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This paper studies the laminar boundary layer on a body of an arbitrary shape
when the ionized gas flow is planar and steady and the wall of the body within the
fluid porous. The outer magnetic field is perpendicular to the fluid flow. The inner
magnetic and outer electric fields are neglected. The ionized gas el ectroconductiv-
ity isassumed to be a function of thelongitudinal velocity gradient. Using transfor-
mations, the governing boundary layer equations are brought to a general mathe-
matical model. Based on the obtained numerical solutionsin the tabular forms, the
behaviour of important non-dimensional quantities and characteristics of the
boundary layer is graphically presented. General conclusions about the influence
of certain parameters on distribution of the physical quantities in the boundary
layer are drawn.
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Introduction

Thedissociated gas flow have been studied by variousinvestigatorslike Dorrance[1],
Loitsianskii [2, 3], Krivstova[4, 5], Saljnikov [6], and Obrovi¢ [7]. They performed a detailed
investigation of the dissociated gas flow in the boundary and achieved significant results.
Borici¢ et al. [8-10] and Ivanovi¢ [11] studied MHD boundary layer on anon-porousand porous
contour of the body within thefluid and tried to find the so-called auto-model solution. Theion-
ized gasflow in the boundary layer adjacent to both non-porous body [12, 13] and porous body
[14-17] of an arbitrary shapewere also studied for different electroconductivity variation laws.

This paper studies a complex ionized gas (air) flow in the boundary layer adjacent to
the porouswall in the case when the el ectroconductivity isafunction of the longitudinal veloc-
ity gradient.
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Mathematical formulation

At high gasflow velocities (e. g. supersonic flight of an aircraft through the Earth’ s at-
mosphere), the temperature in the viscous boundary layer increases significantly. At high tem-
peratures ionization of gas (air) occurs together with dissociation. Because of this
thermochemical reaction the gas becomes el ectroconductive. Then the gas(air) consists of posi-
tively charged ions, electrons, and atoms of oxygen and nitrogen. If the ionized gasflowsin the
magnetic field of the power B, = By, = B(X), an electric current is formed in the gas, which
causes appearance of the Lorentz force and the Joul€' sheat. Dueto these effects, new terms, not
found in the equations for homogenous unionized gas, appear in the equations of theionized gas
boundary layer.

This paper investigates the ionized gas flow when the outer magnetic field is perpen-
dicular to the wall of the body within the fluid. The magnetic Reynolds number is considered
very small. Theionized gas of the same physical characteristicsasthegasinthemainflow, isin-
jected, i. e., g ected perpendicularly to the porouswall with the vel ocity v, (x), According to [1],
the complete governing equation system with the corresponding boundary conditions takes the
following form:

0 0
—(pu)+ —(pv) =0 1
ax(p ) ay(p ) (D)
ou ou dp 0 ou
U—+pV—=——"+—| u— |—-oB2u 2
PETP oy  dx ay[ﬂayJ 7 @
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pua—h+pva—h=ud—p+u ou +_8 4 oh +oB2u? 3)
OX oy  dx oy oy\ Pr oy
u=0, v=v, (x), h=h, for y=0 4
u— Ug(x), h—h,(x) for y—>

Theionized gas electroconductivity o is assumed to be a function of the longitudinal
velocity gradient:
(y:(yoﬁﬂ, (GO,VO =c0n$I.) (5)
uz oy
Based on the boundary conditions for the velocity and the density at the outer edge of
the boundary layer:

ou
U(X! y)—)Ue(X), [a_y_)ojl p_)pe (6)
Thepressureiseliminated fromegs. (2) and (3), and thefollowing systemisobtained:
0 0
—(pu) +—(pv) =0
™ (pu) ay(p ) (7
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The boundary conditions remain unchanged.
Transformation of the variables

In order to apply the general similarity method, instead of physical coordinatesx andy,
new transformations [3]:

1 x 1Y
S(x) = [PwwdX,  Z(X y)=— [dy (10)
PoHo O Po 0
and the stream function (s, 2) are introduced:
u:a_l//, V:M ua_z+vi :_a_l// (1_’]_)
0z Puwly L OX 0 0s

The quantities p, and 1, denote the known values of the density and the dynamic vis-
cosity of the ionized gas at a concrete point.

