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1 INTRODUCTION 

The outbreak of the recent COVID-19 pandemic has highlighted the challenges the healthcare 

systems of all countries of the world are facing. To address these challenges, new tools for 

clinical medicine to prevent such occurrence need to be developed. These developments should 

cover the three stages of clinical medicine, including the screening and the diagnosis of 

diseases, the treatment, and the surveillance of the patient response to treatment and the disease 

progression [1]. In healthcare systems, biomedical technologies are increasingly playing a role 

in all processes, from patient registration to data monitoring, from lab tests to self-care tools. 

From the design of X-ray machines to innovations in surgical practices, biomedical 

technologies improved our health and extended life expectancies [2], [3]. Of all biomedical 

technologies, biophotonics plays a crucial role in providing the most effective, lowest-cost 

approaches for diagnosing, treating, and preventing diseases [4]. In biophotonics, the molecular 

processes are analyzed by their interactions with light. The main idea is to utilize light to 

understand biological samples like biological tissue. To do so, optical processes such as 

reflection, absorption, elastic and inelastic scattering, and fluorescence are used to extract 

sample information. These processes can provide insights into the metabolic and pathological 

state of the tissue [5]. In this regard, both in vivo and ex vivo analyses can be implemented to 

study the structure and functions of molecules, cells, and organisms [6]. For instance, in vivo 

diagnosis of diseases using optical spectroscopy enables rapid clinical decisions without 

invasive biopsies. The incident light for in vivo scenarios can be delivered in a highly localized 

manner to tissue via optical fiber probes, which are placed within the working channels of 

minimally-invasive clinical tools, such as endoscopes [5].  
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The study of molecular processes using light has many benefits: it enables earlier and more 

accurate detection of diseases, customizes more effective treatments, causes fewer side effects, 

and is more practical due to the specific patient risk characterization and prediction of response 

to therapy [7]. However, several optical spectroscopic techniques exist to diagnose and monitor 

diseases and analyze molecular processes when biological samples interact with light. These 

techniques are considered part of molecular spectroscopy that explores in a non-invasive 

fashion the stereo-electronic, dynamic, and environmental effects of molecular systems, 

covering many chemistry areas [8]. In addition, novel techniques have enabled the study of 

many compounds, ranging from small molecules to metal complexes, organometallic 

compounds, and bio-related ions. For instance, fluorescence spectroscopy supplies information 

about the electronic excitation energy and the nature of the excited states. The key component 

in fluorescence spectroscopy is the fluorophore. In this technique, a molecule absorbs the 

energy of a specific wavelength and then emits energy at a different but equally specific 

wavelength. The amount and wavelength of the emitted energy depend on the fluorophore and 

its chemical environment [9], [10]. Moreover, infrared spectroscopy (IR) studies how light in 

the infrared region of the electromagnetic spectrum interacts with matter. It can measure 

molecular vibrations by recording the absorbed wavelengths of IR radiation. IR spectroscopy 

helps discover information about the structure of a compound or identify the functional groups, 

and it provides many absorption bands that represent the molecule fingerprint [11], [12]. 

Furthermore, dispersion and scattering are other optical processes that occur when light 

interacts with molecules in a gas, liquid, or solid. Most photons are scattered with the same 

energy as the incident photons, known as the elastic scattering or the Rayleigh scattering [13], 

[14]. However, a rare process, namely inelastic scattering or the Raman effect, occurs where a 

small number of these photons scatter at a different frequency than the incident photon [15], 

[16]. Similar to the IR spectroscopy, the Raman spectrum represents a vibrational fingerprint 

of the molecule(s). Both IR and Raman spectroscopy examine changes in vibrational and 

rotational states at the molecular level. However, infrared measures the amount of IR light 

absorbed while Raman measures the scattered light. Therefore, these technologies are 

considered complementary [16]. 

The optical methods described previously follow the linear superposition principle, which 

consists of adding the two separate inputs when these latter produce independent responses 

[17]. Besides these optical technologies, nonlinear optical spectroscopy is developed to obtain 

more information from samples than with linear spectroscopy. However, the superposition 
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principle no longer holds in nonlinear optics [18]. Therefore, many nonlinear optical techniques 

have been developed, varying between coherent and incoherent methods [19]. For instance, the 

second harmonic generation (SHG) is a coherent nonlinear process. In SHG, two incident 

photons at their fundamental frequency interacting with a medium are directly converted into 

a single photon at double frequency, without absorption or reemission of photons [20], [21]. 

SHG is an ideal tool for imaging collagen and other biological molecules breaking the 

centrosymmetry using a label-free approach. Furthermore, two-photon excitation microscopy 

(TPEF) is an incoherent technology motivated by the limitation of applying fluorescence 

spectroscopy to living systems due to photobleaching and phototoxicity. This limitation is 

controlled by maximizing the probability of detecting a signal photon per excitation event. 

Therefore, TPEF improves the detection of signal photons per excitation event, especially when 

imaging deep in highly scattering environments. In TPEF, two low-energy photons cooperate 

to cause a higher-energy electronic transition in a fluorescent molecule. It is a nonlinear process 

that depends on the second power of the light intensity [22]–[24]. Lastly, coherent anti-Stokes 

Raman scattering (CARS) microscopy involves two beams of light that simultaneously excite 

the sample. One is the pump beam, and the other of lower energy is the Stokes beam. CARS 

provides many advantages, including high resolution, high speed, high sensitivity, and non-

invasive imaging of specific biomolecules without labeling [25]–[27]. Furthermore, it 

overcomes the limitation of the imaging speed of spontaneous Raman micro-imaging. Hence, 

these optical spectroscopy techniques provide detailed molecular structure and properties. 

They are considered important tools to examine the composition and nature of materials and 

chemicals in a non-destructive and non-intrusive manner. Nevertheless, unlike imaging, 

spectroscopic techniques have not achieved the same depth level due to different factors. Such 

factors may include a lack of sensitive and low-cost systems and dependence on expertise to 

interpret complex spectral signals [28]. 

Accordingly, the generated data from these spectroscopic techniques are enormous and often 

not directly utilized. Therefore, these data needs a specific treatment to extract the underlying 

information. The analysis of these data is related to chemometrics, the science of extracting 

information from measurements made on chemical systems using mathematical and statistical 

functions [29]. These measurements are either spectroscopic like near-infrared, fluorescence, 

Raman, chromatographic like gas chromatography, or physical like temperature, pressure, and 

concentrations. However, this thesis is limited to analyzing spectroscopic data acquired either 

as spectra or images. Typically, the importance of chemometric methods increases with the 
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increasing size of spectroscopic datasets [30], [31]. In addition, these methods are needed in 

various tasks, e.g., to correct artifacts and shortcomings of specific spectroscopic techniques. 

 

Figure 1. The cycle of biophotonic analysis: from experimental design to artificial 

intelligence. The procedure of biophotonic applications started in the lab by designing the 

experiment. Then, linear or nonlinear optical spectroscopy is implemented, and data is 

subsequently collected. Afterward, artificial intelligence tools, including machine 

learning and deep learning, are applied to extract relevant information. Finally, setting 

effective and fast systems to improve the healthcare system. 

In summary, biphotonic analysis is indispensable for improving the healthcare system. Its cycle 

of biophotonic analysis, illustrated in Figure 1, started with the experimental design, followed 

by the measurements of the sample with a particular spectroscopic technique. Afterward, the 

corresponding data are collected, and finally, artificial intelligence (AI) techniques are applied, 

including machine learning (ML) and deep learning (DL) methods. These AI techniques can 

automate repetitive and expensive healthcare operations or assist physicians with real-time, 

data-driven insights.  

In the last decade, relevant advancements in chemometric methods and the growth of new ones 

have been witnessed. These achievements have established new means for deeper 

investigations and characterizations for systems of increasing complexity. However, the 

analysis and interpretation of spectroscopic data are not always straightforward and pose 
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significant challenges. For instance, like any other type of measurement, optical measurements 

depend on detectors that convert the parameter to be measured into an electrical signal. 

Consequently, the measured signals can be very weak, and analysis of the noise characteristics 

of the signal source, the detectors, and the following electronic devices, become a part of the 

measuring procedure. In addition, some of the light parameters, such as the width of a 

femtosecond pulse, cannot be measured directly and require special optical instruments to be 

evaluated [32]. Therefore, mathematical and statistical methods are essential in predicting 

spectroscopic properties that can be directly compared with the experimental information or 

sometimes challenge the experiment itself [8]. These methods vary from chemometrics to deep 

learning techniques. However, chemometrics, machine learning, and deep learning methods 

can be grouped into three major sections: inverse modeling, pre-processing, and data modeling. 
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Figure 2. Workflow of spectroscopic data analysis from inverse modeling to data 

modeling. In inverse modeling (the top row), the parameters are extracted to reconstruct 

what the measurements should be in reality. For instance, a Raman-like shape is 

extracted from the CARS spectrum, and spatially high-resolution images are constructed 

from low-resolution ones. Then, the pre-processing step (the middle row) constructs an 

improved version of the measurements since the measurement data is usually corrupted 

by artifacts. This step is applied for both spectral and image data. And finally, the data 

modeling (the bottom row) aims to extract the underlying information from data using a 

dimension reduction method and a classification method. 

First, inverse modeling is the procedure of recovering the parameters of the physical system 

from measurements that will enable the reconstruction of what these measurements should be 

in reality [33]. Next is the pre-processing step, which consists of a single or a combination of 

methods. The pre-processing methods construct a clean version of the data since the 
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measurements are usually distorted by unwanted artifacts, e.g., noises or background. And 

finally, the data modeling, also known as the approach of learning from data, in which the 

whole or a section of the data is used, and subsequently essential and relevant insights are 

extracted via feature extraction or selection [34], [35], classification, and regression. The three 

sections of the spectroscopic data analysis are shown in Figure 2. First, inverse modeling is 

applied either for spectral data or on images. In this step, for example, the Raman-like spectra 

are extracted from CARS spectra or super-resolution methods are implemented to extract 

spatially high-resolution (HR) images from low-resolution (LR) ones. The pre-processing step 

is then applied, where an improved version of the data is obtained. Since artifacts and noises 

distort the measurements due to the optical setup and other sources, various pre-processing 

methods can be implemented for spectra and images. Finally, the data modeling step is 

executed. This section aims to extract valuable information from the data, for example, marker 

values to diagnose diseases. Here, the relevant information is deduced by combining the 

dimension reduction method, the principal component analysis (PCA), and the classification 

method, the linear discriminant analysis (LDA). 

Various mathematical and statistical techniques have been developed to extract meaningful and 

relevant insights from data. For instance, univariate or multivariate analysis can be 

implemented. In the univariate case, one variable is measured, or one is predicted, typically 

one wavelength is selected, and the absorbance change over time, for instance, is monitored 

[36]. This wavelength must not have contributions or overlap from other peaks. In contrast, 

multiple variables or predictions are used in the multivariate case, so the entire analysis 

typically utilizes the whole spectrum [37]. In this case, investigating the relationship between 

variables is allowed and reveals latent variation within a set of spectra. Therefore, multivariate 

analysis is performed on multiple sets of measurements, wavelengths, samples, and datasets 

where the analysis of variance and dependence between variables is crucial. The chemometric 

process begins by collecting data and then applying mathematical and statistical methods to 

extract relevant information from them. Chemometric methods remove redundant data, reduce 

variations not related to the analytical signal or image, and build models. The obtained 

information is related to the chemical process that gives knowledge about the system, which in 

turn facilitates decision-making. 

Additionally, qualitative and quantitative analyses are employed in the data modeling section. 

