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Kurzfassung

Die Anwendung von Named Entity Recognition auf Texte aus dem juristischen Bereich zielt
darauf ab, juristische Entitäten wie Referenzen auf Rechtsnormen oder Gerichtsentscheidun-
gen zu erkennen. Diese Aufgabewird in der Regelmit überwachtenDeep-Learning-Techniken
angegangen, die große Mengen an Trainingsdaten erfordern. Vor allem für Sprachen mit
geringen Ressourcen und für bestimmte Domänen sind solche Trainingsdaten jedoch oft
rar. In dieser Arbeit konzentrieren wir uns auf die deutsche Rechtsdomäne, da sie für das
Canarėno-Projekt von Interesse ist, das sich mit der Informationsextraktion aus und Analyse
von Rechtsnormen beschäftigt. Das Ziel dieser Arbeit ist die Implementierung, Bewertung
und der Vergleich verschiedener Techniken, die zur Erweiterung von verfügbaren Daten und
damit zur Verbesserung der Modellleistung eingesetzt werden können. Durch Experimente
mit verschiedenen Datensatzanteilen zeigen wir, dass Mention Replacement und Synonym
Replacement die Leistung von sowohl rekurrenten als auch von transformatorischen NER-
Modellen in ressourcenarmen Umgebungen effektiv verbessern können.



Abstract

Named Entity Recognition over texts from the legal domain aims to recognize legal entities
such as references to legal norms or court decisions. This task is commonly approached with
supervised deep learning techniques that require large amounts of training data. However,
especially for low-resource languages and specific domains, such training data is often scarce.
In this work, we focus on the German legal domain because it is of interest to the Canarėno
project, which deals with information extraction from and analysis of legal norms. The objec-
tive of the work presented in this thesis is the implementation, evaluation, and comparison
of different data augmentation techniques that can be used to expand the available data and
thereby improve model performance. Through experiments on different dataset fractions,
we show that Mention Replacement and Synonym Replacement can effectively enhance
the performance of both recurrent and transformer-based NER models in low-resource
environments.
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Abbreviations

BERT Bidirectional Encoder Representations from Transformers

BiLSTM Bidirectional Long Short-Term Memory

CRF Conditional Random Field

DA Data Augmentation

DL Deep Learning

EDA Easy Data Augmentation

ELMo Embeddings from Language Model

FFNN Feedforward Neural Network

FN False Negatives

FP False Positives

GELECTRA (German) Efficiently Learning an Encoder that Classifies Token
Replacements Accurately

HMM Hidden Markov Model

LSTM Long Short-Term Memory

MEMM Maximum Entropy Markov Model

MLP Multi-layer Perceptron

NE Named Entity

NER Named Entity Recognition

NLP Natural Language Processing

POS Part-of-Speech

RNN Recurrent Neural Network



SVM Support Vector Machine

TF-IDF Term Frequency - Inverse Document Frequency

TN True Negatives
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1 Introduction

Named Entity Recognition (NER) is part of the field of Natural Language Processing (NLP). It
aims to detect and classify Named Entities (NEs), such as Persons, Organizations, or Locations
in text. NER is a valuable tool for information extraction and also serves as the foundation for
many other NLP tasks such as machine translation [BH03], question answering [AZS06] and
knowledge base construction [Etz+05].This task is often solved by training supervised learning
models which can learn complex features and solve challenging problemswhen providedwith
sufficient training data.NER training data has to bemanually annotatedwith all classmentions
that the model should later be able to detect and classify. It is hard to obtain the large amounts
of annotated data required for training, as it has to be created by domain experts in a costly,
tedious, and time-consuming process. This issue can be alleviated by generating new training
data automatically, reducing the amount of training data initially required.Thismethod, called
data augmentation (DA), works by adding slightly modified copies of existing data to the
dataset. It has its origins in the computer vision domain, where existing training images would
be, e.g., rotated, cropped, or scaled to generate new training images (cf. Figure 1.1). In each
domain, there exist different DA techniques. We want to evaluate NER model performance
on two selected models using selected DA techniques. Our particular interest in the German
legal domain directed our choice of the dataset and led us to choose the German LER dataset
[LRS20]. This work was done in the context of the Canarėno (Computerunterstützte Analyse
elektronisch verfügbarer Rechtsnormen) project, whose overall objective is the support
of legal norm analysis done in the context of creating digital processes for administrative
services.

Figure 1.1: Example of data augmentation in computer vision
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Thesis Scope In this work, we explore DA techniques for NER, a token-level sequence
labeling task. We focus on the German legal domain, whose language is different from the
language used in daily life or newspapers in many ways, e.g., structure, vocabulary, and
semantics. Although data augmentation has been applied to other domains [Cha+14; Ko+15]
for a long time with great success, the problem of DA for sequence labeling tasks has not been
exhaustively addressed yet. There exist works applying and comparing different techniques,
but to the best of our knowledge, none of them work with data from the legal domain, and all
of them mainly consider English data. In addition, as far as we know, none directly compares
different sources that can be used to retrieve replacements during Synonym Replacement.

The overall research goal is to evaluate and compare DA techniques for the NER task, explic-
itly focusing on the German legal domain. This includes surveying the data augmentation
techniques applied to sequence-labeling, selecting two different state-of-the-art deep learning
models, implementing three data augmentation methods, and evaluating their effect on the
selected models’ performance. We address the following research questions:

1. Which models are suitable for this task and the subsequent evaluation of DA techniques?

2. How well do Synonym Replacement, Mention Replacement, and Back-Translation aug-
mentation techniques work with data from the German legal domain?

3. How do different (German) sources of replacements for Synonym Replacement compare
to each other?

4. How well can Back-Translation be applied to sequence-labeling data?

Outline First, we will provide the reader with some background in Chapter 2 followed by
the related work in Chapter 3. In Chapter 4 we present the concept of our work, including our
goals and an overview of used techniques. We then provide details on the chosen approach
and its implementation in Chapter 5. The results we achieved are then presented in Chapter 6.
Chapter 7 comprises a summary of our work and contribution and an outlook on potential
future research directions.



2 Background

In this chapter, we will provide information on the central concepts and techniques used in
this work.

2.1 Named Entity Recognition

NER [Mar+13] was first found to be an important information extraction task during the
Message Understanding Conference 6 (MUC-6) [GS96] in 1996. Since then the interest in
NER has risen steadily. NER belongs to the field of NLP and is often defined as the task
of detecting and classifying NEs in text (cf. Figure 2.1). To put it another way, NER aims to
detect the mentions belonging to predefined semantic classes. As each word in a sentence
is classified, NER is usually interpreted as a sequence labeling task. A growing number of
downstream applications, such as question answering [AZS06], machine translation [BH03],
and knowledge base construction [Etz+05], rely on NER. The extraction of NEs from text
also allows advanced semantic search or automated highlighting of essential information.
NER has been applied to the general domain (using data extracted from e.g. newspapers or
Wikipedia) with generic classes like person, location, organization, and to various specific
domains like the medical domain with e.g. protein, symptom, treatment, or disease as classes
[Li+22; NJM21].

Figure 2.1: Example of sentence with annotated Named Entities

Traditional techniques used to solve NER were non-neural, meaning that they relied on
statistical methods or hand-crafted rules which had to be carefully designed by humans
[Li+22]. Due to technological advancements and progress in the field of neural networks
and Deep Learning (DL), the current state-of-the-art is set by such neural methods, often
combined with more traditional statistical methods.
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2.1.1 Non-neural Approaches

Non-neural approaches to NER can be divided into two subcategories. In rule-based ap-
proaches, human experts come up with rules designed to recognize and classify NEs, while
in learning-based approaches humans instead select the features and algorithm which then,
during training, are used to generate a model that solves the task at hand. Hybrid approaches
combine rule-based and learning-based techniques.

Rule-based Approaches Rule-based NER systems use external knowledge bases and
syntactic-lexical patterns to recognize NEs. Although they are considered very efficient
[Sha+10] and can make use of domain-specific features they are relatively expensive and
non-portable. Human experts in the language, programming, and the domain have to work
together to implement such a system [Sar08] and it normally cannot be used for texts in other
languages, domains, or classes.

Learning Approaches Learning Approaches can be distinguished by the way they learn,
which also determines what type of data they require. Supervised learning-based approaches
require labeled data for training the model which can then be used to recognize and classify
NEs in unseen data. For supervised learning models feature selection and engineering is a
very important, time-consuming task since it determines the way in which the data is seen
by the model. Such features can be orthographical, contextual, morphological, or based on
the existence of the word in a list, e.g., a dictionary or lexicon. In addition to the features, the
learning algorithm also has to be chosen. Popular choices [GGK18] are HiddenMarkovModels
(HMM), Maximum Entropy Markov Models (MEMM), Support Vector Machines (SVM) and
Conditional Random Fields (CRFs) (cf. Subsubsection 2.1.2.3). In unsupervised learning, the
models are not supplied with labeled data but instead have access to huge sets of unlabeled
data. From these they learn how to make decisions solely based on the distributional and
structural features of the data. In addition to clearly rule-based, supervised, or unsupervised
learning models there also are approaches that do not fit into either of these categories.
Semi-supervised learning approaches are a combination of both supervised and unsupervised
models, they require a base set of labeled data and then continuously learn while working on
unlabeled data.

2.1.2 Neural Approaches

Neural approaches, which are also learning approaches, can also be divided into the sub-
categories supervised, unsupervised and semi-supervised, as explained in Subsection 2.1.1.
As noted by Li et al. [Li+22], DL techniques have three core strengths when applied to NER:
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DL-based models can learn more complex features, they save significant design effort and can
be trained in an end-to-end paradigm. Here end-to-end refers to the training of a potentially
complicated learning system using a single model that represents the entire target system. We
elaborate more on neural approaches as both models used in this work belong to this category.
In this subsection, we first provide a basic understanding of Embeddings [Li+22], which are a
common text representation that serves as input for machine learning models such as Long
Short-Term Memory (LSTM) networks and Transformers, which are the context encoders
processing the embeddings, and of the CRF layer that is often placed on top of the context
encoders, acting as the tag decoder.

2.1.2.1 Embeddings

Before Embeddings were introduced, one-hot encoding was used to encode words in a
manner suitable for use as input to machine learning models. In one-hot encoding each word
is encoded as a binary vector with only one position being different from zero. This limits the
size of the vocabulary as the dimensionality of the vectors grows proportional to the size of
the vocabulary and also fails to capture semantic relations between words. Embeddings are a
way to represent categorical data as vectors in a continuous space. This allows for convenient
operations such as the measuring of the distance between two categorical variables. We
identified three main types of embeddings: Word Embeddings, Character Embeddings, and
Contextual Embeddings.

Word Embeddings Traditional word embeddings like GloVe [PSM14], word2vec [Mik+13]
and fastText [Gra+18] represent each word as a vector in a continuous vector space so that the
distance between words relates to their similarity. They are typically learned using unsuper-
vised machine learning methods on huge corpora with billions of words. Similar representa-
tions are learned for words that frequently appear close to each other. In a neural network
architecture such embeddings are used via an embedding layer that functions like a lookup
table, mapping words to their corresponding vector representation.

Character Embeddings Character embeddings, first employed by Santos et al. [SG15],
capture information about the lexical composition of words. They are generally considered
less rich in semantics than word embeddings and therefore mostly used to enhance word
embeddings. The character embedding representation of two words where just one letter
differs is almost identical, making them useful for handling misspellings, slang words, or
other out-of-vocabulary words. For training character embeddings there exist two commonly
used architectures: Convolutional Neural Networks (CNNs) [SZ14] and Recurrent Neural
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Networks (RNNs) [Lam+16]. An advantage of character embeddings is that their vocabulary
size is limited by the size of the alphabet, making them relatively lightweight.

Contextual Embeddings In contrast to the embeddings covered in the previous para-
graphs, the representation of words in contextual embeddings depends on the surrounding
context of the word. Contextual Embeddings successfully capture the difference between
polysemous words, e.g. ”left” (as a noun in ”to the left”, as a verb in ”he left” and as an adjective
in ”the left house”), meaning that the same word can have different embeddings depending
on its context. In the following paragraphs, two popular such approaches are described.

Contextual Word Embeddings Peters et al. [Pet+17], was one of the first to introduce context-
sensitive word embeddings with TagLM, also called Pre-ELMo. Later the contextual language
models ELMo [Pet+18] and BERT [Dev+19] were established. BERT and other recent models
make use of Transformers that read the entire input sequence of words at once, allowing
them to return a vector representation of each token that also considers its context.

