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Abstract: The paper gives a short survey of the most important lower and upper 
bounds for the total π-electron energy, i.e., the graph energy (E). In addition, a 
new lower and a new upper bound for E are deduced, valid for general mole-
cular graphs. The strengthened versions of these estimates, valid for alternant 
conjugated hydrocarbons, are also reported. 
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INTRODUCTION 

The total π-electron energy (Eπ), as calculated within the simple tight-
binding Hückel molecular orbital (HMO) approximation, is one of the most 
precious pieces of information that can be directly related with molecular 
structure, by means of spectral graph theory.1–4 In the case of the chemically 
most relevant conjugated π-electron systems (in particular, benzenoids,5 
phenylenes,6 fluoranthenes,7 etc), Eπ can be expressed as: 
 πE n E    

where α and β are the standard HMO parameters (constants), n is the number of 
carbon atoms (number of vertices of the underlying molecular graph G), whereas: 
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is the structure-sensitive term, depending on the eigenvalues 1 2, , , n    of the 
molecular graph G. The non-trivial part of the theory of total π-electron energy is 
just the study of the structure-dependency of the quantity E, which nowadays is 
referred to8 as the energy of the (molecular) graph G. The energy of chemically 
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relevant molecular graphs was shown to be quantitatively related with the experi-
mentally determined heats of formation and other measures of thermodynamic 
stability of the underlying conjugated compounds.2,5,9 

In the last 10–15 years, graph energy became a popular topic of mathe-
matical research, resulting in hundreds of published papers. Details on graph 
energy can be found in a book,8 the references cited therein, and recent papers.10–15 

One of the earliest results in the theory of total π-electron energy are the 
estimates obtained by McClelland,16 namely: 

 2/2 ( 1) | det | ( ) 2nm n n A E G mn     (2) 

where n is the number of vertices of the molecular graph G (equal to the number 
of carbon atoms of the underlying conjugated hydrocarbon), m is the number of 
edges of G (equal to the number of carbon–carbon bonds), and ( )A A G  is the 
adjacency matrix of the graph G.  

McClelland’s upper bound 2mn played a significant role in the theory of 
the total π-electron energy, because it was demonstrated16 that 2a mn , for 

0.9a  , provides an excellent approximation for E. Comparative testings5,17–19 
of the numerous existing ( , )n m -type approximate formulas for E revealed that 
not one was better than that of McClelland. This somewhat puzzling result found 
an explanation after the discovery of McClelland-type lower bounds for 
energy.20–23 It was first shown20 that for g = 16 / 27 0.77 , the expression 
g 2mn  is a lower bound for the energy of benzenoid hydrocarbons. Türker 
obtained 0.5g   for all alternant conjugated hydrocarbons,21 which was further 
improved22,23 as 32 / 81 0.63g   . 

Eventually, several other estimates of E were obtained, of which here only 
those depending solely on the number of edges of the molecular graph are 
mentioned:24 

 2 ( ) 2m E G m   (3) 

and those depending solely on the number of its vertices:24,25 

  2 1 ( ) 1
2
nn E G n     (4) 

At this point, also an ( , )n m -type improvement of McClelland's upper bound 
should be mentioned: 

 
22 2( ) ( 1) 2 ,m mE G n m

n n

  
      

   

 (5) 

discovered 30 years later25,26 than the estimates (2). 
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By means of the bounds (2)–(5) and McClelland’s approximate expression 
for E, the two most important structural parameters, determining the gross part of 
total π-electron energy were established: these are n and m. The evident next step 
was to find estimates and approximate expressions for E possessing more than 
two structural parameters. 