For example, in classification models, the aim is often to predict a specific group with high 

accuracy. Hence, both data and labels are utilized to create a (classification) model, which is 
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subsequently evaluated using a cross-validation step. However, various cross-validation 

methods can be utilized. They vary from simple train/test splitting, k-fold cross-validation, 

bootstrapping, or Jackknife to batch-out cross-validation [38]. The cross-validation methods 

assess the model's generalization capability on an independent testing set. Accordingly, a 

confusion matrix is built, and the model performance is subsequently determined by evaluating 

the confusion matrix through the calculation of different metrics, e.g., sensitivity, specificity, 

accuracy. In addition, other techniques are utilized to test the model performance depending 

on the task studied, e.g., the area under the curve (AUC) [39], the mean, or the root mean 

squared error (MSE or RMSE) [40]. 

In chapter 2, the state of the art of existing mathematical methods is reviewed. Then, a detailed 

explanation of the researched questions and our proposed approaches and findings are provided 

in chapter 3. 
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2 STATE-OF-THE-ART 

Mathematical and statistical methods can be used to extract as much information as possible 

from spectroscopic data. These methods can generally be categorized into data enhancement 

and data modeling. The data enhancement group belongs to the inverse problem category, 

which consists of recovering the parameters of the physical system from connected 

measurements. This recovery includes methods that either extract specific properties of the 

spectroscopic data known as inverse modeling or remove noise or artifacts from the 

measurements. In this context, the inverse modeling methods recover information about the 

system or its parameters from the measurements, which are directly inaccessible or expensive 

to acquire. However, data pre-processing methods are responsible for estimating the corrected 

version of the measurement data since it is disrupted by some artifacts usually resulting from 

the spectroscopic setup. Inverse problems arise in several signal processing applications, e.g., 

deblurring, denoising, super-resolution, reconstruction, segmentation, compressive sensing, 

inpainting. Moreover, the data modeling group is a forward problem that uses the measurement 

data to build a model that best represents the data and can extract relationships or predict 

specific characteristics of the sample or in the data set. A variety of unsolved problems exist in 

the inverse modeling, data pre-processing, and data modeling sections. Finding solutions for 

these problems is a step towards automated and fast diagnosis systems. However, the thesis is 

limited to answering some of the issues that are faced in spectroscopy, including phase 

retrieval, image denoising, super-resolution, and classification in the case of low-quality 

spectra.  

2.1 Inverse Modeling 
The inverse modeling is a category of the inverse problem class, which is generally formulated 

as follows 

 𝑲𝒛 = 𝒙, (1) 

where 𝑥 represents the measurements, 𝑧 describes the parameters of the physical system or the 

real measurements, and 𝐾 is the operator that connects 𝑧 and 𝑥 [41], [42]. The inverse problem 

aims to recover the parameters of the physical system from the measurements, e.g., the data. 
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In other words, it consists of using the measurements to extract hidden parameters or relevant 

properties of the physical system that are usually not available directly or complex to acquire. 

It has many applications, ranging from medical imaging and material characterization to 

parameter identification in systems biology.  

For example, in signal and image processing, we often encounter the problem of finding an 

accurate estimation of the phase, which is challenging and sometimes impossible [43]. 

Generally, in optical measurements, the phase often contains a lot of information; however, 

only the square modulus of a signal is measured. Therefore, phase retrieval methods are 

implemented to recover the phase from the given magnitude measurement and subsequently 

reconstruct the full signal. Generally, the phase is more important than the magnitude in 

reconstructing a signal. Therefore, ignoring the phase and performing an inverse Fourier 

transform does not achieve adequate recovery [44]. Sophisticated measurement setups, e.g., 

holography, directly measure the phase by requiring interference with another known field. 

Since these methods are expensive and time-consuming, algorithmic methods can be used as 

an alternative to recover the phase from the given magnitude measurements. The reconstruction 

problem is well-known and arises in many engineering and applied physics areas, including 

optics, astronomical imaging, speech processing, computational biology, and blind 

deconvolution.  

In image analysis, the phase encodes a lot of the structural content of the image, and important 

information is lost if the phase is not used in the reconstruction. Earlier approaches to phase 

retrieval were based on alternating projections, pioneered by the work of Gerchberg and Saxton 

[45], [46]. The Gerchberg-Saxton (GS) algorithm iteratively acquires the phase by starting with 

random initialization and using two intensity measurements obtained in time and Fourier 

domains (refer to the appendix for a detailed explanation of the algorithm). However, since the 

projections in the GS algorithm are between a convex set (for a time-domain) and a non-convex 

set (for the Fourier magnitude), the optimization often leads to a local minimum; consequently, 

the algorithm has limited recovery abilities even in a noiseless setting [47]. Modified versions 

of the GS algorithm are also popular in optical applications, e.g., the Hybrid Input-Output 

(HIO) algorithm [48], [49]. However, the convergence is not guaranteed to converge, and when 

it does, it might be to a local minimum. 

In spectral analysis, the maximum entropy method (MEM) and the Kramers – Kronig relation 

(KK) are popular. These methods were mainly implemented in optical measurements, e.g., 

reflection spectroscopy [50], [51], and coherent anti-Stokes Raman scattering [52], [53]. First, 
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MEM states that any inference made from incomplete information should be based on the 

probability distribution with the maximum entropy permitted by the available data. In optical 

spectroscopy, only the intensity spectrum 𝐼(𝜔) = |𝑓(𝜔)|2  is measured, while the entire 

complex response function 𝑓(𝜔) is needed to obtain the desired material properties. Assuming 

that some additional information about 𝐼(𝜈), where 𝜈 is the normalized frequency, is available, 

the phase 𝜙(𝜈) is then retrieved and subsequently the imaginary and the real components of 

the function 𝑓  (refer to the appendix for mathematical explanation) [54]. Another popular 

method in optical spectroscopy is the Kramers – Kronig relation (KK), a mathematical 

relationship between the real and the imaginary components of a complex function developed 

according to the Cauchy residue theorem. As a result, the real component can be calculated if 

the imaginary component is available and vice versa. Since only the intensity spectrum is 

measured in optical spectroscopy, the KK relation can be modified to connect the phase with 

the intensity spectrum [55]. And subsequently, the phase is extracted, and both the imaginary 

and the real components are calculated (refer to the appendix for a detailed explanation of the 

method). Mainly, the MEM and KK methods require an error phase spectrum that involves a 

priori knowledge, and the problem of extrapolation beyond the range measured exists for the 

KK method. 

Besides phase retrieval, another problem is encountered in many practical applications, 

including signal and image processing, which involves reconstructing a signal from a low 

number of measurements. This problem is called compressed sensing, formulated as shown in 

equation 1. However, the operator 𝐾  is a matrix 𝐾 ∈ ℂ𝑁×𝐿  that models the measurement 

process where 𝑥 ∈ ℂ𝐿  represents the observed data and 𝑧 ∈ ℂ𝐿  is the signal of interest. 

Generally, it is impossible to recover 𝑧  from 𝑥  in the case 𝑁 < 𝐿  without additional 

information. That is why it is suggested that the number of measurements 𝑁 must be as large 

as the signal length 𝐿 [56]. This fact also relates to the Shannon sampling theorem, which states 

that the sampling rate of a continuous-time signal must be twice its highest frequency to ensure 

successful reconstruction. Surprisingly, it has been shown that under certain assumptions, it is 

possible to reconstruct signals when the number 𝑁 of available measurements is smaller than 

the signal length 𝐿 [57]. 
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Figure 3. Overview of inverse modeling methods used in signal and image processing. For 

instance, on the left panel, two existing methods KK and MEM, are shown, which can be 

used to extract the Raman-like spectrum from the CARS spectrum. The GS algorithm 

reconstructs a high-quality multimodal image on the right panel. However, the 

compressed sensing method reconstructs a spatially high-resolution multimodal image. 

The underlying assumption which makes all this possible is sparsity. The research area 

associated with this phenomenon has become known as compressive sensing, compressed 

sensing, compressive sampling, or sparse recovery. A signal is called sparse if most of its 

components are zero. As empirically observed, many real-world signals are compressible since 

they are well approximated by sparse signals often after an appropriate change of basis. The 

traditional approach of taking as many measurements as the signal is consuming since most of 

the coefficients are discarded in the compressed version of the signal [58]. Instead, one would 

want to acquire the compressed version of a signal “directly” via significantly fewer measured 

data than the signal length. In compressed sensing, the aim is to find the sparsest vector 

consistent with the measured data. A very popular and well-understood method is basis pursuit 

or 𝑙1-minimization [59], which consists of finding the minimizer of the problem 

 𝒎𝒊𝒏‖𝒛‖𝟏 𝒔. 𝒕. 𝑲𝒛 = 𝒙. (2) 

The optimization problem can be solved with efficient methods from convex optimization since 

𝑙1-norm is a convex function. The algorithms used in compressive sensing can be divided into 

three categories: optimization methods, greedy methods, and thresholding-based methods [56]. 

In addition, various methods exist, e.g., basis pursuit, quadratically constrained basis pursuit, 

orthogonal matching pursuit, compressive sampling matching pursuit, basis thresholding, 

iterative hard thresholding, and hard thresholding pursuit. In Figure 3, inverse modeling 

methods, including phase retrieval and compressed sensing, are illustrated. The phase retrieval 

methods for signal processing through MEM and KK are displayed on the left panel. While on 
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the right panel, an additional phase retrieval method via GS and a compressed sensing method 

for image analysis are shown. 

2.2 Pre-processing 
Besides the process of interest, other processes often lead to different noise types, which can 

distort the measurement data. For instance, observations, i.e., spectra or images extracted from 

an optical setup, contain various distortions, e.g., Gaussian or Poisson noise, cosmic spikes, 

and background contribution. This distortion originated either from the sample or the process 

of the optical setup or fluctuation of the light source. Therefore, the problem occurs to estimate 

what the data is in reality, using these inadequate and noisy observations. We refer to this 

procedure as pre-processing, which is also part of the inverse problem category and it involves 

the correction of an image or a signal from disrupting contributions. Consequently, the pre-

processing techniques aim to suppress unwanted distortions and improve the data. However, 

efforts for a common and best combination of pre-processing methods are widely investigated 

and attracted researchers in all spectroscopic fields. Although some rule of thumb exists, the 

workflow of pre-processing methods differs between spectroscopic methods and whether a 

spectrum or an image is analyzed. For instance, for spectral analysis, particularly Raman 

spectroscopy, a typical workflow suggested by Bocklitz et al. [60] starts by removing the spikes 

from the spectrum. A wavenumber calibration followed, and a baseline correction method 

headed a normalization technique afterward. Each of these steps uses a mathematical tool to 

get rid of a specific type of distortion. 
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Figure 4. Examples of some pre-processing methods used for spectral and image data. A 

typical workflow of pre-processing techniques for Raman spectra is shown in a). In 

contrast, the median filtering and the contrast adjustment applied on multimodal images 

are presented in b), which are standard pre-processing tools in image analysis. 

For image analysis, various categories exist, e.g., image filtering, contrast adjustment, and 

deblurring. These methods operate on images using specific mathematical relations and extract 

particular characteristics. Image filtering, for example, aims to emphasize certain features or 

remove other features [61]. However, contrast adjustment intends to enhance the brightness 

difference in the image between objects and their backgrounds [62]. Moreover, image 

deblurring aims to enhance image quality by removing distortion from blurry images [63]. 

Under the pre-processing group, various methods can be implemented to reach an improved 

version of the distorted data in hand. This group aims to prepare the data for further analysis in 

which an improved version of the data is essential for efficient analysis and decision-making. 