Contextual String Embeddings Contextual string embeddings were introduced by Akbik et al.
[ABV18]. They built a bidirectional Long Short-Term Memory-based (BiLSTM) character-level
language modeling architecture [HS97] that interprets sentences as sequences of characters
and is trained with the objective to predict the next character in the current sequence.

2.1.2.2 Neural Networks

In the following, we will explore different neural network architectures and their usage in
NER.

Feedforward Neural Networks Feedforward Neural Networks (FFNN), also known as
Multi-layer Perceptron (MLP), are the most basic form of neural networks and were invented
by Frank Rosenblatt in the 1950s and 1960s [Ros61]. They consist of artificial neurons that are
organized into layers1, where the outputs of one layer are the inputs of the next layer. These
connections, so-called edges, are associated with weights, which make up the parameters that
are learned during training. Each of the artificial neurons works as a function, taking in a
number of inputs F7, multiplying the inputs by their corresponding weight E7, summing the
products, and applying an activation function 5 (F) (cf. Equation 2.1). A very simple FFNN
consisting of one neuron is depicted in Figure 2.2a.

⌘(F1, . . . , F;) = 5 (E0 + E1F1 + . . .E;F;) (2.1)
1The layers between the input and output layers are referred to as hidden layers. The size of a layer is defined

by the number of nodes it contains.
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(a) Simple FFNN (b) (Folded) RNN (c) Unfolded RNN

Figure 2.2: Simple FFNN, (folded) RNN, and unfolded RNN architectures

Recurrent Neural Networks RNNs [Elm90] advance traditional FFNN by capturing time
dynamics through their recurrent connections (cf. Figure 2.2b). Their output G7 is not only
a function of the momentary input features F7 but also of their last state ⌘7�1. This enables
them to memorize information and make predictions conditioned on past information. In
Figure 2.2b and Figure 2.2c* contains the weights of the edges connecting the input with
the hidden state, + contains the weights of the edges connecting the hidden state with the
output and , contains the weights of the edges connecting the current hidden state with
the previous hidden state. RNNs can also be visualized by unfolding2 them with respect to
their input sequence (cf. Figure 2.2c). In theory, the architecture of RNNs allows them to learn
complex long-distance relationships and patterns, but in practice, the most recent inputs
dominate the current state of the RNN.

Long Short-TermMemory Networks LSTM networks [HS97] were designed to over-
come the limitations of pure RNNs. Instead of directly using the last state as input, they use an
LSTM unit (cf. Figure 2.3a) in which several gates control which information gets memorized
and which is forgotten. These gates are learned during training and allow LSTM networks
to successfully capture long-distance dependencies and patterns [GSC99]. The state of the
LSTM after having sequentially processed some 9 elements is often referred to as the context.

Often one does not only have access to past elements but also future elements - this is also
the case during NER. It is inherent to the structure of not only unidirectional LSTM (cf.
Figure 2.3a) but also RNNs in general that they only have access to the context comprised of
the past inputs. To make use of both enclosing contexts, the past and the future, Huang et al.
[HXY15] were the first to apply an architecture called BiLSTM to NLP tagging datasets (cf.
Figure 2.3b). The input sequence is provided to two different LSTM networks simultaneously,
forward and backward, respectively. Consequently, the hidden state of the forward LSTM
contains the past context, and the hidden state of the backward LSTM contains the future

2The terms ”folded” and ”unfolded” only refer two different interpretations.
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(a) Unidirectional LSTM architecture (b) Bidirectional LSTM architecture

Figure 2.3: Unidirectional and bidirectional LSTM architectures

context. The combined context can then be obtained by simply concatenating both hidden
state vectors, G7 = [�!⌘7 ,

 �
⌘7 ].

Transformers Transformers [Vas+17] are a novel architecture for solving sequence-to-
sequence tasks that also handle long-range dependencies very well. In sequence-to-sequence
tasks, an input sequence is turned into another sequence. They use a self-attention mechanism
to produce representations of their input- and output sequences and are built based on an
encoder-decoder architecture. The encoder consists of one Multi-Head-Attention Layer
followed by an FFNN and the decoder also has those two layers and an additional Masked
Multi-Head Attention layer on top.

RoBERTa, introduced by Liu et al. [Liu+19], is an optimized variant of BERT [Dev+19], which
works based on the Transformer architecture. The training procedure was adjusted by remov-
ing the Next Sentence Prediction task and introducing dynamic masking. It was pre-trained
in an unsupervised manner on 160 GB of unlabeled English text using the Masked Language
Modeling objective, where part of a sentence is masked, and the model tries to predict the
masked words. Models trained on such tasks can be fine-tuned to solve a variety of other NLP
tasks that use whole sentences as input, such as question answering, sequence classification,
or sequence labeling, achieving state-of-the-art results. Typically such models take raw text
as input, not requiring preprocessing such as tokenization. XLM-RoBERTa [Con+20] is a
multilingual version of RoBERTa, pre-trained on 2.5 TB of multi-lingual data.

Model Training Neural machine learning models are trained using variations of Back-
propagation algorithms. Backpropagation [RHW86] is a training algorithm that updates the
weights of the edges connecting the neurons in the network with the goal to minimize the
error compared to the expected output for the corresponding input. The algorithm consists



Chapter 2. Background 18

of the following steps. First, the model is presented with a training input pattern which is
propagated through the network to get an output. Then, to calculate the error, the predicted
output is compared with the expected output. Finally, the derivative of the error with respect
to the network weights is calculated and the weights are adjusted to minimize the error, also
called loss (calculated using loss functions [Wan+22]). This process is then repeated. One pass
of the above-mentioned process through the complete dataset is called an epoch. The learning
rate determines how rapidly the model learns, i.e., the strength with which the weights are
adjusted after each epoch. It can be changed dynamically during training.

Different strategies for adjusting the weights of a neural network during training are called
optimizers. One very popular type of optimizer is the Stochastic Gradient Descent [Net19],
which is a stochastic approximation of the gradient descent optimization algorithm. Instead
of updating the model weights after calculating the loss and gradient for the entire dataset,
the weights are updated after calculating the loss and gradient for only a few samples at a time.
This number of samples considered when calculating the loss is referred to as the mini-batch
size. It controls how frequently the weights are updated during training. There exist many
variations of the SGD with additional parameters, such as, i.e.,momentum, which can be useful
to reduce the variance and soften the convergence.

Backpropagation Through Time [Wer90] is a variant of Backpropagation adapted to the struc-
ture of RNNs. To obtain the dependencies of the model variables and parameters from the
recursive structure, the computational graph of the RNN is unfolded regarding the RNNs
input length (cf. Figure 2.2c). Then the loss is calculated and accumulated for each timestep. A
big drawback of Backpropagation Through Time is that the computation of the derivatives
contains many multiplications involving the weight matrix, causing the gradient to either
explode or nearly vanish.

One popular approach to solving this issue is applying gradient clipping [Zha+20]. This intro-
duces a threshold that gradients cannot exceed, essentially clipping them by scaling them
down so that their norm matches the set threshold. There are two more common practices
applied to improve model training; learning rate annealing and adding a dropout layer.

Learning rate annealing [Nak+21] refers to the idea of starting training with a relatively high
learning rate and then progressively decreasing it. There are different techniques for deter-
mining how much and when to decrease the learning rate, the most popular of which is step
decay. With step decay, the learning rate is reduced by a set percentage at fixed epoch intervals.
Other popular approaches are to reduce the learning rate depending on e.g. the error or micro
F1-score on the development or the training split.
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Dropout [Sri+14] on the other hand is rather a part of the model itself. A dropout layer ignores
the output of a set of randomly selected neurons during training, not forwarding it to the
next layer. These neurons are also not considered during the following backward pass.

There are multiple ways of deciding when to stop model training. It can be stopped after com-
pleting a predetermined fixed number of epochs, when the error falls below a predetermined
value, when the learning rate reaches zero, or when the error on the development split, which
may be computed during training after each epoch, starts increasing again.

2.1.2.3 Conditional Random Field Layer

CRFs [LMP01] are statistical models used in sequence labeling tasks. In contrast to other
classifiers that predict the class of each input independently in linear CRFs, each prediction
depends on its direct neighbors. CRF layers are often added to work as decoders on top of
an LSTM model, making the output sequence of the underlying model the input sequence
of the CRF layer (cf. Figure 2.4). The learned parameters of a CRF layer are stored in a state
transition matrix that contains the probabilities of transitioning from one state to another. In
NER this corresponds to e.g. the probability of a B-PER tag (designating the first token of a
person-type NE) being followed by a E-PER tag (designating the last token of a person-type
NE). Tagging schemes are explained in more detail in Subsection 2.2.2.

Using CRFs as the decoding layer of a NER system makes it possible to take into account
the relations between adjacent labels during prediction. This improves the overall model
performance as, following the tagging schemes, some label sequences are invalid (e.g. a token
tagged with B-PER being followed by a token tagged with I-LOC).

Figure 2.4: BiLSTM-CRF architecture
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Table 2.1: List of annotated datasets for English NER, (non-exhaustive)

Dataset #Tags Source
MUC-6 [Sun96] 7 Wall Street Journal

CoNLL’03 [SM03] 4 Reuters news
ACE 2005 [Wal+06] 7 Transcripts, news

OntoNotes 5.0 [Wei+13] 18 Magazines, news
HYENA [Yos+12] 505 Wikipedia

GENIA [Pro] 36 Biological, clinical text
W-NUT 2017 [Der+17] 6 User-generated

Table 2.2: Example of sentence tokenization with different tokenizers

Tokenizer Instance
None 'Alex is going to Berlin.'

Whitespace Tokenizer ['Alex', 'is', 'going', 'to', 'Berlin.']
SoMaJo Tokenizer [PU16] ['Alex', 'is', 'going', 'to', 'Berlin', '.']

2.2 Data

As mentioned in Subsection 2.1.1 the type of data required by a machine learning model
depends on the model’s architecture and task. Training supervised NER models requires
tagged corpora of sentences with annotated class mentions, many of which were created (cf.
Table 2.1). These datasets are usually tagged using a common format (cf. Subsection 2.2.2).

2.2.1 Tokenization

A crucial step in processing data during and in preparation of NLP sequence-labeling tasks is
tokenization [WK92]. This describes the process of splitting a character sequence into pieces,
transforming text into a structured, more predictable form that is suitable for further use. It
is common to first split a document into sentences which are then split into lists of tokens.
Besides words, special characters, punctuation, or other atomic units are often considered
single tokens. Many tokenizers work based on predefined sets of rules, dictionaries, or regular
expressions, all of which are specific to the language the tokenizer is to be used with. There
are several open-source tools available to perform tokenization. When talking about tokens
in this work, we refer to tokens generated by a word-level tokenizer (cf. Table 2.2), but there
also exist subword-level tokenizers.
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2.2.2 Tagging Schemes

Tagging schemes, also referred to as segment representation techniques, define what and
how annotated information is stored. During tagging in NER, each token of a sentence
gets assigned its corresponding tag that is part of the chosen scheme combined with the
class indicator (cf. Table 2.3). Besides NER, Part-of-Speech (POS) tagging [Sch94] is a popular
sequence labeling task. Different existing schemes (cf. Table 2.4) were compared by Konkol
and Konopík [KK15]. We will use the terms ’tag’, ’label’ and ’annotate’ synonymously.

I IOB1 In the IOB1 scheme, also referred to as BIO, tokens that are the beginning of a known
NE get tagged with B, tokens inside of entities with I, and all other tokens with O, as they
are outside of any known entity.

I IOB2This scheme is identical to the IOB1 scheme with the exception that the first token
of entities that directly follow an entity of the same class is also tagged with B, which is
not the case in IOB1.

I IOE1This scheme also is very similar to the IOB1 scheme, with the change that it indicates
the end of entities with an E instead of indicating their beginning.

I IOE2This scheme is identical to the IOE1 scheme with the same modifications as IOB2.
The last token of entities that are directly followed by an entity of the same class is also
tagged with E, which is not the case in IOE1.

I IOBEThe IOBE scheme is a combination of the IOB2 and IOE2 scheme. The beginning
of each known NE is tagged with B and its last token with E, while tokens inside of it are
tagged with I.

I IOBES This scheme is a further extension of the IOBE scheme that makes the information
more explicit, labeling single-token entities with S.

