
τt = kfi

= kgij
+ τuj

for all i = 1, · · · , n, j = 1, · · · ,m, where kfi
and kgij

denote the
component-wise homogeneous degree of fi(x) and gij(x), respectively. With continuity
of g(x) in x, we conclude that kgij

≥ 0 [8, Theorem 4.1].
For each uj, gij(x) cannot be zero for all i, otherwise such input does not affect the
system. Therefore Lτuj

≤ Lτuj
+ Lkgij

= Lmax τx + Ld < 2 from non-negativeness of
kgij

. Further, we denote g = (g1, . . . , gm), where gi is the i-th column of matrix g.

Proposition 4.2 (Upper estimate of L2−gain for system Σh (4.1) when affine in in-
put). When Definition 4.3 is met for continuous homogeneous system Σha (4.11), with
additionally assuming L < 2/ (d+ max τx) and q = 2, for each V the smallest γ⋆

L that
satisfies (4.6) can be derived by solving the following optimization problem

γ⋆
L(V ) = inf

{
γ

∣∣∣∣∣ sup
∥x∥=1

µ(Vx, x, γ) ≤ 0
}
,

µ(Vx, x, γ) = J(Vx, x, 0) +
m∑

i=1
γ

−2Lτui
2−Lτui Ci |Vxgi(x)|

2
2−Lτui ,

Ci =
∣∣∣∣Lτui

2

∣∣∣∣
Lτui

2−Lτui −
∣∣∣∣Lτui

2

∣∣∣∣
2

2−Lτui
.

(4.12)
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Proof. By choosing the storage function V in Definition 4.3, we have

J (Vx, x, u) = Vx (f(x) + g(x)u) + ∥y∥2
Lτy ,2 − γ2 ∥u∥2

Lτu,2

= J (Vx, x, 0) + Vxg(x)u− γ2 ∥u∥2
Lτu,2 .

Since for any x when ui → ±∞,∀ i, we have J → −∞ by homogeneity. The partial
derivative of J (Vx, x, u) against u reads

∂J (Vx, x, u)
∂ui

= Vxgi(x) − 2γ2 |ui|
2−Lτui

Lτui , where
∂ ∥u∥2

Lτu,2

∂u
= 2
Lτui

|ui|
2−Lτui

Lτui .

Setting ∂J/∂u = 0 leads to a unique solution, thus by continuity of the function, the
maximum of J w.r.t u lies along

u⋆
i (Vx, x) =

∣∣∣∣∣Lτui

2γ2

∣∣∣∣∣
Lτui

2−Lτui ⌈Vxgi(x)⌋
Lτui

2−Lτui , i = 1, · · · ,m . (4.13)

Inserting this homogeneous u⋆ back to value function J yields

J(Vx, x, u
⋆) = J (Vx, x, 0) +

m∑
i=1

|γ2|
−Lτui

2−Lτui Ci |Vxgi(x)|
2

2−Lτui .

With additional assumption of Lτxi
+ Ld < 2, we have max (Lτu) < Lτxi

+ Ld < 2,
which implies Ci > 0 and the power of γ is negative in (4.12). Thus, if γ → ∞, then
µ = J (Vx, x, 0) ≤ 0, using the storage function V = aVl, a > a in Theorem 4.2. If γ → 0
there exist some x s.t. the summation of the remaining terms diverges to +∞. So from
continuity of function as well as µ(Vx, x, γ) being strictly decreasing w.r.t γ, there exist
one smallest γ > 0, s.t. maxx µ(Vx, x, γ) ≤ 0. Therefore γ > γ⋆

L from (4.12) guarantees
that J(Vx, x, u

⋆) ≤ 0. Then with γ < γ⋆
L, the value function is indefinite. By such

properties, we can use convergence search on γ ∈ R+, based on the sign of maxx(µ) on
unit sphere w.r.t. x to find the smallest γ⋆

L that guarantees negative semi-definiteness
of J(Vx, x, u

⋆).

Even though µ(Vx, x, γ) is a real-valued homogeneous function of degree 2, we only
need to check its sign, not its value. Therefore the search procedure can still be done
on the surface of unit sphere with respect to x only.

The result of Proposition 4.2 suggests the following search procedure to find an esti-
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mation of γ⋆
L(V ): max∥x∥=1 µ (V (x), x, η). Note that this procedure is analogous to the

Algorithm 3 Search procedure for Proposition 4.2
Initialize the upper limit γu with large enough real positive number
Initialize the lower limit γl = 0
while (γu − γl) /γl ≥ 10−7 do

Choose one γ ∈ (γl, γu), e.g. γ = (γu + γl) /2
Evaluate max∥x∥=1 µ(Vx, x, γ) in (4.12)
if max∥x∥=1 µ(Vx, x, γ) ≤ 0 then

γu = γ
else

γl = γ
end if

end while
γ⋆

L = γu

search performed to estimate the L2−norm using the Hamiltonian matrix (see Section
2.5.2). For the Hamiltonian matrix, we need to check whether its eigenvalues stay on the
imaginary axis with each γ, here we need to check the sign of max∥x∥=1 µ (V (x), x, γ).

Remark 4.7. The search of max∥x∥=1 µ (V (x), x, γ) is similar to that described in Al-
gorithm 4. The difference is that we only need to search on the surface of ∥x∥ = 1
instead of the surface of ∥(x, u)∥ = 1. Besides that, a further iteration on γ is neces-
sary. Thus by using the search of (4.12), we can reduce the computational complexity
from O (υn+m−1) in (4.9) to O (υn). When τu = ℓ1m, the computational complexity can
be further reduced to O (υn−1), with similar method in Proposition 4.1, i.e.

γ⋆(V ) =

∣∣∣∣∣∣∣∣max
∥x∥=1

(
ℓ
2

) ℓ
2−ℓ

(
1 − ℓ

2

)∑m
i=1 |Vxgi(x)| 2

2−ℓ

−Vxf(x) − ∥h(x)∥2
τy ,q

∣∣∣∣∣∣∣∣
2−ℓ
2ℓ

=

∣∣∣∣∣∣∣∣max
∥x∥=1

(
ℓ
2

) ℓ
2−ℓ

(
1 − ℓ

2

)∑m
i=1 |Vxgi(x)| 2

2−ℓ

−J(Vx, x, 0)

∣∣∣∣∣∣∣∣
2−ℓ
2ℓ

.

(4.14)

Refer to the example of the CSTLA in [61].

For each V , we may find the smallest γ⋆
L(V ) that satisfies Definition 4.3 by applying
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Proposition 4.1 or 4.2. In order to find the smallest upper bound, we shall search for

inf
V
γ⋆

L(V ) . (4.15)

Note that (4.15) might not give a tight upper bound of γ′
L from (3.20). The optimality of

(4.15) is not guaranteed, i.e. the actual L2h−gain in time domain might be smaller than
(4.15) [4]. Only when we find some actual input that achieves the ratio of L2h−norm
of output over input equals to (4.15), we can say γ⋆

L = γ′
L.

Remark 4.8 (Proposition 4.1 and 4.2 for LTI systems). The method in Proposition
4.1 and 4.2 also applies to LTI systems, where we can set weight vector τx = 1n, τy =
1r, τu = 1m, and d = 0, then

• for L = 1, the Proposition 4.2 is equivalent to solving an algebraic Riccati inequal-
ity (ARI) for an LTI system. For example, take the LTI system ẋ = Ax+Bu, y =
Ex and storage function of V = x⊤Px, where P = P⊤ > 0. First of all, we have
Ci = 1/4, and (4.12) becomes

µ(Vx, x, γ) = J(Vx, x, 0) + 1
4γ2

m∑
i=1

|Vxgi(x)|2

= x⊤
(
PA+ A⊤P + E⊤E

)
x+ 1

4γ2

m∑
i=1

∣∣∣2x⊤PBi

∣∣∣2
= x⊤

(
PA+ A⊤P + 1

γ2PBB
⊤P + E⊤E

)
x .

This is of the same form as the ARE (2.8) when D = 0 [4]. So for this case we
have γ⋆

L = γ′
L = γ† when L = 1.

• for L = 2/p, p > 1, γ⋆
L

L in Proposition 4.1 and 4.2 provides an upper bound for
the Lp−gain of the LTI system. Refer to Section 2.6 for previous results of upper
estimates of the Lp−gain. In this thesis we propose another bound for the Lp−gain
by solving the PDI of the storage function for each particular p ≥ d+max τx. This
will be brought up in the next section.

Therefore, by using Proposition 4.1 or 4.2, a method to calculate the H∞h−norm defined
by (3.20) is proposed. This is an extension to [61], where it is applied only to a special
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continuous homogeneous system CSTLA with L = 1, and it is also an extension to
[25, 24], where it applies only to weight vector of the input and the output being equal
and affine in the input. For LTI systems, such family of H∞h−norm allows another
estimate of the Lp−gain in state space.

4.4 Extension to Homogeneous Lp−stability

With the state space model, we can also write the PDI (4.6) for the case of homogeneous
Lp−gain.

Definition 4.5 (Lph−gain). The continuous homogeneous system Σh (4.1) has a Lph−
gain less than γp, if there exists a positive definite continuously differentiable storage
function V (x) of homogeneous degree p− d > 0 with V (0) = 0, such that the following
value function satisfies

J(Vx, x, u) ≜ Vxf(x, u) + ∥y∥p
τy ,q − γp

p ∥u∥p
τu,q + ϵ ∥x∥p

τx,q ≤ 0 , ∀ (x, u) ∈ Rn+m (4.16)

for some ϵ ≥ 0.

The proof is similar to that of Theorem 4.1. The relationship between the Lτ−
homogeneous L2−gain γL and the τ−homogeneous Lp−gain γp is shown in the next
remark from the perspective of the PDI.

Remark 4.9 (Effect of weight scaling on Partial Differential Inequality). Recall that,
as already observed in Remark 3.2 and Remark 3.6, scaling the homogeneity degree and
weight vectors by a positive constant L > 0 changes the values of the homogeneous vector
norms as well as the homogeneous signal norms involved. Performing the scaling, we
can also relate the Lτ−homogeneous Lp−gain with the τ−homogeneous Lp/L−gain.
For example, from Theorem 4.2, there exists a finite γL for 2 > L(d + max τx) if the
unperturbed continuous homogeneous system Σh (4.1) is asymptotically stable (now with
L−scaled weight and degree). The dissipation inequality (4.6) is now

∂V (x)
∂x

f(x, u) + ∥y∥2
Lτy ,q − γ2 ∥u∥2

Lτu,q ≤ −ϵ ∥x∥2
Lτx,q , ∀ (x, u) ∈ Rn+m.
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From (3.7) in Remark 3.2, the previous inequality can be re-written as

∂V (x)
∂x

f(x, u) + ∥y∥2/L

τy ,q/L
− γ̃

2/L ∥u∥2/L

τu,q/L
≤ −ϵ ∥x∥2/L

τx,q/L
, ∀ (x, u) ∈ Rn+m ,

with γ̃ = γL. Relating to Theorem 4.2, the τ−homogeneous L2/L−gain equals the
Lτ−homogeneous L2−gain to the power of L. However, we must be aware that the
τ−homogeneous Lp1−gain is not related to the τ−homogeneous Lp2−gain for p1 ̸= p2

with such scaling on weight and degree. The previous analysis only says that the
τ−homogeneous Lp2−gain can be derived from the Lτ−homogeneous L2−gain, with
L = 2/p2. Yet the latter has nothing to do with the τ−homogeneous L2−gain when
L ̸= 1.

As described in Remark 4.9, the upper bound of the τ−homogeneous Lp−gain γp can
be related to an upper bound of the Lτ−homogeneous L2−gain γL by

γL
L = γp , where L = 2

p
,

i.e. if γL is an upper bound for the Lτ−homogeneous L2−gain, then γL
L is an upper

bound of the τ−homogeneous Lp−gain.

Theorem 4.3. If the unperturbed continuous homogeneous system Σh (4.1) is locally
asymptotically stable, then the condition from Definition 4.5 is met for p > d+ max τx.

The proof is similar as that for Theorem 4.2.

Remark 4.10. Suppose the sub-systems satisfy the condition of Theorem 3.2 or Theo-
rem 3.3 for some p = p1. Further if they have state space realization Σh (4.1) and meet
the condition from Theorem 4.3, then the conclusion in Theorem 3.2 and Theorem 3.3
is also true for all p ∈ [p1,∞].
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4.5 Homogeneous L∞−stability and Input-to-State
Stability of Homogeneous Systems

In Definition 4.5, the Lph−gain can be derived from the PDI and storage function.
Yet, the case of p = ∞, i.e. L = 0 is not yet explicitly considered. If for system Σh

(4.1) the output y = x is selected, then L∞h−stability is intimately related to Input-
to-State Stability (ISS). In fact, note that if inequality (4.16) is satisfied for some p ≥ 1
and ϵ ≥ 0, then function V qualifies as an ISS Lyapunov function [50, 26, 29], and
therefore the system is ISS. Moreover, Theorem 4.2 assures that if the unperturbed
system has x = 0 as an asymptotically stable equilibrium point, then the perturbed
system is ISS by simply choosing y = x. This result is well-known from [1, 7]. It
generalizes partial results obtained in [48] for classical homogeneous systems, and in
[24] for a particular class of weighted homogeneous systems affine in the input. The
results presented in this work make it explicit that the ISS Lyapunov function should
satisfy the inequality (4.16) in the homogeneous case, in contrast to the general form
presented in [7]. Moreover, the ISS inequality is given explicitly and an estimation of
the ISS-gain is provided using homogeneous norms, which are more appropriate in this
context.

4.5.1 Homogeneous L∞−stability and Input-to-State Stability

A particular definition of ISS for homogeneous systems, tailored to homogeneous sys-
tems is proposed, which is an extension of the homogeneous L∞−stability with finite-
gain.

Definition 4.6. The homogeneous system Σh (4.1), with homogeneity degree d, is said
to be homogeneous input-to-state stable (ISS) if there exist positive constants M , κ, γiss
such that for any input u(·) ∈ L∞h = L∞ and any initial value x0 ∈ Rn, the trajectory
x(t) of Σh (4.1) satisfies for all t ≥ 0

∥x(t)∥τx,q ≤ β
(
∥x0∥τx,q , t

)
+ γiss ∥u(·)∥τu,L∞ , (4.17)
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where q is some number q ≥ 1 and β is the following KL function

β (v, t) =



M
(
v−d − κt

)− 1
d when t ≤ 1

κ
v−d

0 when t ≥ 1
κ
v−d

if d < 0 ,

M exp(−κt)v if d = 0 ,

M
(
v−d + κt

)− 1
d if d > 0 .

(4.18)

Note that the ISS-gain function is linear in the L∞h−norm ∥u(·)∥τu,L∞ (cfr. (4.17)).
This linearity derives from the homogeneity and the use of homogeneous norms. In
the classical norms, the relationship is nonlinear (see e.g. [7]). This illustrates the
convenience of adopting homogeneous L∞−norms for homogeneous systems.

It is possible to write an ISS inequality similar to (4.17) using classical norms. From
the relationship between homogeneous norms given in Lemma 3.2 we can obtain

∥x(t)∥q ≤ β̃
(
∥x0∥q , t

)
+ γ̃iss

(
∥u(·)∥L∞

)
,

but with γ̃iss(·) a non–linear function, and β̃ different from (4.18). This is the form of
the result presented in [7].

Theorem 4.4. Consider a homogeneous system Σh (4.1). If the unperturbed system,
with u = 0, is locally asymptotically stable at the origin, then system Σh (4.1) is ISS
with a linear gain function and it has also a finite L∞h−gain.

Proof. From Theorem 4.3, we can show that for any p > d + max τx, p ≥ 1, and
considering y = x, there exists a homogeneous V (x) such that inequality (4.16) is
satisfied for some ϵ > 0, i.e.

∂V (x)
∂x

f(x, u) ≤ − (ϵ+ 1) ∥x∥p
τx,q + γp ∥u∥p

τu,q , ∀ (x, u) ∈ Rn+m .

Then, for ∥x∥τx,q ≥ γk
1
p

(ϵ+1)
1
p

∥u∥τu,q, with k > 1, the inequality

∂V (x)
∂x

f(x, u) ≤ −k − 1
k

(ϵ+ 1) ∥x∥p
τx,q (4.19)
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is satisfied. Note that, since V (x) when u = 0 is a strict Lyapunov function, there exist
0 < α1 ≤ α2 such that

α1 ∥x∥p−d
τx,q ≤ V (x) ≤ α2 ∥x∥p−d

τx,q , ∀x ∈ Rn . (4.20)

Define b = γk
1
p

(ϵ+1)
1
p

and c = α2
(
b ∥u(·)∥τu,L∞

)p−d
, where ∥u(·)∥τu,L∞ = supt≥0 ∥u(t)∥τu,q

is used, then the set
Ωc = {x ∈ Rn : V (x) ≤ c}

is such that
Bb =

{
x ∈ Rn : ∥x∥τx,q < b ∥u(·)∥τu,L∞

}
⊂ Ωc .

As a consequence, for each x on the boundary of Ωc, we have ∥x∥τx,q ≥ b ∥u(·)∥τu,L∞ .
Therefore, at any t ≥ 0 such that x(t) is on the boundary of Ωc, we have ∥x(t)∥τx,q ≥
b ∥u(·)∥τu,L∞ ≥ γk

1
p

(ϵ+1)
1
p

∥u(t)∥τu,q. Then from (4.19) it follows that

∂V (x(t))
∂x

f(x(t), u(t)) < 0

at any t ≥ 0 for x(t) on the boundary of Ωc, and it can be concluded that for any initial
condition x̃(0) in the interior of Ωc, the solution x̃(t) of ẋ = f(x, u) is defined for all
t ≥ 0 and x̃(t) ∈ Ωc for all t ≥ 0.

Two cases need to be studied separately. First of all, when x(0) ∈ Ωc. For all t ≥ 0,
x(t) satisfies

∥x(t)∥p−d
τx,q ≤ 1

α1
V (x(t)) ≤ c

α1
= α2

α1

(
b ∥u(·)∥τu,L∞

)p−d
,

which implies

∥x(t)∥τx,q ≤
(
α2

α1

) 1
p−d

b ∥u(·)∥τu,L∞ (4.21)

and
∥x̃(·)∥τx,L∞ = sup

t≥0
∥x̃(t)∥τx,q ≤

(
α2

α1

) 1
p−d

b ∥u(·)∥τu,L∞ .

Secondly, when x(0) ∈ Ωc, since Bb ⊂ Ωc, x(0) ∈ Bb, i.e. ∥x(0)∥τx,q ≥ b ∥u(·)∥τu,L∞ . As
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long as ∥x(t)∥τx,q ≥ b ∥u(·)∥τu,L∞ ≥ γk
1
p

(ϵ+1)
1
p

∥u(t)∥τu,q, we have

dV (x(t))
dt = ∂V (x(t))

∂x
f(x(t), u(t)) ≤ −k − 1

k
(ϵ+ 1) ∥x(t)∥p

τx,q < 0 .

This inequality implies

dV (x(t))
dt ≤ −k − 1

k

(ϵ+ 1)

α
p

p−d

2

V
p

p−d (x(t)) .

Define the function, depending on v ∈ R≥0 and t ∈ R≥0

Φ (v, t; l, k) =




(
v−l + lkt

)− 1
l when t ≤ − 1

lk
v−l

0 when t ≥ − 1
lk
v−l

if l < 0 ,

exp (−kt) v if l = 0 ,(
v−l + lkt

)− 1
l if l > 0 .

(4.22)

Then Φ is a KL function, since Φ (0, t; l, k) = 0, it is monotonically increasing in
v, decreasing in t and limt→∞ Φ (v, t; l, k) = 0. Since the solution to the differential
equation v̇ = −κvℓ for ℓ ∈ R>0 is given by v(t) = Φ (v(0), t; ℓ− 1, κ), with Φ defined
by (4.22), and using the comparison lemma [29], we conclude that V (x(t)) satisfies

V (x(t)) ≤ Φ
V (x0), t;

d

p− d
,
k − 1
k

(ϵ+ 1)

α
p

p−d

2

 .

Moreover,

∥x(t)∥p−d
τx,q ≤ 1

α1
V (x(t)) ≤ 1

α1
Φ
V (x0), t;

d

p− d
,
k − 1
k

(ϵ+ 1)

α
p

p−d

2


≤ 1
α1

Φ
α2 ∥x0∥p−d

τx,q , t;
d

p− d
,
k − 1
k

(ϵ+ 1)

α
p

p−d

2

 ,

and therefore

∥x(t)∥τx,q ≤ β
(
∥x0∥τx,q , t

)
, (4.23)
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where

β
(
∥x0∥τx,q , t

)
=
 1
α1

Φ
α2 ∥x0∥p−d

τx,q , t;
d

p− d
,
k − 1
k

(ϵ+ 1)

α
p

p−d

2

 1
p−d

.

It can be shown that β coincides with (4.18) with

M =
(
α2

α1

) 1
p−d

, κ = k − 1
k

(ϵ+ 1)
α2

×


−d
p−d

if d < 0 ,
1
p

if d = 0 ,
d

p−d
if d > 0 .

(4.24)

Thus, as long as V (x(t)) > c, the function V (x(t)) is decreasing, and this shows in
particular that x(t) is bounded, and

∥x(t)∥p−d
τx,q ≤ 1

α1
V (x(t)) ≤ 1

α1
V (x(0)) .

Moreover, there is some finite time T such that V (x(t)) = c. Afterwards, x(t) follows
(4.21) for t ≥ T .

From the previous analysis, we conclude that, there exists a finite T , s.t. (4.23) is
satisfied for t ∈ [0, T ] and for t ≥ T (4.21) is obeyed. When x(0) ∈ Ωc, then T = 0.
Combining both cases, we have for any k > 1, that the ISS inequality (4.17) is satisfied
with the following constant linear homogeneous ISS-gain

γiss = Mb =
(
α2

α1

) 1
p−d k

1
p

(ϵ+ 1)
1
p

γ . (4.25)

To show that the system is L∞h−stable with finite gain, recall that h(x, u) is homo-
geneous and continuous, and therefore using Lemma 3.6 there exist positive constants
cq > 0, such that

∥h(x, u)∥τy ,q ≤ cq ∥(x, u)∥(τx,τu),q , ∀ (x, u) ∈ Rn+m .
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From Jensen’s inequality (A.6), we have

∥(x, u)∥(τx,τu),q =
 n∑

i=1
|xi|

q
τxi +

m∑
j=1

|uj|
q

τuj

 1
q

=

( n∑
i=1

|xi|
q

τxi

) q
q

+
 m∑

j=1
|uj|

q
τuj


q
q


1
q

≤
(

n∑
i=1

|xi|
q

τxi

) 1
q

+
 m∑

j=1
|uj|

q
τuj

 1
q

= ∥x∥τx,q + ∥u∥τu,q .