Although there is no general agreement about which the third-important 
structural parameter should be, most attention was paid to the number of Kekulé 
structures, ( )K K G , and to the closely related determinant of the adjacency 
matrix.27 In particular: 
if B is the molecular graph of a benzenoid hydrocarbon, then:28,29 
 /2 2det ( ) ( 1) ( ) ;nA B K B   

if F is the molecular graph of a fluoranthene, then:30,31 
 /2 21 2det ( ) ( 1) [ ( ) ( )] ;nA F K F K F   

where F1 and F2 are the „male“ and „female“ fragments of F; if P is the mole-
cular graph of a phenylene, then:32 
 /2 2det ( ) ( 1) ( )nA P K HS   

where HS stands for the hexagonal squeeze of P. 
The dependence of the total π-electron energy on the number of Kekulé 

structures was much investigated, especially for benzenoids,33–40 fluoran-
thenes,41 and phenylenes.6 In view of the above stated relations between the 
determinant of the adjacency matrix and the number of Kekulé structures, every 
lower and upper bound for E contains information on the K-dependence of the 
total π-electron energy. Hitherto, the best such estimates were:42 

 2/ 2/2 ( 1) | det | ( ) 2 ( 1) | det | ,n nm n n A E G m n n A       (6) 

valid for general molecular graphs, and  

 2/ 2/4 ( 2) | det | ( ) 2 ( 2) 2 | det | ,n nm n n A E G m n n A       (7) 

valid for alternant conjugated hydrocarbons. Recently a further upper bound for 
E was established:43 

 2 | det |( ) 1 ln ,
2

m n AE G n
n m

 
     

 
 (8) 

valid under the condition that det 0A , i.e., that no eigenvalue of the molecular 
graph is equal to zero, i.e., that the respective conjugated molecule has no non-
bonding molecular orbitals.1 

In what follows, two novel ( , ,det )n m A -type estimates of graph energy 
were obtained. To realize this, some preparations were required. 
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PRELIMINARIES 

In this section, some previously known results that will be needed in the next 
two sections are listed. 

Lemma 1.44 Let 1 2, , , Nx x x  be non-negative numbers, and let: 
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be their arithmetic and geometric means. Then: 
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Moreover, equality holds if and only if 1 2 .Nx x x    
Lemma 2.45 For a graph G with n vertices and m edges, eigenvalues 

1 2, , , n   , and for 1 j n  : 

 2 ( 1) 2 ( )
( 1) j
m j m n j

n n j n j


 
  

 
 

Lemma 3.46 Let G be a connected graph of order n. Then 1 2m n  , with 
equality if and only if G is regular. 

LOWER BOUND FOR GRAPH ENERGY 

Theorem 1. The lower bound in (6) can be improved as: 

 
21/4

2/ 4 2 2( ) 2 ( 1) | det |
( 1)( 2)

n m mE G m n n A
n n n n

  
       

     

 (9) 

Proof. From Lemma 1, one obtains: 
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   (10) 

Substituting in (10) ( 1) / 2N n n   and | | | |i j kx     for i = 1,2,…,n(n–1)/2, 
1,2, , 1j n   and 1, 2, ,k j j n   , one arrives at: 
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which is the same as: 
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By Lemma 2: 

 /2
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whereas by Lemma 3: 

 1
2m
n

   

If, in addition, one takes into account that:44 1n    , i.e., | | 1n  , one 
obtains: 
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 (11) 

which combined with:  

 2 2

1 1 1 1 1
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n n n n n
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and bearing in mind that:  
 2| | 2j m   

results in a ( , ,det )n m A -type lower bound (9). 
For alternant conjugated hydrocarbons1,2 (i.e., for bipartite molecular 

graphs46), 1j n j      holds for all 1,2, ,j n . In particular, 1 n    and 
/2 /2 1n n    . Bearing this in mind, the inequalities in (11) can be strengthened as: 
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resulting in the following ( , ,det )n m A -type lower bound for total π-electron 
energy of alternant conjugated hydrocarbons: 
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2

2/ 4 2 2( ) 2 ( 1) | det |
( 1)( 2)

n m mE G m n n A
n n n n

 
         

 (12) 

Recall that benzenoids and phenylenes are alternant conjugated hydro-
carbons, whereas fluoranthenes are not. It is easy to show that the estimate (12) is 
better than (9). 