Table 2.3: Example of IOB2-tagged NER sentence

Alex is going to Los Angeles in California .
B-PER O O O B-LOC I-LOC O B-LOC O

2.3 Data Augmentation

The data used to train machine learning models has to be of high quality and as diverse
as possible while also representing the data that the system might encounter during its
application as accurately as possible. Supplyingmodels withmore such training data improves
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Table 2.4: List of tagging schemes, (non-exhaustive)

Name Scheme
IOB1 Inside, Outside, Begin
IOB2 Inside, Outside, Begin
IOE1 Inside, Outside, End
IOE2 Inside, Outside, End
IOBE Inside, Outside, Begin, End
IOBES Inside, Outside, Begin, End, Single

overall performance [Bow+15] and generalization capabilities of the model, makes them more
robust and is an important measure to prevent overfitting [JK15].

It is hard to obtain the annotated data required for supervised training because it has to be
created by domain experts in a costly, tedious, and time-consuming process. Therefore there
is a constant need for more annotated data, especially domain-specific data. One approach to
solving this problem, besides semi-supervised learning and transfer learning, is DA. Among
these, DA is the most versatile as any supervised learning algorithm could be applied to the
augmented data. The goal of DA is to apply transformations to the already existing data while
retaining the semantic meaning, consequently increasing the total amount of data.

While there has been ample research concerning DA in other machine learning domains such
as computer vision [Cha+14] or speech recognition [Ko+15], there are relatively few works
available dealing with DA in the field of NLP and consequently NER. The following non-
exhaustive list provides an overview of DA techniques applicable to data used for sequence-
labeling tasks that we found during the literature review. Table 2.5 shows the effect of each
DA technique applied to an example sentence. For token-wise techniques such as Random
Deletion or Synonym Replacement, a parameter > 2 [0, 1] determines how many tokens
relative to the total length of the sequence are transformed.

SynonymReplacementThis technique describes the replacement of one or more tokens
in the original token sequence with their synonyms, including tagged tokens. It does not
result in a change in the original syntactic pattern and is a rather limited but easily applicable
technique. The source of the synonym may be a pre-trained static word embedding (e.g. GloVe
[WY15]), a dictionary (e.g. WordNet [WZ19; ZZL15]), a contextual language model [Wu+19] or
other sources that store suitable information. In many cases, multiple synonyms are collected,
and then the most similar, according to cosine word similarity, is chosen.

Mention ReplacementThis technique describes the replacement of one or more entities
(tagged mentions) in the original token sequence with an entity of the same class appearing
in the training data [RM17] and does not result in a change in the original syntactic pattern.
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Instead of using a dictionary containing the entities that occur in the training data, other
suitable sources may also be used. An extension of this technique is to not only replace entities,
but any token with a token of the same label appearing in the training data, including tokens
outside of entities (Label-wise token replacement) [DA20].Wewill be using the terms ’mention’
and ’entity’ interchangeably from now on.

Random Deletion This technique describes the random deletion of one or more tokens
from the original token sequence, excluding the first tokens of entities [WZ19]. There exist
variants where tokens annotated as entities are fully exempted from deletion.

Random InsertionThis technique describes the random insertion of one or more tokens
into the original token sequence [WZ19]. There exist different variants regarding the position
of the inserted token(s). The inserted token can be taken from one of the sources discussed in
Synonym Replacements. With the use of language models, not only single tokens but entire
sequences can be inserted at the beginning or end of a sentence.

Random Swap This technique describes the random swap of two or more tokens of the
original token sequence [WZ19]. There exist different variants regarding groups of tokens that
can be swapped. One variant is to partition the original sequence into segments composed of
tokens with the same label and then shuffle the tokens within these segments [DA20].

Generative ApproachesGenerative approaches gained in popularity with the advance of
contextual language models such as BERT [Dev+19]. Among the generative approaches, there
exist three main directions. The generation of training examples using (1) knowledge bases
and sentence patterns or schemes [KBC20; Kun+20], (2) using contextual language models
[Din+20; Zho+21] or (3) through interpolation or extrapolation of existing training examples
[ZYZ20].

Noising Techniques Blank noising [WZ19]., unigram noising [WZ19], keyboard error injec-
tion, and spelling error injection may be classified as noising techniques. They can be used to
make a model more robust in dealing with exactly these irregularities which often occur in
data extracted from social media or similar domains.

TF-IDFbasedWordReplacementTermFrequency - InverseDocument Frequency [Xie+20]
is an unsupervised DA method that replaces less-relevant tokens (e.g. ”this”) with other less-
relevant tokens (e.g. ”a”), that are identified based on the calculation of term frequency and
the inverse document frequency.

Back-Translation Back-translation [SHB16] is a technique that uses translators and their
effect on the syntactic structure and wording of sentences. To transform a sentence, the
original sentence is first translated into a second language and then translated back into
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the original language. Variants of this method exist where not only one but two or more
intermediate languages are used.

Table 2.5: Example of data augmentation techniques applied to sentence with (potential) changes
highlighted in blue color.

Technique Instance
None Alex met John in Berlin .

S-PER O S-PER O S-LOC O

Synonym Replacement Alex saw John in Berlin .
S-PER O S-PER O S-LOC O

Mention Replacement Elon Musk met John in Berlin .
B-PER E-PER O S-PER O S-LOC O

Random Deletion Alex met John Berlin .
S-PER O S-PER S-LOC O

Random Insertion Alex met saw John in Berlin .
S-PER O O S-PER O S-LOC O

Random Swap met Alex John in Berlin .
O S-PER S-PER O S-LOC O

Generative Approaches Emma met Olivia in Austin .
S-PER O O O S-LOC O

*here: using a pattern: <person> <verb> <person> in <location> .

Noising Techniques Alex met John inn Berlin .
S-PER O O O S-LOC O

TF-IDF Alex met John at Berlin .
S-PER O S-PER O S-LOC O

*depends on complete dataset

Back-Translation Alex met with John in Berlin .
S-PER O O S-PER O S-LOC O

2.4 EvaluationMetrics

For the evaluation of the performance ofNER systems, differentmeasures have been proposed
and used [NS09]. All methods have in common that they are based on the comparison of the
generated annotations with annotations which were performed by human experts (the gold
standard). Generally, we are not only interested in the performance of the system across all
entity classes but also in single classes. The task of NER, as described in Section 2.1 comprises
two subtasks, (1) detecting the entity and its boundaries and (2) classifying the entity into one
of the given label classes. Both tasks are commonly evaluated together.

Exact-match evaluation only considers aNE to be recognized correctly if it is an exactmatch of
the ground-truth annotation, regarding both type and span. Partial-match evaluation considers
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a NE to be recognized correctly if the entity was assigned the correct type and the span of the
entity in the ground truth and the span as identified by the model overlap. There are more
complex evaluation schemes, used by e.g. ACE [Dod+04], where each NE class is weighted,
and during evaluation partial matches and nested NEs are taken into account.

Accuracy describes the percentage of correct predictions relative to all predictions. It is
calculated using Equation 2.2, where true positives (TP) are the (number of) correctly identified
NEs, true negatives (TN) are tokens outside of entities that were recognized as such, false
positives (FP) are the incorrectly labeled NEs, and false negatives (FN) are the missed NEs.
The accuracy is not a suitable metric to capture classification performance due to the class
imbalance of NER datasets - most tokens usually do not belong to an entity. Still, it can be
useful to report the accuracy metrics class-wise as part of a confusion matrix. Precision and
Recall, as well as the F1-score, are also calculated based on TP, TN, FP, and FN counts.

accuracy =
)% + )#

)% + �% + )# + �#
(2.2)

Precision (cf. Equation 2.3) is defined as the ratio of true positives relative to the sum of the
true positives and false positives. Put simply, the percentage of actually positive out of the
positive-predicted. Recall (cf. Equation 2.3), also referred to as sensitivity, can be described as
the ratio of true positives relative to the sum of true positives and false negatives. It reports the
percentage of true positives that are actually found by the model. The F1-score (cf. Equation 2.4)
is the harmonic mean of precision and recall.

precision =
)%

)% + �%
recall = 2 ⇥ )%

)% + )#
(2.3)

F1-score = 2 ⇥ recall ⇥ precision
recall + precision

(2.4)

Precision, recall, and F1-score can be calculated in two ways, either micro- or macro-averaged.
The macro average is computed by computing the precision, recall, and F1-score for each class
and then averaging them by dividing by the number of classes. Macro-averaging admits equal
importance to all classes. Themicro average on the other hand is computed by aggregating the
TP, TN, and FP counts of all classes and then calculating recall, precision, and F1-score. This
admits each sample the same importance so that frequently occurring classes in the dataset
have a higher impact on the final metrics than rare classes. Grandini et al. [GBV20] provide a
comprehensive overview and explanation of common multi-class-classification metrics.



3 RelatedWork

In this chapter, we survey previous works concerned with DA for NER training data and
provide an overview of other studies applying NER to texts from the German legal domain.

3.1 Named Entity Recognition

As most of the state-of-the-art research in NLP and specifically NER is done in the English
language there exist few works regarding NER in the German legal domain. Glaser et al.
[GWM18] applied three different techniques for the extraction of entities from German
legal contracts, namely GermaNER1, DBpedia Spotlight [Men+11], and templated NER. They
achieved F1-scores of 0.80, 0.87, and 0.92 respectively, on a dataset composed of 25, 423
tokens for GermaNER and DBpedia Spotlight and 7, 790 tokens for templated NER. They
conclude that templated NER poses a suitable solution as long as templates exist. Leitner et al.
[LRM19] compared the performance of different BiLSTM-CRF model architectures in NER
on a newly created dataset of German legal documents comprising 66, 723 sentences taken
from 750 German court decisions that were published online. Their BiLSTM-CRF models
with character embeddings outperform the other configurations, with the BiLSTM-CRF
with character embeddings from an RNN achieving an F1-score of 0.9595 on coarse-grained
classes and 0.9546 on fine-grained classes. More recently, Zöllner et al. [Zöl+21] compared the
effect of using different pre-training techniques for small BERT models on their performance
and, in addition to that, also presented modifications of the fine-tuning process that result
in performance improvements. During the evaluation, they used, among others, the (coarse-
grained) German LER dataset [LRS20] and achieved an F1-score of 0.9488 by fine-tuning with
a CRF extended by an additional NER-rule.

Brugman et al. [Bru18] performed NER on a selection of manually annotated publicly available
Dutch court rulings, aiming to anonymize names and extract information such as case and
punishment. They employed BiLSTM-CRF and Transformer architectures and achieved

1GermaNER is a CRF-based Named Entity Tagger.
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F1-scores ranging from 0.8184 to 0.8794. Badji et al. [Bad18] explored Legal Entity Extraction
with NER Systems on newly created English and Spanish corpora, which were manually
annotated beforehand. They achieved an F1-score of 0.95 employing a rule-based system
and an F1-score of 0.75 employing another system comprised of a combination of different
services.

Aside from the legal domain, the German CoNLL 2003 NER dataset [SM03] comprised of
annotated texts from German news is frequently used as a benchmarking dataset and was
also used by the following works. In 2018 Akbik et al. [ABV18] proposed Contextual String
Embeddings and achieved an F1-score of 0.8832, improving on the previous best of 0.7876
set by Peters et al. [Pet+18]. Later Schweter et al. [SA20] achieved an F1-score of 0.8834 using a
fine-tuned XLM-RoBERTa Transformer model.

3.2 Data Augmentation

Replacement The replacement of words with words similar in meaning was one of the
first techniques to be employed for DA and, due to its simplicity, effectiveness, and robustness,
still frequently is.

Zhang et al. [ZZL15] applied WordNet-based Synonym Replacement to eight different text
classification datasets. Müller et al. [MT16] applied WordNet-based Synonym Replacement,
increasing the size of the SICKdataset from5, 000 training examples to 15, 000.This improved
the relatedness score of their model achieved in the sentence similarity scoring task by 0.04
compared to their baseline of 0.8422 that they established by training only on the original
SICK dataset. Instead of using explicit knowledge bases like WordNet, words with similar
meanings can also be extracted from word embeddings such as GloVe, word2vec, or fastText.
Wang et al. [WY15] applied word2vec-based Synonym Replacement to a newly created Twitter
dataset used for topic classification. They expanded the training data to five times the original
size and achieved an F1-score increase of 0.024 compared to their baseline of 0.341.

As contextual language models were introduced and achieved new performance records in
many domains of NLP due to their powerful representations of context they also started to
be used for DA. Wu et al. [Wu+19] randomly replaced one to two words with a [MASK] token,
which was then filled by a label-conditioned contextual language model2. This doubled the
number of available training examples and led to an F1-score increase of 0.0195 for their
employed RNN model, compared to their baseline of 0.7743.