Using the above expressions and the ISS inequality (4.17) we arrive at

∥y(t)∥τy ,q = ∥h(x(t), u(t))∥τy ,q ≤ cq ∥x(t)∥τx,q + cq ∥u(t)∥τu,q

≤ cq

(
β
(
∥x0∥τx,q , t

)
+ γiss ∥u(·)∥τu,L∞

)
+ cq ∥u(·)∥τu,L∞

≤ cqβ
(
∥x0∥τx,q , t

)
+ cq (γiss + 1) ∥u(·)∥τu,L∞ ,

(4.26)

for all t ≥ 0. From the previous expression, the finite-gain L∞h−stability follows
immediately.

Note that given a V (x) of homogeneity degree p−d satisfying inequality (4.16) the ISS
finite-gain can be estimated by (4.25), while the parameters of the function β in (4.18)
are estimated as in (4.24).

Further note that in (4.25) the value of γ corresponds to the value that satisfies (4.16)
for some p ≥ 1 and with y = x. Given some V satisfying (4.16), the best (smallest)
value of γ can be calculated using the results of the upper estimate of any Lph−gain.
Then we can obtain an upper bound of the homogeneous ISS-gain from γiss in (4.25).
The L∞h−gain is also upper bounded by cq (γiss + 1) as in (4.26).

4.5.2 Upper estimate of γiss and L∞h−gain

In contrast to the Lph−gain, which can be derived through the PDI or the HJI by
using Proposition 4.1 or 4.2, the upper estimate of the homogeneous ISS-gain depends
on the value of some Lph−gain in (4.25). Further, the upper estimate of the L∞h−gain
depends again on the homogeneous ISS-gain γiss in (4.26).
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In order to calculate an upper estimate of the homogeneous ISS-gain γiss, α1 and α2

in (4.25) need to be derived first. From Lemma 3.6, since both ∥x∥p−d
τx,q and V (x) are

positive definite continuous τx−homogeneous functions of degree p − d, we have from
(4.20) for any q ≥ 1 that

α1 = min
∥x∥τx,q=1

V (x) = min
∥x∥=1

V (x)
∥x∥τx,q

, α2 = max
∥x∥τx,q=1

V (x) = max
∥x∥=1

V (x)
∥x∥τx,q

.

Then combined with any Lp−gain, (4.25) provides an upper estimate of the ISS-gain,
denoted as γiss.

Finally, an upper estimate of the L∞h−gain can be similarly derived. The constant c
in (4.26) can be calculated as

cq = max
∥(x,u)∥(τx,τu),q=1

∥h(x, u)∥τy ,q = max
∥(x,u)∥=1

∥h(x, u)∥τy ,q

∥(x, u)∥(τx,τu),q
.

Thus (γiss + 1)cq serves as an upper estimate of the L∞h−gain from (4.26). Note that
cq is independent of the choice of storage function V (x).

Remark 4.11 (Homogeneous small gain theorem with homogeneous ISS-gain). Theo-
rem 3.2 and Theorem 3.3 are also true with the homogeneous ISS-gain, by using (4.17)
as well as (3.10). In [5], a homogeneous small gain theorem similar to the Theorem 3.2
is derived by using the homogeneous ISS-gain. Yet the interconnected system considered
in [5] excludes the external input, i.e. in Figure 3.2 u1 = u2 = 0 and y1 = x1, y2 = x2

are assumed.

4.6 Comparison to Previous Works

There exist some previous works, which apply classical Lp−gain (including p = ∞ and
Input-to-State stability) on continuous homogeneous systems, where τu = ℓ1m, τy =
ℓ1r, for some ℓ > 0. In this section, we shall compare the presented results with those
to show novelty and improvement.

In [48], the author considers the special class of systems Σh (4.1) which are homoge-
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neous in the classical sense, i.e. τx = 1n, τu = 1m, with output y = x, and with
non-negative homogeneity degree d ≥ 0. [48] shows that if the origin is asymptot-
ically stable for the unforced system, then for p ≥ 1 + d the system (with output
y = x) is Lp−stable and has finite Lp−gain, with classical norms, i.e. relation
(3.21) is satisfied. The presented Theorem 4.3 generalizes these results to an
arbitrary homogeneous system, but it shows that to obtain finite Lp−gain it is
necessary to consider homogeneous norms. Only in particular cases this is valid
for classical signal norms, namely when τy = ℓ1r and τu = ℓ1m , ℓ > 0. Note that
Theorem 4.3 requires p > 1 + d (from p > d + max τx), which is stricter than
the condition in [48]. This is a consequence of the converse Lyapunov theorem
for homogeneous systems that assure a smooth Lyapunov function only when
p > 1 + d. If p = 1 + d a Lyapunov function, which is not differentiable at x = 0,
can be constructed. The presented Theorem 4.3 together can be extended to
cover also the case p = 1 + d, but at the expense of a technical issue with the
non-differentiability at x = 0, as is done in [48]. The details of this extension are
not presented here.
In [48] ISS of the system is established (included in the case of p = ∞, y = x),
with a linear gain and using classical norms, so the inequality (4.17) is satisfied
from the fact τx = 1n, τu = 1m. The presented Theorem 4.4 extends this result
to arbitrary homogeneous systems and shows that the linear gain is valid (only)
considering homogeneous norms unless the homogeneous Lp−norms is equiva-
lent to the usual Lp−norms. Moreover, Theorem 4.4 considers also the case of
L∞h−stability for an arbitrary (homogeneous) output y = h(x, u), which is not
considered in [48].

In [25], the authors deal with the special class of systems Σh (4.1), where ẋ = f(x) +
Bu, with B a constant matrix, which are homogeneous in the classical sense,
i.e. τx = 1n, τu = (d+ 1) 1m, with output y = h(x), τy = (d+ 1) 1r, and with
non-negative homogeneity degree d ≥ 0. The main result of [25, Theorem 1] states
that if the origin is asymptotically stable for the unforced system, then the system
is L2−stable and has finite L2−gain with classical norms, i.e. relation (3.16) is
satisfied. This is characterized using a Hamilton-Jacobi Inequality. The presented
Theorem 4.2 generalizes these results to an arbitrary homogeneous system, but
it shows that to obtain finite L2−gain it is necessary to consider homogeneous
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norms. Only in particular cases this is valid for classical signal norms, namely
when τy = ℓ1r and τu = ℓ1m , ℓ > 0. In [25], τu = (d+ 1) 1m, τy = (d+ 1) 1r

are used, but actually τy = ℓ1r and τu = ℓ1m could also be considered for each
d > − min τx (from continuity of the vector field). Neither Lp−stability nor ISS
stability is considered in [25]. In this thesis all properties are characterized in a
unified way using the inequality (4.6) or (4.16), which is more general than the
Hamilton-Jacobi Inequality, since the analytical form of u⋆ (x, Vx) like (4.13) is
not always easily attainable.

In [24], the author generalizes the results of [25] to the special class of weighted homo-
geneous systems affine in the input, i.e. ẋ = f(x) +G(x)u, y = h(x), with f(x) a
τx−homogeneous vector field of degree d > −τ0 ≜ − min {τx}, G(x) a matrix with
columns being τx−homogeneous vector fields of the degree s ≥ −τ0, and homoge-
neous weight of the input and the output being τu = (d− s) 1m , τy = (d− s) 1r

(implicitly d > s). Since [24] deals with the H∞ control problem, the following
results on L2−stability are contained implicitly in the paper. In the particular
case when s = −τ0 that strongly restricts matrix G(x), [24] shows that if the
origin x = 0 is asymptotically stable for the unforced system, then the system is
L2−stable and has finite L2−gain with classical norms, i.e. relation (3.16) is satis-
fied. This is characterized using a homogeneous Hamilton-Jacobi Inequality. For
the relaxed condition on G(x) that s ≥ −τ0, it is shown that if the origin x = 0
is asymptotically stable for the unforced system, then the system is Lp−stable
and has finite Lp−gain with classical norms, i.e. relation (3.21) is satisfied for
p, when p ≥ (d+max τx)/(d−s) (including p = ∞). Note that in the proof of [24,
Theorem 6.1], the author quote the converse Lyapunov Theorem, but wrongly
set the homogeneous degree of V (x) to p − d ≥ τ0 instead of p − d ≥ max {τx}.
[24] does not truly consider ISS stability for weighted homogeneous systems.
It deals with L∞−stability, which is different. Moreover, due to the restrictions
imposed on the homogeneity of the output function y = h(x), the particular case
y = h(x) = x cannot be considered, because then τy = (d− s) 1n ≤ (d+ τ0) ̸= τx,
unless τx = τ01n = (d− s) 1n. In such case, the homogeneous weight of states,
input and output are all equal to τ0, which reduced the conclusion of ISS stabil-
ity to classical homogeneous systems, which is the same as [48]. In contrast to
L2−stability, Lp−stability in [24] is not characterized using a Hamilton-Jacobi
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Inequality, despite the fact that the system is affine in the input, and in that case
this is still feasible.
The presented Theorem 4.2 generalizes these results to an arbitrary homoge-
neous system, without the restrictions imposed in paper [24], i.e. the system does
not need to be affine in the input, and its homogeneity weights and degree are
strongly relaxed. It is further shown that to obtain finite Lp−gain for arbitrary
homogeneous system it is necessary to consider homogeneous norms. Only in
particular cases this is valid for classical signal norms, namely when τy = ℓ1r and
τu = ℓ1m. But even for the case with classical norms, the presented results are
more general than those proposed in [24]. All properties are characterized in a
unified way using the inequality (4.6) or (4.16), which is more general than the
Hamilton-Jacobi Inequality, that is not always attainable in the non-affine case
of the input. Therefore, the result of H∞ norm from [25, 24] is generalized to be
applicable to all continuous homogeneous systems with arbitrary homogeneous
weights for input and output, as well as not necessarily being affine in the input.
The conclusion of Lp−stability in [24] is also included in our Theorem 4.3 for
p− Ld > Lmax τx.

In [7] and [1], ISS and other related properties are studied for general weighted ho-
mogeneous systems (4.1), and they generalize the results of [48, 24] relating the
internal stability of the unforced system and ISS stability. Our results on ISS
reproduce those of [1] and [7], although we emphasize the linear relationship be-
tween the input and the state (4.17) when using homogeneous norms, which is
obscure in [1] and [7]. This linearity issue is clarified in [5] for the more general
version of geometric homogeneity by using solely homogeneous norms in contrast
to the mixture usage of homogeneous norms and Euclidean norms in [7]. How-
ever, [1, 7, 5] do not consider Lp−stability for any value of p. In contrast to [1, 7,
5], we clarify the situation about Lp−stability for general weighted homogeneous
systems for arbitrary values of p and the linear homogeneous ISS gain is related
to such homogeneous Lp−gain in the proof of Theorem 4.4. Furthermore, the
homogeneous small-gain theorem is considered in both [1, 5]. In [1], using the
classical norms, the nonlinear ISS-gain is a K function. In [5] no external inputs
are considered. The small-gain theorems derived in both [1, 5] use the (linear
or nonlinear) ISS-gain to assure the closed loop stability, and thus are related to
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p = ∞. In contrast, the homogeneous small-gain theorem obtained in this paper
adopts any homogeneous Lp−gain (when it exists, including L∞h−gain and also
homogeneous ISS-gain) to verify closed loop stability.

In [28], the authors adopted a homeomorphic coordinate transformation that can be
related to our results. This is done using the companion signals introduced in
Remark 3.8: a homogeneous Lp−stable system, according to our Definition 3.7,
is also Lp−stable, using the traditional signal norms, from the transformed input
S(u) = u

1
τu to transformed output T (y) = y

1
τy , since (3.21) can also be written

as ∥∥∥∥y 1
τy

∥∥∥∥
Lp

≤ γp

∥∥∥u 1
τu

∥∥∥
Lp

+ βp , ∀u ∈ Lτu,p .

In this sense, we generalize this idea, in the context of homogeneous systems, to
arbitrary Lp−norms, and not only to the L2−norm considered in [28].

However, beyond this connection with [28], the objectives and scope of both
papers are rather different. [28] is concerned with the relationship between
L2−stability and ISS or iISS for general nonlinear systems, and they show the
existence of appropriate input S(·) and output T (·) homeomorphisms, without
providing a way to obtain such functions. This dissertation is concerned specif-
ically with general weighted homogeneous systems. It is shown that the homo-
geneous vector and signal norms are a natural setting for studying input-output
and input-to-state stability. One obtains linear finite-gains in all cases, a clear
relationship with the internal stability is derived and a method to calculate the
gains is provided by means of a dissipation inequality. Moreover, arbitrary values
of p are allowed, instead of only p = 2 as in [28].

In [28], a feedback interconnected system is also studied. Since the homeo-
morphic transform of coordinate is only shown to exist without any preference,
when treating the feedback interconnected signals, the authors can only assume
that constants exist, s.t. ∥S (u2)∥ ≤ c ∥T (y1)∥ (for the case of Figure 3.3) or
e.g. ∥S (e1)∥ ≤ cS ∥e1∥ and ∥y1∥ ≤ cT ∥T (y1)∥ (for the case of Figure 3.2) in or-
der for the theorems to apply. From homogeneity, it is clear that such constants
exist only if both sides are of the same homogeneous degree. For the feedback

interconnected system (Figure 3.2),
∥∥∥∥∥e

1
τe1
1

∥∥∥∥∥ ≤ cS ∥e1∥ and ∥y1∥ ≤ cT

∥∥∥∥∥y
1

τy1
1

∥∥∥∥∥ imply
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that the weight vectors for y1, y2 are both 1n, thus Theorem 3.2 also serves as
improvement as the small gain theorem in [28] by using the additive inequality
in Lemma 3.5 .

In [64, 63], the authors apply the classical L2−gain from disturbance u to x
1

τx on the
Super-Twisting Algorithm (STA). The STA is homogeneous and has a discontin-
uous vector field, where the weight vector for the input is τu = 0. Apparently,
the homogeneous L2−gain in (3.20) is not well defined for the STA.

Further, the works in [61, 60] consist part of this thesis.

4.7 Applicability of Homogeneous H∞−norm to
Structured Uncertainty

Now we shall look at whether the above application of classical H∞−norm to robustness
still apply for the homogeneous H∞−norm. Take the example of Figure 2.11. Now we
suppose the match of weight vector between G and ∆.

RS From Theorem 3.3, if ∥Gι→ϖ∥Lτ,∞ < 1/ ∥∆U∥Lτ,∞, RS of the homogeneous contin-
uous system is guaranteed.

RP In nonlinear systems, the frequency domain performance target ωp is usually not
realizable. The most common requirement is disturbance attenuation, i.e. to
minimize some gain from input to output. In another word, to minimize the
∥Gu→y∥Lτ,∞ ≤ γRP by changing the controller or observer inside the plant G.
Under such case, the constant 1/γRP should be multiplied to either before input
u or after output y. Thereafter ∥G∥Lτ,∞ < 1/ ∥∆U∥Lτ,∞ guarantees RP as well.

D-scale From Proposition 3.2, the D-scaling block and its inverse should share the
same homogeneous degree with the plant, in order for the D−1GD to remain
homogeneous. Yet, since the inverse of homogeneous D with dynamics is difficult
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to find, the usefulness of D scaling in LTI system is limited in nonlinear case.
This is illustrated in the next example.

Example 4.2 (Take homogeneous function as D scaling). Take a simple scalar example

ẋ(t) = − (k + δk(t)) ⌈x(t)⌋1/2 + bu(t) ,
y(t) = cx(t) ,

here Lτx = 2L,Lτu = L,Ld = −L. The stabilizing dynamics − (k + δk(t)) ⌈x⌋1/2 can
be understood as the controller, whose gain varies within a range of k + δk(t) and
|δk(t)| < k, thus −(k + δk(t)) < 0,∀ t > 0. We could introduce the extra input and
output as

ẋ(t) = −k ⌈x(t)⌋1/2 + bu(t) − δkι(t) ,
ϖ(t) = ⌈x(t)⌋1/2 , ι(t) = ∆(t)ϖ(t) ,

where Lτι = Lτϖ = L. It is simply δk ⌈x(t)⌋1/2 = δkι(t) = δk∆(t)ϖ(t). Here we extract
the magnitude of δk(t) into the input matrix δk, so that ∥∆∥Lτ,∞ = 1.
Under such setting, the D-scaling can be any diagonal homogeneous function, e.g. D(·) =
√

3
3 ⌈·⌋1/2, and D−1(·) = 3 ⌈·⌋2. And since the diagonal ∆ is normalized to 1, the homo-

geneous D∆D−1 would not change the ∥D∆D−1∥Lτ,∞ = ∥∆∥Lτ,∞, since the power of
any order of 1 remains 1. As shown in Figure 2.12, the new D−1GD reads

ẋ = −k ⌈x⌋1/2 + bu− δk

√
3

3 ⌈ι̂⌋1/2 ,

ϖ̂ = 3x, ι̂ = ∆ϖ̂ .

Yet as shown in the examples, the homogeneous function in D does not change the
homogeneous H∞−norm since in the value function they are all normalized to 2 − d,
yet the numerical scaling has a simple and direct effect.
Therefore, such D-K iteration can be simplified into only one step, i.e. calculating the
homogeneous H∞−norm ∥Gϕ→ϖ∥Lτ,∞ and ∥Gι→y∥Lτ,∞ and set D = α ∥Gu→ϖ∥Lτ,∞ +
(1 − α) / ∥Gι→y∥Lτ,∞ with α ∈ (0, 1).
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4.8 Examples

In this section, we introduce some examples of deriving the homogeneous H∞−norm.

4.8.1 Scalar SISO system

We would like to show how to derive the Lph−gain analytically for a SISO linear
dynamics by using the methods in Theorem 4.2:

ẋ = −k ⌈x⌋
1

z3 + b ⌈u⌋
1

z1 , y = c ⌈x⌋
z2
z3 , (4.27)

where z1, z2, z3, k ∈ R>0, with weight vector as Lτx = Lz3, Lτu = Lz1, Ld = L −
Lz3, Lτy = Lz2. From Theorem 4.2, system (4.27) has finite L2h−gain for L <

2/ (d+ max τx) = 2. Then we build a storage function V (x) of homogeneous degree
2 − Ld = 2 − L+ Lz3 by simply

V (x) = aLz3

2 − L+ Lz3
|x|

2−L+Lz3
Lz3 ,

whose partial derivative is
Vx = ∂V (x)

∂x
= a |x|

2−L
Lz3 .

Then the value function is

J (Vx, x, u) = a ⌈x⌋
2−L
Lz3

(
−k ⌈x⌋

1
z3 + b ⌈u⌋

1
z1

)
+
∣∣∣∣c ⌈x⌋

z2
z3

∣∣∣∣ 2
Lz2 − γ2 |u|

2
Lz1

=
(

|c|
2

Lz2 − ak
)

|x|
2

Lz3 + ba ⌈x⌋
2−L
Lz3 ⌈u⌋

1
z1 − γ2 |u|

2
Lz1 .

For J(Vx, x, 0) < 0, we must have a > |c|
2

Lz2 /k. Taking partial derivative of J (Vx, x, u)
against u to zero, we have the worst u⋆(x) lies along

u⋆(x) =
∣∣∣∣∣baL2γ2

∣∣∣∣∣
Lz1
2−L

⌈x⌋
z1
z3 . (4.28)
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By plugging back u⋆(x) into J (Vx, x, u), the partial differential inequality (PDI) is
turned into a Hamilton-Jacobi Inequality (HJI)

J (Vx, x, u
⋆(x)) =

|c|
2

Lz2 − ak +
∣∣∣∣∣ baγL

∣∣∣∣∣
2

2−L
∣∣∣∣L2
∣∣∣∣

L
2−L

(
1 − L

2

) |x|
2

Lz3 ≤ 0 ,

which is equivalent to

γ⋆
L (V ) =

∣∣∣∣∣∣ |ba| 2
2−L

ak − |c|
2

Lz2

∣∣∣∣L2
∣∣∣∣

L
2−L

(
1 − L

2

)∣∣∣∣∣∣
2−L
2L

. (4.29)

The right hand side of (4.29) has only the variable a (in the storage function V (x)) and
is a continuous function of a, since L < 2 from Theorem 4.2. This gives us a chance to
find the optimal a, such that the right hand side of (4.29) is smallest. By taking the
partial derivative of (4.29) against a, the optimal a⋆ (or effectively optimal V (x)) lies
at

a⋆ = 2 |c|
2

Lz2

Lk
(4.30)

and from L < 2, a⋆ > |c|
2

Lz2 /k is also satisfied. Therefore, plugging back (4.30) into
(4.29) we have the analytical upper bound of Lph−gain with p = 2/L as

γp ≤ γ⋆L
L = b |c|

1
z2

k
.

Taking this γ⋆
L and (4.30) back into (4.28) leads to

u⋆(x) =
∣∣∣∣∣kb
∣∣∣∣∣
z1

⌈x⌋
z1
z3 . (4.31)

Actually, with the state starting from x0, with u⋆(x), we have ẋ = 0 for system (4.27),
whose input and output is

u(·) =
∣∣∣∣∣kb
∣∣∣∣∣
z1

⌈x0⌋
z1
z3 , y(·) = c ⌈x0⌋

z2
z3 .
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For all time t ∈ [0,∞), then the ratio of the Lph−norm of output over input from this
constant input to its constant output is

Γ =

∥∥∥∥c ⌈x0⌋
z2
z3

∥∥∥∥
τy ,Lp∥∥∥∥∣∣∣kb ∣∣∣z1 ⌈x0⌋

z1
z3

∥∥∥∥
τu,Lp

= b |c|
1

z2

k
.