The pre-processing methods can either remove noise contributions, replace missing values, 

interpret or remove baselines, or even combine these targets. Some pre-processing methods for 

signal and image analysis are shown in Figure 4. 

2.3 Data Modeling 
Contrary to the inverse problem class, data modeling calculates what should be extracted from 

a particular data type. Typically, it consists of constructing and optimizing the parameters of a 

function that maps between the observations and some additional information about the data. 

For instance, one would like to classify specific data types or predict values from these 

observations or simply extract features from the data. Generally, data modeling methods are 
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grouped into either supervised and non-supervised methods, univariate and multivariate 

methods, or qualitative and quantitative methods. These task-oriented techniques have different 

objectives, e.g., dimension reduction, regression, and classification. An overview of 

unsupervised and supervised learning methods is shown in Figure 5. 

 

Figure 5. Illustration of the data modeling. Data modeling can be divided into supervised 

and unsupervised methods. These methods are implemented in signal and image analysis. 

2.3.1 Unsupervised Learning 
Due to the large amount of data acquired by optical measurements, it is often difficult to extract 

information, especially if unlabeled samples are involved. However, some techniques are 

developed to analyze unlabeled data, e.g., clustering and dimension reduction. The clustering 

methods consist of grouping data together that have some common (mathematical/statistical) 

characteristics. Such grouping can be performed by specifying the number of clusters 

beforehand and generating a k-means cluster analysis [64]. Using hierarchical clustering [65], 

a partition of the data can be generated without specifying the number of desired clusters. 

Besides clustering, dimension reduction tools are developed since the data size is enormous 

and using the whole data dimensionality sometimes leads to low performance due to 

redundancy and multicollinearity. These dimension reduction tools are primary steps 

implemented before further analysis. The further analysis can be grouped into feature 

extraction [66] or feature selection [35], [67]. The feature selection methods choose variables 

from the data that are highly important. These methods can be grouped into filter, wrapper, and 

embedded methods. In contrast, the feature extraction methods build a new subspace of 

variables that are easier to deal with since they represent a low-dimensional dataset. However, 

the feature extraction group consists of linear and nonlinear methods. For example, the 
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principal component analysis (PCA) is a linear method used frequently in feature extraction 

for spectroscopic analysis [68]. PCA reduces the number of features in a dataset while 

preserving as much information as possible by finding functions that approximate the data in 

the least-square sense. 

2.3.2 Supervised Learning 
In contrast, supervised learning methods depend on labeled samples and typically create a 

function that maps an input to a desired output, e.g., the labels. The supervised learning 

methods aim to approximate this mapping function that is used afterward to predict a new 

dataset. It includes regression and classification tasks. First, the regression consists of finding 

a combination (linear or nonlinear) between the features in the data to predict specific output 

variables, e.g., the concentration of drugs or other substances in the samples in Raman 

spectroscopy or the lifetime of fluorescence lifetime imaging microscopy. Various methods 

were developed for the regression task, including principal component regression (PCR) and 

partial least square regression (PLS). PCR apply first PCA to reduce dimensionality in the data 

and then train a regressor on the transformed data [69]. However, PLS differs from PCR by 

using labeled samples in the dimension reduction phase [70], [71]. Thus, PLS outperforms PCR 

in most cases. An important task that arises in analyzing spectroscopic data is classification. 

Similar to regression, it learns a mapping function between an input and a class label. The class 

label involves binary or multi-class labels, e.g., different kinds of species. Numerous methods 

were developed to differentiate between class labels and were frequently applied for 

spectroscopic data, e.g., linear discriminant analysis (LDA) and support vector machine 

(SVM). For instance, LDA involves finding linear discriminant functions that maximize the 

variances between the label groups and minimizing the variance within the label groups [72]–

[74]. While in SVM, the aim is to search for an optimal hyperplane that optimally classifies the 

data [75], [76]. 

An illustration of the essential categories in the data modeling is shown in Figure 5, which 

involves supervised and unsupervised learning. Both learning categories are frequently applied 

in spectroscopy and represent useful, fast, and efficient tools to analyze samples of interest. 

2.4 Deep Learning 
Deep learning (DL) rose to prominence in the early 2010s, and it has achieved a revolution in 

the data science field with remarkable results. Different definitions for DL are present in 
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literature; however, DL is defined here in the context of inverse and forward problems. 

Previously the difference between the inverse and the forward problem was explained. In 

summary, through inverse modeling and pre-processing, the measurements are used to either 

extract specific parameters of the physical system or restore a better version of these 

measurements. In contrast, the forward problem transforms the measurements into meaningful 

outputs through data modeling. However, deep learning is a data-driven technique that can 

solve equally inverse and forward problems. An illustration of the inverse problem, e.g., data 

enhancement and pre-processing, as well as the forward problem, e.g., data modeling, in the 

context of deep learning, are displayed in Figure 6. DL is a subset of machine learning that 

consists of learning a function between an input and an output. Remarkably, DL does not 

require to choose the input and output carefully, like in the cases of inverse and forward 

problems. Instead, it works in both directions; the input and output can be chosen freely 

depending on the task. For instance, the input and output represent the measurements and the 

labels in a classification task, respectively. While in an inverse problem task, e.g., denoising, 

the input and the output represent the measurements and their clean version, respectively. 

Therefore, DL has increased its applications to include inverse and forward problems. In DL, 

feedforward deep network models are often meant and constructed. A feedforward network 

defines a mapping and learns parameters that result in the best prediction of this function. Deep 

learning is a vast field of research with multiple methods. These methods can be grouped into 

the convolution neural network (CNN) and the recurrent neural network (RNN). 
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Figure 6. Deep learning in the forward and inverse problem context. The inverse 

problem, e.g., data enhancement and pre-processing, uses the measurements to extract 

specific parameters of the physical system. In contrast, the forward problem transforms 

the measurements into meaningful outputs through data modeling. However, DL works 

in both directions; the input and output can be chosen freely depending on the task. 

One of the most popular deep neural networks is the CNN. CNN is a specialized neural network 

that applies convolutions between matrixes [77]. It has been tremendously successful in 

practical applications, e.g., object detection, image classification and segmentation, speech 

recognition, and video processing. A typical CNN has multiple layers; convolutional layers, 

non-linear activation layers, pooling layers, and fully connected layers. First, convolutional 

layers are performed, and it applies filters with specific kernel sizes to the original image to 

extract a feature map. The non-linearity layer is then applied, which is used to adjust or cut off 

the generated output. The next layer is the pooling layer, which consists of a down-sampling 

procedure to reduce the complexity of the input of the next layers. And finally, the fully 

connected layer is used similarly to neurons used in a traditional neural network. Each node in 

a fully connected layer is directly connected to every node in the previous and following layers. 

Furthermore, various improvements in CNN learning methodology and architecture were 
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performed to make CNN scalable to large, complex, and multi-class problems [78]–[80]. 

However, two specific CNN-based networks were developed, the generative adversarial 

networks [81] (GANs) and autoencoders [82]. GANs method is a particular CNN-based 

network that uses generative and adversarial models. In GANs, the two models, the generator 

and discriminator, play against each other. The generative (generator) model tries to produce 

fake outputs, while the discriminative model tries to discriminate artificially generated outputs 

from real ones. For example, the generator uses random numbers as input and returns an image. 

The generated image is then fed into the discriminator alongside ground-truth images. Finally, 

the discriminator returns probabilities, a number between 0 and 1, with 1 representing a 

prediction of an authentic image and 0 representing a fake image. Both networks are trying to 

optimize different and opposing objective functions or loss functions [83], [84]. The second 

important CNN-based network is the autoencoder. It represents another specific deep learning 

architecture that includes three components; encoder, bottleneck, and decoder. The encoder 

compresses the input and produces the bottleneck features, while the decoder reconstructs the 

input only using these bottleneck features. For instance, SegNet, an autoencoder, was 

developed for semantic pixel-wise segmentation. SegNet is a segmentation mechanism 

consisting of an encoder network, a corresponding decoder network, and a pixel-wise 

classification layer. In SegNet, the decoder network aims to map the low-resolution encoder 

feature maps to full input resolution feature maps for pixel-wise classification [85], [86].  

On the other side, RNN is a different class of neural networks that allow previous outputs to 

be used as inputs while having hidden states. Typically, it deals with sequential data, e.g., time-

series data. RNN is a network that can remember its previous input. It consists of storing 

information of previous inputs to generate the subsequent output of the sequence. It can process 

an input of any length, characterized by sharing weights across time. There are two significant 

obstacles in RNN: the exploding and the vanishing gradients. The exploding gradients appear 

when the algorithm assigns high importance to the weights. This problem can be solved by 

truncating or squashing the gradients. However, vanishing gradients occur when the values of 

a gradient are too small, and the model stops learning or needs too much time for optimization 

[87], [88]. Therefore, the gated recurrent unit [89] (GRU) and the long short-term memory [90] 

(LSTM) network have been developed to solve this. GRU was designed to handle the vanishing 

gradient problem by including a reset and update gate. However, LSTM was also intended for 

the same purpose. It uses three gates called input, output, and forget gate. The gates added in 

GRU and LSTM determine which information is to be retained for future predictions [91]. 
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There are still not many deep learning applications in spectroscopy, particularly for biomedical 

applications. Furthermore, they could significantly complement the theoretical and 

experimental spectroscopy to accelerate the spectroscopic analysis, make predictions, and 

discover new characteristics. 

 



Chapter 3: Contribution and Results 

   21 

3 CONTRIBUTION AND RESULTS 

Briefly, the thesis was motivated by applying mathematical and statistical methods on spectral 

or image data that are either time-consuming to obtain or suffer from either low quality, or the 

existence of artifacts. We developed approaches and methods which work with such data in 

either forward or inverse problem sense. Finally, the application of the developed methods 

should help in clinical medicine, e.g., helping physicians in their  decision making. 

Therefore, the following questions are investigated: First, what is the main trend in 

chemometrics, machine learning, and deep learning? Second, can we acquire the Raman-like 

spectra from CARS spectra without a priori knowledge? Third, can we find a good denoising 

technique for reconstructing multimodal images? Finally, which method can be applied to 

better classify the low-quality Raman measurements? 

Our contributions to address these questions are summarized in the following: 

3.1.  Chemometrics, machine learning, and deep learning methods are booming in 

spectroscopy. Therefore, the recent analysis techniques applied to chemical and 

spectroscopic measurements are reviewed. These methods are grouped into two main 

steps; data enhancement and modeling. 

3.2.  The coherent anti-Stokes Raman scattering (CARS) is implemented for faster 

measurements and higher signal strength. However, CARS spectra suffer from the non-

resonant background (NRB) contribution. Existing methods cannot remove it entirely, 

and they are sensitive to the NRB strength. Therefore, we suggested the use of a deep 

learning network that predicts the Raman-like spectra directly from CARS spectra. 

3.3.  Multimodal images provide different information regarding the chemical composition 

of tissue samples. However, the measurement of high-quality images is time-

consuming, which is unpracticable when a transfer to clinical application is needed. 

Therefore, we tested the phase retrieval method via GS, transfer learning method via 

DnCNN, and deep learning method via our developed network incSRCNN to acquire 

high-quality images from low-quality images, saving measurement time. 

3.4.  Although Raman data provide a fingerprint of the molecular structure of a sample, the 

measurement process takes a long time. Therefore, this study answers the following 
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research question: how can we improve the accuracy of a classification model when we 

have low quality of Raman data or Raman data with varying quality? In this regard, a 

novel method based on functional data analysis was implemented, which converts the 

Raman data into functions and then applies functional dimension reduction followed 

by a classification method. 