2The prediction has to be label-conditioned because otherwise, the text class may change.
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There also exist DA approaches for NER tasks that focus on generating new training instances
by modifying only the tagged NEs in sentences (Mention Replacement). Raiman and Miller
[RM17] augmented the SQuAD [Raj+16] question answering training set by swapping NEs in
the training data with others of the same type retrieved from an external knowledge base.
Thereby they increased the number of training examples by 10% and improved the F1-score
by 0.001, compared to their baseline of 0.781. Liu et al. [Liu+20] randomly replaced entities
in the training data with entities from a dictionary that did not appear in the training data
to increase the size of their newly created NER dataset comprised of papers from ACL and
ACM. They also applied an Entity Masking technique where they replaced entities with
randomly generated words. The best performance was achieved by masking entities in 20% of
the original data, leading to an increase of the F1-score by 0.0755 compared to their baseline
of 0.6716.

Combined Techniques Wei et al. [WZ19] presented four techniques now known as easy-
data-augmentation (EDA) techniques, namely Synonym Replacement, Random Insertion,
Random Swap, and Random Deletion. They evaluated the augmented dataset on five bench-
mark text classification tasks and demonstrated that EDA techniques, used in combination
as well as individually, can improve the model performance. Generating four additional
sentences per original sentence by randomly changing 10% of the original sentence, they
improved the average F1-score across the datasets by 0.009 compared to their baseline of
0.874. Kang et al. [Kan+20] extended the EDA techniques proposed by Wei et al. by adding an
external knowledge-based system and modifying them to work with NER tasks by preserving
a valid tagging sequence3.They achieved improvements in amedical NER task (F1-score+0.02,
baseline 0.68) on the EBM-NLP corpus [Nye+18] and also tested a domain-specific augmenta-
tion method with which they achieved greater improvements. Issifu et al. [IG21] adapted and
simplified the modified EDA techniques used by Kang et al. They evaluated the techniques
on two biomedical NER datasets and achieved an improvement of 0.0086 in F1-score on the
NCBI dataset [DLL14] compared to their baseline of 0.8669 and no change in performance
on the Species-800 dataset [Paf+13] with a baseline of 0.7298. Sabty et al. [Sab+21] evaluated
the effect of applying Synonym and Mention Replacement, modified EDA techniques, and
Back-Translation to Arabic-English Code-Switching NER data4. They achieved an increase
of 0.0151 in F1-score compared to their baseline of 0.7769 after applying Back-Translation in
combination with Synonym and Mention Replacement, which raised the number of avail-
able training examples from 5, 306 to 10, 612. Dai et al. [DA20] applied Label-wise Token
Replacement, Synonym Replacement, Mention Replacement, and Shuffle Within Segments

3They do so by, e.g., preventing the deletion of words tagged as the beginning of an entity.
4Code-Switching refers to text containing more than one language in the same sentence.
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techniques5 to the MaSciP (materials science) [Mys+19] and i2b2-2010 (biomedical) [Uzu+11]
NER datasets. By augmenting the MaSciP dataset and training an RNN-based model, they
achieved a decrease of 0.004 by applying Mention Replacement and an increase of 0.003 by
applying Synonym Replacement with a baseline of 0.764. When using a Transformer-based
model with the same datasets, they achieved an increase of 0.002 by applying Mention Re-
placement and a decrease of 0.001 when applying Synonym Replacement with a baseline
of 0.798. They find that, on average, for Transformers, Synonym Replacement works best,
while for RNNs, Mention Replacement is most effective. Shim et al. [Shi+20] applied EDA
techniques with the modification of performing Random Noise Insertion instead of Random
Insertion to increase the size of a new text classification dataset created based on a web
survey about sleep issues. They achieved an increase in macro F1-score of 0.01 (baseline 0.68)
when using the full augmented dataset comprised of 14, 364 original sentences and 71, 377
synthetic sentences, a decrease of 0.01 (baseline 0.65) when using and augmenting 50% of the
original dataset, resulting in 7, 182 original sentences and 34, 059 synthetic sentences and an
increase of 0.21 (baseline 0.39) when using and augmenting 10% of the original dataset, re-
sulting in 1, 436 original sentences and 7, 043 synthetic sentences. Yaseen et al. [YL21] applied
Label-wise Token Replacement, Synonym Replacement, Mention Replacement, and Shuffle
Within Segments techniques to the MaSciP and Species-800 datasets. By augmenting the
MaSciP dataset and training a BiLSTM-CRF model using GloVe embeddings, they achieved
an increase in F1-score of 0.0096 when applying Mention Replacement and an increase of
0.00158 when applying Synonym Replacement compared to a baseline of 0.7537.

Back-Translation Back-translationwas first introduced by Sennrich et al. [SHB16] and used
to augment Neural Machine Translation training data. It is also often used for other sentence-
level problems such as topic classification [Xie+20], sentiment analysis [Luq19], and question
answering [Yu+18]. Yu et al. [Yu+18] applied Back-Translation and Mention Replacement to
the SQuAD question answering dataset, resulting in training data roughly three times the
original size. Using this dataset led to an increase of 0.011 in F1-score with a baseline of 0.827.
Yaseen et al. [YL21] applied segment-wise Back-Translation to the MaSciP and Species-800
datasets and achieved an increase in F1-score of 0.0645 (Species-800, baseline 0.6044) and
0.0148 (MaSciP, baseline 0.7537) using GloVe embeddings with a BiLSTM-CRF model. Sabty
et al [Sab+21] applied Back-Translation to Arabic-English Code-Switching NER data, resulting
in a decrease in performance. With a baseline of 0.7769, the F1-score dropped by 0.2828
when using a Neural Machine Translation model and by 0.006 when using Google Translate.
However, as mentioned earlier, combined with Synonym and Mention Replacement they
achieved an increase of 0.0151 in F1-score.

5ShuffleWithin Segments is a variant of Random Swap inwhich token swaps only take place within segments
of tokens with the same label.
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Although many studies have investigated the effect of DA techniques, it is difficult to draw
universal conclusions. The works apply different techniques, use different dataset sizes from
varying domains and employ different models during evaluation. Still, many works found
that DA is more effective for small datasets than for large [DA20; IG21; Shi+20; YL21].



4 Concept

This chapter aims to provide an overview of the used dataset and the NER models used
together with their configurations. We also present the selected DA techniques as well as how
we plan to implement and evaluate them.

4.1 Data

We evaluate the DA methods on the German LER dataset [LRS20] from the legal domain. It
contains approx. 67, 000 sentences with over 2 million tokens which are classified into 19
fine-grained semantic classes and 7 coarse-grained classes. The sentences were sourced from
court decisions from 2017 and 2018 published online by the Federal Ministry of Justice and
Consumer Protection. The distribution of entities is listed in Table 4.1 based on Leitner et al.
[LRS20]. We decided to use this dataset as we are particularly interested in the German legal
domain. For our work, we decided to use the 17 fine-grained classes.

Leitner et al. do not provide train-dev-test splits, so we shuffle the data and split it ourselves
(cf. Table 4.2). Note that we only apply DA on the training data and leave the development
and test splits untouched. This is due to some forms of DA potentially introducing unwanted
correlations between train and test split if generated examples are placed in different splits.
Suppose we split the dataset after performing the augmentations, e.g., Mention Replacement.
In that case, this could lead to a sentence being part of the train and test split with only the
entity being different,making the prediction taskmuch easier.Weworkwith IOB2, the tagging
scheme in which the data is provided. When working with the data during augmentation, the
tokenization of the original sentence should be reproduced. We, therefore, use the SoMaJo
tokenizer [PU16] used by Leitner et al. across all our code.
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4.2 NERModels

To evaluate the effect of the different approaches of DA, we chose two model architectures
that reflect the current state-of-the-art and established commonly used architectures.

BiLSTM-CRF (cf. Subsubsection 2.1.2.2 and Subsubsection 2.1.2.3) We decide to use the
default model of the FLAIR framework presented by Akbik et al. [Akb+19]. FLAIR is a frame-
work designed specifically to facilitate the training and general use of sequence labeling
and text classification models. The default model consists of a BiLSTM network with a CRF
tag decoder. We follow Akibk et al. [ABV18] by training this architecture using Stochastic
Gradient Descent without momentum, clipping gradients at 5, and annealing the learning rate
by halving it if score on the development set does not increase for 5 consecutive epochs. We
perform model selection over the learning rate 2 {0.01, 0.05, 0.1} and the mini-batch size
2 {8, 16, 32}, choosing the model with the best micro F1-score on the development set. For
other parameters, we follow Reimers et al.’s [RG17] analysis of hyperparameters of BiLSTM
models in sequence labeling and use variational1 dropout, 256 hidden states (neurons) per
layer, and set the number of hidden layers to 1. As Akbik et al. [ABV18] recommend combining
traditional word embeddings with Contextual String Embeddings we use German fastText
embeddings [Gra+18], German forward Flair embeddings [ABV18] and German backward
Flair embeddings [ABV18]. We stop training if the learning rate falls below 0.0001 or we reach
a maximum number of epochs, which we set to 150, again following Akbik et al. [ABV18].

Fine-tuned XLM-RoBERTa (cf. Subsubsection 2.1.2.2) In 2020 Schweter et al. [SA20]
presented FLERT, an extension of the aforementioned FLAIR framework, which adds support
for Transformer-based approaches. We will make use of the fine-tuning approach as Schweter
et al. showed that it outperforms the feature-based approach, in which the Transformer is
only used to generate embeddings which are then again used as input to a BiLSTM-CRF
model. We choose the XLM-RoBERTa Transformer model over models trained specifically
for the German language as preliminary studies showed that it achieves better results on
the LER dataset than, e.g., GELECTRA [CSM20]. Following Akbik et al. [SA20], we train
this architecture using the AdamW optimizer [LH19], with a fixed small number of epochs as
stopping criterion [Con+20], and a very small learning rate.The learning rate is increased from
0 to 5e�6 during the warmup phase and then linearly decreases until it reaches 0 by the end
of the training. We perform model selection over the maximum number of epochs 2 {10, 20}
and themini-batch size 2 {1, 4, 8}, again choosing themodel achieving the bestmicro F1-score
on the development set. We use the commonly used subword pooling strategy ”first” [Dev+19]

1In variational dropout, in contrast to regular dropout, the same dropout mask is used for inputs, outputs
and recursive connections in the network over the course of one timestep [GG16].
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in which the representation of the first subtoken is used as a representation for the entire
token. This is necessary as the contextual language model internally uses subword-tokens,
but we require word-token predictions of the NER task.

4.3 Data Augmentation

We test the effect of Synonym Replacement and compare different German sources of re-
placements, which, to the best of our knowledge, has not been done yet. We also assess the
impact of Mention Replacement and explore a new variant of applying Back-Translation to
sequence-labeling data. In contrast to Yaseen et al. [YL21], we aim to apply Back-Translation
to complete sentences, including entities, not only segments without entities. We chose Syn-
onym Replacement and Mention Replacement techniques due to their previous successful
application to data used for NER tasks and because they are likely to preserve the syntactic
and semantic correctness of the sentences. We explore Back-Translation as we believe it
has great potential to reliably and robustly introduce sentences with syntactical changes.
We decided against DA techniques that involve randomly adding or removing words as we
assume they are more likely to alter the meaning and degrade the correctness of a sentence
than replacement techniques. We also do not consider complex generative approaches (cf.
Section 2.3) as e.g. training a conditional contextual language model [Din+20] is a very ex-
pensive process and approaches based on interpolation [ZYZ20] go beyond the scope of this
work.

SynonymReplacement During Synonym Replacement, we replace a percentage of non-
tagged tokens in sentences with a replacement that is similar in meaning (cf. Table 4.3). To
qualify for replacement, a token must not be part of a tagged mention and must match a
regular expression pattern. This assures that we do not try to replace, e.g., punctuation marks
or numbers. We compare three different sources of replacements: OpenThesaurus [Nab05],
fastText embeddings, and a contextual language model (XLM-RoBERTa). In addition, we also
test different replacement percentages (20%, 40%, 60% of qualified non-tagged tokens per
sentence).

Mention Replacement In Mention Replacement, we replace entities in sentences with
entities from the same class extracted from the corpus (cf. Table 4.4). We always replace
all mentions in a sentence, and the replacement is drawn randomly from an entity-class
dictionary generated based on the training data.

Back-Translation Back-Translation refers to the translation of a sentence into another
language and the subsequent back-translation into the source language. The goal is to cause
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syntactical (and structural) changes in the sentence while leaving its semantics unaffected
(cf. Table 4.5). This is possible because different languages vary in, i.e., word order, and back-
translating often preserves this change caused by the initial translation. When using Back-
Translation to augment a sentence, we first extract the entities and their type. Then the full
sentence is translated to the intermediate language, also referred to as the pivotal language,
and back to German. As pivotal language, we decide to use English as we assume that this
ensures high-quality translations. We then try to map the extracted entities back to the
sentence based on their token sequence. For this to work, sentences must not contain a token
sequence multiple times with different label sequences each. Otherwise we will not be able to
distinguish between the two identical token sequences and assign the correct label to each (cf.
Table 4.6 and Table 4.7). The augmentation is considered a success if all extracted entities are
found in the back-translated sentence; otherwise, the back-translated sentence is discarded
(and only the original sentence is kept).