Therefore, the γp is upper bounded and lower bounded by the same number, thus we
conclude that

γp = b |c|
1

z2

k
, (4.32)

for p = 2/L > 1. Interestingly, the Lph−gain is itself independent of p, z1 and z3,
though the worst input u⋆(x) depends on the later two. When z1 = z2 = z3 = 1,
the system is linear and V (x) = a

2 |x|2 is the classical quadratic storage function when
L = 1. The Bode plot (showing L2−gain for different frequency of sinusoidal input
u(t) = sinωt) is plotted in Fig. 4.1. It is clear that for such LTI system, the worst

10−1 100 101 102
−40

−30

−20

−10

0

rad/s

dB

Figure 4.1: Bode plot of system (4.27).
The parameter of system are z1 = z2 = z3 = 1 (linear case) and k = 3, b = 2, c = 1.

input lies at low frequency, namely a constant input. This also agrees with u⋆(x) in
(4.31). For this LTI system, its Lp−gain when p > 1 is all equal to (4.32).

4.8.2 Continuous Higher Order Differentiator

Here we show how to find the homogeneous H∞−norm for the continuous higher order
differentiator in [56]. For a Lebesgue-measurable signal f(t) = f0(t)+ c v(t) whose n-th
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derivative is bounded as f (n)
0 (t) = b u(t), where |u(·)| < 1 and the noise signal |v(·)| < 1.

A family of continuous differentiators is built according to [56] and reads

ẋi = −ki ⌈x1 − f(t)⌋
τi+1

τ1 + xi+1 , i = 1, . . . , n− 1 ,

ẋn = −kn ⌈x1 − f(t)⌋
1+d
τ1

y = x

where τi = τi+1 − d = 1 − (n− i) d, i = 1, . . . , n and d ∈ [−1, 0] and τv = 1 −
(n− 1) d, τu = 1+d. Then defining the differentiation errors as ei ≜ xi −f

(i−1)
0 (t) leads

to the error dynamics

ėi = −ki ⌈e1 − cv⌋
τi+1

τ1 + ei+1 , i = 1, . . . , n− 1 ,

ėn = −kn ⌈e1 − cv⌋
1+d
τ1 − b u .

When d ∈ (−1, 0], Theorem 4.2 is valid for L < 2/ (max τx + d) = 2/ (1 − n+ 2d).
Thus, we can scale the weight vector to τi = 1−(n−i)d

1−(n−2)d , i = 1, . . . , n. Then we have
τu = 1+d

1−(n−2)d , τv = 1−(n−1)d
1−(n−2)d , τt = −d

1−(n−2)d for n > 2. We can use the family of storage
functions

V (e) =
n−1∑
i=1

ai |ei|
2−d
τi +

i<j∑
i,j∈{1,··· ,n}

aijei ⌈ej⌋
2−d−τj

τj . (4.33)

In [56] a family of storage functions is proposed with lower bounded homogeneous
degree, in which (4.33) also lies. On the other hand, the coefficients in the storage
functions from [56] is a subset of that of (4.33). For the case of v ≡ 0, we can set
c = 0.

4.8.3 First Order Integral Sliding Mode Controller

Here we include an example that has discontinuous dynamics, yet the weight vector for
input is still non-zero. For a first order scalar system, we can build a first order integral
sliding mode controller [34]

ẋ(t) = u(t) + w(t) ,

u(t) = −k1 ⌈x(t)⌋ 1
2 − k2

∫ t

0
⌈x(s)⌋0 ds .
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Note that this system can be rewritten as the Super Twisting Algorithm (STA) [34].
This system is an exception, since the system can be written in

ẋ1 = −k1 ⌈x1⌋
1
2 + x2 + w ,

ẋ2 = −k2 ⌈x1⌋0 ,

where the vector field is almost everywhere continuous except along x1 = 0. The weight
vector is τx = (2, 1) , τw = 1, d = −1. Then with the Lyapunov candidate of degree
2 − d = 3 as

V = a1

(2
3 |x1|

3
2 − a12x1x2 + a2

3 |x2|3
)
,

with a1, a12, a2 > 0, the derivative is

V̇ = a1 (−k1 + k2a12) |x1| + a1
(
−a12 − a2k2 ⌈x1⌋0 sign(x2)

)
|x2|2

+ a1 (1 + a12k1) ⌈x1⌋
1
2 x2 + a1

(
⌈x⌋ 1

2 − a12x2
)
w ,

From Young’s inequality, we need a2 ≥ a3
12 for positive definiteness of V , and at least

a2k2 < a12 <
k1
k2

. When V is a strong Lyapunov function, it is clear that γ can be
calculated by both methods (4.9) or (4.12) with this Lyapunov function candidate
where

J(Vx, x, w) = a1 (−k1+k2a12+E1/a1) |x1|+a1
(
−a12−a2k2 ⌈x1⌋0 sign(x2)+E2/a1

)
|x2|2

+a1 (1+a12k1) ⌈x1⌋
1
2 x2+a1

(
⌈x1⌋

1
2 −a12x2

)
w−γ2w2 .

A special treatment need to be taken along x1 = 0, where a set value of ⌈x1⌋0 ∈ [−1, 1]
is to be considered. That is, along x1 = 0

J(Vx, x2, w) = a1 (−a12 − a2k2sign(x2) + E2/a1) |x2|2 − a1a12x2w − γ2w2 ≤ 0

as well as

J(Vx, x2, w) = a1 (−a12 + a2k2sign(x2) + E2/a1) |x2|2 − a1a12x2w − γ2w2 ≤ 0

need to be considered. When x1 ̸= 0, J(Vx, x, w) is continuous in x,w. The correspond-
ing γ can be derived as shown in Proposition 4.1 or 4.2.
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As brought up in Section 2.8, when a control input is available for the LTI system, it is
possible to build an H∞−optimal controller by solving a Partial Differential Inequality
with extended input.
In previous works of [25, 24], the authors build a continuous homogeneous H∞−
controller for some specific homogeneous system. This is discussed in Section 4.6.
In this Chapter, we shall extend such concept to arbitrary continuous homogeneous
system, in order to build a continuous homogeneous feedback controller. Note that the
situation is more complicated than that in LTI.

5.1 State Space Model

Consider the SSM for continuous homogeneous dynamics with control input,

Σc :

ẋ = f(x, u, w) ,

y = h(x,w) ,
(5.1)

where x ∈ Rn is the state, u ∈ Rm is the control input and w ∈ Ro is the disturbance
input and y ∈ Rr is the output to be minimized. Here we suppose the full information
of the states is available, that is we exclude the necessity of observer design.

The weight vector for x, u, w, y as well as the homogeneous degree of vector field for
f(x, u, w) is the same as that in Definition 4.1, thus is not repeated here.
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5.2 Two Types of Homogeneous H∞−controller

For the closed loop system Σc (5.1) to maintain homogeneous (if not, the H∞h−norm
from input to output no longer applies to the closed loop system), we need to build
the feedback controller u(x) s.t. the degree of each channel of controller equal to its
corresponding weight vector as control input, i.e. kui

= τui
. To that there are two

possibilities, namely, one with dynamics or one memoryless:

Example 5.1 (First order homogeneous controller with dynamics). Take example of a
chain integrator, it is shown in [12] that, when the system is in chain integrator form,
the homogeneous degree of the closed system can be arbitrarily assigned

ẋ1 = u+ w ,

y = x1 .

We can build a linear controller u (κx) = κu(x), if we fix the weight τx1 = τu = τw = 1
and degree d = 0. On the other hand, if we set the homogeneous degree of the closed
loop system as ď ∈ [−1, 1], and let the controller have the form of

u = −k1 ⌈x1⌋
1

1−ď + x2 ,

ẋ2 = −k2 ⌈x1⌋
1+ď

1−ď .

Then the closed loop dynamics is now

ẋ1 = −k1 ⌈x1⌋
1

1−ď + x2 + w ,

ẋ2 = −k2 ⌈x1⌋
1+ď

1−ď ,

y = x1 .

The weight vector and degree of this closed loop dynamics is now τx =
(
1 − ď, 1

)
, τw =

1, d = ď. When d = −1, the u is the Super-Twisting Controller.

Example 5.2 (Higher order memoryless feedback controller). Take another example,
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for a n-th order chain integrator,

ẋi = ui + xi+1 , i = 1, · · · , n− 1 ,
ẋn = un + w .

(5.2)

Again we can build linear controller u (κx) = κu(x) if we set τx = 1n, τu = 1n, τw =
1, d = 0. On the other hand, with the design of ui(x) = −ki ⌈x1⌋

n−i
n , ki > 0, (5.2)

becomes
ẋi = −ki ⌈x1⌋

n−i
n + xi+1 , i = 1, · · · , n− 1 ,

ẋn = −kn ⌈x1⌋0 + w ,

with τxi
= n− i+ 1, τui

= n− i, τw = 0, d = −1.

In the rest of the text, we would only discuss the memoryless homogeneous feed-
back controller, i.e. the case of Example 5.2. Which is analogous to the design of
the H∞−controller with full information of the state for LTI system.

5.3 Homogeneous Stablizability and Homogeneous
Control Lyapunov Function

For controller design, the concept of stablizability is necessary. When considering
homogeneous system, the concept of homogeneous stablizability and the homogeneous
control Lyapunov function are introduced [52, 40].

Definition 5.1 ((Homogeneous) Stabilizability [52]). The homogeneous system Σc

(5.1) is (homogeneously) stabilizable, if there exists a (homogeneous) feedback con-
trol policy û(x) (whose degree kûi

= τui
,∀ i = 1, · · · ,m) s.t. the closed loop dynamics

ẋ = f(x, û(x), 0) is asymptotically stable.

For LTI system ẋ = Ax + B1u + B2w, stabilizability is equivalent to existence of a
state-feedback control policy, e.g. û(x) = Kx, s.t. A+B1K is Hurwitz [65].
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5 Homogeneous H∞−controller

Definition 5.2 ((Homogeneous) Control Lyapunov Functions [40, 52]). A positive-
definite (homogeneous) continuously differentiable storage function V (x) with V (0) = 0
is called a (homogeneous) control Lyapunov function (CLF) for system Σc (5.1) when
w(·) = 0 if there exists a control strategy û(x), s.t.

∂V (x)
∂x

f(x, û(x), 0) < 0 , ∀x ∈ Rn\ {0} . (5.3)

From the direct Lyapunov theorem, the existence of CLF V and û(x) that satisfy (5.3)
indicate that such û(x) stabilizes system Σc (5.1).

For LTI system ẋ = Ax + B1u + B2w, with the control Lyapunov function candidate
V = x⊤Px, P = P⊤ > 0 and a state-feedback control policy, e.g. û(x) = Kx, (5.3)
is equivalent to the Lyapunov Inequality. That is, for some matrix Q = Q⊤ > 0
s.t. P (A+BK) + (A+BK)⊤ P = −Q < 0 [65], or equivalently the closed loop state
matrix A+BK is Hurwitz.

Theorem 5.1 (Homogeneous stablizability from control Lyapunov function [40, 47,
17]). Let ℓ be an integer satisfying ℓ < (2 − Ld) / (Lmax τx). The homogeneous system
Σc (5.1) can be homogeneously stabilized by a continuous homogeneous controller, if and
only if there exists an homogeneous control Lyapunov function V (x) of degree 2 − Ld,
which is C∞ on Rn\ {0} and Cℓ at the origin.

When ℓ = 1, i.e. V (x) is continuously differentiable at the origin, ℓ < (2 − Ld) / (Lmax τx)
is equivalently L < 2/ (d+ max τx), which agrees with the condition for Theorem 4.2.

Remark 5.1 (Possibility that no stabilizing homogeneous controller exists for some sta-
bilizable homogeneous systems). In [3], it is noted that some stabilizable homogeneous
systems can not be stabilized by any homogeneous feedback control policy u(x), i.e. some
homogeneous systems are stabilizable, but not homogeneously stabilizable. Thus the con-
cept of homogeneously stabilizability and the homogeneous CLF brought up in Definition
5.1 and Definition 5.2 is necessary for the design of a stabilizing homogeneous feedback
controller.
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5.4 Homogeneous H∞−norm for Stabilizing Controller

5.4 Homogeneous H∞−norm for Stabilizing Controller

It is nature that, the system Σc (5.1) with a stabilizing controller plugged in, is asymp-
totically stable when unperturbed. Then from Theorem 4.2 the closed loop system has
finite L2h−gain.

5.4.1 The L2h−gain for Stabilizing Controller

As discussed in Section 2.8, for the existence of a preferred controller input that
minimizes the value function, we need to introduce the extended output z (y, u) =(
y⊤, u⊤

θ

)⊤
, with τz =

(
τ⊤

y , τ
⊤
u

)⊤
and uθ = (θτu1u1, · · · , θτumum)⊤ with θ > 0, then

Definition 5.3 (L2h−gain of closed loop system). The homogeneous feedback control
policy u(x) for system Σc (5.1) achieves the L2h−gain from disturbance w to output z
less than γL, if for each initial value x0 there exists a finite constant βL(x0), s.t.

∥z(y, uθ)∥Lτz ,L2
≤ γL ∥w∥Lτw,L2

+ βL(x0) , ∀w ∈ Lτw,2 . (5.4)

This is similar to Definition 4.2, except that the output is the extended output z(y, uθ).

Remark 5.2 (Finite-gain L2h−stability with zero bias). When the condition of Defini-
tion 5.3 is met, βL(x0) in (5.4) is a homogeneous function of initial value x0 of degree
1 + τt/2, and βL (0) = 0, also found in Remark 4.3.

Definition 5.4 (Partial Differential Inequality for finite L2h−gain). A homogeneous
control strategy û(x) achieves the finite L2h−gain from w to z(y, uθ) less than γL from
Definition 5.3, if a Lτ−homogeneous storage function V (x) of degree 2 − Ld exists for
system Σc (5.1) such that the following partial differential inequality (PDI) is satisfied
for all (x,w) ∈ Rn+o

J(Vx, x, û(x), w) ≜ Vxf(x, û(x), w)+∥y∥2
Lτy ,q +θ2 ∥û∥2

Lτu,q −γ2
L ∥w∥2

Lτw,q + ϵ ∥x∥2
Lτx,q ≤ 0

(5.5)
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5 Homogeneous H∞−controller

for some ϵ ≥ 0. Note that the value function J(Vx, x, u, w) is homogeneous of degree 2.

Note that ∥y∥2
Lτy ,q + θ2 ∥û∥2

Lτu,q = ∥z(y, uθ)∥2
Lτz ,q, thus Definition 5.4 is similar to Defi-

nition 4.3.

Theorem 5.2 (Homogeneous stabilizability from Partial Differential Inequality). If the
condition of Definition 5.4 is met for system Σc (5.1) and some homogeneous controller
û(x). Then the closed loop system has a finite Lτ−homogeneous L2−gain (H∞h−norm)
from disturbance w to output y (when θ = 0) or from disturbance w to extended output
z(y, uθ). When ϵ > 0, such homogeneous controller û(x) stabilizes system Σc (5.1).
When ϵ = 0, if the system is further zero-state detectable (Definition 4.4) w.r.t. the
disturbance w, then such homogeneous controller û(x) stabilizes system Σc (5.1). For
both case, the system is homogeneously stabilizable.

Proof. The proof is similar as that in Theorem 4.2 by using the Partial Differential
Inequality (5.5). And the conclusion of the closed loop system being asymptotically
stable is naturally extended to being homogeneously stabilizable.

5.4.2 Existence of Controller that Minimizes the Value Function

When (5.5) is true for some stabilizing controller û, the controller that minimizes the
value function J(Vx, x, u, w) is of particular interest.

Proposition 5.1 (Existence of controller that minimizes value function). Suppose the
vector field f(x, u, w) can be written as addition of two terms f(x, u, w) = fu(x, u) +
fw(x,w). In another word, the control input u and disturbance input w is uncoupled in
the vector field. Then there exists such a homogeneous controller u⋆(Vx, x), that achieve
the minimum of the value function in (5.5) from Definition 5.4, i.e.

J(Vx, x, u
⋆(Vx, x), w) ≤ J(Vx, x, u, w) , ∀ (x, u, w) ∈ Rn+m+o .
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5.4 Homogeneous H∞−norm for Stabilizing Controller

Proof. From Theorem 5.1, choosing ℓ = 1, the homogeneous degree of the storage
function V is 2 −Ld > Lmax τx, therefore the degree of each element of Vx(x) w.r.t. x
is 2 − Ld− Lτxi

≥ 2 − Ld− Lmax τx > 0.
Since Vxfu(x, u) is of homogeneous degree 2 w.r.t. (x, u), when x is fixed Vxfu(x, u)
might stop being homogeneous w.r.t. u, however, each component in this value function
Vxfu(x, u) w.r.t. u has degree less than 2, thus the term of θ2 ∥u∥2

Lτu,q is the dominating
term w.r.t. u in J(Vx, x, u, w) from homogeneity, i.e. J(Vx, x, u, w) → ∞ as u → ±∞
for each (x,w) ∈ Rn+o. From continuity of J(Vx, x, u, w) and the Weierstrass theorem
that there exists at least a u⋆(Vx, x) that can achieve the minimum of J(Vx, x, u, w) for
each fixed (x,w).
The u⋆(Vx, x) can be derived by selecting

u⋆(Vx, x) = arg min
u
J(Vx, x, u, w) = arg min

u

(
Vxfu(x, u) + θ2 ∥u∥2

Lτu,q

)
.

Note that Vxfu(x, u)+ θ2 ∥u∥2
Lτu,q is homogeneous of degree 2. Suppose that x̃ = ντx

κ (x)
as well as ũ⋆ = ντu

κ (u⋆), then we have for each fixed x

κ2
(
Vxfu(x, u⋆) + θ2 ∥u⋆∥2

Lτu,q

)
≤ κ2

(
Vxfu(x, u) + θ2 ∥u∥2

Lτu,q

)
, ∀ (x, u) ∈ Rn+m ,

which is

Vx (x̃) fu(x̃, ũ⋆) + θ2 ∥ũ⋆∥2
Lτu,q ≤ Vx (x̃) fu(x̃, ũ) + θ2 ∥ũ∥2

Lτu,q , ∀ (x, ũ) ∈ Rn+m .

That is, the u⋆(Vx(x̃), x̃) collected at x̃ equals the dilated value of the u⋆ (Vx(x), x)
collected at x w.r.t weight vector τu. In another word, u⋆(Vx, x) is a homogeneous
controller w.r.t. x, i.e. the homogeneous degree of each element of u⋆(Vx, x) w.r.t. x is
τui

.

Remark 5.3. Extending the output from y to z(y, uθ), i.e. including the term θ2 ∥u∥2
Lτu,q

in the PDI (5.5), allows the existence of homogeneous u⋆(Vx, x) for the value func-
tion J(Vx, x, u, w) for each (x,w) ∈ Rn+o [4]. Note that, such homogeneous controller
u⋆(Vx, x) for Proposition 5.1 might not be unique for each fixed x, and it might not be
continuous in x.
Without the assumption of the control input u and disturbance input w being uncoupled
in the vector field, the u⋆ that minimize J(Vx, x, u, w) might also depend on disturbance
w, which is usually unknown to the controller design. Such cases should be excluded,
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5 Homogeneous H∞−controller

since what we wish to design is a continuous homogeneous state-feedback controller.

Theorem 5.3 (Homogeneous controller u⋆ for homogeneously stabilizable system). For
a homogeneously stabilizable system Σc (5.1), when L < 2/ (max τx + d), there exists
such storage function V (x) that satisfies the condition of Definition 5.4 for some ϵ > 0.
With such V (x), the controller u⋆(Vx, x) from Proposition 5.1 stabilizes the system Σc.

Proof. The proof consists of two steps.
First step: Since the system is assumed to be homogeneously stabilizable, from The-
orem 5.1, there exists a continuously differentiable CLF Vl of degree 2 − Ld, with
L < 2/ (max τx + d) by choosing ℓ = 1. Suppose for such Vl, there exists a û(x) and a
constant c1 > 0 s.t.

∂Vl

∂x
f(x, û(x), 0) ≤ −c1 ∥x∥2

Lτx,q , ∀x ∈ Rn ,

in another word, such û(x) stabilizes system Σc (5.1). From homogeneity we also have

∥h(x, 0)∥2
Lτy ,q + θ2 ∥û(x)∥2

Lτu,q ≤ c2 ∥x∥2
Lτx,q , ∀x ∈ Rn ,

for some c2 > 0. Let the two homogeneous function of degree 2 w.r.t. (x, u, w)

π(x, u, w) = ∥w∥2
Lτw,q ,

ψ(x, u, w) = a
∂Vl

∂x
f (x, u, w) + ∥h(x,w)∥2

Lτy ,q + θ2 ∥u∥2
Lτu,q + ϵ ∥x∥2

Lτx,q .

Then clearly π(x, u, w) ≥ 0 and w = 0 ⇔ π(x, u, w) = 0. For any a > a = (c2 + ϵ) /c1,
the CLF V = aVl guarantees that when w = 0, ∀x ∈ Rn\ {0}

ψ(x, û(x), 0) = Vxf(x, û(x), 0) + ∥h(x, 0)∥2
Lτy ,q + θ2 ∥û∥2

Lτu,q + ϵ ∥x∥2
Lτx,q

≤ (c2 + ϵ− ac1) ∥x∥2
Lτx,q < 0 .

Therefore from Lemma 4.1, for each such V a finite γ̂ exist, s.t. ∀ (x,w) ∈ Rn+o

J(Vx, x, û(x), w, γ̂) =
∂V

∂x
f(x, û(x), w)+∥h(x,w)∥2

Lτy ,q +θ2 ∥û∥2
Lτu,q − γ̂2 ∥w∥2

Lτw,q + ϵ ∥x∥2
Lτx,q ≤ −c3 ∥x∥2

Lτx,q

(5.6)
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for some c3 > 0. Thus such storage function V (x) = aVl(x) satisfy the condition of
Definition 5.4 for some ϵ > 0 when a > a = (c2 + ϵ) /c1.

Second step: Replace the stabilizing û(x) with the u⋆(Vx, x) in Proposition 5.1. Note
that in (5.5), the γ has no influence on the u⋆(Vx, x) that minimizes J , since it is
multiplied to a term solely of w, which vanishes when taking partial derivative against
u. Then we have J(Vx, x, u

⋆(Vx, x), w, γ̂) ≤ J (Vx, x, û(x), w, γ̂) ≤ −c3 ∥x∥2
Lτx,q from

(5.6), which indicates ∀x ∈ Rn\ {0}

∂V

∂x
f (x, u⋆(Vx, x), 0) ≤ − (c3 + ϵ) ∥x∥2

Lτx,q − ∥h(x, 0)∥2
Lτy ,q − θ2 ∥u⋆(Vx, x)∥2

Lτu,q < 0 ,

since c3 > 0. Thus this u⋆(Vx, x) is also a stabilizing controller for each CLF Vl and
a > a from first step. When plugging back the u⋆(Vx, x) instead of û(x) back in first
step, the new a should be no bigger than the one derived with û(x) for the same reason.
From Theorem 5.2, such stabilizing u⋆(Vx, x) achieves finite L2h−gain from w to z.