The descriptions and discussions in the next sections will be based on the following 

publications and manuscripts (in the order of their appearance in the text, reprints are provided) 

P1. R. Houhou and T. Bocklitz 

Trends in artificial intelligence, machine learning, and chemometrics applied to 

chemical data 

Analytical Science Advances, 2021, 2, 128-141 

P2. R. Houhou, P. Barman, M. Schmitt, T. Meyer, J. Popp, and T. Bocklitz 

Deep learning as a phase retrieval tool for CARS spectra 

Optics Express, 2020, 28, 21002-21024 

P3. R. Houhou, E. Quansa, T. Meyer-Zedler, M. Schmitt, Franziska Hoffmann, O. 

Guntinas-Lichius, J. Popp, and T. Bocklitz 

Comparison of denoising tools for reconstruction of nonlinear multimodal images 

Biomedical Optics Express, 2022, submitted 

P4. R. Houhou, P. Rösch, J. Popp, and T. Bocklitz 

Comparison of functional and discrete data analysis regimes for Raman spectra 

Analytical and Bioanalytical Chemistry, 2021, 413, 5633-5644 
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3.1 Trends in chemometrics and machine learning methods for 
chemical data 
As mentioned previously, optical devices used to measure biological samples produce massive 

amounts of data that cannot be manually analyzed. Therefore, chemometric, machine learning, 

and deep learning methods extract hidden information from these data by applying 

mathematical and statistical techniques. These methods are sample- and task-dependent. A 

review of recent chemometric, machine learning, and artificial intelligence methods utilized on 

chemical data is presented in the contribution [P1]. The investigation of these methods is 

limited to specific spectroscopic measurements and imaging approaches, including nuclear 

magnetic resonance, mass spectroscopy, vibrational spectroscopy, X-ray, atomic force 

microscopy, electron microscopy, and two-dimensional chromatography. Chemometric, 

machine learning, and deep learning methods were classified into two main groups: data 

enhancement and modeling.  

The data enhancement group includes either reconstructing missing information or removing 

artifacts from observed measurements. In this context, different algorithms have been recently 

developed to either recover the structure and composition of materials, predict the material 

design, find the best pre-processing method, or combine techniques in which the order of use 

is essential. In contrast to these methods, deep learning is extensively applied to invert relevant 

characteristics or remove noise from the measured data via CNN, autoencoder, and LSTM. 

On the other hand, the data modeling group applies chemometric and machine learning 

techniques to extract information from the data, either spectra or images. These methods were 

applied to identify features, discover biomarkers, and provide comprehensive information on 

chemical changes during a particular experiment. Most trends include the application of deep 

learning methods. The deep learning methods focused mainly on classification tasks via the 

CNN network, which proved to be more rapid and accurate than standard classification 

methods. Some chemometric, machine learning, and deep learning methods applied to 

spectroscopic measurements are presented in Figure 7.  

In conclusion, attempts to improve predictive quality, robustness, and automation using 

chemometric, machine learning, and deep learning methods were performed in many 

application fields. Also, investigations to develop new AI-based techniques are increasing in 

chemistry as well.  
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Figure 7. An overview of chemometric, machine learning, and deep learning methods. 

Chemometric methods involve feature extraction or selection, regression, and 

classification tasks. Machine learning and deep learning, including CNN and LSTM 

networks, are implemented in spectroscopy. 
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3.2 A novel approach to extract the non-resonant background from 
CARS spectra 
Although spontaneous Raman scattering is a label-free, molecular fingerprint technique, it 

shows some drawbacks, including its weak spectroscopic signals, the fluorescence 

contributions of biological samples, and the long acquisition times [92]. Instead, CARS can be 

used since it produces much stronger vibrational sensitive signals than spontaneous Raman 

scattering for scatterers with a high concentration [93]. However, CARS spectra include the 

non-resonant background (NRB) contribution, which distorts the vibrational signals and leads 

to constructive and destructive interference effects [55]. Therefore, algorithmic phase retrieval 

methods are implemented to extract the phase without physically removing the non-resonant 

background, e.g., MEM and KK. However, MEM and KK require an accurate measurement of 

the non-resonant background. Therefore, we proposed an alternative solution for phase 

retrieval through deep learning using the LSTM network. 

Our approach started by training a deep learning network via LSTM on an artificial dataset, 

then transferring it to an experimental dataset, and finally comparing the network’s 

performance with the results of MEM and KK. The synthetic dataset was simulated using 

equation 17 (refer to the appendix for detailed explanation), and the total sample size was 4000. 

First, the simulated data was split into 2 3⁄  training and 1 3⁄  testing sets. The LSTM network 

approximates a function that maps the squared modulus to the imaginary component of the 

simulated training data by tuning its hyperparameters. Only one layer of LSTM is used, and 

after only 2 hours, an optimal network is trained. The trained network is used further to predict 

the artificial testing set and the experimental data. In Figure 8 a), the workflow of the deep 

learning network is illustrated. In b) of the same figure, a test CARS spectrum where the Raman 

resonances were created in both the strong and weak NRB regions is predicted by the network. 

As shown, the LSTM perfectly constructed the peak-like shape for the four resonances. 

Additionally, the peaks position and width perfectly reflect the theoretical ones in both NRB 

regions. Moreover, the LSTM network was able to remove the NRB completely. 

Afterward, the real and imaginary components of the same spectrum were constructed by MEM 

and KK methods. In a) of Figure 9, the workflow of the algorithmic methods is illustrated. For 

MEM, a trial and error process was used to determine the optimal number of poles 𝑀 = 150. 

In addition, a pre-processing step was necessary to remove the oscillations at the edges, which 

was done by replicating two small sub-regions on both edges and then removing them after the 

reconstruction of the spectrum. 
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Figure 8. The workflow and the performance of LSTM on one simulated CARS spectrum. 

In a), the LSTM network is first trained using a training dataset, then used to predict the 

testing set. The LSTM prediction on one CARS spectrum is shown in b) and compared 

with the theoretical component. 

As illustrated in b) of Figure 9, the MEM method extracted the imaginary and real components 

well, and the constructed squared modulus fits the theoretical one. In addition, the peaks shape, 

position, and width were estimated correctly in the imaginary part. Additionally, the 

constructed real component has a dispersive line shape and resembles the real theoretical 

component. Although the squared modulus was well reconstructed with the KK method, the 

constructed imaginary component shows a peak-like shape in the first two resonances and a 

dispersive line shape in the weak NRB region. The KK reconstruction is displayed in c) of 

Figure 9. Moreover, the constructed imaginary and real components are still distorted by a 

background contribution. 

In conclusion, MEM and KK show an increased sensitivity regarding the NRB strength, which 

was reflected by the peaks shape flip in the imaginary and the real components or the 

background presence after the application of MEM and KK. However, the LSTM network 

predicted well the imaginary component and removed the background completely. 
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Figure 9. The workflow and the performance of MEM and KK on a simulated CARS 

spectrum. The workflow of MEM and KK methods are illustrated in a). These methods 

are implemented on each spectrum where the phase is calculated, and then the imaginary 

as well as the real components are reconstructed. The performance of MEM and KK on 

one spectrum is visualized in b) and c), respectively. The background was not completely 

removed, and KK reconstruction showed a dispersive shape in the constructed imaginary 

components. 

The trained LSTM network was then validated on an experimentally measured broadband 

CARS spectrum of Acetonitrile and was compared to the MEM and KK reconstructions. The 

outputs of MEM and KK are illustrated in a) and b) of Figure 10, respectively. The 

reconstructed Acetonitrile spectrum fits the BCARS spectrum perfectly for both methods. 

However, the imaginary and real components were distorted, particularly in the region where 

the NRB is weak, visible by a dispersive line shape in the imaginary reconstruction. On the 

other hand, the LSTM prediction showed a good performance regarding the peaks position, 

amplitude, and width, illustrated in c) of Figure 10. In addition, the LSTM reconstruction did 

not need additional pre-processing.  
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Figure 10. The MEM, KK, and LSTM reconstructions of an experimental BCARS 

spectrum of Acetonitrile. The MEM and KK reconstructions of the real and imaginary 

components of the Acetonitrile spectrum are displayed in a) and b). Both methods showed 

a dispersive shape in the constructed imaginary component. However, the constructed 

imaginary components using the trained LSTM network on the same spectrum, displayed 

in c), showed a Lorentzian shape. 

In summary, the MEM and KK methods indicated an increased sensitivity regarding the 

strength of the NRB. Moreover, their reconstructions showed the flip of the peaks shape in the 

imaginary and the real components, and the background was still present after the retrieval. 

However, the LSTM network showed its potential since its results were not dependent on the 

strength of the non-resonant background. In conclusion, we used the deep learning technique 

for phase retrieval for the first time. As a result, the deep learning technique overcame MEM 

and KK regarding the peak shape and the removal of additional background contributions.  
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3.3 Comparison of denoising methods for multimodal images 
Multimodal (MM) imaging is a relatively novel approach that combines two or more imaging 

methods and aims to acquire as much information as possible from the measured sample, e.g., 

tissue samples. For instance, the combination of the three nonlinear optical techniques, CARS, 

TPEF, and SHG, can acquire different information of molecules in the sample by different 

contrast mechanisms. In addition, the MM imaging approach provides high-quality (HQ) 

images, but the measurement of HQ images requires a significantly longer acquisition time 

compared to images of lower quality. Such faster MM imaging compromises the quality of the 

images due to the increase in the noise level, which will affect the identification of diseases or 

tissue abnormalities. Therefore, image denoising, a fundamental pre-processing technique, is 

crucial for medical applications since removing noise from images might also remove relevant 

information from the images. Therefore, choosing a suitable denoising method is necessary for 

an efficient and effective diagnosis. In P3, a classical phase retrieval method via GS was 

compared to two deep learning methods. These deep learning methods include a pre-trained 

network, namely DnCNN, and an own developed network with simple architecture derived 

from the super-resolution convolution neural network (SRCNN), referred to as incSRCNN.  

The analysis was performed on MM images consisting of CARS, TPEF, and SHG modalities. 

It was split into two sections; first, artificial low-quality (LQ) images are created from HQ 

images by adding Poisson noise. The three methods, the GS algorithm, the pre-trained DnCNN, 

and the trained incSRCNN networks, were evaluated on these artificial LQ images. Then, the 

performance of these three methods was examined on experimental LQ images. In a) of Figure 

11, an example of multimodal images including CARS, TPEF, and SHG modalities is shown. 

In the same figure, the workflow of the deep learning methods, where incSRCNN is trained 

with the CARS modality of the MM images (input, output) as (artificial LQ, experimental HQ), 

and the DnCNN is used as a transfer learning tool is illustrated in b). The parameters of the 

three methods can be found in the appendix. 

The reconstruction of the artificial LQ image using the GS algorithm, the DnCNN, and the 

incSRCNN network is displayed in Figure 12. As shown, the GS reconstruction and three 

regions of interest (ROIs) preserve the structure of the image but include dark regions resulting 

from the source beam estimation. Furthermore, the overall similarity between the HQ and 

reconstructed images is significantly low. However, an improvement in the peak signal-to-

noise ratio (PSNR) from 16.422 to 19.330 is deduced. 
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Figure 11. Deep learning in image denoising for MM images. In a), an example of a 

multimodal image consisting of CARS, TPEF, and SHG modalities is shown. In b), two 

networks are tested separately on each modality. The incSRCNN was built using only the 

CARS modality and then predicting the other two modalities. However, a pre-trained 

network via DnCNN was used directly to predict each modality. 