Evaluation We test each of the three DA techniques independently. The proposed evalua-
tion workflow is illustrated in Figure 4.1 and consists of the following steps. We establish a
baseline by taking the train split of the German LER dataset ¿, taking a fraction from the
complete training split ¡, training both models (BiLSTM-CRF, Fine-tuned XLM-RoBERTa)
with this non-augmented data √, and evaluating the performance of each model on the test
split ƒ. As fractions we decided for (%) : {1, 10, 30, 50, 100} of the complete training split.
To evaluate the impact that DA techniques have on the model performance, we then apply
the selected DA techniques to these fractions ¬, train on the generated augmented fractions
√ and evaluate the impact that DA has on the performance of the models in the NER task
relative to the original dataset size ƒ. We use the micro F1-score for model performance
evaluation (cf. Section 2.4). We decided against using the macro F1-score due to the class
imbalance in the German LER dataset (cf. Table 4.1). Unfortunately, we cannot report the
average of multiple runs and the related standard deviation due to time constraints.

Besides assessing DA’s impact on NER model performance, we also evaluate the DA itself. We
do this by manually examining the quality of the generated examples, randomly sampling a
set of sentences, and rating their syntactical and semantic correctness as well as how different
they are compared to the original.2

2As this is a time-costly procedure we only do so for selected configurations (replacement percentage,
replacement source) of the Synonym Replacement technique.
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Figure 4.1: Overview of the proposed approach
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Table 4.1: Distribution of fine-grained (f) and coarse-grained (c) classes in the German LER dataset
based on Leitner et al. [LRS20]

Class Type Id Name Description #Tokens %Tokens
f 1 PER Person 1,747 3.26
f 2 RR Judge 1,519 2.83
f 3 AN Lawyer 111 0.21
c 1 PER Person 3,377 6.30
f 4 LD Country 1,1429 2.66
f 5 ST City 705 1.31
f 6 STR Street 136 0.25
f 7 LDS Landscape 198 0.37
c 2 LOC Location 2,468 4.60
f 8 ORG Organization 1,166 2.17
f 9 UN Company 1,058 1.97
f 10 INN Institution 2,196 4.09
f 11 GRT Court 3,212 5.99
f 12 MRK Brand 283 0.53
c 3 ORG Organization 7,915 14.76
f 13 GS Law 18,520 34.53
f 14 VO Ordinance 797 1.49
f 15 EUN EU legal norm 1,499 2.79
c 4 NRM Legal norm 20,816 38.81
f 16 VS Regulation 607 1.13
f 17 VT Contract 2,863 5.34
c 5 REG Case-by-c. regul. 3,470 6.47
f 18
c 6 RS Court decision 12,580 23.46
f 19
c 7 LIT Legal literature 3,006 5.60

Total 53,632 100

Table 4.2: List of dataset split sizes

Split #Sentences %
train 46,706 70
dev 10,008 15
test 10,009 15



Chapter 4. Concept 37

Table 4.3: Example of sentence augmented with Synonym Replacement

Alex is going to Los Angeles in California .

Alex was walking towards Los Angeles around California .

Table 4.4: Example of sentence augmented with Mention Replacement

Alex is going to Los Angeles in California .

Chloe is going to Mexico in United Kingdom .

Table 4.5: Example of sentence augmented with Back-Translation with English as pivotal language

Original: Alex geht nach Los Angeles in Californien .

Intermediate: Alex goes to Los Angeles , California .

Result: Alex geht nach Los Angeles , Californien .

Table 4.6: Example of sentence satisfying the multiple-sequence-label condition

2016 fuhren A. , F. und Z. gemeinsam nach F. .
O O B-PER O B-PER O B-PER O O B-PER O

Table 4.7: Example of sentence not satisfying the multiple-sequence-label condition

Vom ... führte das ... ein Einsatznachbereitungsseminar in ... durch .
O O O O O O O O B-ST O O



5 Implementation

This chapter provides details on the implementation of the NER models and DA techniques.

5.1 Machine Learning Models

As mentioned in Chapter 4 we choose two models, namely BiLSTM-CRF and fine-tuned
XLM-RoBERTa to evaluate the impact of different DA techniques. This sections build on the
concepts and methods related to model training explained in Subsubsection 2.1.2.2.

5.1.1 BiLSTM-CRF

We use the FLAIR framework [Akb+19] to implement a BiLSTM network with a CRF decoder
layer. This architecture corresponds to the SequenceTagger class configuration listed in Ta-
ble 5.1. It is trained using the ModelTrainer (cf. Table 5.2). To implement the combination of
German fastText embeddings and German Flair embeddings we use the StackedEmbeddings
class which combines the embeddings by concatenating each embedding vector to form
the final word vector. For training, we set the embeddings storage mode to ”gpu” whenever
possible. It controls where the embeddings get stored during training. We are able to use this
with all except the 100% + DA datasets, as they do not fit into the available GPU memory1. This
avoids the need to repeatedly shuffle data from the CPU to the GPU and improves efficiency.
We set the patience parameter to 5. This controls after how many consecutive epochs without
increasing development score the learning rate is halved.

Following the FLAIR documentation we set the ModelTrainer parameter write_weights to
True and use the default configuration of the remaining SequenceTagger and ModelTrainer
parameters.We decided against using the configuration that performed best inmodel selection
and instead chose a marginally worse configuration as the time cost was disproportionate (an
improvement in micro F1-score of only 0.0063 points (from 0.9626 to 0.9632 ) for 17.6h of

1When not storing the embeddings in the GPU we request 96GB of (CPU) memory.
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training instead of 7.5h). We make this decision as we have to train the model more than 75
times to evaluate the impact of the different DA techniques.

5.1.2 Fine-tuned XLM-RoBERTa

We use the FLERT extension [SA20] of the FLAIR framework [Akb+19] to implement a
Transformer-based sequence tagger. To fine-tune a transformer on the NER task, a single
linear layer is added to the Transformer, in our case the XLM-RoBERTa model (XLM-R).
Then the entire architecture is trained on the desired task. This architecture can be built
through the configuration of the SequenceTagger (cf. Table 5.1) which is fine-tuned using the
ModelTrainer (cf. Table 5.2). Note that we set the Hidden size parameter that controls the num-
ber of neurons per layer to 256 because FLAIR requires it to be non-zero, although Use RNN
is set to False, so no hidden layer is added. As mentioned in Section 4.2 we configure the
TransformerWordEmbeddings class to use the subword pooling strategy first. Its configuration
is listed in Table 5.3. We set the layer parameter to -1, indicating that we want the output to
be from the topmost layer of the Transformer. We set use context to False, as we do not want
to make use of document context, as we want the model to treat each sentence independently.
As the GPU we use can handle the selected mini-batch size, we do not make use of mini-batch
chunking, which would further split mini-batches into chunks, causing slow-downs. Follow-
ing the FLAIR documentation we set the SequenceTagger parameter reproject_embeddings2

to False and use the default configuration of the remaining SequenceTagger and ModelTrainer
parameters. Table 5.2 and Table 5.1 list the parameters we use in all experiments with the
fine-tuned XLM-R model. Again we decided against using the configuration that performed
best in model selection and instead chose a marginally worse configuration as the time-cost
was disproportionate (an improvement in micro F1-score of only 0.0063 points (from 0.9687
to 0.9691 ) for 28.8h of training instead of 14.5h).

Table 5.1: SequenceTagger configuration

Parameter BiLSTM-CRF XLM-R
Hidden size 256 256

Dropout 0.25 -
Embeddings de-fasttext, Flair Transformer

Tag Type ner ner
Use RNN True False
Use CRF True False

Reproject embeddings Default (True) False

2This adds an additional linear layer on top of the embedding layer.
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Table 5.2: ModelTrainer configuration

Parameter BiLSTM-CRF XLM-R
Embeddings storage mode gpu -

Learning rate 0.05 5.0e-6
Mini-batch size 32 1

Patience 5 -
Max epochs 150 10

Table 5.3: TransformerWordEmbeddings configuration

Parameter Value
Model xlm-roberta-large
Layers -1

Subtoken pooling first
Fine-tune True

Use context False

5.2 Data Augmentation Techniques

The following section provides a detailed explanation of the implementation of each aug-
mentation technique. After the application of each technique to a corpus, the generated
sentences, as well as the combined original and generated sentences, are saved. During each
augmentation, a log file containing information on the changes in each sentence and statistics
regarding the entire process is generated. Generally, the techniques work on a sentence level.
The tokenizer we use is the SoMaJo tokenizer configured as shown in Table 5.4. As wewere not
able to find information about the used configuration by Leitner et al. [LRS20] we tested all
possible configurations and use the configuration in which the tokenization of most sentences
was reproduced correctly.

5.2.1 Synonym Replacement

Our Synonym Replacement function has two main parameters, the percentage of (qualified)
tokens to be changed in a sentence and the replacement source. During the augmentation of
a dataset, the following steps are taken as illustrated in Figure 5.1. First, we check whether we
can reproduce the way the sentence is tokenized from its plain sentence representation. If
this is not the case the sentence has to be skipped and cannot be augmented. If a sentence
passes this check we collect the indices of all not tagged tokens in the sentence. These are
the tokens eligible for replacement which are checked against the regular expression pattern
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Table 5.4: SoMaJo tokenizer configuration

Parameter Value Description
Language de-CMC sets the language

Split sentences False perform sentence-splitting in addition to tokenization
Split camel case False split words written in camelCase

r"[a-zA-ZäöüÄÖÜß]+", matching a sequence of one or more characters from inside the brack-
ets3. Consequently, this filter rejects all tokens containing, among other things, punctuation,
numbers, whitespace, or special characters. We then shuffle this list to assure a random re-
placement and multiply its length with the percentage of tokens that should be replaced (Step
2). We take the floor of the result to get the integer number of desired replaced tokens. We
chose to take the floor because this leads to the replacement percentage being an upper bound
on the percentage of tokens changed per sentence, which we believe is more convenient4

than a lower bound. It also refers to the percentage of eligible tokens to be changed, excluding
e.g. punctuation. We then iterate through the shuffled list of not tagged tokens and substi-
tute them with their replacement until the calculated number of desired replaced tokens is
reached. For replacing a token in a sentence we pass the token that is going to be replaced to a
method that returns a suitable replacement from the selected source. All sources return a list
of replacement candidates which are filtered with the same regular expression as mentioned
earlier to prevent e.g. punctuation from being inserted into the middle of the sentence (this
occasionally happens with fastText embeddings as replacement source) (Step 3). Should the
candidate list contain the original token it is removed, ensuring that the replacement retrieved
from the chosen source differs from the original token.

To get candidates from the thesaurus we set up a MySQL database created from a dump (May
30, 2022) of the OpenThesaurus database. Originally we used the publicly available API but due
to the limit of 60 requests per minute we decided to set up our own instance on a db-f1-micro
unit (with 10GB SSD storage) on Google Cloud SQL5. To retrieve replacement candidates
from the MySQL database we use the mysql-connector-python package6 and execute the query
provided by the OpenThesaurus documentation 7. However, our code still provides the option
to use the public API, whose XML response is processed using the beautifulsoup4 package8.
The results returned by the OpenThesaurus are not ranked based on a scoring function.
This can be considered a limitation of this source. Retrieving candidates using the fastText

3We use the regular expression full-match method.
4This presumes that too much change can have a negative impact.
5https://cloud.google.com/sql/
6https://pypi.org/project/mysql-connector-python
7https://www.openthesaurus.de/about/download
8https://pypi.org/project/beautifulsoup4

https://cloud.google.com/sql/
https://pypi.org/project/mysql-connector-python
https://www.openthesaurus.de/about/download
https://pypi.org/project/beautifulsoup4
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embeddings is simple and also comes with a meaningful ranking, as the python fastText
package9 includes a built-in method to get the four nearest neighbors, which are then filtered
and returned as possible candidates, ordered by their distance to the original token. In contrast
to the other two sources the contextual language model, XLM-RoBERTa, requires the entire
sentence as a plain string to return replacement options. In this string, we replace the token
that should be replaced with the <mask> token and let the contextual language model solve
the fill-task, returning a list of candidates ranked by the score that the contextual language
model assigns to each candidate. This is done step-by-step for each replacement candidate and
implemented using the fill-mask pipeline provided by the transformers package10 [Wol+20].