For each homogeneously stabilizable system Σc (5.1), Theorem 5.1 predicts existence
of continuously differentiable CLF Vl and some stabilizing controller û(x). Theorem
5.3 shows that, for each CLF Vl, there exist some a, s.t. the u⋆

(
a∂Vl

∂x
, x
)
, which mini-

mizes the value function J (Vx, x, u
⋆(Vx, x), w), serves also as a homogeneous stabilizing

controller. This is already a design method to build such a homogeneous stabilizing
controller. In another word, instead of finding some û(x), it is preferred to adopt the
controller u⋆

(
a∂Vl

∂x
, x
)

for each Vl.

Similar to Section 4.3, we provide systematic methods to calculate an upper estimate
for the H∞h−norm of system Σc (5.1) with some stabilizing controller.

5.5 Upper estimate of L2h−gain

The u⋆(Vx, x) from Proposition 5.1 allows a smaller γ that satisfies J(Vx, x, u, w, γ) ≤
0.
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5 Homogeneous H∞−controller

Proposition 5.2 (Upper estimate of L2h−gain with stabilizing controller). If the con-
dition of Definition 5.4 is met, with some stabilizing controller û(x) and storage function
V , the smallest γ̂L (V, û(x)) that satisfies (5.5) is

γ̂L(V, û(x)) =
√

max
∥(x,w)∥=1

ζ(Vx, x, û(x), w) ,

ζ(Vx, x, û(x), w) =
Vxf(x, û(x), w) + ∥h(x,w)∥2

Lτy ,q + θ2 ∥û∥2
Lτu,q

∥w∥2
Lτw,q

, ∥w∥ ≠ 0 .
(5.7)

Proof. The proof is similar to that in Proposition 4.1.

Proposition 5.3 (Optimality of u⋆(Vx, x) for upper estimate of L2h−gain). As an ex-
tension for Proposition 5.2, for each storage function V that satisfies (5.5), the smallest
value of γ̂L(V, û(x)) of (5.7) with different stabilizing controller û(x) is achieved when
u = u⋆(Vx, x) from Proposition 5.1, i.e. γ⋆

L(V ) = γ̂L(V, u⋆(Vx, x)) ≤ γ̂L(V, û(x)) for all
stabilizing û(x).

Proof. The inequality J(Vx, x, u
⋆(Vx, x), w, γ̂) ≤ J(Vx, x, u, w, γ̂) in Proposition 5.1 ex-

pands into

Vxf(x, u⋆(Vx, x), w) + θ2 ∥u⋆∥2
Lτu,q ≤ Vxf(x, u, w) + θ2 ∥u∥2

Lτu,q , ∀ (x, u, w) ∈ Rn+m+o ,

which also includes any stabilizing controller û(x). It is clear from the above inequality
that

Vxf(x, u⋆(Vx, x), w) + ∥h(x,w)∥2
Lτy ,q + θ2 ∥u⋆∥2

Lτu,q + ϵ ∥x∥2
Lτx,q

∥w∥2
Lτw,q

≤

min
û(x)

Vxf(x, û(x), w) + ∥h(x,w)∥2
Lτy ,q + θ2 ∥û∥2

Lτu,q + ϵ ∥x∥2
Lτx,q

∥w∥2
Lτw,q

,∀ (x,w) ∈ Rn+o .

Thus γ⋆
L(V ) ≤ γ̂L(V, û(x)) for all stabilizing controller û(x) that satisfies (5.5) for each

V .

Theorem 5.2 predicts that a finite γ exists when (5.5) is satisfied in Definition 5.4 for
some CLF V and stabilizing homogeneous controller û(x). Proposition 5.2 provides
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an upper estimate of the closed loop L2h−gain γ′
L ≤ γ̂L(V, û(x)). Theorem 5.3 shows

that the homogeneous controller u⋆(Vx, x) also stabilizes system Σc (5.1). Further
Proposition 5.3 shows that, with the same V , the closed loop system with the stabilizing
homogeneous controller u⋆(Vx, x) achieves a smaller upper estimate of L2h−gain for all
stabilizing controller û(x).

5.6 Design of H∞h−controller

Similar to Subsection 4.3.2, it is possible to solve the disturbance input w⋆(Vx, x) ana-
lytically that maximizes J(Vx, x, w) w.r.t. w for each fixed x ∈ Rn if the vector field of
system Σh (4.1) is affine in disturbance w.
When restricting the vector field of system Σc (5.1) to be affine in control input u, it is
also possible to derive the control input u⋆(Vx, x) analytically that maximizes the value
function J (Vx, x, u, w) w.r.t. u for each fixed (x,w) ∈ Rn+o.
When analysing the w⋆(Vx, x) contribute little on the Lph−gain analysis, the analytical
solution of u⋆(Vx, x) is naturally interested from the perspective of controller design.

5.6.1 Affine in Control Input

Now consider the continuous homogeneous system Σc (5.1) being affine in control input
u and that control input u and w is uncoupled in the vector field as brought up in
Proposition 5.1, i.e. fu(x, u) = g(x)u, now the SSM is

Σca :

ẋ = fw(x,w) + g(x)u ,

y = h(x,w) ,
(5.8)

where g is a homogeneous n × m matrix-valued function of x, i.e. for all non-zero
components gij.
For each uj, gij(x) cannot be zero for all i, otherwise such input does not affect the
system. Therefore Lτuj

≤ Lτuj
+ Lkgij

= Lτxj
+ Ld < 2 from non-negativeness of kgij

(L < 2/ (max τx + d) as in Theorem 5.3). Further, we denote g = (g1, · · · , gm), where
gi is the i-th column of g matrix.
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Proposition 5.4 (Stabilizing controller design, extension to [24]). If the system Σca

(5.8) is homogeneously stabilizable as in Theorem 5.3 with the control Lyapunov function
Vl, then there exists a finite α, such that for all α > α, the following continuous
homogeneous feedback control law

ûi

(
∂Vl

∂x
, x

)
= −α

⌈
∂Vl

∂x
gi(x)

⌋ Lτui
2−Lτui

. (5.9)

stabilizes system Σca (5.8), and the closed loop system is asymptotically stable when
w ≡ 0.

Proof. From definition of homogeneous stabilizability of control Lyapunov function,
there exist some u(x) s.t.

∂Vl

∂x
(fw(x, 0) + g(x)u(x)) < 0 , ∀x ∈ Rn\ {0} . (5.10)

First, define three spaces of x ∈ Rn for this control Lyapunov function Vl as

S+ ≜

{
∂Vl

∂x
fw(x, 0) ≥ 0

}
, S− ≜

{
∂Vl

∂x
fw(x, 0) < 0

}
, S0 ≜

{
∂Vl

∂x
g(x) = 0⊤

o

}
,

as well as a closed surface, namely the homogeneous unit sphere w.r.t x as Su ≜{
∥x∥Lτx,2 = 1

}
.

Apparently, S0 ⊂ S−, or else (5.10) can not be true for any u(x). In another word,
when x ∈ S+, the vector ∂Vl

∂x
g(x) can not be a zero vector.

Denoting the vector φ⊤(x) = ∂Vl

∂x
g(x), after plugging in the û

(
∂Vl

∂x
, x
)

from (5.9), the
Li derivative of the control Lyapunov function (5.10) when w = 0 is

∂Vl

∂x
fw(x, 0) − α

o∑
i=1

(
|φi(x)|

2
2−Lτui

)
, (5.11)

now let
π(x, φ) =

o∑
i=1

(
|φi(x)|

2
2−Lτui

)
, ψ(x, φ) = ∂Vl

∂x
f(x, 0) .

Apparently, π(x, φ) ≥ 0, When π(x, φ) = 0, then x ∈ S0 ⊂ S−, thus ψ(x, φ) < 0
from (5.10). Therefore from Lemma 4.1, there exist such a α, s.t. for all α > α,
(5.11) is negative definite. At last, max (Lτu) < Lτxi

+ Ld < 2, thus û(Vx, x) in (5.9)
is continuous in x. Such û(Vx, x) in (5.9) with α > α is a continuous homogeneous
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stabilizing feedback control law.

Remark 5.4 (Other possible continuous homogeneous controllers). Another way to de-
sign a stabilizing controller like Proposition 5.4 is: For each control Lyapunov function
Vl, there exists a finite β, s.t. when β > β, the following controller

ûi = −
⌈
β
∂Vl

∂x
gi(x)

⌋ Lτui
2−Lτui

, (5.12)

stabilizes system Σca (5.8). The proof is similar. Only when τu = ℓ1m and β = α
2−Lℓ

Lℓ

the two approaches give the same stabilizing controller for the same control Lyapunov
function Vl .
Other stabilizing controller for control affine system can be found in [40, 2, 17], and
discontinuous design in [12].

The design of continuous homogeneous feedback control strategies like (5.9) or (5.12)
exclude the case of discontinuous controller, since it would require that τui

= 0 for
some i. Yet with the extended output z, this would mean that some τzm+i

= 0, then
the L2h−norm of the output is not well defined in this case.

Corollary 5.1 (H∞h−controller). As direct application of Theorem 5.3 to system Σca

(5.8). The continuous homogeneous H∞h−control strategy for any CLF Vl and any
a > a when choosing q = 2 is proposed as

u⋆
i (Vx, x) = −

∣∣∣∣Lτui

2θ2

∣∣∣∣
Lτui

2−Lτui

⌈
a
∂Vl

∂x
gi(x)

⌋ Lτui
2−Lτui

. (5.13)

Proof. This comes directly from Theorem 5.3. Now for system Σca (5.8), the value
function is turned into

J(Vx, x, u, w) =a∂Vl

∂x
(fw(x,w) + g(x)u) + ∥y∥2

Lτy ,2 + θ2 ∥u∥2
Lτu,2

− γ2 ∥w∥2
Lτw,2 + ϵ ∥x∥2

Lτx,2 ,
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which can be rewritten as

J(Vx, x, u, w) = J (Vx, x, 0, w) + a
∂Vl

∂x
g(x)u+ θ2 ∥u∥2

Lτu,2 ,

since for any x,w whenever ui → ±∞, ∀ i, we have J(Vx, x, u, w) → ∞ by homogeneity.
The partial derivative of J(Vx, x, u, w) against u reads

∂J

∂ui

= a
∂Vl

∂x
gi(x) + θ2 2

Lτui

|ui|
2−Lτui

Lτui , where
∂∥u∥2

Lτu,2

∂ui

= 2
Lτui

|ui|
2−Lτui

Lτui .

There exist one unique solution of ∂J/∂u = 0 and by continuity and Weierstrass the-
orem, the u⋆(Vx, x) that minimizes J(Vx, x, u, w) lies along (5.13). Similar from the
proof of Proposition 5.4, max (Lτu) < Lτxi

+ Ld < 2, thus the homogeneous controller
(5.13) is continuous in x.
From the proof of Theorem 5.3, there exist such a a for each CLF Vl, s.t. (5.13)
serves as stabilizing continuous homogeneous control strategy. Further from Propo-
sition 5.3, such u⋆(Vx, x) allows the smallest value of γ that satisfies (5.5) for each CLF
V = aVl, a > a.

Remark 5.5 (Simplified step of γ⋆
L estimation). In Theorem 5.3 it is proven that for

each CLF Vl(x) with some stabilizing controller û(x), there exists a finite number a,
s.t. with V (x) = aVl(x) , a > a satisfies the PDI (5.5) in Definition 5.4. Thereafter,
we can replace the û(x) by the u⋆(Vx, x) for this V (x) back in the PDI (5.5), s.t. the
γ⋆

L = γ̂L(V, u⋆(Vx, x)) in (5.7) has the smallest value for this storage function V (x)
among all stabilizing controller.
The above procedure involving two stabilizing controllers can be simplified for system Σca

(5.8). With the analytical form of u⋆(Vx, x) in (5.13), which minimizes the PDI (5.5),
we can from the beginning skip the homogeneous stabilizing controller û(x). For any
CLF candidate Vl(x), set V (x) = aVl(x) and directly plug in the u⋆(Vx, x) from (5.13)
and verified whether J(Vx, x, u

⋆(Vx, x), 0) < 0 w.r.t. a (in another word, we search for
the a for this Vl without the help of any û(x)). If J(Vx, x, u

⋆(Vx, x), 0) < 0, then the
finite γ⋆

L = γ̂L(V, u⋆(Vx, x)) in (5.7) exists and the controller u⋆(Vx, x) stabilizes the
system.
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5.6 Design of H∞h−controller

5.6.2 Affine in Control Input and Disturbance Input

Furthermore, if the system Σca (5.8) is further affine in the disturbance w, and the
output is devoid of the disturbance w, i.e.

Σcaa :

ẋ = f(x) + g(x)u+ e(x)w ,

y = h(x) ,
(5.14)

now e(x) is a homogeneous n× o matrix-valued function of x, denote each component
of e as eij.
For each wj, eij(x) cannot be zero for all i, otherwise such input does not affect the
system. Therefore Lτwj

≤ Lτwj
+ Lkeij

= Lτxj
+ Ld < 2 from non-negativeness of keij

.
Further, we denote e = (e1, · · · , em), where ei is the i-th column of e matrix.

Proposition 5.5 (Simplified method). With system Σcaa (5.14), the upper estimate in
Proposition 5.3 when choosing q = 2 can be found by

γ⋆
L(V ) = inf

{
γ

∣∣∣∣∣ sup
∥x∥=1

µ(Vx, x, γ) ≤ 0
}
,

µ(Vx, x, γ) = J(Vx, x, u
⋆(Vx, x), 0) +

m∑
i=1

|γ|
−2Lτwi
2−Lτwi Ci

∣∣∣∣∣∂V∂x ei(x)
∣∣∣∣∣

2
2−Lτwi

,

Ci =
∣∣∣∣Lτwi

2

∣∣∣∣
Lτwi

2−Lτwi −
∣∣∣∣Lτwi

2

∣∣∣∣
2

2−Lτwi
.

Proof. This proof is again similar to that in Proposition 4.2, thus omitted.

Similar to that detailed method in Section 4.3.2, the value of the γ⋆
L can be found by

iteration, during which the sign of µ(V (x), x, γ) is checked.

At last, similar to the result of [24], we can show that if g(x) = e(x), u⋆
(
a∂Vl

∂x
, x
)

with
a large enough a can achieve any L2h−gain γ > θ from input w to output z in the next
Proposition.
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5 Homogeneous H∞−controller

Proposition 5.6 (Achievable H∞h−norm under matched controller and disturbance).
As en extension to [24], if system Σcaa (5.14) is homogeneously stabilizable. Further
g(x) = e(x), τu = τw (implicitly m = o in dimension). Then for each homogeneous
CLF Vl of degree 2 − Ld and each γ > θ, when choosing q = 2 there exists a finite a,
s.t. the optimal controller (5.13) with V = aVl, a > a can achieve the desired L2h−gain
γ from w to z.

Proof. Note that the disturbance that maximizes the value function is in the form of
(4.13), i.e.

w⋆
i

(
a
∂Vl

∂x
, x

)
=
∣∣∣∣∣Lτwi

2γ2

∣∣∣∣∣
Lτwi

2−Lτwi

⌈
a
∂Vl

∂x
ei(x)

⌋ Lτwi
2−Lτwi

, i = 1, · · · , o .

With the control u⋆
(
a∂Vl

∂x
, x
)

from (5.13), which minimizes the value function, and the
disturbance w⋆

(
a∂Vl

∂x
, x
)

from (4.13), which maximizes the value function, the value
function can be written as

J

(
a
∂Vl

∂x
, x, u⋆, w⋆

)
= a

∂Vl

∂x
f(x) + ∥h(x)∥2

Lτy ,2 + ϵ ∥x∥2
Lτx,2

−
o∑

i=1
|a|

2
2−Lτui

(
|θ2|

−Lτui
2−Lτui − |γ2|

−Lτui
2−Lτui

)
Ci

∣∣∣∣∣∂Vl

∂x
gi(x)

∣∣∣∣∣
2

2−Lτui

,

(5.15)

where Ci is defined in Proposition 5.5, the three spaces defined in the proof of Propo-
sition 5.4 can be rewritten as

S+ ≜

{
∂Vl

∂x
f(x) ≥ 0

}
, S− ≜

{
∂Vl

∂x
f(x) < 0

}
, S0 ≜

{
∂Vl

∂x
g(x) = 0⊤

o

}
,

since fw (x, 0) = f(x) for system Σcaa (5.14). From homogeneous stabilizability, we
have S0 ⊂ S−, thus when x ∈ S+, the vector ∂Vl

∂x
g(x) can not be zero vector. When

x ∈ S−, let

M3 = min
x∈S−∩Su

−∂Vl

∂x
f(x) ,

M4 = max
x∈S−∩Su

∥h(x)∥2
Lτy ,2 + ϵ ∥x∥2

Lτx,2 ,

M5 = min
x∈S−∩Su

o∑
i=1

(
|θ2|

−Lτui
2−Lτui − |γ2|

−Lτui
2−Lτui

)
Ci

∣∣∣∣∣∂Vl

∂x
gi(x)

∣∣∣∣∣
2

2−Lτui

.
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5.6 Design of H∞h−controller

Since max (Lτu) < Lτxi
+ Ld < 2, when γ > θ, we have M5 ≥ 0, then (5.15) becomes

J

(
a
∂Vl

∂x
, x, u⋆, w⋆

)
≤ −aM3 +M4 − |a| 2

2−L min τu M5 .

If M5 = 0 (i.e. when ∂V
∂x
g(x) = 0⊤

o ), then a > a1 = M4/M3 guarantees that
J
(
a∂Vl

∂x
, x, u⋆, w⋆

)
≤ 0 when x ∈ S− ∩ Su. This is still true when M5 > 0. When

x ∈ S+, let

M6 = max
x∈S+∩Su

∂Vl

∂x
f(x) ,

M7 = max
x∈S+∩Su

∥h(x)∥2
Lτy ,2 + ϵ ∥x∥2

Lτx,2 ,

M8 = min
x∈S+∩Su

o∑
i=1

(
|θ2|

−Lτui
2−Lτui − |γ2|

−Lτui
2−Lτui

)
Ci

∣∣∣∣∣∂Vl

∂x
gi(x)

∣∣∣∣∣
2

2−Lτui

,

here M8 > 0 from the analysis above (i.e. ∂Vl

∂x
g(x, 0) ̸= 0⊤

o when x ∈ S+ and γ > θ),
then we have

J

(
a
∂Vl

∂x
, x, u⋆, w⋆

)
≤ aM6 +M7 − |a| 2

2−L min τu M8 .

Since the power on a of the third term is positive and bigger than 1 (simply τu > 0 and
min (Lτu) ≤ max (Lτu) < Lτxi

+Ld < 2), thus when a → ∞, J
(
a∂Vl

∂x
, x, u⋆, w⋆

)
→ −∞.

When a = 0, the right hand side is positive M7, from continuity of function, there exists
a a2, s.t. with a > a2, J

(
a∂Vl

∂x
, x, u⋆, w⋆

)
≤ 0 when x ∈ S+ ∩ Su.

Finally, we can guarantee J
(
a∂Vl

∂x
, x, u⋆, w⋆

)
≤ 0 for any γ > θ with the controller

(5.13) when a > max {a1, a2} on the homogeneous unit sphere Su. Since the value
function J

(
a∂Vl

∂x
, x, u⋆, w⋆

)
is homogeneous of degree 2, thus J

(
a∂Vl

∂x
, x, u⋆, w⋆

)
≤ 0 on

x ∈ Rn.

The condition of Proposition 5.6 is quite strict, which requires g(x) = e(x), under
usual case, not all γ > θ is possible with u⋆

(
a∂Vl

∂x
, x
)
. Actually, under such case of

g(x) = e(x), the best equivalent controller is u⋆
equiv(t) = −w(t), which is achievable

through a high enough gain a in (5.13).
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5 Homogeneous H∞−controller

5.7 Examples

Two simple examples are listed to illustrate the procedure of homogeneous H∞−controller
design.

5.7.1 Scalar System

For a homogeneously stabilizable scalar system

ẋ = f ⌈x⌋ 1
φ + gu+ ew ,

y = cx ,

where f > 0, g ̸= 0, φ > 0, with weight vectors scaled as Lτx = φL,Lτu = L,Lτw =
L,Ld = L (1 − φ) , Lτy = φL. The extended control output is z =

[
y θLu

]⊤
. Appar-

ently, d < 1. The scalar system is clearly unstable when u = 0.

Stabilizing controller

Choose the gain-tunable homogeneous controller candidate as

û(x) = −α sign(g) ⌈x⌋ 1
φ ,

where the closed loop system is

ẋ = (f − α |g|) ⌈x⌋ 1
φ + ew .

Apparently, when the gain of controller α > f/ |g|, such homogeneous controller Sta-
bilizes the system. Consider a homogeneous storage function of degree 2 − Ld as

Vl = φL

2 − L+ φL
|x|

2−L+φL
φL ,

From the condition of Theorem 5.3, 2 − Ld = 2 − L + φL > φL, thus L < 2. The
partial derivative of Vl is ∂Vl/∂x = ⌈x⌋ 2−L

φL . The Li derivative of the storage function
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is
∂Vl

∂x

(
f ⌈x⌋ 1

φ + gû+ ew
)

= (f − α |g|) |x| 2
φL + e ⌈x⌋ 2−L

φL w .

When w ≡ 0, it is negative definite when α > f/ |g|. Thus such storage function Vl is
a CLF.

The H∞h norm for a Stabilizing controller

After replacing the gain of the above Stabilizing controller by α = βf/ |g| , β > 1, the
closed loop system is now

ẋ = (1 − β) f ⌈x⌋ 1
φ + ew ,

y = cx .