In DnCNN reconstruction, the spatial structures and the color in the image are preserved, and 

the noise level is reduced. Consequently, the overall PSNR and SSIM were improved from 

16.4 and 0.24 to 20.2 and 0.63, respectively. However, smoothed structures were shown in the 

three ROIs, which is critical for biomedical applications since some important information 

might be compromised and lost. Finally, the reconstructed image's spatial structures and color 

are preserved via the incSRCNN network, reducing the noise level. Consequently, the overall 

PSNR and SSIM were improved from 16.4 and 0.24 to 22 and 0.53, respectively. Although the 

incSRCNN reconstruction did not show smoothed regions, some dark areas were produced, 

affecting the PSNR and SSIM values.  

The next step is to evaluate the three methods on experimental LQ images. Figure 13 showed 

that the GS reconstructed image preserves the spatial structures; however, it includes dark 

regions similar to the artificial case. As a result, the overall PSNR and SSIM decrease from 

19.7 and 0.55 to 18 and 0.49, respectively.  



Chapter 3: Contribution and Results 

   31 

 

Figure 12. Comparison of image denoising methods applied on artificial LQ images. The 

GS reconstruction shows dark regions resulting from the source beam estimation. 

Although the DnCNN and incSRCNN perform better than the GS algorithm, the DnCNN 

reconstruction shows a smoothed region absent in the incSRCNN case. However, the 

arrows in the incSRCNN reconstruction represent the inability of the network to estimate 

the correct values. 

In d) of the same figure, the spatial structure in the DnCNN reconstruction and three ROIs were 

preserved, and the noise level was slightly reduced. Moreover, the overall PSNR and SSIM 

were improved from 19.7 and 0.55 to 20.2 and 0.64, respectively. Similar to the artificial case, 

smoothed regions were produced, which might cause the removal of essential features that were 

highly sensitive in diagnosing diseases or abnormalities. Finally, the image's spatial structures 

and color were preserved via the incSRCNN network. Compared to the experiment LQ image, 

the overall PSNR and SSIM values slightly decreased. However, the incSRCNN network failed 

to estimate some regions, refer to arrows in the figure, which might cause the decrease in the 

PSRN and SSIM values.  
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Figure 13. Comparison of image denoising methods applied on experimental LQ images. 

The GS reconstruction shows dark regions resulting from the source beam estimation. 

Although the DnCNN and incSRCNN perform better than the GS algorithm, the DnCNN 

reconstruction shows a smoothed region absent in the incSRCNN case. However, the 

arrows in the incSRCNN reconstruction represent the inability of the network to estimate 

the correct values. 

To summarize, the GS reconstruction showed similar but poor performance for both artificial 

and experimental LQ images. It included dark regions, and the algorithm showed limited 

abilities even in noiseless settings. In addition, it seems that the algorithm converges to a local 

minimum that causes poor reconstructions. However, the DnCNN and the incSRCNN 

reconstructions preserved the colors and detailed structures for artificial and experimental LQ 

images. Both networks performed well in the artificial LQ case, but the DnCNN produced 

smoothed regions critical for medical applications. In the experimental case, the DnCNN 

network also produced smoothed region, which is a drawback compared to our proposed 

network that showed a slight reduction in the PSNR value due to the lack of data that the 

network could not train some regions.  
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3.4 A novel approach for analyzing Raman spectra 
Chemometric methods can be split into discrete and functional methods. The discrete group, 

also called multivariate data analysis, considers the data as a set of independent points acquired 

on a specific interval. In contrast, data is modeled as a function or a curve in the functional 

group. However, in almost all of the literature, Raman data is always discretely analyzed. 

Nevertheless, this approach has a lot of room for improvement. On the one hand, the acquisition 

of Raman data requires a significant amount of time, creating some limitations in the spread of 

its applications. On the other hand, for a faster measurement of Raman data, a compromise in 

the spectral quality is inevitable. Therefore, we analyzed the Raman spectral data in the 

functional framework for the first time to allow the analysis of low-quality Raman spectra. 

The classical PCA followed by LDA (PCA-LDA) in the discrete case was compared to the 

functional PCA followed by LDA (FPCA-LDA) to evaluate the performance of the functional 

data analysis on Raman spectra. This comparison was made on simulated and experimental 

Raman data. A detailed explanation of the simulated and experimental Raman data, the 

functional data analysis approximation, and the functional PCA (FPCA) can be found in the 

appendix. 

First, the results of the functional approximation for all simulated cases are illustrated in Figure 

14. In this figure, one spectrum per class for each SNR and a specific peak shift ∆𝜈 = 0.01 are 

shown. In a) of the same figure, the original normal and abnormal spectra are plotted for all 

SNR values in each row. In b), the functional approximations for each class are illustrated for 

the nine cases of SNR. The number of basis functions is calculated based on the elbow method. 

It first calculates the root-mean-square error, and the optimal point is chosen, which refers to 

the largest distance to the line that joins the first and last values. Therefore, 190 B-spline basis 

functions in the functional approximation in all the simulation cases are used. In Figure 14, the 

functional approximation perfectly represents the original spectra with almost noiseless 

reconstruction for an SNR larger than 5. Although the functional approximation also fits noise 

for the lower SNR values due to a high number of the basis used, noise is significantly reduced 

in the approximation. In addition, it potentially maintains the peak shape in the case of lower 

SNR values. Then, the classification methods via PCA-LDA and FPCA-LDA were compared 

on the simulated Raman spectra. 

For both methods, 10-fold cross-validation was used, and the number of components chosen 

was 50. The mean sensitivity was used as an evaluation metric, illustrated in a heat map in c) 
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Figure 14. In region c of Figure 14, PCA-LDA and FPCA-LDA perform perfectly with 100% 

mean sensitivity due to the clear distinction between the normal and abnormal classes. While 

in regions a and b, the FPCA-LDA performs better in most cases since the obtained functions 

contain less noise, and an improvement of the shape of the peaks in these functions was also 

detected. However, in a few cases, the PCA-LDA provides better mean sensitivity. The 

performance difference between FPCA-LDA and PCA-LDA is only significant in region b. 

The Kruskal-Wallis test calculated the significance of the performance difference and 

concluded that only region b showed a significant difference.  

The next step is to check the performance of the functional data analysis on both raw and pre-

processed experimental Raman spectra (details of experiment Raman can be found in the 

appendix). 

In Figure 15, the PCA-LDA and FPCA-LDA methods were applied on pre-processed 

experimental data. The total number of spectra was 1131 spectra for the pre-processed datasets. 

Two cross-validation methods were tested, the leave one batch out cross-validation (LOBOCV) 

and the 10-fold cross-validation (10-fold CV). In the FPCA-LDA, the first step was to 

approximate the experimental Raman data into functions. Therefore, the elbow method was 

implemented, and the optimal number of basis functions was suggested equal to 80. However, 

we increased this number to 200 since we wanted the functional approximation to include the 

C-D/C-H region with high quality.  

In the first row of Figure 15, the mean spectra per label are plotted on the left, and its functional 

version is shown on the right of the same figure. A slight reduction of noise in the functional 

version is deduced since the SNR increased from 302 to 307.14. Additionally, the Raman 

spectral features were conserved. The SNR is approximated by calculating the peak amplitude 

ratio at the C-H band (2930 cm-1) to the standard deviation of the region between 2408 and 

2578 cm-1. 

Moreover, the comparison between the PCA-LDA and FPCA-LDA using the LOBOCV and 

10-fold CV are illustrated in the second and third row of Figure 15, respectively. The mean 

sensitivities are shown in panels a and b. Similar performance for both methods can be shown 

with a slight improvement in the FPCA-LDA method values. In addition, a reduction of the 

standard deviation is visible in the case of the FPCA-LDA method. 
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Figure 14. The discrete and functional analysis of simulated Raman spectra. The discrete 

framework where simulated Raman spectra per SNR are shown in a). In b), the 

functional version for the same simulated Raman spectra is illustrated. Finally, the 

difference between the mean sensitivities of FPCA-LDA and PCA-LDA is represented in 

c). 

The maximum mean sensitivity for the PCA-LDA method refers to the model with 45 

components with a mean sensitivity of 0.77 ± 0.16 in the LOBOCV case and 45 components 

with a value of 0.91 ±  0.07 in the 10-fold CV case. However, the maximum sensitivity for the 

FPCA-LDA method refers to a model with 50 components with a value of 0.79 ± 0.14 in the 

LOBOCV case and 47 components with a value of 0.91 ± 0.06 in the 10-fold CV case. The 

corresponding confusion matrices for the model with the highest mean sensitivities are 

illustrated in black and red for PCA-LDA and FPCA-LDA, respectively, in panels c and d for 

LOBOCV and 10-fold CV, respectively.  



Inverse and Forward Modeling Tools for Biophotonic Data 

36   

 

Figure 15. The pre-processed experimental Raman data and its functional version, PCA-

LDA and FPCA-LDA comparison. The mean spectra per label and its functional version 

are shown on the top row. The bottom row compares the mean sensitivities and confusion 

matrices of PCA-LDA and FPCA-LDA for LOBOCV, and a 10-Fold CV is illustrated. 

Even though functional data analysis resulted in smoothed function, this did not affect the 

classification output using both LOBOCV and 10-fold CV. Therefore, the functional approach 

preserved the important features needed for the classification. PCA-LDA and FPCA-LDA were 

also applied to the raw data, and similar performance was deduced. 

In conclusion, functional data analysis can be considered a promising tool for analyzing Raman 

spectra, especially when the quality of the data is low. This property makes functional data 

analysis a great tool to analyze spectra acquired fast or in vivo, which yield low-quality Raman 

spectra. Furthermore, functional data analysis can be used with spectra with a different spectral 

resolution. 
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4 SUMMARY 

The innovation in biophotonic technologies showed great potential and promise for the 

healthcare system’s challenges in the 21st century. These advancements in light-based 

techniques allow studying biological samples at the cellular, tissue, and organ levels.  To allow 

the translation of biophotonic technologies in the healthcare system, automated systems to 

support physicians in their decision-making are needed. That results from the fact that the 

datasets generated by these biophotonic techniques are massive, and the contained information 

cannot easily or directly be extracted. To solve this task, analytical methods such as 

chemometrics, machine learning, and deep learning are the cornerstone for fast information 

extraction. The first part of this thesis focuses on reviewing the recent trends in chemometrics 

and machine learning applied to chemical data. In this work, the main part is the division of 

the chemometric, machine learning, and deep learning methods into inverse modeling, pre-

processing, and data modeling techniques. The inverse modeling, pre-processing, and data 

modeling groups aim to extract the physical system's parameters, acquire a clean version of 

distorted data, and train a model that identifies abnormalities. The review showed a significant 

focus in the literature on generating automated systems for faster processing and analysis in 

addition to the booming of deep learning applications for different spectroscopic data types. 

Afterward, I explored three research questions and argued that my contribution could be 

considered a step towards improving detection methods for the healthcare systems. 

In the inverse modeling group, the first research question was motivated by the fact that Raman 

measurements can be performed non-invasively and provide a fingerprint signature of the 

molecule composition. A drawback is that these Raman measurements are slow. Hence, the 

CARS technique can be considered an alternative since faster measurements are possible, and 

an improved signal is obtained, which is crucial for biomedical applications. However, CARS 

measurements are distorted by the presence of NRB. Therefore, algorithmic methods have been 

applied to extract the Raman-like spectra from the CARS spectra. Although these methods can 

extract the Raman-like shape from the CARS spectra, they require either a priori knowledge 

about the system or a post-processing technique since they cannot completely remove the 

background. Therefore, different versions of algorithms were developed to tackle this issue, 
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which needs a priori knowledge. Can data-driven methods like deep learning remove the NRB 

without a priori knowledge and further data processing? 