In the default configuration, the first candidate from the filtered list is chosen as replacement.
If the chosen source does not return a replacement candidate that passes the filter (regular
expression) we abort the replacement of the current token and continue with the next token
from the list. Having found a suitable replacement, we tokenize it and insert it in place of
the original token. Due to the filtering of the replacements, we only consider the ones that
consist of a single token. Consequently, we do not have to shift any labels in the sentence, as
we replace a single token with another single token (Step 4). The labels of the tokens to the left
and right of the replaced token can simply be copied and the replacement token is annotated
with the ”O” tag, as the replacement for a token that is not an entity will also not be an entity.

5.2.2 Mention Replacement

The Mention Replacement function does not have parameters but expects an entity dictionary
as input, besides the dataset to augment. The entity dictionary is built from the entities
contained in the training dataset. It contains lists of all entities occurring in the training
dataset grouped by their classes. During the augmentation of a dataset, the following steps are
taken as illustrated in Figure 5.2. As before, we verify if the tokenization can be reproduced.
We then get the indices of all entities as well as their corresponding class and store them in a
list (Step 2). Next, we iterate through the list of entities, randomly drawing an entity of the
same class from the dictionary as replacement (Step 3). We tokenize the replacement and
calculate the offset that it causes in the original sequence of tokens and their corresponding
labels. We then replace the tokens that are part of the original entity with the tokens that
comprise the replacement entity. We also add the offset to the indices of all remaining entities
in our entity list that are located to the right of the replaced entity so that the indices now
refer to the entity’s position in the modified sentence (Step 4). The annotations of the tokens
to the left and right of the replaced entity can simply be copied. Finally, we annotate the

9https://pypi.org/project/fasttext
10https://pypi.org/project/transformers

https://pypi.org/project/fasttext
https://pypi.org/project/transformers
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replacement with the same class the original entity had, deducing the correct IOB2-scheme
tags from its length. We do not enforce that the replacement retrieved from the dictionary
differs from the original entity11.

5.2.3 Back-Translation

Our Back-Translation function does not have any parameters, as we hard-coded the pivotal
language to be English. When starting the augmentation of a sentence, we first have to verify
the reproducibility of its tokenization, as we did for Synonym Replacement and Mention
Replacement. During the augmentation of a dataset, the following steps are taken as illustrated
in Figure 5.3. First, we collect all the entities, their starting index, and their class into a list
(Step 1). Then, before continuing, we check if the token sequences that comprise entities occur
multiple times in the sentence (Step 2). As explained in Section 4.3 we can only augment a
sentence if these sequences have the same label sequence at each occurrence. We then back-
translate and tokenize each entity we extracted from the sentence to increase the chance of
being able to fully re-annotate the back-translated sentence (Step 3). We then back-translate
the full sentence as a plain string, using English as pivotal language, and tokenize the returned
new sentence (Step 4). Finally, we try to find each extracted entity in the back-translated,
tokenized version of the sentence by matching the token sequence of either the original or
the back-translated version of the entity with a sequence of tokens in the back-translated
sentence, so that we can label it (Step 5). We annotate all matching token sequences with the
corresponding label12, as, due to the previously mentioned constraint, we can be sure that in
case there are multiple matching token sequences all matches have the same label sequence. If
we are unable to find all extracted entities in the back-translated sentence the augmentation
of the sentence is aborted. After labeling all entities (extracted from the original sentence) in
the back-translated sentence, the process should be considered finished since the translation
is not introducing new entities. We can therefore annotate all remaining tokens with ”O”.

By default our implementation of Back-Translation uses the BackTranslation package13 which
makes use of the googletrans14 package and the Baidu Translation API15 to provide free trans-
lation functionality. However, our code also provides the option to use the Google Cloud
Translation API16 or the DeepL API17 if the required API keys are provided.

11Unfortunately this only came to our attention after performing augmentation and evaluation.
12We annotate either all occurrences of the original token sequence or the back-translated token-sequence,

depending on which occurs more frequently in the back-translated sentence.
13https://pypi.org/project/BackTranslation
14https://pypi.org/project/googletrans/3.0.0
15https://api.fanyi.baidu.com
16https://cloud.google.com/translate
17https://www.deepl.com/pro-api

https://pypi.org/project/BackTranslation
https://pypi.org/project/googletrans/3.0.0
https://api.fanyi.baidu.com
https://cloud.google.com/translate
https://www.deepl.com/pro-api
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Figure 5.1: Synonym Replacement process by example
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Figure 5.2: Mention Replacement process by example
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6 Evaluation

In this chapter, we present and discuss the results of the experiments we performed.

6.1 Baselines

Table 6.1a lists the baseline performances to which we will compare the performance of both
models trained with augmented datasets. The results show that in very low-data settings,
represented by the 1%-dataset, the BiLSTM-CRF model outperforms the XLM-R model. For
all other dataset fractions, the XLM-R model outperforms the BiLSTM-CRF model. We also
notice that we already achieve relatively good performances with only 10% and 30% of the
original dataset, possibly due to its large size. The training duration of both models is listed in
Table 6.1b. Training and evaluation are run on a single NVIDIA A100 GPU (cf. Table 6.2).

Table 6.1: Baseline training duration and evaluation results

(a) Baseline results, micro F1-scores

Dataset BiLSTM-CRF XLM-R
1% 0.6959 0.6089
10% 0.9071 0.9130
30% 0.9356 0.9416
50% 0.9489 0.9559
100% 0.9572 0.9661

(b) Training duration in minutes

Dataset BiLSTM-CRF XLM-R
1% 82 49
10% 108 128
30% 207 302
50% 246 481
100% 505 918

6.2 Data Augmentation

Asmentioned in Section 4.1 and Section 5.2we can only augment sentenceswhose tokenization
is reproducible. This constraint affects 4, 233 of the original number of sentences, correspond-
ing to 9.06% of all training data, which is consequently not eligible for augmentation. The
following subsections provide details on the results achieved after training our models on
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Table 6.2: List of detailed implementation specifications

Item Specification
CPU Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz
GPU NVIDIA A100, 40GB memory

Graphic driver Nvidia graphic driver version 465.19.01
CUDA Version 11.3

OS AlmaLinux 8.3
Python Python 3.9.12
Pytorch Version 1.11.0

the augmented datasets and evaluating the quality of the resulting augmented data for each
augmentation technique. Note that we state percentage improvements relative to the baseline
performance. In consequence, we consider a change in F1-score from e.g. 0.10 to 0.11 a 10%
improvement.

6.2.1 Synonym Replacement

The time Synonym Replacement takes depends on the replacement percentage and used
source. It varies from only 0.41 seconds per sentence using OpenThesaurus in combination
with a replacement percentage of 20% to 12 seconds per sentence using XLM-RoBERTa as
source in combination with a replacement percentage of 60%. In consequence, the augmenta-
tion of the German LER dataset using Synonym Replacement took between 5 and 155 hours,
resulting in between 35, 673 and 40, 875 new generated sentences (cf. Table 6.3). Generally, the
number of successfully augmented sentences increases with the replacement percentage. This
technique can boost the dataset size by up to 87.3%. The maximum number of augmented
sentences was generated with a replacement percentage of 60% and the contextual language
model and fastText embeddings as the source. As the replacement percentage is an upper
bound, we also track how many tokens relative to all tokens were replaced. Here, fastText and
XLM-RoBERTa perform very well, returning a replacement for almost all tokens qualified
for replacement. OpenThesaurus can only return a replacement for on average 60% of the
proposed tokens. We also notice that around 50% of all tokens are eligible for replacement, i.e.,
pass the regular expression filter (cf. Subsection 5.2.1). In turn our replacement-percentages of
20%, 40% and 60% results in around 10.8%, 22.7%, and 34.6% of tokens being attempted to
be replaced. Table 6.4 lists our results after training both models on the datasets augmented
with different configurations. In the following, we will discuss the results of each replacement
source. It also contains the average change in micro F1-score across all datasets for each
replacement source and percentage combination.
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Table 6.3: Dataset sizes after applying Synonym Replacement with either OpenThesaurus (THE),
fastText embeddings (FTX), or a contextual language model (CLM) as replacement source and
different replacement percentages

Dataset Source Original 20% 40% 60%
1% THE 468 815 853 862

10% THE 4671 8,250 8,626 8,694
30% THE 14012 24,660 25,823 26,103
50% THE 23353 41,090 43,018 43,479

100% THE 46706 82,379 86,085 86,994

1% FTX 468 858 866 869
10% FTX 4671 8,634 8,734 8,755
30% FTX 14012 25,827 26,191 26,276
50% FTX 23353 43,052 43,632 43,763

100% FTX 46706 86,192 87,326 87,581

1% CLM 468 858 865 869
10% CLM 4671 8,643 8,730 8,750
30% CLM 14012 25,856 26,176 26,249
50% CLM 23353 43,090 43,606 43,715

100% CLM 46706 86,267 87,273 87,484

Table 6.4: Evaluation results after training on data augmented with Synonym Replacement in terms
of micro F1-score with either OpenThesaurus (THE), fastText embeddings (FTX), or a contextual
language model (CLM) as replacement source and different replacement percentages

BiLSTM-CRF XLM-R
Dataset Source Baseline 20% 40% 60% Baseline 20% 40% 60%

1% THE 0.6994 -0.0035 +0.0108 +0.0096 0.6089 +0.0081 -0.0028 +0.0322
10% THE 0.8941 +0.0130 +0.0073 +0.0042 0.9130 +0.0079 +0.0054 +0.0104
30% THE 0.9346 +0.0010 +0.0012 +0.0014 0.9416 +0.0061 +0.0097 +0.0084
50% THE 0.9430 +0.0059 +0.0033 +0.0040 0.9559 -0.0007 +0.0021 +0.0031

100% THE 0.9572 +0.0023 +0.0031 +0.0013 0.9661 +0.0007 +0.0010 +0.0004

Ø +0.0037 +0.0051 +0.0041 +0.0044 +0.0031 +0.0109

1% FTX 0.6994 -0.0180 -0.0030 +0.0072 0.6089 +0.0296 +0.0224 +0.0268
10% FTX 0.8941 +0.0047 +0.0073 +0.0079 0.9130 +0.0033 +0.0055 +0.0051
30% FTX 0.9346 +0.0009 +0.0009 +0.0023 0.9416 +0.0089 +0.0063 +0.0075
50% FTX 0.9430 +0.0053 +0.0048 +0.0049 0.9559 +0.0012 +0.0001 +0.0022

100% FTX 0.9572 +0.0005 +0.0025 +0.0023 0.9661 +0.0011 +0.0014 +0.0002

Ø -0.0013 +0.0025 +0.0049 +0.0088 +0.0071 +0.0084

1% CLM 0.6994 +0.0180 -0.0039 +0.0007 0.6089 +0.0943 +0.0770 +0.0530
10% CLM 0.8941 +0.0015 +0.0089 -0.0018 0.9130 +0.0074 +0.0018 +0.0013
30% CLM 0.9346 +0.0002 +0.0008 +0.0002 0.9416 +0.0045 +0.0047 +0.0028
50% CLM 0.9430 +0.0047 +0.0047 +0.0035 0.9559 +0.0020 -0.0004 -0.0005

100% CLM 0.9572 +0.0006 -0.0005 -0.0018 0.9661 -0.0015 -0.0003 -0.0013

Ø +0.0050 +0.0020 +0.0002 +0.0213 +0.0166 +0.0111
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6.2.1.1 OpenThesaurus

Model Performance Using the OpenThesaurus database as the source of replacements,
we achieve a maximum relative improvement in the BiLSTM-CRF model performance of
1.54% by augmenting the 1%-dataset with a replacement percentage of 40%. The maximum
relative gain in the XLM-R model performance is 5.29% and is achieved by augmenting the
1% dataset with a replacement percentage of 60%. We notice that for the 1%- and 30%-dataset,
the XLM-R model benefits more, while for the 10% dataset, the BiLSTM-CRF model has
more considerable improvements. Generally, it seems that the XLM-R model trained on the
larger datasets (50% and 100%) benefits only marginally from applying DA, while for the
BiLSTM-CRF model, we get a mixed picture. It appears that with OpenThesaurus, a higher
replacement percentage improves XLM-R performance, while for the BiLSTM-CRF model,
it does not. We also notice one positive (+0.0130) and one negative (�0.0035) outlier in the
data, namely the evaluation results after training on the 1%- and 10%-dataset augmented with
a replacement percentage of 20% in combination with the BiLSTM-CRF model. Another
example where the augmentation unexpectedly worsened the performance is the evaluation
of the 1%-dataset augmented with a replacement percentage of 40% in combination with the
XLM-R model.