Then according to Example in Section 4.8, the L2h−gain γ from w to y is

γw→y =
∣∣∣∣∣ e

(1 − β) f

∣∣∣∣∣
1
L

|c| 1
φL , (5.16)

such γw→y together with the storage function

Vw→y = 2φ |c| 2
φL

(2 − L+ φL) (β − 1) f |x|
2−L+φL

φL

satisfies the PDI (5.5). Further, the L2h−gain γ from w to φ is

γw→z =
∣∣∣∣∣ e

(1 − β) f

∣∣∣∣∣
1
L

|c| 2
φL + θ2

∣∣∣∣∣βfg
∣∣∣∣∣

2
L


1
2

, (5.17)

such γw→z together with the storage function

Vw→z =
2φ
(

|c| 2
φL + θ2

∣∣∣βf
g

∣∣∣ 2
L

)
(2 − L+ φL) (β − 1) f |x|

2−L+φL
φL

satisfies the PDI (5.5). Apparently, extending the output from y to φ increases the
value of the L2h−gain accordingly. Another point to note is that the lower limit of
γw→y → 0 in (5.16), as β → ∞. On the other hand, the γw→z in (5.17) has a non-trivial
limit, i.e. when β → ∞, γw→z → θ |e/g|1/L.
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5 Homogeneous H∞−controller

The H∞h controller

From (5.13), the H∞h controller for each V = aVl is

u⋆(Vx, x) = −
∣∣∣∣agL2θ2

∣∣∣∣
L

2−L

⌈x⌋ 1
φ . (5.18)

Then the closed loop system is

ẋ =
f − |g| 2

2−L

∣∣∣∣ aL2θ2

∣∣∣∣
L

2−L

 ⌈x⌋ 1
φ + ew .

The Li derivative is

∂Vl

∂x

(
f ⌈x⌋ 1

φ + gu⋆ + ew
)

=
f − |g| 2

2−L

∣∣∣∣ aL2θ2

∣∣∣∣
L

2−L

 |x| 2
φL + e ⌈x⌋ 2−L

φL w ,

when w ≡ 0, apparently for V to be a CLF for this u⋆(Vx, x) (5.18), f < |g| 2
2−L

∣∣∣ aL
2θ2

∣∣∣ L
2−L

is needed. That is for u⋆(Vx, x) in (5.18) to be Stabilizing, we need

a >
2f 2−L

L θ2

|g| 2
L L

. (5.19)

Note that this lower bound is still not the a in Theorem 5.3 or Proposition 5.1. Since
we need more than V being CLF, but also J (Vx, x, u

⋆, 0) ≤ 0 for the γ to exist with
this optimal controller (5.18) together with the CLF V .
With u⋆(Vx, x) in (5.18) and w⋆(Vx, x) in (4.13), similar to (5.15) the value function is
now

J (Vx, x, u
⋆, w⋆) = af |x| 2

φL +|c| 2
φL |x| 2

φL

−|a| 2
2−L

(∣∣∣θ2
∣∣∣ −L

2−L |g| 2
2−L −

∣∣∣γ2
∣∣∣ −L

2−L |e| 2
2−L

)∣∣∣∣L2
∣∣∣∣

L
2−L

−
∣∣∣∣L2
∣∣∣∣

2
2−L

 |x| 2
L ≤ 0 ,

which is ∣∣∣γ2
∣∣∣ −L

2−L ≤ −af − |c| 2
φL(∣∣∣L2 ∣∣∣ L

2−L −
∣∣∣L2 ∣∣∣ 2

2−L

)
|ae| 2

2−L

+
∣∣∣θ2
∣∣∣ −L

2−L

∣∣∣∣ge
∣∣∣∣ 2

2−L

.
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Thus we have

γ ≥


(∣∣∣L2 ∣∣∣ L

2−L −
∣∣∣L2 ∣∣∣ 2

2−L

)
|ae| 2

2−L

−
(
af + |c| 2

φL

)
|θ2| L

2−L +
(∣∣∣L2 ∣∣∣ L

2−L −
∣∣∣L2 ∣∣∣ 2

2−L

)
|ag| 2

2−L


2−L
2L

θ .

The smallest γ is when a → ∞, with γ ≥ |e/g| 1
L θ, the same as the previous subsec-

tion.

5.7.2 Chain Integrator

Consider a chain integrator
ẋ1 = x2 + u1 + w1 ,

ẋ2 = u2 + w2 .

As described in Section 5.2, the homogeneous degree of the chain integrator can be
freely assigned, denoted as d. Let the weight vectors be

Lτx = (L,L+ Ld) , Lτu = (L+ Ld, L+ 2Ld) , Lτw = (L+ Ld, L+ 2Ld) .

clearly, for all weight vectors to be positive, d > −0.5 is needed. Use the homogeneous
storage function of degree 2 − Ld.

V (x) = a1

(
L

2 − Ld
|x1|

2−Ld
L + a12 ⌈x1⌋

2−L−2Ld
L x2 + a2

L+ Ld

2 − Ld
|x2|

2−Ld
L+Ld

)
.

From the condition of Theorem 5.3, we need L < 2/ (max τx + d), i.e. when d ∈
(−0.5, 0), L < 2/ (1 + d), when d ≥ 0, L < 2/ (1 + 2d). Yet, probing the partial
derivative of the above storage function, we actually need L < 2/ (2 + 2d) for the
Lph−controller to be continuous.
If we can show that for some a12, a2 the above storage function is a CLF, then according
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to (5.13), the H∞h−controller has the form as

u⋆
1 = −

∣∣∣∣∣a1
L+ Ld

2θ2

∣∣∣∣∣
L+Ld

2−L−Ld
⌈
⌈x1⌋

2−L−Ld
L + a12

2 − L− 2Ld
L

|x1|
2−2L−2Ld

L x2

⌋ L+Ld
2−L−Ld

,

u⋆
2 = −

∣∣∣∣∣a1
L+ 2Ld

2θ2

∣∣∣∣∣
L+2Ld

2−L−2Ld ⌈
a12 ⌈x1⌋

2−L−2Ld
L + a2 ⌈x2⌋

2−L−2Ld
L+Ld

⌋ L+2Ld
2−L−2Ld

.

Such H∞h−controller stabilizes the system for some a1 > a1. Such a1 can be found
by verifying whether J (Vx, x, u

⋆, 0) ≤ 0 for all x ∈ Rn or simply on the surface of
∥x∥ = 1. And further, by calculating the γ⋆

L from Proposition 5.3 or Proposition 5.5
might suggest some preferred set of a1, a12, a2 which lead to a smaller L2h−gain for
closed loop system.
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6 Case Study: Continuous
Super-Twisting Like Algorithm

In this chapter, we present the analysis of the continuous super-twisting like algorithm
(CSTLA) in detail. Section 6.1 is an extension to the publication [64], in which the
traditional H∞−norm is applied to the super-twisting algorithm (STA). Yet this is
done with a state transformation, which allows the traditional H∞−norm from input
u to output y = Ex

1
τx being homogeneous with non-zero degree, thus is local. In this

chapter as well as in Appendix A.6 we apply a similar method on the CSTLA.
In Section 6.2, the material published in [61], where the homogeneous H∞−norm is
first introduced and applied to the CSTLA, is also extended to allow the scaling weight
vector and degree. Part of the materials in this Chapter are published in [60], where
some interesting figures not published are included in the appendix.

6.1 Traditional H∞−Norm Analysis with State
transformation

In [64, 63], the traditional H∞−norm is applied to the super-twisting algorithm (STA)
with a state transformation. In this section, a similar approach is presented on the
continuous super-twisting like algorithm.
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6.1.1 State Space Model of Continuous Super-Twisting Like
Algorithm

The state space model of the continuous super-twisting like algorithm is [56, 61]

ẋ1 = −k1 ⌈x1⌋
1

1−d + x2,

ẋ2 = −k2 ⌈x1⌋
1+d
1−d + b u.

(6.1)

This system is homogeneous with the weight vector of τx = (1 − d, 1) , τu = 1 + d and
d ∈ [−1, 1). Depending on d, the following cases can occur, when

d < −1, the vector field is unbounded (thus discontinuous) at x1 = 0.

d = −1, represents the discontinuous Super-Twisting Algorithm (STA), when ⌈·⌋0 is
understood in the sense of a differential inclusion, explained in A.2. When k2 > b

and k1 being greater than some lower bound [51], it provides convergence of the
state disregard of the uniformly bounded input |u| < b/k2.

d ∈ (−1, 0), is bounded input bounded state (BIBS) stable as long as k1, k2 > 0 [56].
When unperturbed, it provides finite-time convergence of the state from any
initial value x0 [3].

d = 0, is an LTI system. It is Hurwitz as long as k1, k2 > 0, by checking the real part
of the eigenvalues of the state matrix

A =
−k1 1
−k2 0

 .
Suppose its two eigenvalues are λ1λ2, then det (A) = λ1λ2 = k2 > 0 and
trace (A) = λ1 + λ2 = −k1 < 0. When u ≡ 0, it provides exponential stabil-
ity from any initial value x0 [3].

d ∈ (0, 1), is bounded input bounded state (BIBS) stable as long as k1, k2 > 0 [56].
When u ≡ 0, it provides asymptotic stability from any initial value x0 [3].
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6.1 Traditional H∞−Norm Analysis with State transformation

d ≥ 1, has unbounded (discontinuous) vector field at x1 = 0.

Therefore we are only interested in the case d ∈ [−1, 1), among which the Lph−norm
is well defined for d ∈ (−1, 1).

6.1.2 Parameter Relationship between k1, k2 in the CSTLA

Let us probe the system (6.1) in an different way and multiply the dynamics by a
constant κ > 0, then [35]

κẋ1 = −κk1 ⌈x1⌋
1

1−d + κx2,

κẋ2 = −κk2 ⌈x1⌋
1+d
1−d + κb u,

and after exchanging the states and input (x1, x2, u) with (x̂1, x̂2, û) = (κx1, κx2, κu),
we have

˙̂x1 = −κ −d
1−dk1 ⌈x̂1⌋

1
1−d + x̂2,

˙̂x2 = −κ−2d
1−dk2 ⌈x̂1⌋

1+d
1−d + b û.

(6.2)

If we start at (x1o, x2o) and input u(t) in system (6.1), on the other hand we start at
(κx1o, κx2o) and input with κu(t) in system (6.2). Consequently in (6.1), we would
end up with the same scaled trajectory (x̂1, x̂2, û) when replacing the parameters as
per (k1, k2) 7→

(
κ

−d
1−dk1, κ

−2d
1−dk2

)
. Thus in this homogeneous system, such parameter set

(k1, k2) is not unique, and can always be scaled in this manner and result in the same
trajectory by a linear mapping of the input and state. In view of this, the problem of
choosing the parameter set is turned into finding the relationship between the k1 and
k2 when one is fixed, as shown in [64].
Note that this scaling effect of the parameters has nothing to do with the homogeneous
dilation in (4.3) and (4.4). When the initial value and the input are linearly scaled by
κ, with such scaled parameter the trajectory is also linearly scaled by κ. Such linear
scaling with different parameter does not involve the scaling of the time. On the other
hand, when we apply homogeneous dilation to the initial value, input as well as time,
then the trajectory of the state is homogeneous dilated (as in (4.3), (4.4)) with the
same parameter.

Remark 6.1 (Scaling effect of parameter). In the linear case, i.e. d = 0, such pairing
is unique, since (k1, k2) 7→ (κ0k1, κ

0k2). Note that this scaling effect will also appear
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6 Case Study: Continuous Super-Twisting Like Algorithm

again later in the simulation. It is interesting to note that the BIBS property exists for
d ∈ (−1, 1) [56], where the STA needs to be excluded. Yet this parameter scaling effect
is only valid for a non-zero homogeneous degree, with the linear case singled out.
For the STA the pairing is

(
L

1
2k1, Lk2

)
. That is also in accordance with [64], where

the parameter set for the STA observer is k1 = 2
√
k2. This means that if k2 is picked κ

times larger, then k1 should be paired with κ 1
2 times larger, to have the system result in

the same linear-scaled trajectory, i.e. the same behaviour. The author of [32] offers the
widely used parameter set k1 = 1.5

√
b, k2 = 1.1b for the STA (for system (6.1) when

d = −1 and ∥u∥L∞ < 1), where scaling relationship is then mimicked through b.

6.1.3 Traditional H∞−norm with State Transformation

By the state transformation ξ = x
1

τx =
(
⌈x1⌋

1
1−d , x2

)⊤
, similar to the one first intro-

duced in [39], the transformed system reads

ξ̇ =
 1

1−d
|x1|

d
1−d ẋ1

ẋ2

 =
 1

1−d
|x1|

d
1−d

(
−k1 ⌈x1⌋

1
1−d + x2

)
−k2 ⌈x1⌋

1+d
1−d + bu


= |x1|

d
1−d

 1
1−d

(
−k1 ⌈x1⌋

1
1−d + x2

)
−k2 ⌈x1⌋

1
1−d

+
 0
bu


= |x1|

d
1−d

 −k1
1−d

1
1−d

−k2 0

 ξ +
 0
bu


= |x1|

d
1−d Aξ +Bu ,

with

A =
 −k1

1−d
1

1−d

−k2 0

 , B =
0
b

 .

For the preferred choice of the pair (k1, k2), now we take an H∞−norm perspective.
Here we shall define the traditional H∞−norms for d ∈ [−1, 1), see [64, 65],

λ = sup
∥u∥L2

̸=0,u∈U

∥y∥L2

∥u∥L2

, y = Eξ (6.3)

where E = diag
(√

E1,
√
E2
)
, E1, E2 > 0 for emphasis on which state to minimize.
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6.1 Traditional H∞−Norm Analysis with State transformation

When d ∈ (−1, 1), the system (6.1) is BIBS stable [56], so u is simply U = {u ∈ L2}.
When d = −1, the STA can reject non-vanishing input when |u(·)| < k2/b with k1 big
enough [51], which requires that the input be restricted to the following set [64]

U =
u ∈ L2

∣∣∣∣∣∣
k2 < |bu(t)| < M, t ∈ [t0, t1]
|bu(t)| ≤ k2, t ∈ R≥0\ [t0, t1]


for some finite bound M . Then the state is excited (escape the sliding surface) during
t ∈ [t0, t1], but still bounded. With u ∈ U , (6.3) is equivalent to

∥y∥2
L2

≤ λ2 ∥u∥2
L2
. (6.4)

Now use some storage functions V to define the respective value functions

J(Vx, x, u) = V̇ + E1 |x1|
2

1−d + E2 |x2|2 − λ2 |u|2

and assume that the evolution of the state starts at the origin, implying V (0) = 0.
Then ensuring J(Vx, x, u) ≤ 0 for all time we have

∫ T

0
J(Vx, x, u) dt = V (t) − V (0) + ∥y∥2

L2
− λ2 ∥u∥2

L2
≤ 0,

which leads to (6.4). Consequently, the smallest such λ is the respective norm for the
respective k1, k2. Thus, we explore the problem by finding the minimum λ that achieves
J(Vx, x, u) ≤ 0 for all time. Finally, we shall investigate the relationship of k1, k2 to the
λ that leads to a preferable parameter set.

Note that the value-function J(Vx, x, u) is not built homogeneous, if τu ̸= 1 (implicitly
d ̸= 0). The V used in the next section also disallows the value-function J(Vx, x, u) to
be homogeneous unless d = 0.

6.1.4 Algebraic Riccati Equation with Bounded States

The following derivation of analytical optimality is similar to the one in [64], however,
we extend the case from d = −1 to the range d ∈ [−1, 1).
Using a simple quadratic Lyapunov function V (x) = ξ⊤Pξ, with P = P⊤ > 0, the
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6 Case Study: Continuous Super-Twisting Like Algorithm

value function becomes

J(Vx, x, u) = 2ξ⊤P ξ̇ + ξ⊤E⊤Eξ − λ2u2

= |x1|
d

1−d ξ⊤
(
PA+ A⊤P + |x1|

−d
1−d E⊤E

)
ξ + 2ξ⊤PBu− λ2u2

=−λ2
∣∣∣u−λ−2B⊤Pξ

∣∣∣2+|x1|
d

1−d ξ⊤
(
PA+A⊤P+|x1|

−d
1−d E⊤E+|x1|

−d
1−d λ−2PBB⊤P

)
ξ .

(6.5)
Since the term −λ2|u− λ−2B⊤Pξ|2 ≤ 0, for J(Vx, x, u) ≤ 0 we need that the following
inequality

PA+ A⊤P + |x1|
−d

1−d E⊤E + |x1|
−d

1−d λ−2PBB⊤P ≤ 0 (6.6)

be satisfied. For d ∈ [−1, 0], clearly 1
2 ≥ −d

1−d
≥ 0. Note that when d = 0, which is the

linear case, the inequality (6.6) is free of x1. In this case, λ from (6.3) is of homogeneous
degree d = 0, which is constant.
For d ∈ [−1, 0] and u ∈ U , suppose that |x1(·)| < xb. Then this algebraic Riccati
inequality (ARI)

PA+ A⊤P + x
−d

1−d

b E⊤E + x
−d

1−d

b λ−2PBB⊤P ≤ 0 (6.7)

implies (6.6). Further solving the associated algebraic Riccati equation (ARE)

PA+ A⊤P + x
−d

1−d

b E⊤E + x
−d

1−d

b λ−2PBB⊤P = 0 (6.8)

leads to (6.7). In [4], for ARE (6.8) it is shown: If A is Hurwitz, E⊤E is positive
definite, and the pair (A,E) is observable, then there exists a λ⋆ such that, for every
λ > λ⋆, at least one positive definite solution P exists for (6.8), and for every λ < λ⋆,
such solution does not exist. When d = 0, this λ⋆ equals the H∞−norm, i.e. the mini-
mum number that keeps J(Vx, x, u) ≤ 0, ∀ (x, u) ∈ Rn+m when d ̸= 0, it serves as an
upper bound for the H∞−norm.
Note that the value function J(Vx, x, u) (6.5) is homogeneous only when d = 0. There-
fore most material in Chapter 4 does not apply here.

When d ∈ (0, 1), we have instead of (6.5)

J(Vx, x, u) =

−λ2
∣∣∣u−λ−2B⊤Pξ

∣∣∣2+ξ⊤
(

|x1|
d

1−d PA+|x1|
d

1−d A⊤P+ E⊤E+λ−2PBB⊤P
)
ξ .
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6.1 Traditional H∞−Norm Analysis with State transformation

Clearly d
1−d

> 0, the case of

|x1|
d

1−d PA+|x1|
d

1−d A⊤P+ E⊤E+λ−2PBB⊤P ≤ 0

is contrary to the case of d ∈ (−1, 0], since the matrix E⊤E + λ−2PBB⊤P is positive
definite and the matrix PA + A⊤P is negative definite. When |x1| is small, the above
inequality can not be true for any λ > 0.
This is in accordance to the analysis in Example 3.1, i.e. when the γ† in (3.3) (use
λ = γ† in (6.3)) is of positive homogeneous degree 1 − (1 + d) > 0 ⇒ d < 0, Γ in (3.4)
is bigger when the input is bigger. Also when γ† in (3.3) is of negative homogeneous
degree 1 − (1 + d) < 0 ⇒ d > 0, Γ in (3.4) is bigger when the input is smaller. Thus
though it is strange from its appearance, λ in (6.3) can be finite for case of d ∈ (0, 1)
only when the state does not converge to the equilibrium. Disregard of the fact of
BIBS properties, the traditional L2−gain does not apply unless we restrict the state
by |x1(·)| > xb. This can be guaranteed by a consistently exiting input, e.g. u(·) > ϵ,
however such u ̸∈ L2. Thus such section of d ∈ (0, 1) should be excluded.

6.1.5 Solution with the Hamilton Matrix

When d ∈ [−1, 0], the Hamilton matrix can be used to solve the ARE (6.8) as described
in Section 2.5.2, we have

H =

 A x
−d

1−d

b λ−2BB⊤

−x
−d

1−d

b E⊤E −A⊤



=



−k1
1−d

1
1−d

0 0
−k2 0 0 b2x

−d
1−d

b λ−2

−x
−d

1−d

b E1 0 k1
1−d

k2

0 −x
−d

1−d

b E2
−1
1−d

0

 .

If H has no eigenvalue on the imaginary axis, then the matrix P = P⊤ > 0 can
be formed by computing the eigenvectors of H with the method in A.1 [65]. The
eigenvalues of H are the zeros of the characteristic polynomial det (sI −H), which

145



6 Case Study: Continuous Super-Twisting Like Algorithm

expands into

s4 +
(
b2E2λ

−2x
−2d
1−d

b − 1
(1 − d)2k

2
1 + 2

1 − d
k2

)
s2

+ 1
(1 − d)2k

2
2 − 1

(1 − d)2

(
E2k

2
1 + E1

)
b2λ−2x

−2d
1−d

b = 0.

Representing any zero on the imaginary axis, set s = aj, a ∈ R, with j the imaginary
unit, we have

a4 −
(
b2E2λ

−2x
−2d
1−d

b − 1
(1 − d)2k

2
1 + 2

1 − d
k2

)
a2

+ 1
(1 − d)2k

2
2 − 1

(1 − d)2

(
E2k

2
1 + E1

)
b2λ−2x

−2d
1−d

b = 0.
(6.9)

Now, any parameter of (6.9) is a real number. Let W ≜ b2E2λ
−2x

−2d
1−d

b − 1
(1−d)2k2

1 + 2
1−d

k2

and S ≜ 1
(1−d)2k2

2 − 1
(1−d)2 (E2k

2
1 + E1) b2λ−2x

−2d
1−d

b , for brevity. Then the (real) solution
of (6.9) satisfies

a2 = W ±
√
W 2 − 4S
2 .

For non-existence of a non-negative real solution for a2, we can have both roots to be
complex, leading to Case I: W 2 − 4S < 0, S > 0, that is

(
b2E2λ

−2x
−2d
1−d

b − 1
(1−d)2k2

1 + 2
1−d

k2

)2
< 4

(1−d)2k2
2 − 4

(1−d)2 (E2k
2
1 + E1) b2λ−2x

−2d
1−d

b ,

k2
2 − (E2k

2
1 + E1) b2λ−2x

−2d
1−d

b > 0

or we may have two real negative roots, defining Case II: W 2 − 4S ≥ 0, S > 0, W < 0,
that is

(
b2E2λ

−2x
−2d
1−d

b − 1
(1−d)2k2

1 + 2
1−d

k2

)2
≥ 4

(1−d)2k2
2 − 4

(1−d)2 (E2k
2
1 + E1) b2λ−2x

−2d
1−d

b ,

k2
2 − (E2k

2
1 + E1) b2λ−2x

−2d
1−d

b > 0 ,

b2E2λ
−2x

−2d
1−d

b − 1
(1−d)2k2

1 + 2
1−d

k2 < 0 . (6.10)

The union of Case I and II is where H has no eigenvalues on the imaginary axis, i.e. also
not at the origin. The details of derivation may be found in the Appendix A.6.
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6.2 Homogeneous Lp−gain

Finally, we come to the conclusion that for any fixed k2, there exists an optimal λ⋆

which is
λ⋆ = |b|

k2

√
(2 (1 − d) k2E2 + E1)x

−2d
1−d

b , (6.11)

achieved at

k⋆
1 =

√√√√2 (1 − d) k2 − (1 − d)2 k2
2E2

2 (1 − d) k2E2 + E1
.