To answer our question, simulation and experimental data were both needed. Therefore, 

simulated data was first constructed where the squared modulus and the imaginary components 

are the CARS and Raman-like spectra, respectively. The synthetic dataset was split into 

training and testing sets. The deep learning method via the LSTM network was then trained 

using simulated training data by tuning its hyperparameters. Finally, two popular methods, 

MEM and KK, were applied to compare with the LSTM predictions. MEM and KK 

reconstructions showed some drawbacks; a background contribution still existed after the 

reconstruction, and a dispersive shape was created in the reconstructed imaginary component. 

These drawbacks confirmed that MEM and KK methods are very sensitive to the strength of 

the NRB and that both methods require an estimation of an error phase spectrum that involves 

a priori knowledge. In contrast, the deep learning approach successfully reconstructed the 

Raman-like shape where the background was removed entirely. The next step was to compare 

these findings in the case of experimental measured broadband CARS spectra. Therefore, the 

three methods were applied to the Acetonitrile BCARS spectrum. Although, the reconstructed 

spectrum perfectly fits the BCARS Acetonitrile spectrum for the MEM and KK methods, a 

clear distortion of the peak shape in MEM and KK imaginary reconstructions is present. On 

the other hand, LSTM prediction showed a good performance regarding the peaks amplitude 

and width, and no additional processing is needed compared to both reconstructions via MEM 

and KK methods. In conclusion, the LSTM overcame both standard techniques used for phase 

retrieval in terms of the non-dependency on the NRB strength and that no post-processing to 

remove the background completely is needed. Lastly, the LSTM prediction time is shorter than 

the MEM and KK methods. 

In the pre-processing section, the image denoising problem is a fundamental task that is crucial 

for medical applications since removing noise from images might remove relevant information. 

To address this, we used multimodal images, which offer a lot of information about the 

complex structures in tissues and the chemical composition. The MM imaging provides 

spatially high-quality images but requires a significantly long acquisition process. However, 

faster MM imaging causes an increase in the noise level, which will reduce the image quality 

and compromise the identification of diseases or abnormalities. Therefore, a trade-off between 

fast imaging and a suitable denoising method is necessary for an efficient and effective 

diagnosis. Since deep learning showed success stories in computer vision, two DL-based 



Chapter 4: Summary 

   39 

methods via DnCNN, a pre-trained network, and incSRCNN, a trained network with 

architecture inspired from SRCNN, were used and compared with a traditional phase retrieval 

method via the GS algorithm. The analysis was held on two types of images: simulated LQ 

images and experimental LQ images, and the aim is to reconstruct high-quality images from 

these noisy ones. These MM images involve CARS, TPEF, and SHG modalities. First, the 

three methods were applied on simulated LQ images constructed from the HQ images by 

adding Poisson noise and then on experimental LQ images. The GS algorithm was used 

independently on each modality for simulated and experimental LQ images. The reconstructed 

GS images showed bad performance since dark regions were produced. It seems that the 

algorithm was stuck in some local minimum and could not learn more. However, both the deep 

learning approaches perform better. First, the pre-trained network DnCNN was implemented 

as a transfer learning tool that was originally trained on natural images to fix corrupted images 

with noise and artifacts. Similarly, the DnCNN was employed separately on each modality. 

The DnCNN reconstructions on both the simulated and experimental LQ images at first glance 

were good and represented well the HQ images, particularly when comparing the PSNR and 

the SSIM, which generated the higher values. However, smoothed regions are produced, which 

means that some complex structures in the MM images were lost, which is crucial for detecting 

diseases or abnormalities. Finally, a simple CNN-based architecture, namely incSRCNN, was 

trained using the available small-sized MM images. The incSRCNN network was trained only 

using the CARS modality and then predicted the other TPEF and SHG modalities. Surprisingly, 

this network performs well, particularly for the artificial LQ images, since the complex 

structures were preserved with no smoothing regions. However, in the case of the experimental 

LQ images, the incSRCNN reconstruction did not improve, and the lack of data might be the 

reason. In this regard, worse experimental LQ images were constructed, and high-quality 

images were predicted using the incSRCNN reconstruction. The incSRCNN reconstruction 

showed better performance than the synthetic experiment LQ images. In summary, the deep 

learning networks showed promising results. Particularly, our proposed network consisted of 

simple architecture and was able to reconstruct the complex structures of the MM images. 

However, some artifacts were produced, which might result from the small data size used to 

train the network. 

Finally, a different question was researched in the data modeling section focusing on the low-

quality Raman spectra that are produced when the acquision time is reduced. However, this 

compromises the quality of the data. Therefore, the last part of the thesis investigates the search 
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for a method that performs better than standard classification tasks if low-quality Raman data 

is acquired. Generally, mathematical functions best describe Raman spectral data; however, 

only discrete points are measured due to the spectroscopic measurement setup. Therefore, we 

investigated the Raman spectral data in the functional framework for the first time. The first 

step is to approximate the Raman spectra using B-spline basis functions. Afterward, the 

functional PCA followed by LDA was applied, and results were compared to the standard PCA-

LDA method. Both classification methods were performed on simulated and experimental 

Raman data. The simulated Raman spectra were divided into two classes (normal and abnormal 

group) with three peaks. The abnormal class was generated by slightly shifting one of the peaks 

from the peak position used in the normal group. 63 combination of different SNR values and 

peak shift were studied. Although the functional approximation also fits noise for the lower 

SNR values due to a high number of basis functions used, a significant reduction of noise is 

noticed in the approximation. It also potentially maintains the peak shape in the case of low 

SNR values. The functional PCA-LDA and PCA-LDA applied on the simulated Raman data 

perform statistically similarly in the following two cases. The first case refers to when the 

quality of the spectra is low (low SNR) in combination with a slight peak shift that both models 

do not work, and the second case is when the spectral quality is so good that both methods 

perform perfectly. However, when the SNR and the shift in the peak position values are 

inversely proportional, the functional PCA-LDA performs better. Then, we evaluated both 

approaches on experimental Raman spectra. A slight improvement in the classification 

performance reflects the finding on the simulated data since the experimental data is in 

accordance with the simulated data in terms of having high SNR. In conclusion, functional data 

analysis can be considered a promising tool for analyzing Raman spectra, especially when the 

quality of the data is low. This property makes the FDA a great tool to analyze spectra acquired 

fast or in vivo, which both yield low-quality Raman spectra. 
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5 ZUSAMMENFASSUNG 

Die Innovationen im Bereich der biophotonischen Technologien haben deren großes Potenzial 

zum Adressieren von Herausforderungen des Gesundheitssystems im 21. Jahrhundert gezeigt. 

Durch die Fortschritte bei lichtbasierten Techniken können biologische Proben auf Zell-, 

Gewebe- und Organebene untersucht werden, was wiederum zur Verbesserung des 

Gesundheitssystems eingesetzt werden kann. Um dies zu erreichen muss die Biophotonik 

vermehrt in klinischen Studien eingesetzt werden, es müssen automatisierte Systeme aufgebaut 

werden und es müssen robusten Lösungen zur Unterstützung der Entscheidungsfindung des 

Arztes gefunden werden. Die mit diesen biophotonischen Techniken erzeugten Datensätze sind 

jedoch sehr umfangreich, und die in diesen Datensätzen enthaltenen Informationen lassen sich 

nicht einfach oder direkt extrahieren. Daher sind Analysemethoden wie Chemometrie, 

maschinelles Lernen und Deep Learning der Grundstein für eine schnelle Anwendung 

biophotonischer Messmethoden in klinischen Studien und die Entwicklung automatisierter 

Detektionssysteme. Darüber hinaus spielen diese Methoden eine entscheidende Rolle bei der 

Extraktion von Informationen aus komplexen Signalen und der Erkennung unerwarteter 

Ereignisse. Daher wurde in dieser Arbeit zunächst ein Überblick über die jüngsten Trends in 

der Chemometrie und im maschinellen Lernen bei der Anwendung auf chemische Daten 

gegeben. Im Hauptteil dieser Arbeit werden die chemometrischen, maschinellen Lern- und 

Deep-Learning-Methoden in die Gruppen inverse Modellierung, Vorverarbeitung und 

Datenmodellierung aufgeteilt. Die Gruppen "Inverse Modellierung", "Vorverarbeitung" und 

"Datenmodellierung" zielen darauf ab, die Parameter des physikalischen Systems zu 

invertieren, eine gesäuberte Version der Messdaten zu erhalten und ein Modell zu trainieren, 

das Änderungen in der Probe bzw. Gruppen identifiziert. Die Übersicht hat gezeigt, dass in der 

Literatur ein deutlicher Schwerpunkt auf der Entwicklung automatisierter Systeme für eine 

schnellere Verarbeitung und Analyse liegt, zusätzlich zum Boom der Deep-Learning-

Anwendungen für verschiedene spektroskopische Methoden. Anschließend wurden drei 

Forschungsfragen in den oben genannten Gruppen untersucht und argumentiert, dass die 

Lösungen jeweils einen Beitrag zur Verbesserung der Gesundheitssysteme leisten können.  
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In der Gruppe „inverse Modellierung“ wurde die erste Forschungsfrage durch die Tatsache 

motiviert, dass Raman-Messungen eine nicht-invasive Messung darstellt, die einen 

Fingerabdruck der Probenzusammensetzung liefert. Jedoch ist diese Messung langsam, da der 

Raman-Effekt ein schwacher Prozess ist. In dieser Hinsicht kann die kohärente anti-Stokes 

Raman-Streuung (CARS)-Technik als nützliche Alternative betrachtet werden, da sie schneller 

Raman-Informationen und ein besseres Signal liefert, was für biomedizinische Anwendungen 

und klinische Versuche von entscheidender Bedeutung ist. Allerdings werden CARS-

Messungen durch das Vorhandensein des nicht-resonanten Untergrunds (NRB) verzerrt. Aus 

diesem Grund wurden algorithmische Methoden angewandt, mittels derer die Raman-

ähnlichen Spektren aus den CARS-Spektren extrahiert werden. Obwohl mit diesen Methoden 

die Raman-ähnliche Form aus den CARS-Spektren extrahiert werden kann, erfordern sie 

entweder A-priori-Wissen über das System oder eine Nachbearbeitungstechnik, da mit ihnen 

der Hintergrund nicht vollständig entfernt werden kann. Um dieses Problem zu lösen wurden 

verschiedene NRB-Korrekturen, wie zum Beispiel verschiedene Versionen von MEM und KK 

entwickelt. Doch ist es möglich, andere Methoden zu finden, die kein Vorwissen erfordern und 

den NRB vollständig entfernen?  