Quality of Augmentation The quality of the synthetic sentences generated by applying
Synonym Replacement using OpenThesaurus varies. There are cases where the retrieved
replacements fit well into the sentence and others where the resulting sentence is barely
comprehensible (cf. Table 6.5). Due to the limited information available in the OpenThesaurus
database, the retrieved replacement does not always have the same meaning as the original
token. A possible solution to this problem is the disambiguation of the original token and the
retrieved candidates. This is a limitation of the chosen replacement source. Consequently, the
generated synthetic sentences feature frequent syntactical errors and changes in semantics.
For the English language, the WordNet thesaurus alleviates this problem by associating words
with their POS tags [Sch94], which can then be used to filter the replacement candidates.
Therefore, one direction for further research would be using GermaNET [HF97], which is a
similar thesaurus for the German language, instead of OpenThesaurus. The upside of using
OpenThesaurus is that the retrieved replacements are consistently sufficiently different from
the original token. Surprisingly, the issues mentioned above do not significantly impact the
model training negatively, and the added information from the synthetic sentences still causes
improvements in model performance.
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Table 6.5: Samples of sentences augmented with Synonym Replacement using OpenThesaurus as the
source and a replacement-percentage of 40% with points of interest highlighted in blue and entities in
italic

original Die arbeitsvertraglichen Pflichten von HerrnN waren vielmehr für die Dauer
des nach § 27 Abs. 2 MTV-DP AG bewilligten Sonderurlaubs suspendiert .

augmented Die arbeitsvertraglichen Pflichten vonseiten HerrnN waren eher für diese Dauer
des nach § 27 Abs. 2 MTV-DP AG bewilligten Sonderurlaubs suspendiert .

original Der Beschwerdeführer habe sich in der Gruppe befunden , aus
welcher es zu Provokationen und Körperverletzungsdelikten gekommen sei .

augmented Der Ankläger Besitz sich in der Gesellschaftsschicht befunden , leer
welcher es zu Provokationen auch Körperverletzungsdelikten gekommen sei .

6.2.1.2 fastText

Model Performance When retrieving replacements using the fastText embeddings, we
achieve a maximum relative improvement in the BiLSTM-CRF model performance of 1.03%
by augmenting the 1% dataset with a replacement percentage of 60%. The maximum relative
gain in the XLM-R model performance is 4.86% and is achieved by augmenting the 1%
dataset with a replacement percentage of 20%. Again, we notice that for the 1% and 30%
datasets, the XLM-R model benefits more, while for the 10% dataset, the BiLSTM-CRF
model shows greater overall improvement. It also appears that with fastText embeddings, a
higher replacement percentage improves BiLSTM-CRF performance, while for the XLM-R
model, it does not. Additionally, we notice that the performance of the XLM-R model after
training on the larger datasets (50%, 100%) is impacted only very slightly by performing DA.
In contrast, the BiLSTM-CRF model still shows improvements for the 50%-dataset. As before,
we notice some deterioration in our data, namely the evaluation results after training on the
1% dataset augmented with a replacement percentage of 20% and 40% in combination with
the BiLSTM-CRF model.

Quality of Augmentation The quality of the synthetic sentences generated by applying
SynonymReplacement using fastText embeddings varies less thanwhen usingOpenThesaurus
as the replacement source. In most cases, the meaning of retrieved replacements corresponds
to the meaning of the original token. This can probably be attributed to the data structure
of the embeddings and the used measure for calculating the similarity between embeddings
(cosine similarity). Consequently, substituting tokens using fastText embeddingsmostly leaves
the semantics intact and only slightly degrades the syntax. The downside of this approach is
that the retrieved replacements sometimes differ only in minimal ways, when, i.e., singular
nouns are replaced with their plural forms, or correctly written words are replaced by their
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misspelled versions (cf. Table 6.6). This phenomenon can be explained by the fact that the
fastText embeddings were created from user-generated Twitter data, so the most similar
available token often is the same word with a different spelling or declension.

Table 6.6: Samples of sentences augmented with Synonym Replacement using fastText embeddings
as the source and a replacement-percentage of 40% with points of interest highlighted in blue and
entities in italic

original Beiden Rechtsmitteln bleibt der Erfolg versagt .

augmented Beide Rechtsmitteln bliebt der Erfolg versagt .

original Der Zug war nicht inW. , sondern in X. stationiert .

augmented Der Zug ist nicht inW. , sondern in X. stationierte .

original Das Anmeldezeichen benennt folglich den typischen Nutzer
und die Funktion der gespeicherten Computerprogramme .

augmented Das Anmeldezeichen benennt folglich diesen typischen Nutzerinnen
sowie diese Funktion der gespeicherten Computerprogrammen .

6.2.1.3 Contextual Language Model

Model Performance Using the contextual language model XLM-RoBERTa to replace
tokens,we achieve amaximumrelative improvement in theBiLSTM-CRFmodel performance
of 2.57% by augmenting the 1% dataset with a replacement percentage of 20%. The maximum
relative gain in the XLM-R model performance is 15.49% and is achieved by augmenting the
1% dataset with a replacement percentage of 20%. Here, for the 1%, 10%, and 30% datasets,
the XLM-R model benefits more from the augmentation than the BiLSTM-CRF model. In
contrast to the other replacement sources, we notice that a higher replacement percentage
does not increase but reduce the augmentation’s positive impact across almost all dataset
and model combinations. Again, the augmentation affects the performance of the models on
the 100%-dataset only marginally. We notice that the augmentation unexpectedly worsened
performance on the 1% dataset augmented with a replacement percentage of 40% using the
BiLSTM-CRF model.

Quality of Augmentation The quality of the synthetic sentences generated by applying
Synonym Replacement using the contextual language model XLM-RoBERTa is similar to the
quality of the sentences generated using fastText embeddings. The semantics of the sentences
changemore thanwith the other replacement sources, while the syntax remains intact inmost
cases (cf. Table 6.7 sample A). In contrast to the fastText embeddings, the contextual language
model rarely returns replacement candidates that differ only slightly from the original token.
In some cases, the replacement does not have the same meaning as the original token but
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is a different token. This replacement source seems to be a compromise between the more
accurate replacements returned by the fastText embeddings and the higher probability of
introducing differences compared to the original sentence when using the OpenThesaurus as
the replacement source. When examining the sentences augmented with higher replacement
percentages (40%, 60%), we found that replacing too many original tokens in a sentence
with replacements suggested by a contextual language model occasionally strongly alters the
original semantics (cf. Table 6.7 sample B).

Table 6.7: Samples of sentences augmented with Synonym Replacement using a contextual language
model as the source and a replacement-percentage of 40% with points of interest highlighted in blue
and entities in italic

A original Der Beschwerdeführer habe sich in der Gruppe befunden ,
aus welcher es zu Provokationen und Körperverletzungsdelikten gekommen sei .

augmented Die Beschwerdeführer habe sich vor einer Situation gefunden ,
aus welcher heraus die Provokationen zu Körperverletzungsdelikten geworden ist .

B original

Zwar gelten für die Inanspruchnahme des Gläubigers der
Kapitalerträge als Schuldner der Kapitalertragsteuer andere Rechtsgrundlagen

als für den Schuldner der Kapitalerträge , der die Steuer für Rechnung
des Steuerschuldners zu entrichten hat ( § 43 Satz 2 AO ) .

augmented

Es gelten über die Haftung des Gläubigers der
Beiträge vom Schuldner zur Kapitalertragsteuer andere Vorschriften
wie für einen Schuldner ohne Anspruch, der diese jedoch auf Kosten

des Unternehmens zur entrichten hatte ( § 43 Satz 2 AO )

6.2.1.4 Conclusion

Figure 6.1 depicts a summary of the results from evaluating different configurations of Syn-
onym Replacement with regard to replacement source and percentage. It displays the relative
improvement achieved after using DA compared to the baseline value for the corresponding
dataset and model combination. Note that the scale on the y-axis is logarithmic for values
larger than±1%. Inmost cases applying SynonymReplacement leads to performance improve-
ments. We notice that, especially with the XLM-R model, the improvement for the two largest
datasets is minimal. From Table 6.4 we deduce that the contextual language model as source
is best used with a low replacement percentage; for the other sources, we get mixed results.
The maximum improvement across the different replacement sources for the BiLSTM-CRF
model and the XLM-R model was achieved by augmenting the 1%-dataset with a replacement
percentage of 20% using the contextual language model as the replacement source, with gains
of 2.57% and 15.49% respectively. Figure 6.2 displays the average relative improvement in
micro F1-score across all datasets achieved by applying Synonym Replacement depending on
replacement source and percentage with both models. Generally, the XLM-R model benefits
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more from DA than the BiLSTM-CRF model, with the contextual language model yielding
the greatest average improvement. However, a big share of the average improvement can
be attributed to the gain on the 1%-dataset, and it should be taken into account that the
baseline performance on this dataset is considerably lower for the XLM-R model than for the
BiLSTM-CRFmodel.Themain issuewith this technique is that it is relatively time consuming,
depending on the used configuration, although it might be possible to speed up the process
significantly by using parallelization.

6.2.2 Mention Replacement

The Mention Replacement augmentation technique is the least expensive of the three tested
techniques. Augmenting the 100%-dataset only takes 499 seconds, corresponding to only
0.011 seconds per sentence. By applying Mention Replacement we were able to augment
17, 678 of the 46, 706 original sentences, increasing the dataset size by 37.85% (cf. Table 6.8).
This number is relatively low as 24, 774 (53.04%) sentences did not contain entities and
consequently were not affected by Mention Replacement. In addition, the sentences with
irreproducible tokenizations were not eligible for augmentation, which accounts for another
9.06% of the original dataset. Besides that, there were 21 sentences that did not change even
though they contained at least one entity. This is probably due to these entities coincidentally
being replaced by themselves, which is likely to happen with classes with very few entities. In
total, 29, 949 entities across all classes were swapped during the augmentation.

Model Performance Table 6.9 lists the results we achieved after training both models on
the augmented datasets. The BiLSTM-CRF model benefits from the augmented data across
the entire range of dataset sizes, with improvements of up to 3.17%. The XLM-R model shows
more significant performance improvements for the small datasets but lower improvements
for the larger 50%- and 100%-dataset with gains of up to 12.68%. The 100%-dataset is the
only instance where the XLM-R model performance worsened slightly compared to the
baseline, but the improvements for all settings with datasets larger than the 10%-dataset are
minor. The absolute and relative maximum improvement for both models is achieved for the
1%-dataset, the absolute and relative minimum for the 100%-dataset. The average change in
micro F1-score across all datasets is +0.0075 for the BiLSTM-CRF model and +0.0194 for the
XLM-R model.

Quality of Augmentation The quality of the synthetic sentences generated by applying
the Mention Replacement technique is consistent and overall very good. While the syntax of
the sentences does not change significantly, this also assures that no significant distortions
or grammatical mistakes are introduced. Most of the few errors we encountered during the
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Figure 6.1: Micro F1-score improvements achieved by applying Synonym Replacement over replace-
ment percentage by source, model and dataset

Figure 6.2: Average micro F1-score improvements across all datasets achieved by applying Synonym
Replacement by source, model and percentage
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manual evaluation were issues related to the improper use of articles or similar errors caused
by a change in subject or object in a sentence (cf. Table 6.10). In contrast to, e.g., Synonym
Replacement, Mention Replacement strongly influences the semantics of sentences, as objects
and subjects are randomly exchanged. This, however, does not seem to affect the models
negatively. A reasonable explanation is that the models do not develop an understanding
of the sentence and word semantics but rather learn to distinguish the classes based on the
entire sentence structure and composition.

Mention Replacement proves an effective DA technique that can add value for relatively low
time and computing cost. An interesting direction to explore is how effectively Mention
Replacement might be used for upsampling [Pro00], in which the class distribution of the
training data is artificially adjusted to be more balanced.

6.2.3 Back-Translation

The Back-Translation augmentation technique is not very resource expensive but still, due to
API rate limits associated with the BackTranslation package, augmenting the 100%-dataset
took 154 hours, corresponding to 11.87 seconds per sentence. By applying Back-Translation
wewere able to augment 29, 594 of the 46, 706 sentences, increasing the dataset size by 63.24%
(cf. Table 6.8). This initially seems like a good result, but out of these 29, 594 sentences, only
5, 449 sentences contain at least one or more entities. The majority of generated sentences do
not contain entities. In addition, the sentences with irreproducible tokenizations were not
eligible for augmentation, which accounts for another 9.06% of the original dataset. There
were 457 sentences that did not change despite being back-translated. This can probably be
attributed to very short or simple sentences not leaving much room for changes.