Note that k⋆
1 lies within the range of

k⋆
1 =


√

3
2 (1 − d) k2 when E1/E2 → 0√
2 (1 − d) k2 when E1/E2 → ∞

.

Thus the H∞−norm optimal range for k1 with fixed k2 is

k1 ≜

√
3
2 (1 − d) k2 ≤ k⋆

1 ≤
√

2 (1 − d) k2 ≜ k1 . (6.12)

Note that even though λ⋆ in (6.11) is local, i.e. with homogeneous degree −d, the range
of preferred parameter (6.12) is not dependent on state.

6.2 Homogeneous Lp−gain

A detailed analysis of the homogeneous L2−gain on the continuous super-twisting-like
algorithm (CSTLA) is presented in [61]. In this section, we extend the approach to
analysis of homogeneous Lp−gain.

6.2.1 Homogeneous Storage Function

We shall only briefly introduce the choice of storage function. Since the CSTLA contains
the linear case, where the H∞−norm is well studied, we provide, besides the table of
collected data, also the comparison of the nonlinear homogeneous system with the linear
system.
Since the STA has a discontinuous vector field and τu = 0 when d = −1, it is considered

147



6 Case Study: Continuous Super-Twisting Like Algorithm

for the Lph−gain analysis.
With the same SSM (6.1), from Theorem 4.2 as well as Definition 4.5, we must have
p > d + max τx. When d ∈ (0, 1), it is p > 1 + d, and when d ∈ (−1, 0), it is p > 1.
Similar to [58, 57, 61], we construct the following homogeneous storage function V of
degree p− d

V (x) = a1Vl(x) = a1

(
1 − d

p− d
|x1|

p−d
1−d − a12x1 ⌈x2⌋p−1 + a2

p− d
|x2|p−d

)
, (6.13)

with a1, a12, a2 > 0. It is continuously differentiable if p ≥ 2, and it is positive definite
if

a12 <

(
a2

p− 1

) p−1
p−d

,

which is obtained by the Young’s inequality. Its partial derivative is

V ⊤
x = a1

 ⌈x1⌋
p−1
1−d − a12 ⌈x2⌋p−1

−(p− 1)a12x1|x2|p−2 + a2 ⌈x2⌋p−d−1

 ,
the Lie derivative along the trajectories of (6.1) is

V̇ =a1

(
−k1 |x1|

p
1−d − a12 |x2|p + k1a12 ⌈x1⌋

1
1−d ⌈x2⌋p−1 + ⌈x1⌋

p−1
1−d x2

− k2a2 ⌈x1⌋
1+d
1−d ⌈x2⌋p−d−1 + k2(p− 1)a12 |x1|

2
1−d |x2|p−2 + ba2 ⌈x2⌋p−d−1 u

−b(p− 1)a12x1 |x2|p−2 u
)
.

Clearly, with p ≥ 2 the condition of Definition 4.5 is met for all d ∈ (−1, 1) (when
d ∈ (0, 1), p > 1 + d, and when d ∈ (−1, 0), p > 1). For negative definiteness of V̇ it
is necessary that k1, a12 > 0, which is satisfied by assumption. If p = 2 it is further
required that a12 < k1/k2, since the sixth term is combined into the first term. The
homogeneous PDI for this storage function is

J (Vx, x, u) = V̇ + ∥y∥p
τy ,p − γp∥u∥p

τu,p − ϵ∥x∥p
τx,p ≤ 0 .

For J (Vx, x, 0) < 0 when x ∈ R2\{0}, we need when p > 2 at least

a1 >
|E1|

p
1−d − ϵ

k1
, a12 >

|E2|p − ϵ

a1
,
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and when p = 2

a1 >
|E1|

2
1−d − ϵ

k1 − k2a12
, a12 >

|E2|2 − ϵ

a1
.

For the LTI system, obtained when d = 0, we have τy = τu = 1, and thus γ is
the classical Lp−gain. With the choice of p = 2, it provides an upper bound for the
traditional L2−gain. When p = 3 or p = 4, it provides an upper bound for the L3−gain
or L4−gain, respectively. When p = 2, the storage function (6.13) is in a quadratic
form, and we can compare our approach with the traditional ARE solution for linear
systems. For the LTI case we also include the results for L3−gain and L4−gains.

System (6.1) is affine in u, so (4.13) in Proposition 4.2 using the proposed V , becomes

u⋆(x, Vx) =
∣∣∣∣∣(1 + d)
pγp

∣∣∣∣∣
1+d

p−1−d ⌈
ba1

(
−(p− 1)a12x1 |x2|p−2 + a2 ⌈x2⌋p−d−1

)⌋ 1+d
p−1−d . (6.14)

Since there is only one input, for Lph−gain we can use (4.14) instead, i.e

γ⋆ =
∣∣∣∣∣1 + d

p

∣∣∣∣∣
1
p

∣∣∣∣∣∣∣max
∥x∥=1

(
1 − 1 + d

p

) ∣∣∣ba1
(
−(p− 1)a12x1 |x2|p−2 + a2 ⌈x2⌋p−d−1

)∣∣∣ p
p−1−d

−J (Vx, x, 0)

∣∣∣∣∣∣∣
p−1−d
p(1+d)

The choice of y = x1 or y = x2 depends on the use case of the algorithm. For controller
design we shall pick y = x1 and for observer design y = x2 [64]. In contrast to
subsection 6.1.4, where the solution of local λ for the ARI with bounded states (by
restricting input) is reasonable only when d ∈ [−1, 0], the γ⋆ is global for d ∈ (−1, 1).

6.2.2 The Lp−gain for Linear Case

For d = 0 system (6.1) is an LTI system. When choosing p = 2, the storage function in
(6.13) has homogeneous degree p = 2 − d = 2. So in this case, V is a quadratic storage
function x⊤Px used in linear H∞ analysis [4]. Therefore we can verify our approach of
the homogeneous search by comparing with the ARE in (2.8). A simple mapping from

149
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(6.13) to P is
P11 = a1

2 , P12 = −a1a12

2 , P22 = a1a2

2 .

After simulation (not shown here) the search in Theorem 4.2, Corollary 4.2 and optimal
storage function solved using Riccati equation (2.8) lead to the same γ† and optimal
storage function.

For the LTI case, the λ† associated to (6.3) has homogeneous degree 0, which equals to
γ′ in (3.20). From Appendix A.6 the analytical expression for λ† when d = 0 is

λ† =


b

√√√√(k2
1E2+2k2E2+2E1)

k2
1(4k2−k2

1) +

√
(k2

1E2+2k2E2+2E1)2+k2
1(4k2−k2

1)E2
2

k2
1(4k2−k2

1) k1 < kc
b

k2

√
k2

1E2 + E1 k1 ≥ kc

where

kc = 2k2 +

√
(E1 + 2k2E2)2 + 4k2

2E
2
2 − (E1 + 2k2E2)

2E2
.

For fixed k2, the optimal k1 and the corresponding optimal L2−gain λ† for any E1, E2

are

k†
1(k2) =

√
2k2 − k2

2E2

2k2E2 + E1
, λ†(k†

1, k2) = |b|
k2

√
(2k2E2 + E1) .

By taking the extremes of E1/E2, we obtain the H∞−norm optimal range as

k†
1 ≜

√
3
2k2, k

†
1 ≜

√
2k2.

Figure 6.1 shows λ† as a function of k1 for fixed k2 = b = 3. The left sub-figure shows
λ† from input u to output y = x1, and the right sub-figure to output y = x2 instead.
Figure 6.1 shows that in the linear case, with a fixed k2, the H∞−norm λ† to x1 stays
constant after k1 > k

†
1 (cross in left sub-figure), and λ† to x2 is convex for k1 = k†

1

(represented by a cross in right sub-figure). Since system (6.1) has a single input u, the
Bode plot’s maximum gain also shows the H∞−norm to channel x1 and x2 by selecting
y = x, reflecting Figure 6.1 in the frequency domain. The left sub-figure in Figure
6.2 shows that with k1 < k

†
1 the gain has a peak above 0 dB at mid-frequency. With

k1 ≥ k
†
1 the gain is reduced for higher frequency, yet the DC gain is not improved.

The right sub-figure in Figure 6.2 shows that the maximum gain gets a minimum at
k1 = k†

1, where larger k1 leads to a larger DC gain, and smaller k1 leads to a higher
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gain at higher frequency.
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Figure 6.1: Analytical H∞−norm λ† for system (6.1).
The parameters of the system are d = 0 (linear case) and k2 = b = 3
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Figure 6.2: Bode plot for system (6.1).
The parameters of the system are d = 0 (linear case) and k2 = b = 3

Also in Figure 6.1, the upper estimates for L3−gain and L4−gain are plotted. Note
that such value is derived from the storage function (6.13), when d = 0, p = 3, it is

V (x) = a1

(1
3 |x1|3 − a12x1 ⌈x2⌋2 + a2

3 |x2|3
)
,

when d = 0, p = 4, it is

V (x) = a1

(1
4 |x1|4 − a12x1 ⌈x2⌋3 + a2

4 |x2|4
)
,

There are apparently more possible candidates than the above two constructions of
storage function of degree 3 or 4, especially the cross term can be designed differently.
This highlights the importance of the choice of storage function, which affects how good
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6 Case Study: Continuous Super-Twisting Like Algorithm

the upper estimate of Lp−gain, collected from the PDI or the HJI using Proposition
4.1 or 4.2, actually is.

6.2.3 The L2h−gain for Nonlinear Case

For negative d, the upper estimate of L2h−gains γ⋆ collected from using Proposition
4.1 or 4.2 for the CSTLA are displayed in Figure 6.3, as presented in [61]. It shows the
behavior of the L2h−gains from input w to output y = x1 and y = x2, respectively, as
k1 varies, for 4 negative values of d = {−0.5, −0.75, −0.9, −0.99}, and for each d three
fixed values of k2 are used, given by k2 = {0.99b, b, 1.01b}. There is a clear similarity
to Figure 6.1. That is, the γ⋆ to y = x1 (i.e. E1 = 1, E2 = 0) stops decreasing when k1

is big enough, and the γ⋆ to y = x2 (i.e. E1 = 0, E2 = 1) is convex w.r.t. k1 for fixed
k2. A more detailed analysis can be found in [61].
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γ
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-0.75
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2.5 3 3.5 4 4.5 5

2

4

6

8

10

k1

y = x2

Figure 6.3: Collected γ⋆ for negative d with varied k1.
The parameters of the system are k2 = b = 3.

In Appendix A.6, the range of the preferred parameter set, similar to [64], is derived
as

k⋆
1 ≜

√
3
2 (1 − d) k2, k

⋆

1 ≜
√

2 (1 − d) k2.

Even though the derivation in [64] uses a homogeneous norm of non-zero degree, its
parameter range can be verified to be valid by the homogeneous H∞−norm as described
in [61].

Reflecting on the linear case, when k1 ≥ k
⋆

1, the worst input for both channels is the
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6.2 Homogeneous Lp−gain
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Figure 6.4: Collected γ⋆ for positive d with varied k1.
The parameters of the system are k2 = b = 3.

constant input. For (6.1) a constant u (·) = u leads to a new equilibrium at (x̄1, x̄2)
with

x̄1 =
(
b

k2
u

) 1−d
1+d

, x̄2 = k1

(
b

k2
u

) 1
1+d

.

Suppose the system start at x(0) = x̄, define the ratio of the L2h−norm of output over
input as

Γ(t) =
∥yT ∥τy ,L2

∥uT ∥τu,L2

, (6.15)

especially, denote

Γx1(t) =
∣∣∣∣∣∣
∫ T

0 ∥x̄1∥2
τx1 ,2 dt∫ T

0 ∥u∥2
τu,2 dt

∣∣∣∣∣∣
1
2

=
∥x̄1∥τx1 ,2

∥u∥τu,2
= |x̄1|

1
1−d

|u| 1
1+d

=
∣∣∣∣∣ bk2

∣∣∣∣∣
1

1+d

,

Γx2(t) =
∣∣∣∣∣∣
∫ T

0 ∥x̄2∥2
τx2 ,2 dt∫ T

0 ∥u∥2
τu,2 dt

∣∣∣∣∣∣
1
2

=
∥x̄2∥τx2 ,2

∥u∥τu,2
= |x̄2|

|u| 1
1+d

= k1

∣∣∣∣∣ bk2

∣∣∣∣∣
1

1+d

.

(6.16)

The value of (6.16) equals the upper bound of γ⋆ when k1 ≥ k
⋆

1 for negative d collected
in Figure 6.3 through Proposition 4.1 or 4.2, i.e.

∣∣∣∣∣ bk2

∣∣∣∣∣
1

1+d

= Γx1(t) ≤ γ′
x1 ≤ γ⋆

x1 =
∣∣∣∣∣ bk2

∣∣∣∣∣
1

1+d

k1

∣∣∣∣∣ bk2

∣∣∣∣∣
1

1+d

= Γx1(t) ≤ γ′
x2 ≤ γ⋆

x2 = k1

∣∣∣∣∣ bk2

∣∣∣∣∣
1

1+d

when k1 ≥ k
⋆

1 , d ≤ 0 .
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Thus we can conclude that [60]

γ′
x1 =

∣∣∣∣∣ bk2

∣∣∣∣∣
1

1+d

, γ′
x2 = k1

∣∣∣∣∣ bk2

∣∣∣∣∣
1

1+d

when k1 ≥ k
⋆

1 , d ≤ 0 . (6.17)

Moreover, the behavior of γ⋆ for positive values of d = {0.25, 0.5, 0.75} , k2 = b are
plotted in Figure 6.4, the cases of k2 = {0.99b, 1.01b} are omitted, since the differences
are too small, i.e. negligible. Note that a similar manner appears as in Figure 6.3, and
all three γ⋆ converge also to (6.17), yet with a bigger k1 as k⋆

1 as d grows bigger.
This again shows the great difference between the traditional L2−gain (in Section 6.1,
the case of d > 0 must be excluded) and the homogeneous L2−gain (the L2h−gain is
finite and global).

6.3 Simulated Results and Further Observation

In this section, some observations and intuitions are included. Every storage function
V mentioned is the optimal storage function that results in the smallest γ⋆ for each
setting of parameters.

6.3.1 Intuition from Figures

Define a function ζu(x) from (4.9), by maximizing its value w.r.t. input u for each fixed
state x

ζu(x) = max
∥u∥≠0

Vxf(x, u) + E2
1 |x1|

2
1−d + E2

2 |x2|
|u| 2

1+d

, ∀x ∈ Rn\{0} .

In contrast to Algorithm 4, where the right hand side is maximized on the unit sphere of
∥(x, u)∥2 = 1, for each fixed x ∈ Rn, the function ζu(x) might stop being homogeneous
w.r.t. u. In order to find the value of ζu(x), one possibility is presented in the following

• Denoting the dilated state as x̃κ = ντx
κ (x), find a κ, s.t. ∥x̃κ∥2 = 1.

• Divide the section [0, κ) into υ sections, e.g. set κi = i−1
N
κ for i = 1, · · · , υ
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6.3 Simulated Results and Further Observation

(i.e. ∥x̃κi
∥2 < 1 for i = 1, · · · , υ).

• For each i = 1, · · · , υ, set ui = ±
√

1 − ∥x̃κi
∥2

2 (i.e. ∥(x̃κi
, ui)∥2 = 1). Evaluate

ζ(x̃κi
, ui) and record the maximal value with its corresponding κi.

• The refined search to similar to Algorithm 5 around the κ ∈ [0, κ) that results in
the biggest value in the previous round.
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ζ u
(x
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Figure 6.5: Simulation results for ζu (x)
The parameters of the system are d = −0.5, E1 = 0, E2 = 1, k2 = b = 3,

k1 = 1
2

(
k⋆

1 + k
⋆

1

)
= 2.799.
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x
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Figure 6.6: Top view of Figure 6.5.
The parameters of the system are d = −0.5, E1 = 0, E2 = 1, k2 = b = 3,

k1 = 1
2

(
k⋆

1 + k
⋆

1

)
= 2.799.

In the Figure 6.5, the surface of ζu(x) is plotted, the top view of which is shown in Figure
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−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
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1
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ξ 1

Figure 6.7: Top view of Figure 6.6 with coordinate ξ = x
1

τx .
The parameters of the system are d = −0.5, E1 = 0, E2 = 1, k2 = b = 3,

k1 = 1
2

(
k⋆

1 + k
⋆

1

)
= 2.799. The trajectory of ζ(x, u) with input u(t) = sin (0.01t) is

also plotted in red.

6.6. After bending the figure with the coordinate of the companion vector ξ = x
1

τx ,
Figure 6.7 shows the pattern that is linearly shaped.

Figures 6.5, 6.6 and 6.7 reveal that for nonlinear system (6.1) the gain γ⋆ is not achiev-
able everywhere, and the input should maintain the trajectory of x along the peak of
ζu(x) in Figure 6.5, 6.6 and 6.7 as well as use some maximizing u⋆(x) in order to achieve
a higher Γx1 or Γx2 defined in (6.16). Note that in the linear case, Figure 6.7 with the
optimal storage function yields a uniformly achievable Γ = γ′ defined in (6.15) [4].

Figure 6.8 shows that with higher frequency ω in the sinusoidal input u(t) = sin(ωt),
the trajectory of ξ1/ξ2 takes more an “oval shape” (ξ = x

1
τx as defined in previous

subsection). Lower frequency ω leads to a trajectory of ξ1/ξ2 more aligned to a line,
more specifically, aligned to the peak of ζu in Figure 6.7 when k1 ≥ k

⋆

1 (the red line
in Figure 6.7 shows the trajectory of ξ with input u(t) = sin (0.01t)). Note that, with
the input u that achieves such Γ = γ′ as in (6.17) for some k1, k2, the same input also
achieves the same value of Γ for smaller k1 and the same k2.

More interestingly, as shown in Figure 6.10, even though Γ(t) in (6.15) is much smaller
than the γ⋆ for smaller k1 and the same k2 as shown in Figure 6.3. Take the setting
from Table 6.1 as an example. If we record the function of
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Figure 6.8: State trajectory under input u(t) = sin(ωt)
The parameters of the system are d = −0.5, k2 = b = 3, k1 = 1

2

(
k⋆

1 + k
⋆

1

)
= 2.799.

Table 6.1: Table of Γ and γ⋆.

Condition Γ with constant input γ⋆

E1 = 1, E2 = 0
∣∣∣ b

k2

∣∣∣ 1
1+d = 1 1.2846

E1 = 0, E2 = 1 k1
∣∣∣ b

k2

∣∣∣ 1
1+d = 2.0785 3.1814

The parameters of the system are d = −0.5, k2 = b = 3, k1 = 0.8k⋆
1 = 2.0785.

ζ(t) =
∣∣∣∣∣∣Vxf (x(t), u(t)) + E2

1 |x1(t)|
2

1−d + E2
2 |x2(t)|

|u(t)| 2
1+d

∣∣∣∣∣∣
1
2

,

as well as the values Γ(t) from (6.15) along with the trajectory x(t) and input u(t) =
sin (0.01t), which are shown in Figure 6.10, the value of Γ(t) fluctuates closely around
1 when E1 = 1, E2 = 0 or around 2.0785 when E1 = 0, E2 = 1. The values of ζ(t) also
fluctuate around such value in Figure 6.10, its magnitude of difference is bigger than
that of Γ(t), but still quite close (the relationship between Γ(t) and ζ(t) is discussed
in Remark 2.6 for LTI systems). This reflects a similar behavior as in Figure 2.6 in
Section 2.7 for LTI systems.

Figure 6.9 also shows that such function ζ(t) though does not travel along the peak
of ζu(x) (whose peak is γ⋆

x1 = 1.2846 and γ⋆
x2 = 3.1814 in Table 6.1), the trajectory of

ξ1/ξ2 is still traveling along some straight line, similar to Figure 6.7 when Γ(t) = γ⋆.
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Figure 6.9: Top view of Simulation results for ζu (ξ) for smaller k1.
The parameters of the system are d = −0.5, E1 = 0, E2 = 1, k2 = b = 3,

k1 = 0.8k⋆
1 = 2.0785 and trajectory of ζ(x, u) with input u (t) = sin (0.01t).

6.3.2 Worst Input that achieves γ′ in Simulation

Other than a constant input, we look for a different worst input that achieves Γ = γ′

as in (6.15). In order to avoid chattering from discretization, we construct such input
as

u(t) = W (D sign (sin(ωt)) + (1 −D) sin(ωt)) , (6.18)

where W is the magnitude of u and ω is the frequency in rad/s of the sine component. D
proportionates the ratio between the signum function and sine function. The numbers
Γx1 = Γ

(
4π
ω

)
from (6.15) when E1 = 1, E2 = 0 and Γx2 = Γ

(
4π
ω

)
when E1 = 0, E2 = 1

are listed in Table 6.2, which again agree with all the γ⋆ collected for all k1 ≥ k
⋆

1. Since
γ⋆ is the upper bound and the actual achieved ratio of L2h−norm, Γ(t) is the lower
bound of the L2h−gain. Thus we may say that under the range of k1 ≥ k

⋆

1, we reach
the true H∞h−norm γ′ = γ⋆ = Γ

(
4π
ω

)
with such non-constant worst input.
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Figure 6.10: The ζ(t) and Γ(t) as in Figure 6.9 with u (t) = sin (0.01t).
The parameters of the system are d = −0.5, E1 = 0, E2 = 1, k2 = b = 3,

k1 = 0.8k⋆
1 = 2.0785.

Table 6.2: Achieved Γ for k2 = b = 3 with u as (6.18).

d k1 W D ω Γx1 Γx2

0.75 10k⋆

1(d) = 12.25 1 0 0.002 0.9998 12.25
0.50 10k⋆

1(d) = 17.32 1 0 0.002 0.9998 17.32
0.25 10k⋆

1(d) = 21.21 1 0 0.002 0.9999 21.21
−0.75 10k⋆

1(d) = 32.40 0.5 0.45 0.002 0.9999 32.40
−0.90 10k⋆

1(d) = 33.76 0.7 0.65 0.002 0.9999 33.76
−0.99 10k⋆

1(d) = 34.55 0.98 0.96 0.0005 0.9960 34.42

6.3.3 Further Discussion of the Worst Input

The surface in Figure 6.12 and 6.13 show the value ζ(θ, u) of Proposition 4.1 for the
case of d = −0.5, k2 = b = 3, k1 = 1

2

(
k⋆

1 + k
⋆

1

)
= 2.799, i.e.