Möglicherweise sind datengesteuerte Methoden die Lösung. Deshalb haben wir uns die 

Entwicklungen im Bereich des Deep Learning zunutze gemacht und diese Technik zur 

Beantwortung dieser Forschungsfrage eingesetzt. Zur Beantwortung eben dieser Frage wurden 

sowohl Simulations- als auch experimentelle Daten Genutzt. Zunächst wurden 

Simulationsdaten erstellt, bei denen das Betragsquadrat und die imaginäre Komponente die 

CARS- bzw. Raman-ähnlichen Spektren darstellen. Das synthetische Datensatz wurde in einen 

Trainings- und einen Testsatz aufgeteilt. Das Deep-Learning-Netz über das LSTM-Netz wurde 

dann anhand von Trainings- und Validierungssätzen trainiert, und ein Testsatz wurde für die 

Modell-Bewertung verwendet. Schließlich wurden zwei Standard-Methoden zur NRB-

Korrektur, MEM und KK, angewendet, um sie mit der LSTM-Vorhersage zu vergleichen. Die 

MEM- und KK-Rekonstruktionen wiesen einige Nachteile auf: nach der Rekonstruktion ist 

noch ein Hintergrundbeitrag vorhanden. Darüber hinaus wurde bei Anwendung des KK-

Algorithmus eine dispersive Form erzeugt. Diese Nachteile bestätigten, dass die MEM- und 

KK-Methoden sehr empfindlich auf die Stärke der NRB reagieren und dass beide Methoden 

eine Schätzung des Fehlerphasenspektrums erfordern, welches A-priori-Wissen voraussetzt. 

Im Gegensatz dazu rekonstruierte der Deep-Learning-Ansatz erfolgreich die Raman-ähnliche 

Form der Peaks, während der Hintergrund vollständig entfernt wurde. In einem nächsten 
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Schritt wurden diese Ergebnisse mit experimentell gemessenen breitbandigen CARS-Spektren 

verglichen. Daher wurden die drei Methoden auf das Acetonitril-BCARS-Spektrum 

angewandet. Für die MEM- und KK-Methode passte das rekonstruierete Spektrum perfekt zum 

gemessenen BCARS-Acetonitril-Spektrum. Bei den imaginären MEM- und KK-

Rekonstruktionen ist jedoch eine deutliche Verzerrung der Peakform zu beobachten. Die 

LSTM-Vorhersage zeigte jedoch eine gute Leistung in Bezug auf die Peakamplituden und -

breiten, und im Vergleich zu den beiden Rekonstruktionen mittels MEM- und KK-Methoden 

ist keine zusätzliche Datenverarbeitung erforderlich. Zusammenfassend lässt sich sagen, dass 

die LSTM-Methode den beiden für die NRB-Korrektur verwendeten Standardtechniken 

überlegen ist, da sie weniger von der NRB-Stärke abhängt und keine Nachbearbeitung zur 

vollständigen Entfernung des Untergrunds erfordert. Zusätzlich ist die LSTM-Vorhersagezeit 

kürzer als die Vorhersagezeit der MEM- und KK-Methode. 

Im Abschnitt über die Vorverarbeitung ist die Bildentrauschung ein grundlegendes 

Vorverarbeitungsverfahren, das für medizinische Anwendungen von entscheidender 

Bedeutung ist, da durch die Entfernung von Rauschen aus Bildern wichtige Informationen 

verloren gehen können. Um dieses Problem zu lösen, haben wir multimodale Bilder verwendet, 

ein aussichtsreicher Ansatz, der mehr Informationen über die komplexen Strukturen im 

Gewebe und die chemische Zersetzung bietet. Diese MM-Bilder umfassen CARS-, TPEF- und 

SHG-Kanäle. Die MM-Bildgebung liefert qualitativ hochwertige Bilder, was aber einen 

wesentlich längeren Aufnahmeprozess benötigt. Eine schnellere MM-Bildgebung führt jedoch 

zu einem Anstieg des Rauschpegels, was die Bildqualität mindert und die Erkennung von 

Krankheiten oder Anomalien beeinträchtigt. Daher ist für eine effiziente und effektive 

Diagnose ein Kompromiss zwischen schneller Bildgebung und einer geeigneten 

Entrauschungsmethode erforderlich. Da Deep Learning im Bereich des Computer-Vision 

erfolgreich Anwendung findet, wurden zwei DL-basierte Methoden, das DnCNN, ein 

vortrainiertes Netzwerk, und incSRCNN, ein trainiertes Netzwerk mit einer von SRCNN 

inspirierten Architektur, verwendet und mit einer traditionellen Glättungsmethode über den 

GS-Algorithmus verglichen. Die Analyse wurde an zwei Arten von Bildern durchgeführt: an 

simulierten Bildern niedriger Qualität (LQ-Bildern) und an experimentellen LQ-Bildern, wobei 

das Ziel darin besteht, aus diesen verrauschten LQ-Bildern qualitativ hochwertige Bilder zu 

rekonstruieren. Zunächst wurden die drei Methoden auf simulierte LQ-Bilder, die aus den HQ-

Bildern durch Hinzufügen von Poisson-Rauschen konstruiert wurden, und dann auf 

experimentelle LQ-Bilder angewendet. Der GS-Algorithmus wurde unabhängig für jeden 
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Kanal für simulierte und experimentelle LQ-Bilder verwendet. Die rekonstruierten GS-Bilder 

zeigten eine schlechte Qualität, da dunkle Bereiche erzeugt wurden. Es scheint, dass der 

Algorithmus in einem lokalen Minimum stecken geblieben ist und nicht weiter lernen konnte. 

Die beiden Deep-Learning-Ansätze schneiden jedoch besser ab. Zunächst wurde das 

vortrainierte Netzwerk DnCNN als Transfer-Learning-Tool implementiert, das ursprünglich 

auf natürlichen Bildern trainiert wurde, um beschädigte Bilder mit Rauschen und Artefakten 

zu korrigieren. In ähnlicher Weise wurde das DnCNN für jeden Kanal separat eingesetzt. Die 

DnCNN-Rekonstruktionen sowohl der simulierten als auch der experimentellen LQ-Bilder 

waren auf den ersten Blick gut und stellten die HQ-Bilder gut dar, insbesondere beim Vergleich 

des PSNR und des SSIM, welche hohe Werte ergaben. Es werden jedoch geglättete Regionen 

erzeugt, was bedeutet, dass einige komplexe Strukturen in den MM-Bildern verloren gingen, 

die für die Erkennung von Krankheiten oder Anomalien (möglicherweise) entscheidend sind. 

Schließlich wurde eine einfache CNN-basierte Architektur, nämlich incSRCNN, anhand der 

verfügbaren kleinen MM-Bilddatensatz trainiert. Das incSRCNN-Netzwerk wurde nur mit 

dem CARS-Kanal trainiert und sagte dann die anderen TPEF- und SHG-Kanäle voraus. 

Überraschenderweise schneidet dieses Netz gut ab, insbesondere bei den künstlichen LQ-

Bildern, da die komplexen Strukturen ohne Glättungsbereiche erhalten blieben. Bei den 

experimentellen LQ-Bildern hat sich die incSRCNN-Rekonstruktion jedoch nicht verbessert, 

was auf den Mangel an Daten zurückzuführen sein könnte. In diesem Zusammenhang wurden 

schlechtere experimentelle LQ-Bilder konstruiert, und mit der incSRCNN-Rekonstruktion 

wurden qualitativ hochwertige Bilder vorhergesagt. Die incSRCNN-Rekonstruktion zeigte 

eine bessere Leistung als die synthetischen LQ-Bilder des Experiments. 

Zum Schluss wurde im Abschnitt Datenmodellierung eine weitere Frage untersucht, die sich 

auf Raman-Spektren geringer Qualität konzentriert, die entshehen, wenn die Erfassungszeit 

reduziert wird. Dadurch wird jedoch die Qualität der Daten beeinträchtigt. Daher wird im 

letzten Teil der Arbeit nach einer Methode gesucht, die bei der Analyse von Raman-Daten 

geringer Qualität eine bessere Klassifikationsleistung erbringt als Standard-

Klassifizierungsmethoden. Im Allgemeinen beschreiben mathematische Funktionen die 

Raman-Spektraldaten am besten, allerdings werden aufgrund des spektroskopischen 

Messaufbaus nur diskrete Punkte gemessen. Aus diesem Grund haben wir die Raman-

Spektraldaten zum ersten Mal im Rahmen von Funktionen untersucht. In einem ersten Schritt 

werden die Raman-Spektren mit B-Spline-Basisfunktionen approximiert. Anschließend wurde 

die funktionale PCA, gefolgt von LDA, angewandt und die Ergebnisse mit der Standard-PCA-
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LDA-Methode verglichen. Beide Klassifizierungsmethoden wurden an simulierten und 

experimentellen Raman-Daten durchgeführt. Die simulierten Raman-Spektren wurden in zwei 

Klassen (normale und abnormale Gruppe) mit drei Peaks unterteilt. Die abnormale Klasse 

wurde durch eine leichte Verschiebung eines der Peaks gegenüber der Peakposition in der 

normalen Gruppe erzeugt. Außerdem wurden zwei Szenarien betrachtet, jeweils mit und ohne 

zusätzlichen Untergrund. Es wurden 63 Kombinationen verschiedener SNR-Werte und 

Peakverschiebungen untersucht. Obwohl die funktionale Approximation in beiden Szenarien 

aufgrund der hohen Anzahl der verwendeten Basisfunktionen auch für die niedrigeren SNR-

Werte mit Rauschen einhergeht, ist eine deutliche Verringerung des Rauschens bei der 

Approximation zu verzeichnen. Auch bei niedrigen SNR-Werten wird die Bandenform 

beibehalten. Die funktionale PCA-LDA und PCA-LDA, die auf die simulierten Raman-Daten 

angewandt werden, zeigen in den beiden folgenden Fällen statistisch ähnliche Ergebnisse. Der 

erste Fall bezieht sich auf eine niedrige Qualität der Spektren (niedriges SNR) in Kombination 

mit einer kleinen Peakverschiebung, so dass beide Modelle nicht gut funktionieren: Der zweite 

Fall ist durch eine hohe spektrale Qualität gekennzeichnet, sodass beide Methoden perfekt 

funktionieren. Wenn jedoch das SNR und die Verschiebung der Peak-Positionswerte 

umgekehrt proportional sind, schneidet die funktionale PCA-LDA besser ab. Anschließend 

haben wir beide Ansätze an experimentellen Raman-Spektren bewertet. Eine leichte 

Verbesserung der Klassifizierungsleistung spiegelt die Ergebnisse der simulierten Daten wider, 

da die experimentellen Daten den simulierten Daten mit hohem SNR ähnelten. 