Model Performance Table 6.9 lists the results we achieved after training both models
on the augmented datasets. We do not register a significant impact of the Back-Translation
augmentation on the performance regarding the micro F1-score of either the BiLSTM-CRF
or the XLM-R model. However, it seems that in most cases, it slightly deteriorates the per-
formance of the XLM-R model. The average change in micro F1-score across all datasets is
+0.0018 for the BiLSTM-CRF model and �0.0025 for the XLM-R model.

Quality of Augmentation Thequality of the synthetic sentences generated by applying the
Back-Translation technique varies substantially. Short sentences with and without entities are
mostly translated well and show moderate rates of change compared to the original sentence
(cf. Table 6.11 sample A, B). Longer sentences and sentences containing special terminology
from the legal domain, on the other hand, occasionally suffer from a loss of meaning and
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Table 6.8: Dataset sizes after applying Mention Replacement, Back-Translation

Dataset Original MR BT
1% 468 641 744

10% 4671 6,420 7,648
30% 14012 19,284 22,899
50% 23353 32,120 38,141

100% 46706 64,384 76,242

Table 6.9: Evaluation results after training on data augmented with Mention Replacement (MR) or
Back-Translation (BT) in terms of micro F1-score

BiLSTM-CRF XLM-R
Dataset Baseline MR � BT � Baseline MR � BT �

1% 0.6994 +0.0222 +0.0065 0.6089 +0.0772 -0.0123
10% 0.8941 +0.0053 -0.0040 0.9130 +0.0103 -0.0025
30% 0.9346 +0.0032 +0.0006 0.9416 +0.0064 +0.0037
50% 0.9430 +0.0061 +0.0063 0.9559 +0.0033 -0.0008

100% 0.9572 +0.0007 -0.0003 0.9661 -0.0003 -0.0004
Ø +0.0075 +0.0018 +0.0194 -0.0025

Table 6.10: Samples of sentences augmented with Mention Replacement with points of interest
highlighted in blue and entities in italic

A original
( 2 ) Ob die Umwandlung der Todesstrafe in eine lebenslange Freiheitsstrafe

bereits zwingend aus dem seit 1991 praktizierten Moratorium folgt ,
wie es das Bundesverwaltungsgericht angenommen hat , kann dahinstehen .

augmented
( 2 ) Ob die Umwandlung der Todesstrafe in eine lebenslange Freiheitsstrafe

bereits zwingend aus dem seit 1991 praktizierten Moratorium folgt ,
wie es das Europäischen Gerichtshof angenommen hat , kann dahinstehen .

B original Eine gesetzliche Verpflichtung zur Mitgliedschaft in der berufsständischen
Kammer bestand bereits vor dem 1. 1. 1995 in Baden-Württemberg .

augmented Eine gesetzliche Verpflichtung zur Mitgliedschaft in der berufsständischen
Kammer bestand bereits vor dem 1. 1. 1995 in Türkei .
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inaccuracies (cf. Table 6.11 sample C, D). We assume that the main cause for such semantic
issues is the translation service, which sometimes returns poor translations (cf. Table 6.11
sample D). We assume that the root of this issue partly is that not all concepts of the German
legal system have equivalents in the legal systems of the country whose language is used as
pivotal language, in our case English. Another big challenge is the re-annotation of the entities
in the back-translated sentences. This currently only works in approximately every fourth
sentence, leading tomost (successfully) augmented sentences not containing any entities. Only
5, 449 sentences containing one or more entities were augmented successfully. In contrast, in
the original dataset, 21, 175 sentences contained one or more entities. The total number of
annotated entities increased by 17.52% (cf. Table 6.12). Note that the classes Court decision
(RS), Legal literature (LIT), EU legal norm (EUN), and Ordinance (VO) have particularly
low augmentation success rates. The re-annotation of entities is impeded by the quality of
the translations, as they sometimes alter the entities in unexpected and inconsistent ways
causing the back-translated entities as well as the original entity to be different compared to
the entities that were back-translated as part of the sentence. In sample E of Table 6.11, the
back-translated sentence contains a mixture of the original entity (”§ 173 Abs. 1 Nr. 2”) and
the back-translated entity (”Steuergesetzbuch”). Moreover, the article and the declension of
the object match neither the original nor the back-translated entity. These issues might be
alleviated using another translation service such as Googles Cloud Translation or DeepL,
as small-scale tests show that the translations are of higher quality, or Another parameter
that might influence the quality of translations is the pivotal language, although we did not
perform tests using other pivotal languages.

Despite the issues mentioned above, the sentences’ syntax is often not affected as severely
as the semantics. In the German LER dataset, a significant share of all sentences is long and
complex. After augmentation, these sentences still have correct syntax, but their original
meaning is frequently lost. Concerning the differences between augmented and original
sentences, we observe that in many cases, only the wording changes, but the structure of
the sentence remains unchanged. This is not what we were hoping for, as Back-Translation
is expected to paraphrase the original sentence while retaining its meaning (cf. Section 4.3).
The lack of change in structure might be related to the structure of the input sentences, their
length, the chosen pivotal language, or the chosen translation service.

We conclude that Back-Translation might be better suited to domains that do not come
with long, elaborate sentence structures and language-dependent terminology. Then the
re-annotation of entities is more likely to succeed as the entities will be less complex, and the
translation results can be expected to be of consistently higher quality. In the current state, it
is not a suitable augmentation technique for NER over the LER dataset.



Chapter 6. Evaluation 59

Table 6.11: Samples of sentences augmented with Back-Translation with points of interest high-
lighted in blue and entities in italic. Sentences with the remark ”failed” were not successfully re-
annotated and therefore not added to the augmented dataset.

A original Auch die Zahlung von Teilbeträgen sei nicht zu erwarten gewesen .

augmented Die Zahlung von Teilbeträgen war ebenfalls nicht zu erwarten .

B original Der Zug war nicht inW. , sondern in X. stationiert .

augmented Der Zug war nicht inW. stationiert , sondern in X.

C original Der Kläger hat zuletzt - soweit für das
Revisionsverfahren von Interesse - beantragt ,

augmented Der Kläger hat kürzlich Zinsen beantragt - bis zum Revisionsverfahren

D original

Auch wenn das Schätzungsergebnis trotz vorhandener Möglichkeiten ,
den Sachverhalt aufzuklären und Schätzungsgrundlagen zu ermitteln , von

den tatsächlichen Gegebenheiten abweicht und in keiner Weise erkennbar ist ,
dass überhaupt und ggf. welche Schätzungserwägungen angestellt wurden

( s. BFH-Urteil / NV 2015 , 145 , m. w. N. ) , kann eine Nichtigkeit vorliegen .

augmented
(failed)

Auch wenn das Ergebnis der Schätzung trotz der Möglichkeiten ,
die Tatsachen zu klären und die Bewertungen zu ermitteln
/ NV 2015 , 145 , m. W. N. ) , kann es Nichtigkeit geben .

E original
Im Jahr 2012 beantragte der Kläger die Berücksichtigung der

Versorgungsleistungen in den Streitjahren und begehrte die Änderung dieser
Einkommensteuerfestsetzungen nach § 173 Abs. 1 Nr. 2 der Abgabenordnung .

back-translated
entity Abschnitt 173 (1) Nr. 2 des Steuergesetzbuchs

augmented
(failed)

Im Jahr 2012 beantragte der Kläger die Rentenleistungen
in den Streitjahren und beantragte die Änderung dieser

Einkommensteuerbewertungen gemäß § 173 Abs. 1 Nr. 2 der Steuergesetzbuch .
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Table 6.12: Number of annotated entities per class before and after applying Back-Translation

Class Description Original Augmented �

PER Person 1,240 1,835 +47.98%
ST City 475 702 +47.79%
AN Lawyer 80 116 +45.00%
LD Country 1,006 1,450 +44.14%

LDS Landscape 138 198 +43.48%
MRK Brand 202 284 +40.59%
UN Company 745 1,020 +36.91%
STR Street 101 138 +36.63%
RR Judge 1,052 1,342 +27.57%

ORG Organization 823 1,025 +24.54%
GRT Court 2,254 2,748 +21.92%
INN Institution 1,534 1,852 +20.73%
VT Contract 2,034 2,401 +18.04%
GS Law 12,890 15,068 +16.90%
VS Regulation 434 501 +15.44%
VO Ordinance 559 627 +12.16%
RS Court decision 8,839 9,536 +7.89%

LIT Legal literature 2,115 2,220 +4.96%
EUN EU legal norm 1,034 1,073 +3.77%

Total 37,555 44,136 +17.52%



7 Conclusion and FutureWork

The goal of this work was to first select machine learning models for the NER task, and the
subsequent evaluation of DA techniques, examine how well DA techniques for the NER task
work with a specific focus on the German legal domain, how different (German) sources
of replacements for Synonym Replacement compare to each other, and to explore a new
variant of applying Back-Translation to sequence-labeling data. To answer these questions, we
implemented and evaluatedDA techniques.This included surveying theDA techniques applied
to sequence-labeling data, selecting two different state-of-the-art DL models, implementing
three DA techniques, and evaluating their effect on the selected models’ performance.

We selected two model architectures, BiLSTM-CRF and a fine-tuned Transformer (XLM-
RoBERTa), that are frequently used in the community and reflect the current state-of-the-art.
Figure 7.1 displays the relative improvements achieved in model performance after applying
the DA techniques to the datasets. Due to the different configurations tested, we have multiple
data points per dataset and model for the Synonym Replacement technique. We notice that
applying DA can be very beneficial when working with small datasets such as the 1%-dataset
that contains only 468 sentences. Mention Replacement offers good value considering its low
computational complexity compared to Synonym Replacement and Back-Translation. The
impact of using Mention Replacement and Synonym Replacement is comparable. However,
for the smallest dataset, Mention Replacement works slightly better with the BiLSTM-CRF
model and slightly worse with the XLM-Rmodel than SynonymReplacement.While applying
Synonym and Mention Replacement led to improvements in model performance, we found
that Back-Translation might be better suited to other domains. This is, among other things,
due to the long and nested sentences encountered in the legal domain and the fact that not
all concepts of the German legal system have equivalents in the other legal systems, making
translation difficult. It does not yield good results, often even deteriorating performance. On
the other hand, Synonym Replacement improved model performance in most cases, mainly
when applied to the smaller 1%- and 10%-dataset. Concerning our initial goals, we achieved
all of them, namely the implementation of Synonym Replacement, Mention Replacement and
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Back-Translation, as well as their evaluation, including the comparison of different replace-
ment sources and percentages for Synonym Replacement. Other investigation directions that
we would have liked to include but were unable to due to time constraints are evaluating
multiple different pivotal languages during Back-Translation and assessing the combined
application of the implemented DA techniques. We could not run the evaluations multiple
times to report the mean metrics and their standard deviation.

Figure 7.1:Micro F1-score improvements achieved by applying Back-Translation (BT), Mention
Replacement (MR) and Synonym Replacement (SR) by model and dataset

The main issues that we faced occurred during implementation and evaluation. The python
package we used for translation was not stable, requiring us to implement a checkpointing
system. It had to restart from the last checkpoint 71 times during the entire augmentation pro-
cess. Besides that, only 5, 449 sentences that were augmented contained entities, in contrast
to 21, 175 sentences in the original dataset containing one or more entities, meaning aug-
mentation frequently failed for sentences containing entities. OpenThesaurus was returning
worse replacements than we anticipated, i.e., suggesting ”marrow” as a replacement for ”this”,
and the augmentation with Synonym Replacement and Back-Translation took longer than
initially expected, expanding our targeted completion time frame. In addition, the repeated
evaluation of the augmented datasets was also a very timely procedure.

Possible future research directions in this area are further improving the Back-Translation
technique by, e.g., using other translation services, refining the re-annotation process of enti-
ties in the back-translated sentence, and testing other pivotal languages. All implemented DA
techniques might substantially benefit from optimizations regarding their performance, i.e.,
parallelization, making their usage less expensive and facilitating further research. Mention
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Replacement could be extended to optionally include a manually composed dictionary, or
a dictionary gathered from knowledge graphs to introduce new entities into the dataset.
The performance of Synonym Replacement when used with a thesaurus as the replacement
source could be improved by using a thesaurus that supports filtering words by their POS tag.
One such source that may be explored is GermaNET [HF97]. The retrieval of replacements
from fastText embeddings could possibly be improved by requiring a minimum edit distance
relative to the original token.
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