ζ(θ, u) = Vxf(x(θ, u), u) + E2
1 |x1(θ, u)| 2

1−d + E2
2 |x2(θ, u)|

|u| 2
1+d

,

on the unit sphere ∥(x, u)∥2 = 1 with coordinates from x to θ by

x1(θ, u) =
√

1 − u2 sin θ , x2(θ, u) =
√

1 − u2 cos θ ,

for all θ ∈ [−π, π] , u ∈ [−1, 1] \ {0}. Since ζ(x, u) is symmetric w.r.t. (x, u), i.e.
ζ(x, u) = ζ (−x,−u), only the part of θ ∈ [0, π] is shown in Figure 6.12, 6.13, since
ζ(θ, u) = ζ (θ + π,−u).

159



6 Case Study: Continuous Super-Twisting Like Algorithm

0 1,000 2,000 3,000

−0.5

0

0.5

t

u

0 1,000 2,000 3,000
−1

−0.5

0

0.5

1

t

ξ1
ξ2

Figure 6.11: Time simulation of the case d = −0.90 in Table 6.2.
The parameters of the system are d = −0.90, k2 = b = 3,

k1 = 10k⋆

1 = 34.55, E1 = 1, E2 = 0.
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Figure 6.12: ζ (θ, u) on the unit sphere for channel x1
The parameters of the system are d = −0.5, k2 = b = 3,

k1 = 1
2

(
k⋆

1 + k
⋆

1

)
= 2.799, E1 = 1, E2 = 0

Thereafter, use the x coordinate on the unit circle by

x1(θ) = sin θ , x2(θ) = cos θ , ∀ θ ∈ [−π, π] . (6.19)

and record the input that maximizes J (Vx, x, u) as

u⋆
γ(x) =

∣∣∣∣∣1 + d

2γ⋆2

∣∣∣∣∣Vx

0
b

 . (6.20)

Record the value of ζ
(
x, u⋆

γ(x)
)

of each such point. Then project each point
(
x, u⋆

γ(x)
)

with dilation ντ
κ back onto the unit sphere ∥(x̃, ũ⋆)∥ = 1. Since ζ is of homogeneous

degree 0, we have ζ
(
x, u⋆

γ

)
= ζ

(
x̃, ũ⋆

γ

)
. Then rewrite the point

(
x̃, ũ⋆

γ

)
into coordinate
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Figure 6.13: ζ (θ, u) on the unit sphere for channel x2
The parameters of the system are d = −0.5, k2 = b = 3,

k1 = 1
2

(
k⋆

1 + k
⋆

1

)
= 2.799, E1 = 0, E2 = 1

(
θ̃, ũ⋆

γ

)
by θ̃ = tan−1 (x̃1/x̃2) and plot ζ

(
θ̃, ũ⋆

γ

)
in Figure 6.12, 6.13 with red solid line.

At last, another brown dashed line is plotted. First, since the system has only one
input u, calculate ζ(θ) from (4.14) with the same coordinate (6.19) as

ζ(θ) =

∣∣∣∣∣∣∣∣
(

1+d
2

) (
1 − 1+d

2

) ∣∣∣Vx [0, b]⊤
∣∣∣ 2

1+d

−J (Vx, x, 0)

∣∣∣∣∣∣∣∣ .
Then instead of using u⋆

γ(x) from (6.20) with fixed γ⋆, we use

u⋆
ζ(x) =

∣∣∣∣∣1 + d

2ζ(θ)

∣∣∣∣∣Vx

0
b

 .
The rest is similar to the procedure for the red solid line. The value of ζ(θ̃) together
with the point of

(
x̃, ũ⋆

ζ

)
on the unit sphere are plotted in brown dashed line.

It is clear that the brown line moves along the peak of positive ζ(θ, u⋆
ζ) along θ, whereas

the red line ζ(θ, u⋆
γ) only touches the peak at three points. Here a sudden change of u⋆

ζ

is observed when the term −a12x1 +a2 ⌈x2⌋1−d in (6.14) with p = 2 changes sign. When
the actual ζ(θ) at a certain state is smaller than γ⋆, then the input u needs to be larger
than u⋆

γ for the trajectory to travel on the peak of ζ(θ, u). Therefore, different from the
linear case, u in (4.13) using u⋆

γ might not lead to the worst input for all cases.
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6 Case Study: Continuous Super-Twisting Like Algorithm

6.3.4 Shifted Frequency Phenomenon

In the left and right plot of Figure 6.14, for d = −0.5 and k1 = 3, k2 = b = 3, the
following function

Γ(ω) = ∥y∥τy ,L2

∥ (κ sin(ωt))T ∥τu,L2

, T = 4π
ω
, (6.21)

is plotted for the outputs y = x1 and y = x2, respectively, and the amplitude of the
input signal u = κ sin(ωt) is chosen from the set κ = {0.5, 1, 2, 3} and its frequency ω
ranges from 0.001 rad/s to 100 rad/s. From Figure 6.3 we obtain that the value of γ⋆

to x1 is 1, and to x2 is 3. From Figure 6.14 it is apparent that these gains are attained
at a low frequency of the input signal.

Figure 6.14 illustrates another interesting phenomenon. Recall that for homogeneous
systems a dilated input signal (3.1) causes a dilated output not only in amplitude, but
also in time. Thus, with negative d, if the amplitude of the input u is increased, and if
the same value of Γ from (6.21) is to be resulted, then the frequency of the increased-
magnitude input u needed to be diminished, as is observed in Figure 6.14. Note that
when the amplitude of the input is increased, the frequency plot is shifted to the left,
i.e. an input with lower frequency and bigger amplitude achieves the same Γ in (6.21)
with negative d.

On the other hand, this is reversed for positive d, since τt = −d < 0. Namely, when the
amplitude of the input is increased, the frequency plot is shifted to the right, i.e. an
input with higher frequency and bigger amplitude achieves the same Γ in (6.21) with
positive d. This is shown in Figure 6.15.

The simulations were carried out with forward Euler method with sampling period of
10−5s.
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Figure 6.14: Γ(ω) in (6.21) for x1 (left) and x2 (right) in response to input u(t) =
κ sin(ωt), for different amplitudes and a range of frequencies.

The parameters of the system are d = −0.5 and k1 = 3, k2 = b = 3.
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Figure 6.15: Γ(ω) in (6.21) for ξ1 (left) and ξ2 (right) in response to input u(t) =
κ sin(ωt), for different amplitudes and a range of frequencies.

The parameters of the system are d = 0.5 and k1 = 3, k2 = b = 3.
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7 Conclusion and Future Works

7.1 Conclusion

Homogeneous systems and some sliding mode algorithms also built homogeneous with
negative homogeneous degree are becoming more popular. When a homogeneous sys-
tem has negative homogeneous degree, finite-time convergence without input (unper-
turbed) is guaranteed. Most studies on such systems focus on building homogeneous
closed loop systems and show stability for some set of parameter (controller or observer
gain) with Lyapunov’s direct method. In this case, the range of parameters which
guarantees asymptotic stability in the closed loop system is studied.

The H∞−analysis represents a systematic method to design a controller or observer
that minimizes the worst L2−gain from input to output. This is also a criterion for
gain selection, i.e. instead of providing a range of gain s.t. the closed loop system
is asymptotically stable, it provides some optimal gain that minimizes the maximum
L2−gain for the worst possible input. When structured uncertainty exists, µ−synthesis
(or called D-K iteration, D for D-scaling and K for H∞−controller or observer design)
guarantees further robust performance.

However, the traditional H∞−norm or Lp−gain applies to homogeneous systems only
when the homogeneous systems’ input and output have the same weight vectors. Or
else, the Lp−gain can be unbounded for arbitrary homogeneous system. In order for
the H∞−norm or Lp−gain analysis to be applicable for arbitrary continuous homo-
geneous systems, the homogeneous Lp−norm and the homogeneous Lp−gain (when
p = 2, homogeneous H∞−norm), which remains constant with homogeneous dilation,
are introduced in this thesis.
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In this thesis,

• the homogeneous Lp−space is shown to be a linear signal space.

• all continuous asymptotically stable homogeneous systems are shown to be homo-
geneous Lp−stable, including homogeneous L∞−stable and Input-to-State stable.

• several systematic methods to calculate such homogeneous Lp−gain are proposed,
for both input affine system and non-affine system. The homogeneous L∞−gain
and homogeneous Input-to-State gain are also included.

• a continuous homogeneous stabilizing controller is proposed for any continuous
homogeneously stabilizable system, which can ensure the homogeneous Lp−gain
of the closed loop system from input to extended output being less than some
finite number.

• the additive inequality of homogeneous Lp−norm of two signals is derived, which
allows to derive the homogeneous small gain theorem, i.e. for interconnected ho-
mogeneous systems.

With such tools, we can provide guidance for preference of parameters that ensure
a smaller homogeneous Lp−gain for the closed loop system, among all parameters
that guarantees asymptotic stability. With the homogeneous small gain theorem, such
homogeneous Lp−gain can be applied to a cascaded system of homogeneous systems,
whose degree are allowed to vary, yet the weight should be matched.

7.2 Future Works

The future works include:

• To include discontinuous vector fields, e.g. differential inclusion described in A.2,
whose weight vector of the input and the output are non-zero. One example is
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7.2 Future Works

the Super-Twisting algorithm with noise, i.e.

ẋ1 = −k1 ⌈x1 + u2⌋
1
2 + x2 + u1,

ẋ2 = −k2 ⌈x1 + u2⌋0 ,
(7.1)

where we can understand x1 +u2 as the measured x1 polluted with noise u2. Here
the weight vector and degree are τx = (2, 1) , τu = (1, 2) , d = −1. This allows
the definition of H∞−norm from Definition 3.7. Yet, in the Definition 4.3, we
need to separate the Partial Differential Inequality into two subspaces, one when
the vector field is continuous (x1 + u2 ̸= 0 for (7.1)) and the discontinuous case
(x1 +u2 = 0 for (7.1)). Note that ⌈·⌋0 is a set-valued function as discussed in A.2
and the treatment need to cover all possible values of such function.

• Possible homogeneous H∞−observer designs or coupled with homogeneous H∞−
controller designs.

• Further studies of candidate Lyapunov functions. For LTI systems, a quadratic
Lyapunov function serves well for the H∞−controller or observer design. In
Proposition 5.1, it is clear that the control Lyapunov function determines the
structure of the homogeneous H∞−controller. Yet for homogeneous systems,
except for the homogeneous degree of the Lyapunov function which is set, the
structure is pretty free to choose.
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8 Zusammenfassung

Homogene Systeme werden wissenschaftlich zunehmend populärer, u.a. weil unter an-
derem einige Sliding-Mode-Algorithmen homogen (mit negativen Homogenitätsgrad)
sind. Wenn ein homogenes System einen negativen Homogenitätsgrad hat, kann eine
endliche Konvergenzzeit im ungestörten Fall garantiert werden. Die meisten Unter-
suchungen zu solchen Systemen konzentrieren sich auf den Aufbau des homogenen
Systems im geschlossenen Regelkreis und weisen Stabilität für einen bestimmten Pa-
rametersatz (Regler- oder Beobachterverstärkung) mittels der direkten Methode von
Lyapunov nach. In diesem Fall wird der Parameterbereich untersucht, der die asymp-
totische Stabilität im geschlossenen Regelkreis garantiert.

Die H∞−Analyse stellt eine systematische Methode dar, um einen Regler oder
Beobachter zu entwerfen, der die L2−Verstärkung vom Eingang zum Ausgang min-
imiert. Dadurch wird auch ein Kriterium zur Wahl der Verstärkung gegeben. Anstatt
einen Verstärkungsbereich bereitzustellen, in dem das System im geschlossenen Kreis
asymptotisch stabil ist, liefert die Methode eine optimale Verstärkung, die die maximale
L2−Verstärkung für den denkbar schlechtesten Eingang minimiert. Wenn es strukturi-
erte Unsicherheit gibt, garantiert die µ−Synthese (auch D-K Iteration genannt) eine
weiterhin robuste Performanz.

Allerdings gilt die klassische H∞−Norm oder Lp−Verstärkung nur dann für homogene
Systeme, wenn Eingang und Ausgang der homogenen Systeme die gleichen Gewichtsvek-
toren haben. Andernfalls kann die Lp−Verstärkung für beliebige homogene Systeme
unbeschränkt sein. Zur Anwendung der H∞−Norm- oder Lp−Verstärkungs-Analyse
für beliebige kontinuierliche homogene Systeme werden die homogene Lp−Norm sowie
die homogene Lp−Verstärkung (bei p = 2 homogene H∞−Norm), die bei homogener
Dilatation konstant bleibt, in dieser Arbeit vorgestellt.
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8 Zusammenfassung

In dieser Doktorarbeit

• wird gezeigt, dass der homogene Lp−Raum ein linearer Signalraum ist.

• wird gezeigt, dass alle stetigen asymptotisch stabilen homogenen Systeme sowohl
homogen Lp−stabil, als auch homogen L∞−stabil und Eingangs-/Zustands-stabil
sind.

• werden mehrere systematische Methoden zur Berechnung einer solchen homo-
genen Lp−Verstärkung vorgestellt, sowohl für eingangsaffine Systeme als auch
für nicht-affine Systeme. Die homogene L∞−Verstärkung und die homogene
Eingangs-/Zustands-Verstärkung sind ebenfalls berücksichtigt.

• wird für jedes stetige homogen stabilisierbare System ein stabilisierender stetiger
homogener Regler vorgeschlagen, der sicherstellen kann, dass die homogene Lp−
Verstärkung des geschlossenen Regelkreises vom Eingang zum erweiterten Aus-
gang kleiner als ein endlicher Wert ist.

• wird die additive Ungleichung der homogenen Lp−Norm zweier Signale hergeleitet,
was das homogene Small-Gain Theorem ermöglicht, z.B. für ein vernetztes homo-
genes System.

Mit diesen Werkzeugen können wir für alle Parameter, die asymptotische Stabilität
garantieren, eine Anleitung zur Parameterauswahl geben, die eine kleinere homogene
Lp−Verstärkung für das System im geschlossenem Regelkreis gewährleistet. Mit dem
homogenen Small-gain Theorem kann eine solche homogene Lp−Verstärkung auf eine
Kaskade homogener Systeme angewendet werden, deren Grad variieren darf, wobei
deren Gewichtung jedoch passend sein sollte.
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A.1 Recovering storage function from the Hamiltonian
Matrix

The Hamiltonian matrix H is similar to its negative transpose [65], i.e. with the imag-
inary matrix

J =
0 −I
I 0

 ,

satisfying J2 = −I, we have

J−1HJ = −JHJ = −H⊤ .

Therefore the eigenvalue of H is symmetric w.r.t. the origin (i.e. if λ is an eigenvalue of
H, then −λ is also an eigenvalue ofH). Now collect all the eigenvectors corresponding to
eigenvalues with negative real part of H (this rules out the case when H has eigenvalues
on imaginary axis, i.e. the real part of some λ is zero). Stack the eigenvalues with
negative real part into diagonal matrix Λ and the eigenvectors column-wise in matrixP1

P2

. If P1 is invertible then P = P2P
−1
1 is the solution of the ARE (2.14), since

 A+BR−1D⊤C BR−1B⊤

−C⊤
(
I +DR−1D⊤

)
C −

(
A+BR−1D⊤C

)⊤

P1

P2

 =
P1

P2

Λ ,
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which expands into
(
A+BR−1D⊤C

)
P1 +BR−1B⊤P2 = P1Λ ,

−C⊤
(
I +DR−1D⊤

)
CP1 −

(
A+BR−1D⊤C

)⊤
P2 = P2Λ .

Premultiplying the first equation by P−1
1 and replacing Λ into the second equation, we

have

−C⊤
(
I+DR−1D⊤

)
CP1−

(
A+BR−1D⊤C

)⊤
P2

= P2P
−1
1

(
A+BR−1D⊤C

)
P1+P2P

−1
1 BR−1B⊤P2 .

Postmultiply the above equation by P−1
1 again and we get the ARE (2.14)

P
(
A+BR−1D⊤C

)
+
(
A+BR−1D⊤C

)⊤
P + PBR−1P + C⊤

(
I +DR−1D⊤

)
C = 0 .

with P = P2P
−1
1 .

For this we need to pay attention to the calculation error. For example, in Matlab©

the eigenvalues on the imaginary axis still has real part about 10−11 due to calculation
error. While in Maple, the error is improved to about 10−13. So in the simulation and
examples of this thesis, a bound of 10−7 is set as a threshold for determining whether
the eigenvalue is on imaginary axis.

A.2 Solution of Discontinuous Vector Filed in Filippov’s
Sense

Though in this thesis, the homogeneous Lp−gain applies on continuous homogeneous
systems, we would also investigate some homogeneous systems with discontinuous vec-
tor field, and study some local H∞−norm of non-zero degree for such system [64, 63].
Therefore, we need to explain the existence of solution of such discontinuous vector
field.
If a vector field is discontinuous, the solution can not be understood in the usual sense.

172



A.2 Solution of Discontinuous Vector Filed in Filippov’s Sense

Take the famous scalar dynamics example in [18]

ẋ(t) = 1 − 2 sign (x(t)) . (A.1)

When x(t) < 0, the dynamics is ẋ(t) = 3 and when x(t) > 0, the dynamics is ẋ(t) =
−1. In both cases, the trajectory converges to x = 0 and can not escape from this
equilibrium. Yet the derivative at this equilibrium is ẋ(t)|x(t)=0 = 1, if the vector
field is understood as a single-valued function. In order to reconcile this conflict of
uniqueness of solution, Filippov generalizes the discontinuous single-valued vector field
to differential inclusion, then the solution can be established in the usual sense [18].
(A.1) can be denoted as

ẋ(t) = 1 − 2 ⌈x(t)⌋0 ,

or ẋ(t) ∈ 1 − 2 ⌈x(t)⌋0 .

It has continuous right hand side whenever x(t) ̸= 0. Here x(t) = 0 serves as a
hypersurface, in this case a one-dimensional line, between two spaces, where in the
two spaces the vector field is continuous. Outside the hypersurface, the existence and
uniqueness of solution is guaranteed ([31, Theorem 3.1] or [11, Theorem 1.1]). If the
vector field in small neighbourhood outside the hypersurface are both pointing towards
to the hypersurface, then vector field can be understood as

ẋ(t) = α · 3 + (1 − α) · −1 = 0 ,

where α = 3
3 − (−1) = 3

4

and the solution of (A.1) stays on the hypersurface after reaching it. On the other
hand, for a non-autonomous system, i.e. with input u, e.g.

ẋ(t) = bu(t) − 2 ⌈x(t)⌋0 , (A.2)

bound b|u(t)| < 2 is necessary for the solution to stay on the hypersurface. If b|u(t)| > 2,
the solution leaves the hypersurface into the space that u(t) directed.
One example of such differential inclusion dynamics (A.2) that exists in nature is a
dry friction force [31], where the state x can be interpreted as the speed of a mass.
When the force horizontal is within the limit of dry frictional force, a static mass does
not move (i.e. stay in the hypersurface of x(t) = 0). A mass with initial speed and
horizontal external force less than the limit of frictional force slows down and stops
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(i.e. converge to and stay in the hypersurface of x(t) = 0). When the mass is static
and the horizontal external force exceeds the dry frictional force, the mass will start
moving in the direction of the force (i.e. exits the hypersurface of x(t) = 0). Note that
the dry friction force under static or non-static state can vary.

A.3 Jensen’s Inequality

Lemma A.1 (Jensen’s inequality [10]). If I is an interval in R on which f (x) is
convex, if n ≥ 2, w is a positive n-tuple with ∑n

i=1 wi = 1, x an n-tuple elements in I,
then

f

(
n∑

i=1
wixi

)
≤

n∑
i=1

wif(xi)

If f is strictly convex, then the inequality is strict unless x = ℓ1n.

First of all, choose f (·) = | · |p, p ≥ 1, which is a convex function, and choose w =
(0.5, 0.5)⊤ , x = (2a, 2b)⊤ and a, b non-negative, we have

(a+ b)p ≤ 2p−1 (ap + bp) . (A.3)

Thereafter, from [43, Theorem 5.26] in the section of Jensen-Petrović’s Inequality, we
have the following lemma

Lemma A.2 ([43]). Let w, x be two non-negative n-tuples, suppose xi ∈ [0, a],
(i = 1, · · · , n) and

n∑
i=1

wixi ≥ xj

for all j = 1, · · · , n, as well as

n∑
i=1

wixi ∈ [0, a] .

If f (x) /x is a decreasing function, then

f

(
n∑

i=1
wixi

)
≤

n∑
i=1

wif(xi) . (A.4)
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A.3 Jensen’s Inequality

If f (x) /x is an increasing function, then the reverse of inequality (A.4) holds.

Let p1 > p2 > 0, and f (·) = | · |
p1
p2 , then the function

f (x)
x

= ⌈x⌋
p1−p2

p2

is increasing w.r.t. x ∈ Rn (since p1 > p2). Using Lemma A.2 with choice of w = 1n

(the two conditions are met with a = ∞), we have

(
n∑

i=1
|xi|p2

) p1
p2

= f

(
n∑

i=1
|xi|p2

)
≥

n∑
i=1

f(|xi|p2) =
n∑

i=1
(|xi|p2)

p1
p2 =

n∑
i=1

|xi|p1 ,

i.e. (
n∑

i=1
|xi|p2

) 1
p2

≥
(

n∑
i=1

|xi|p1

) 1
p1
. (A.5)

This indicates that for a vector x ∈ Rn, p1 > p2 > 0, we have ∥x∥p2 ≥ ∥x∥p1 where the
p−norm is defined in (2.1). In another word, for p ≥ 1, we have for positive a, b

(ap + bp)
1
p ≤ a+ b , for p ≥ 1 . (A.6)

Combined with (A.3), we have

ap + bp ≤ (a+ b)p ≤ 2p−1 (ap + bp) , for p ≥ 1 .