UPPER BOUND FOR GRAPH ENERGY 

Theorem 2. Under the condition that det 0A  , the upper bound in (3) can 
be improved as: 

 2 2 | det |( ) 2 1 ln
2

m m n AE G m
n n m
   

      
   

 (13) 

One should compare this result with the lower bound (8). 
Proof. Consider the function 2( ) ln ,f x x x x    which is increasing for 
1x   and decreasing for 0 1x  . Thus, for 1x  , 

 ( ) (1) 0,f x f   i.e., 2 lnx x x   

with equality holding if and only if 1x  . Using this result and the definition of 
graph energy, Eq. (1), one obtains: 

 2 21 1 1 11
2 2 1
| | ( ln | |) 2 ln | | ln

nn n
j j jj

j j j
E m        

  

             

that is: 

 21 1 112 ln | det | ln 2 ln | det | ( )E m A m A f            (14) 

Inequality (13) is now obtained by replacing in (14) 1  by: 

 2m
n

 

This is legitimate since by Lemma 3: 

 1
2m
n

   

and since: 

 2m
n

 

is the average vertex degree, which in molecular graphs is necessarily greater 
than unity. 
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By means of arguments analogous to those used for deducing the lower 
bound (12), in particular, using 1 n   , for alternant conjugated hydrocarbons 
without zero graph eigenvalues, the estimate (13) can also be improved as: 

 
2

2
4 2 | det |( ) 2 1 ln

4
m m n AE G m
n n m

  
      

   
 (15) 

DISCUSSION AND CONCLUDING REMARKS 

In this paper, our attention was focused on bounds for the HMO total 
π-electron energy (Eπ) of conjugated hydrocarbons, which depend on the number 
of carbon atoms (n), the number of carbon–carbon bonds (m), and the Kekulé 
structure count (K). For algebraic reasons, instead of dependence on K, expres-
sions were found in which the determinant of the adjacency matrix ( det A ) is one 
of the parameters. As explained in the Introduction, for the most important poly-
cyclic conjugated π-electron systems, there are simple relations between det A  
and the Kekulé structure count. Thus, the new estimates reported in this paper, 
namely (9), (12), (13) and (15), may be viewed as contributions towards a better 
understanding of the structure-dependency of Eπ, in particular of its ( , , )n m K - 
-dependence.  

If LE and DE is a pair of lower and upper bounds for E, then an approximate 
expression for E could be obtained by taking their arithmetic mean: 

L D1/ 2( )E E . However, in view of the algebraic forms of the estimates dis-
cussed in this paper, it is better to construct these approximate expressions as 

2 2
L D1/ 2( )E E . If so, then from the estimates (6), one obtains: 

  
2/

2 2/1 2 | det |2 | det | 2
2 2 8

n
n n AE mn n A mn

m
     

which, recalling that 2 / 2 0.707 , is evidently a modification of the original 
McClelland’s formula 2a mn . It is interesting that exactly the same expression 
was obtained from the improved estimates (7). Equally interesting (and some-
what surprising) is the approximate formula obtained from the estimates (8) and 
(13): 

 
2

2
1 2 2

2
n m mE m

n n


     

which is of the ( , )n m -type, not containing the logarithm of the determinant of 
the adjacency matrix, and thus – in contrast to the estimates (8) and (13) – 
applicable to all molecular graphs. 
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И З В О Д  

ГРАНИЦЕ ЗА УКУПНУ ЕНЕРГИЈУ π-ЕЛЕКТРОНА 

ИВАН ГУТМАН
1,2

 и KINKAR CH. DAS
3 

1Природно–математички факултет Универзитета у Крагујевцу, 2Department of Chemistry, Faculty of 

Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia и 3Sungkyunkwan University, 

Suwon, Republic of Korea 

Дат је кратак преглед најважнијих доњих и горњих граница за укупну енергију 
π-електрона, тј. енергију графа (Е). У наставку су добијене по једна нова доња и горња 
граница за Е, које важе за све молекулске графове. Такође су наведене побољшане вер-
зије тих граница, које важе за алтернантне конјуговане угљоводонике.  

(Примљено 5. септембра 2013) 
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