Zusammenfassend lässt sich sagen, dass die funktionale Datenanalyse ein vielversprechendes 

Werkzeug für die Analyse von Raman-Spektren ist, insbesondere wenn die Qualität der Daten 

niedrig ist. Diese Eigenschaft macht die FDA zu einem hervorragenden Werkzeug für die 

Analyse von schnell oder in vivo aufgenommenen Spektren, die beide eine geringe Qualität 

aufweisen. 
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P2. DEEP LEARNING AS PHASE RETRIEVAL TOOL FOR CARS 
SPECTRA   
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P4. COMPARISON OF FUNCTIONAL AND DISCRETE DATA 
ANALYSIS REGIMES FOR RAMAN SPECTRA 
 

Reproduced, with permission, from [R. Houhou, P. Rösch, J. Popp, and T. Bocklitz, 
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12 APPENDIX 

12.1 GS algorithm 
The GS algorithm attempts to recover the phase using two intensity measurements. It is an 

error-reduction algorithm that iteratively calculates the error until it converges. The procedure 

is summarized as follows: 

a. An initial phase 𝜑0 is used by generating randomly uniform numbers between −𝜋 and 

𝜋.  

b. While the error is greater than 𝜉, the following steps are repeated: 

At iteration 𝑘, 

i. the initial field in the object plane is calculated as 

 𝒂𝒌 = √𝑰𝒐𝒃𝒋𝐞𝐱𝐩(𝒊𝝋𝒌−𝟏) (3) 

ii. The phase distribution in the target plane 𝜙𝑘  is then calculated via the fast 

Fourier transform (𝐹𝐹𝑇) 

 𝝓𝒌 = 𝒂𝒓𝒈(𝑭𝑭𝑻(𝒂𝒌)) (4) 

iii. Next, the phase distribution in the target plane with the target intensity √𝐼𝑡𝑎𝑟𝑔𝑒𝑡  

is combined as shown in equation 5 

 𝑨𝒌 = √𝑰𝒕𝒂𝒓𝒈𝒆𝒕𝐞𝐱𝐩(𝒊𝝓𝒌) (5) 

iv. And finally, the phase in the object plane 𝜑𝑘is recovered as follows 

 𝝋𝒌 = 𝒂𝒓𝒈(𝑭𝑭𝑻(𝑨𝒌)) (6) 

12.2 MEM method 
MEM is a probability-based method, where the power spectrum 𝑆(𝜈) can be approximated on 

a defined normalized frequency 𝜈 range, described as 
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 𝑺(𝝂) ≈
𝒃𝟎

|𝟏 + ∑ 𝒃𝒌𝐞𝐱𝐩 (−𝒊𝟐𝝅𝝂)𝑴
𝒌=𝟏 |

𝟐 (7) 

where 𝑏0, 𝑏𝑘for 1 ≤ 𝑘 ≤ 𝑀, and 𝑀 represent the coefficients and the number of poles of the 

approximation, respectively. Since the power spectrum is equal to the Fourier transform of the 

autocorrelation function 𝑅𝑙, we can write the following approximation 

 
𝒃𝟎

|𝟏 + ∑ 𝒃𝒌𝐞𝐱𝐩 (−𝒊𝟐𝝅𝝂)𝑴
𝒌=𝟏 |

𝟐 ≈ ∑ 𝑹𝒍 𝐞𝐱𝐩(−𝟐𝒊𝝅𝝂𝒍)

𝑴

𝒍=−𝑴

 (8) 

where 𝑅𝑙 = ∫ 𝑆(𝜈) exp(𝑖2𝜋𝜈𝑙)
1

Δ𝑡⁄

0
. The coefficients 𝑏0  and 𝑏𝑘 are estimated by solving the 

following Toeplitz matrix: 

 (

𝑹𝟎 𝑹−𝟏      ⋯ 𝑹−𝑴     
𝑹𝟏

⋮
𝑴

𝑹𝟎          
⋮

𝑹𝑴−𝟏

⋯
⋱
⋯

𝑹𝟏−𝑴

⋮
𝑹𝟎         

) (

𝟏
𝒃𝟏

⋮
𝒃𝑴

) =  (

𝒃𝟎

𝟎
⋮
𝟎

). (9) 

Afterward, the problem can be solved at a specific frequency position 𝜈0where two physically 

valid restrictions are available. Consequently, the phase is retrieved, and the real and imaginary 

components are calculated. 

12.3 KK method 
Kramers – Kronig relation (KK) is a mathematical relationship between the real and the 

imaginary part of a complex function based on the Cauchy residues theorem. It is defined as 

follows: 

 

𝐑𝐞(𝝌(𝐢𝝂)) =  
−𝟏

𝝅
℘ ∫

𝐈𝐦(𝝌(𝐢𝒙))

𝒙 − 𝝂

∞

−∞

𝒅𝒙 

𝐈𝐦(𝝌(𝐢𝝂)) =  
𝟏

𝝅
℘ ∫

𝐑𝐞(𝝌(𝐢𝒙))

𝒙 − 𝝂

∞

−∞

𝐝𝒙, 

(10) 

where ℘ is the Cauchy principal value. By taking the logarithm on both sides and them using 

the KK relation, we can deduce the phase from the squared modulus as follows 

 𝝓(𝝂) = −
𝟏

𝝅
℘ ∫

𝐥𝐧 (√𝑺(𝝂′))

𝝂′ − 𝝂
𝐝𝝂′. (11) 

Hence, the phase is then extracted by applying a discrete Hilbert transform on ln (√𝑆(𝜈)). 
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12.4 FPCA method 
Functional principal component analysis (FPCA) is a dimension reduction tool for functional 

data, and it is considered the most popular method in FDA. Similar to the classical principal 

component analysis (PCA), the calculation of the principal components is done by examining 

the variance-covariance matrix/function. 

However, in FPCA, the variable values are functions 𝑋𝑖(𝑡), and the equivalent notation of the 

weight vector 𝛽 and the variable 𝑥𝑖 in FPCA are the functions 𝛽(𝑡) and 𝑋𝑖(𝑡). Therefore, the 

principal component scores corresponding to the weight function is illustrated as follows 

 𝒇𝒊 =  ∫ 𝜷𝑿𝒊 =  ∫ 𝜷(𝒕)𝑿(𝒕) 𝒅𝒕 (12) 

FPCA started by finding the weight function 𝛽1(𝑠)  that maximizes 𝑁−1 ∑ 𝑓𝑖𝑖 =

 𝑁−1 ∑ (∫ 𝛽1𝑋𝑖)2
𝑖  and subject to the unit sum of squares constraint ∫ 𝛽1(𝑠)2 = 1. Then, at the 

𝑚 step, the weight function 𝛽𝑚  is calculated in such a way that satisfies the orthogonality 

constraints∫ 𝛽𝑞𝛽𝑚 = 0, 𝑞 < 𝑚 . Generally, in most PCA applications, finding the principal 

components is equivalent to finding the eigenvalues and eigenfunctions of the covariance 

function. Therefore, the covariance function 𝑣(𝑡, 𝑠) is defined as: 

 𝒗(𝒕, 𝒔) =  𝑵−𝟏 ∑ 𝑿𝒊(𝒕)𝑿𝒊(𝒔)

𝑵

𝒊=𝟏

 (13) 

And each eigenfunction 𝛽𝑗(𝑡) for an appropriate eigenvalue 𝜌 satisfies 

 ∫ 𝒗(𝒕, 𝒔)𝜷(𝒔)𝒅𝒔 = 𝝆𝜷(𝒕). (14) 

The left side of this equation is an integral transform 𝑉 of the weight function 𝛽 that can be 

defined by equation 15, and it is called the covariance operator 𝑉. Therefore, we may also 

express the eigenequation directly as equation 16, where 𝛽 is an eigenfunction rather than an 

eigenvector. 

 𝑽𝜷 =  ∫ 𝒗(. , 𝒕)𝜷(𝒕)𝒅𝒕 (15) 

 𝑽𝜷 =  𝝆𝜷. (16) 

In classical PCA, the number of variables is equal to 𝐿. In contrast, in the case of functional 

PCA (FPCA), the number of variables is infinity which refers to the number of function values. 
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12.5 CARS simulation 
Theoretically, the CARS intensity 𝐼𝐶𝐴𝑅𝑆  is directly proportional to the squared modulus of the 

nonlinear susceptibility |𝜒(3)|
2
 [94]. The nonlinear susceptibility 𝜒(3)  is the sum of a non-

resonant part (NRB) 𝜒𝑛𝑟
(3) that appears due to the electronic contributions and a Raman resonant 

part 𝜒𝑟
(3) as follows 𝜒(3) = 𝜒𝑛𝑟

(3)
+ 𝜒𝑟

(3). The non-resonant part is purely real and shows only a 

weak frequency dependency, while the resonant part is a complex function that can be 

described as Lorentz function: 

 𝝌𝒓
(𝟑)

=  ∑
𝑨𝒓

𝛀𝒓 − (𝝎𝒑𝒖 − 𝝎𝑺) − 𝒊𝜸𝒓

,

𝒓

 (17) 

where (𝜔𝑝𝑢 − 𝜔𝑆) is the difference of pump and Stokes frequency and 𝐴𝑟 , Ω𝑟 , and 𝛾𝑟 are the 

amplitude, the vibrational frequency, and the bandwidth of the 𝑟th Raman mode, respectively. 

12.6 Raman simulation 
Our study started primarily by simulating Raman data with different signal-to-noise ratio 

(SNR) cases: 0.5, 1, 2, 3, 5, 10, 30, 50, and 100. Afterward, the functional data analysis was 

tested for classification on these simulated Raman data and then on experimental Raman data. 

Therefore, the simulated Raman spectra are divided into two classes (normal and abnormal 

groups) with three peaks. The abnormal group was generated by slightly shifting one of the 

peaks from the peak position used in the normal group by one of the following values (∆𝜈): 

0.001, 0.003, 0.005, 0.01, 0.02, 0.025, and 0.05. This situation often occurs in biomedical 

Raman spectroscopy when, for example, the protein’s secondary structure changes between 

two groups or if an isotope labeling is applied. The number of pixels in each spectrum is equal 

to 1024. The total number of spectra in each class was set to 100 spectra. Sixty-three cases of 

simulation data are built, where each dataset includes 200 spectra. 

12.7 Experimental Raman data 
Three microorganisms were included in the analysis; the naphthalene-degrading soil bacteria 

R. opacus, N. aromaticivorans, and C.basilensis. Throughout the experiments, three batches 

were cultivated and measured. The three microorganisms are cultivated separately in water and 

heavy water (D2O). Through this fact, hydrogen atoms are exchanged by deuterium atoms, and 

a C-D bond exchanges the C-H bond. 
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12.8 FDA approximation 
The functional data analysis (FDA) assumes the existence of some functions 𝑋𝑖(𝑡) in Hilbert 

space, e.g., 𝐿2(𝐼)  on a compact interval 𝐼 , giving rise to the observed data 𝑋 ∈ ℝ𝑁×𝐿 . 

Therefore, each function is treated as one entity rather than a sequence of individual measured 

variables [95], [96]. Analytically, these functions cannot be calculated; instead, a set of basis 

functions 𝜓𝑗 , 𝑗 = 1,2, … , 𝐽 are used to approximate them by using the following equation: 

 𝑿𝒊(𝒕) = ∑ 𝒄𝒋𝝍𝒋(𝒕),

𝑱

𝒋=𝟏

 (18) 

where 𝑐𝑗, 𝑗 = 1,2, … , 𝐽 represents the coefficients. The choice of the basis functions is various, 

but B-spline basis functions are the most common choice for spectral analysis. In brief, the B-

spline basis function is a piecewise polynomial function defined on a specific interval 𝐼 with 

an order 𝑂 and a knot vector. Furthermore, several methods can be implemented to calculate 

the coefficients 𝑐𝑗; however, the least-squares estimation is utilized. 

12.9 Parameters of GS algorithm, DnCNN, and incSRCNN networks 
A Gaussian approximation is used in the GS algorithm since the source beam values are 

unavailable. The number of iterations that the algorithm carries on is 50000, and the code was 

built using Matlab 2020b (The MathWorks, Natick, MA).  

The DnCNN [97] was also implemented in Matlab 2020b (The MathWorks, Natick, MA).  

The proposed network (incSRCNN) includes a simple architecture consisting of three layers. 

The input image is convolved in the first layer with three different kernel sizes 3, 5, and 9 into 

192 feature maps. The second layer then applies a 1 × 1 kernel to condense to 64 feature maps. 

Finally, the third layer uses a 3 × 3 kernel to construct the output image. The training of the 

network was performed by minimizing the mean absolute error (MAE)-based loss between the 

HQ images and the output of the incSRCNN network. The Adam algorithm was used for the 

optimization with a learning rate of 3𝑒−4. A total of 1008 and 288 coupled HQ and LQ images 

were used for the training and the validation, respectively. All computations were done using 

Google Colab. The total number of parameters to be trained is 20,481. The training of 

incSRCNN includes only the CARS modality, and the training time of this network is 

approximately 10 minutes. 
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