On the other hand, for 0 < p < 1 and positive a, b, we have

(ap + bp)
1
p ≥ a+ b , for 0 < p < 1 ,

which is
(a+ b)p ≤ (ap + bp) , for 0 < p < 1 . (A.7)

Thus combining the case of 0 < p < 1 and p ≥ 1, we have for positive a, b

(a+ b)p ≤ max
{
1, 2p−1

}
(ap + bp) , for p > 0 . (A.8)
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A.4 Hölder’s Inequality

As a special form of [43, Theorem 4.12] we recall

Lemma A.3 (Hölder’s inequality [43]). If f, g are measurable real functions, then the
following inequality holds

∫ ∞

0
|f(t)g(t)| dt ≤

(∫ ∞

0
|f(t)|p dt

) 1
p
(∫ ∞

0
|f(t)|q dt

) 1
q

, (A.9)

for positive real numbers p, q satisfying p−1 + q−1 = 1.

A.5 Young’s Inequality

Young’s inequality [38], for any positive real numbers a, b, c, and positive real numbers
p, q satisfying p−1 + q−1 = 1, the inequality

ab ≤ cp

p
ap + c−q

q
bq

is satisfied.

A.6 Derivation of λ⋆ in Subsection 6.1.5

Similar to the derivation in [64], the derivation of λ⋆ in Section 6.1.5 for the Continuous
Super-Twisting Algorithm (CSTLA) is described in this section.
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A.6 Derivation of λ⋆ in Subsection 6.1.5

Sectional representation of λ⋆

From the first inequality in Case II, (6.10), we have

k2
1

(
k2

1 − 4 (1 − d) k2
)
λ4 +

(
2k2

1E2 + 4k2(1−d)E2 + 4E1
)

(1−d)2b2λ2x
−2d
1−d

b

+ (1 − d)4 b4E2
2x

−4d
1−d

b ≥ 0 .
(A.10)

Since d ∈ [−1, 1), thus 1 − d ∈ (0, 2] > 0. When k2
1 ≥ 4 (1 − d) k2, all terms are non-

negative. Thus Case II is automatically satisfied, when Case I is infeasible.
When k2

1 < 4 (1 − d) k2, the left hand side of (A.10) is a downward parabola w.r.t. λ2,
there exists only one positive solution of the equation, which is

λ1(k1, k2) ≜ (1 − d) |b|x
−d

1−d

b

(
(k2

1E2 + 2k2 (1 − d)E2 + 2E1)
k2

1 (4 (1 − d) k2 − k2
1)

+

√
(k2

1E2 + 2k2 (1 − d)E2 + 2E1)2 + k2
1 (4 (1 − d) k2 − k2

1)E2
2

k2
1 (4 (1 − d) k2 − k2

1)


1
2

.

(A.11)

For (A.10) to hold we need 0 ≤ λ ≤ λ1.
Combing both sections of k1, both cases for the first inequality are now

Case I :λ > λ1 and k2
1 < 4 (1 − d) k2 ,

Case II :

none when k2
1 ≥ 4 (1 − d) k2 ,

0 ≤ λ ≤ λ1 when k2
1 < 4 (1 − d) k2 .

For the other two inequalities, first denote two positive number as

λ2(k1, k2) ≜
|b|
k2
x

−d
1−d

b

√
(k2

1E2 + E1) ,

λ3(k1, k2) ≜ (1 − d) |b|x
−d

1−d

b

√
E2

k2
1 − 2 (1 − d) k2

, when k2
1 > 2 (1 − d) k2 .

With the three inequalities, the two cases are equivalent to

Case I :

λ > max {λ1, λ2}
k2

1 < 4 (1 − d) k2
, Case II :


λ ≤ λ1 ,when k2

1 < 4 (1 − d) k2

λ > max {λ2, λ3}
k2

1 > 2 (1 − d) k2

.
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Among which, when 2 (1 − d) k2 < k2
1 < 4 (1 − d) k2, both case can be rewritten as

Case I : λ > max {λ1, λ2} ,
Case II : λ1 ≥ λ > max {λ2, λ3} .

Since the logic for Case I and Case II is “or”, thus the smallest λ⋆ s.t. Case I or Case
II is true can be rewritten as

λ⋆ =


max {λ1, λ2} when k2

1 ≤ 2 (1 − d) k2 ,

max {λ2,min {λ1, λ3}} when 2(1−d)k2 < k2
1 < 4(1−d)k2 ,

max {λ2, λ3} when k2
1 ≥ 4 (1 − d) k2 .

(A.12)

Further λ2 ∝ k1 and λ2 ∝ k−1
2 as well as λ3 ∝ k−1

1 and λ3 ∝ k2. They are both
monotonic in k1 and k2 in the contrary way. The crossing point between λ2 and λ3

w.r.t. k1 for fixed k2 lies at

k2
1,23(k2) = 2 (1 − d) k2

+

√
(E1 + 2 (1 − d) k2E2)2 + 4 (1 − d)2 k2

2E
2
2 − (E1 + 2 (1 − d) k2E2)

2E2
.

Clearly, k2
1,23(k2) > 2(1−d)k2, thus the crossing point between λ2 and λ3 w.r.t. k1 for

fixed k2 is valid (i.e. λ3 exists).

Convexity of λ1 on k1 with fixed k2

DenoteX(k1, k2) = k2
1E2+2k2 (1 − d)E2+2E1 > 0 and Z(k1, k2) = k2

1 (4 (1 − d) k2 − k2
1).

Then (A.11) becomes

λ1(k1, k2) = (1 − d) |b|x
−d

1−d

b

√√√√X +
√
X2 + ZE2

2

Z
.

By taking partial derivatives of λ2
1 w.r.t. k1 and k2 we study whether it is convex in k1

or k2. To this end, denote

Xk1 = ∂X

∂k1
= 2k1E2, Xk2 = ∂X

∂k2
= 2 (1 − d)E2 ,

178



A.6 Derivation of λ⋆ in Subsection 6.1.5

and
Zk1 = ∂Z

∂k1
= 8 (1 − d) k1k2 − 4k3

1

Zk2 = ∂Z

∂k2
= 4 (1 − d) k2

1 .

Then the partial derivatives of λ2
1 against k1 and k2 are

∂λ2
1

∂k1
= (1 − d)2 b2x

−2d
1−d

b

(ZXk1 − Zk1X)
(

2
√
X2 + ZE2

2 + 2X
)

− E2
2ZZk1

2
√
X2 + ZE2

2Z
2

∂λ2
1

∂k2
= (1 − d)2 b2x

−2d
1−d

b

(ZXk2 − Zk2X)
(

2
√
X2 + ZE2

2 + 2X
)

− E2
2ZZk2

2
√
X2 + ZE2

2Z
2

.

Expanding ZXk2 − Zk2X and ZZk2 , it is easy to verify that ZXk2 − Zk2X < 0 and
ZZk2 > 0, thus ∂λ2

1/∂k2 < 0. λ1 decreases strictly monotonically with k2. The only
positive solution of ∂λ2

1/∂k1 = 0 is when

k1,1(k2) =

√√√√2 (1 − d) k2 − (1 − d)2 k2
2E2

2 (1 − d) k2E2 + E1
.

Since λ1(k1, k2) → ∞ when k2
1 → 4 (1 − d) k2 or when k1 → 0, as a continuous function

of k1, λ1(k1, k2) is convex in k1 with minimum achieved at k1 = k1,1(k2). Apparently
k2

1,1(k2) < 2 (1 − d) k2. Inserting k1,1(k2) in (A.11), we have

λ1(k1,1(k2), k2) = |b|
k2
x

−d
1−d

b

√
(2 (1 − d) k2E2 + E1) . (A.13)

The only crossing or touching point between γ1(k1, k2) and γ2(k1, k2) for fixed k2 is
when k1 equals to

k2
1,12 (k2) = 2 (1 − d) k2

+

√
(E1 + 2 (1 − d) k2E2)2 + 4 (1 − d)2 k2

2E
2
2 − (E1 + 2 (1 − d) k2E2)

2E2
.

Since λ1(k1, k2) → ∞ when k1 → 0 or when k2
1 → 4 (1 − d) k2, this point is a touch-

ing point, with λ1(k1, k2) ≥ λ2(k1, k2). Note that, the three lower bounds λ1(k1, k2),
λ2(k1, k2), λ3(k1, k2) touch or cross at the same point. The touching point corresponds
to the Hamilton matrix H having an eigenvalue at the origin for LTI system. Further
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note that k2
1,12 (k2) > 2 (1 − d) k2.

λ⋆ in summary

Inspecting (A.12) when k2
1 ≤ 2 (1 − d) k2, since λ1(k1, k2) ≥ λ2(k1, k2) from the above

analysis, λ⋆ = max {λ1, λ2} = λ1 and for fixed k2

min
k1

λ⋆ = λ1(k1,1(k2), k2) , when k2
1 ≤ 2 (1 − d) k2 ,

when k2
1 ≤ 2 (1 − d) k2 from the convexity analysis above. When k2

1 ≥ 4 (1 − d) k2, we
have

λ2(k1, k2) = |b|
k2
x

−d
1−d

b

√
(k2

1E2 + E1) > |b|x
−d

1−d

b

√
4 (1 − d)E2

k2

λ3(k1, k2) = (1 − d) |b|x
−d

1−d

b

√
E2

k2
1 − 2 (1 − d) k2

≤ |b|x
−d

1−d

b

√
(1 − d)E2

2k2
< λ2(k1, k2) .

The inequality is strict, thus the touching point k2
1,12 (k2) = k2

1,23 (k2) < 4 (1 − d) k2.
Therefore, λ⋆ = max {λ2, λ3} = λ2 when k2

1 ≥ 4 (1 − d) k2, since λ2 is inversely propor-
tional to k1. The minimum of λ⋆ when k2

1 ≥ 4 (1 − d) k2 is achieved at k2
1 = 4 (1 − d) k2.

As a consequence, for fixed k2 when k2
1 ≥ 4 (1 − d) k2

min
k1

λ⋆ = λ2 (4 (1 − d) k2, k2) = |b|
k2
x

−d
1−d

b

√
(4 (1 − d) k2E2 + E1)

>
|b|
k2
x

−d
1−d

b

√
(2 (1 − d) k2E2 + E1) = λ1(k1,1(k2), k2) ,

when compared to (A.13). So this section does not provide the minimal λ⋆ for fixed
k2.

At last, the section of 2 (1 − d) k2 < k2
1 < 4 (1 − d) k2 is inspected, where

λ⋆ = max {λ2,min {λ1, λ3}}

⇔ λ⋆ =

max {λ1, λ2} , when λ1 < λ3

max {λ2, λ3} , when λ1 ≥ λ3
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A.7 Algorithms for Search Procedure

When λ1 < λ3, λ⋆ = max {λ1, λ2} = λ1 (λ1 ≥ λ2 in all cases). Since λ1 achieves its
minimum at k2

1,1(k2) < 2 (1 − d) k2, the value of λ⋆ can not be smaller than (A.13)
under this case.

When λ1 ≥ λ3, recall that λ2 and λ3 are monotonic in k1, k2 in a contrary way. From
the fact that all lower bounds cross or touch at the same point and again λ⋆

1 is achieved
in k2

1 < 2 (1 − d) k2, λ⋆ in this subsection is not optimal.

Finally, the minimum is mink1 λ
⋆ = λ1(k1,1(k2), k2). Figure A.1 shows the plot of

λ1(k1, k2), λ2(k1, k2), λ3(k1, k2) as well as λ⋆(k1, k2) for fixed k2 and varying k1 to each
channel (i.e. when E1 = 1, E2 = 0 to channel y = ⌈x1⌋

1
1−d , and when E1 = 0, E2 = 1

to channel y = x2), with parameterss d = −0.5, k2 = b = 3, eb = 1. Figure A.2 shows
the same four function, but with fixed k1 and varying k2 under the parameters of the
system are d = −0.5, k1 = 4, b = 3, eb = 1. It is clear that λ⋆(k1, k2) has a minimal
value w.r.t. k1 for each fixed k2, but is monotonously decreasing w.r.t. k2 for each fixed
k1.
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Figure A.1: Calculated λ for fixed k2.
The parameters of the system are d = −0.5, k2 = b = 3, eb = 1.

A.7 Algorithms for Search Procedure

The general algorithm for Proposition 4.1 as well as the detailed algorithm for system
(6.1) with storage function in (6.13) are listed here.

181



A Appendix

4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

k2

y = ⌈x1⌋
1

1−d

4 6 8 10 12 14

1

2

3

4

k2

y = x2

λ1
λ2
λ3
λ⋆

Figure A.2: Calculated λ for fixed k1.
The parameters of the system are d = −0.5, k1 = 4, b = 3, eb = 1.

A.7.1 Algorithms for Proposition 4.1

The algorithm of rough search for max∥(x,u)∥=1 ζ(Vx, x, u) in Section 4.3.1 is listed in
Algorithm 4. After the rough search shown in Algorithm 4, several refined search around
the point of (x, u) recorded in the last round should be carried out. The maximal value
of ζ(Vx, x, u) on the unit sphere should happen in a neighbourhood of such point of
(x, u), since the function ζ(Vx, x, u) is continuous on the surface of the unit sphere.
Note that in practice, several local maxima might occur. In such case refined searches
around each local maxima should be carried out.

Therefore, with each fixed V , the rough search for max∥(x,u)∥=1 {ζ(x, u)} ≤ 0 takes
υn+m−1 calculations of ζ(x, u). The refined search in Algorithm 5 around several local
maximal points collected on rough search usually takes less calculations. Thus the
computational complexity is of O (υn+m−1).

A.7.2 Algorithms for the CSTLA System

The detailed search procedure for the CSTLA system (6.1) with storage function in
(6.13), i.e.

Vl(x) = 1 − d

p− d
|x1|

p−d
1−d − a12x1 ⌈x2⌋p−1 + a2

p− d
|x2|p−d ,
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Algorithm 4 Procedure of rough search for max∥(x,u)∥=1 ζ(Vx, x, u) in Proposition 4.1
ζc = −10300 ▷ Record of the maximal ζ(Vx, x, u) in current round
for j1 = 1, · · · , υ do

x1 = −1 + 2j1
υ+2

for j2 = 1, · · · , υ do
x2 =

√
|1 − |x1|2|

(
−1 + 2j2

υ+2

)
· · ·
for jn+1 = 1, · · · , υ do

u1 =
√∣∣∣1 − ∥x∥2

2

∣∣∣ (−1 + 2 jn+1−1
υ−1

)
· · ·
for jn+m−1 = 1, · · · , υ do

um−1 =
√∣∣∣1 − ∥x∥2

2 −∑m−2
i=1 |ui|2

∣∣∣ (−1 + 2 jn+m−1−1
υ−1

)
um = ±

√
1 −∑m−1

i=1 |ui|2 − ∥x∥2
2

Evaluate ζ(Vx, x, u) in (4.9)
if ζ(Vx, x, u) > ζc then

ζc = ζ(Vx, x, u)
(xr, ur) = (x, u) ▷ Record the point for refined search

end if
end for
· · ·

end for
· · ·

end for
end for

Algorithm 5 Procedure of refined searches after Algorithm 4
repeat

ζp = ζc ▷ ζp is the record of the maximal ζ(Vx, x, u) in previous round
for Divide the neighborhood of (xr, ur) similarly as Algorithm 4 do

Evaluate ζ(Vx, x, u)
if ζ(Vx, x, u) > ζc then

ζc = ζ(Vx, x, u)
(xr, ur) = (x, u) ▷ Record for next round of refined search

end if
end for

until (ζc − ζp) /ζp ≤ 10−7

γc =
√
ζc

is listed in the following. The whole procedure is broken down into several sub-
algorithms, i.e. Algorithm 6 and Algorithm 7 are used in the overall Algorithm 8.
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First of all, the algorithm to search the region of (a12, a2) s.t. the storage function Vl

(6.13) serves as Lyapunov function when u = 0 for system (6.1) with storage function
in (6.13) is listed in Algorithm 6 (i.e. checking max∥x∥2=1 V̇l (x, 0) < 0).
Such region is a convex set, since for any α ∈ [0, 1] and any two sets of (â12, â2), (ǎ12, ǎ2)
that belong to the region, the Lyapunov function, from (6.13),

Vl (αâ12 + (1 − α) ǎ12, αâ2 + (1 − α) ǎ2) = αVl (â12, â2) + (1 − α)Vl (ǎ12, ǎ2)

is also a Lyapunov function. Here we abuse the notation Vl (a12, a2) to emphasize that
it represents a different Lyapunov functions with different (a12, a2), instead of the same
Lyapunov function as a function of x. The search is carried out along a2, and for each

a2, a12 ∈
[
0,
(

a2
p−1

) p−1
p−d

]
or when p = 2, a12 ∈

[
0,min

{
(a2)

1
2−d , k1/k2

}]
. During such

search each maximal and minimal value of a12, a2 of these regions are also recorded.

Thereafter, with the Lyapunov function V = a1Vl in (6.13), when a1 = 0, the region of
(a12, a2) s.t. max∥x∥2=1 J (Vx, x, 0) ≤ 0 vanishes. This is trivial from

J(0, x, 0) = ∥y∥p
τy ,p ≥ 0 ,

with ϵ = 0. And when a1 → ∞, the region of (a12, a2) s.t. max∥x∥2=1 J (Vx, x, 0) ≤ 0
is the same one as the region of (a12, a2) s.t. Vl is a Lyapunov function. Combining
again with that fact that the region of (a12, a2) is also a convex set, then with all other
parameters the same, the region of (a12, a2) shrinks with a smaller a1. That allows us
to find an a1 small enough to start with the process.

Finally, the overall process is described in Algorithm 8. With the a1s, the value of γc

for each a1 = 2a1s, 4a1s, 8a1s is recorded, when the value of γc cease to decrease, we
start the process again with a smaller multiplying constant from the point of a1o/2,
where a1o is the a1 that achieves the smallest γc for all rounds. A repetition of such
processes is carried out until the multiplying constant is small enough, a figure of such
process is described in upper-left sub-figure of Figure A.3. A clear convexity can be
observed in the figure. Other methods for treatment of a1 can be applied, e.g. additive
a1 = a1s + i , i = 1 , · · · for first round and a1 = a1o + i/2 , i = 1 , · · · for second round.
Yet, a faster method to find γo is always preferred.
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Algorithm 6 Procedure of searches of region of (a12, a2) s.t. the storage function Vl

serves as Lyapunov function
Set the step of a12 and a2 as sa12 , sa2 . ▷ This depends on experience
flagm = 0 ▷ A flag to record whether the region of (a12, a2) is met with current a2
flage = 0 ▷ A flag to record whether the region of (a12, a2) is existed with current a2
j = 1
while flagm + flage < 2 do

a2 = jsa2 , j = j + 1
recorda12 = −1
i = 1
repeat

a12 = isa12 , i = i+ 1
Verify whether max∥x∥2=1 V̇l (x, 0) < 0 for this Vl (a12, a2)

until a12 >
(

a2
p−1

) p−1
p−d or max∥x∥2=1 V̇l (x, 0) < 0

if max∥x∥2=1 V̇l (x, 0) < 0 then
flagm = 1
recorda12 = a12
if a2l > a2 then

a2l = a2 ▷ Record the minimal of a2 s.t. Vl serves as Lyapunov function
end if
if a2u < a2 then

a2u = a2
end if
if a12l > a12 then

a12l = a12
end if
Find the biggest a12 s.t. max∥x∥2=1 V̇l (x, 0) < 0 ▷ Described in Algorithm 3
if a12u < a12 then

a12u = a12
end if

end if
if recorda12 < 0 and flagm = 1 then

flage = 1
end if

end while

The upper-left subfigure in Figure A.3 shows convergence of

γc
2(a1) = min

(a12,a2)
max

∥(x,u)∥=1
ζ (Vx(a1, a12, a2), x, u)

formed by the outermost iteration, described in Algorithm 8. The upper-right subfigure
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Algorithm 7 Procedure of searches of start value of a1 (recorded as a1s), s.t. the region
of s.t. the region of (a12, a2) is within a certain percentage of that in Algorithm 6
d = (a2u − a2l) min

{
0.7 (p−1)0.1

(1+d)0.05

}
▷ These a2u and a2l comes from Algorithm 6. And

this percentage results from experience
a1u = 105

a1l = 0
while a1u/a1l ≥ 1.001 do

a1 = (a1u + a1l) /2
Carry out procedure similar to that in Algorithm 6, except that

max∥x∥2=1 V̇l (x, 0) < 0 is replaced by max∥x∥2=1 J (Vx, x, 0) ≤ 0. The record of a1u, a1l

is also kept
if (a1u − a1l) > d then

a1u = a1
else

a1l = a1
end if

end while
a1s = a1u

Algorithm 8 Overall process for system (6.1) with storage function in (6.13)
Find the Lyapunov region of (a12, a2) ▷ As described in Algorithm 6
Find a1s small enough ▷ As described in Algorithm 7
k = 2, a1 = a1s

while k > 1.001 do
γp = 10300 ▷ Record of previous round of γ
γc = 10300 ▷ Record of current round of γ
γo = 10300 ▷ Record of smallest γc of all rounds
while γp > γc do ▷ increasing a1 until the γc becomes larger

γp = γc

Rough search with this a1 ▷ As described in Algorithm 4
Refined search with this a1 ▷ As described in Algorithm 5
if γo > γc then ▷ Record the smallest value of γc and its a1

a1o = a1
γo = γc

end if
a1 = ka1

end while
a1 = max {a1o/k, a1s} ▷ Roll back from the current minimal value for the next

round
k = 1 + (k − 1) /2 ▷ Step of 2, 1.5, · · · , 1.003906, 1.001953

end while
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shows the region of (a12, a2) (collected similar to that in Algorithm 6) and the rough
search as well as the refined search described in Algorithm 4 and 5. The optimal set of
(a12, a2) for γ2

o is marked in red cross. The lower subfigure shows

γc
2(a1, a12, a2) = max

∥(x,u)∥=1
ζ(Vx(a1, a12, a2), x, u) .

To highlight the convexity of max∥(x,u)∥=1 ζ(Vx(a1, a12, a2), x, u) wrt. (a12, a2), in this
figure we set a maximum at 500. Since the values of max∥(x,u)∥=1 ζ(Vx(a1, a12, a2), x, u)
with non-optimal (a12, a2) are too big, the clear convexity is clouded.
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Figure A.3: Search procedure.
The parameters of the system (6.1) are d = −0.50 (linear case) and

k2 = b = 4, k1 =
(
2k1 + k1

)
/3 = 3.1547.
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