By means of the transformations (10) and (11), the governing equation system to-
gether with the boundary conditions comes to:

oy Py Py Py _pe e, 8( 62!//]_ Potto 0oBR Vo OV 3y 1

0700z 0z 922 p °ds ozl T 022 ) pyu, po W 0Z2 0z

2
DA e BV DT (2,
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4 Poto T0BR Vo 2y Oy [Q: pu J (13)
Pwhw Po Us 0Z% 0z Pwhw
a_vlzo’ a_‘//:_/“‘_ovwz_va h=h,, for z=0
0z 0 Hw (14)
Z—W—we(s), h—>h(9 for z—>e
z
In order to solve the system (12)-(14), the momentum equation is derived:
*k F
dz_:_rr‘p (15)
ds Ue

While deriving the momentum eg. (15), the usual quantitiesin the boundary layer the-
ory are introduced:

Frp=2[¢ —(2+ H)] + g—24 (16)
A a9 f[Pe_M o[-
H="m0 40 £[p uesz, A" (9) !)ue[l ue)dz (17)
A2

f(9="Ff(9=u2z2", Z" =

(18)

Vo
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T (9= ( J =Pl Ze ¢ (9= (21)
A z=0
In the momentum equation A(S) is the porosity parameter, and it is:

A Ho Vud” _ Vud® g (22)

Hw Vo Vo

whereV,, isaconditional transversal velocity at the inner edge of the boundary layer of the po-
rous wall of the body within the fluid.

For the used electroconductivity variation law, in order to apply the general similarity
method, the boundary conditions and the stream function onthewall of the body within thefluid
should remain the same as with the non-porous wall. For that reason, a new stream function is
introduced y* (s, 2) by the relation:

w(s,2) = w9 + v*(s 2, w*(s0)=0 (23)

where (s, 0) = y,,(S) denotes the stream function of the flow adjacent to the wall of the body
within the fluid.
Applying the relation (23), the system (12)-(14) is transformed into:

* A2 % * o A2,,* 2 20,
oyt Py* oy 6w_dl//W6y/_&uu+vO6 Qay/ B
0z 0s0z 0s 0z2 ds 0z2 p 022
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0z 0s 0s 0z ds 0z Jol 0z 6
vy -2 Q oh UoB%ﬁ Potog Py (25)
az Proz po Uz p,u, 07°
v =0 ¥ _g h=h, for
0Z (26)

6;” U9, hohy(9 for z—>e
Z

General mathematical model

In order to derive the generalized boundary layer equationsit is necessary to introduce
new transformations:
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up
i; v (s Z)Z%K(S)@[n”(!(fk)’(gk)v(Ak)]

h(s 2) = hhlm i, (f), (91, (4]

2
h, Jru?e —h, =const., K(9=|av,Jue-lds, a,b=cons. (28)
0

where 7(s, 2) is the newly introduced transversal variable, @ — the newly introduced stream
function, and h — the non-dimensional enthalpy.

Some important quantities and characteristics of the boundary layer (16)-(21) can be
written in the form of more suitable relations:

s=s n(s2)=

(27)

u=u, (Z—f (29)
e _ K(9 i _ 0D

A (9) = E B(s), B(s= £ - (1 n}i (30)
A9 _y_AG (31)

A" (9 B(s)’

R
=B 32
c-8 25 jﬁ @
f aus .

v T (j) ub-1ds (33)

_Inthe general similarity transformations (27), with the non-dimensional functions @
and h, alocal parameter of the ionized gas compressibility « = f,, aset of the form parametersf,
[3], aset of magnetic parameters g,, and a set of porosity parameters A, [18] are introduced:

_f (9= 34
= (S)_E (34)
f (9 =uk1uzk, (k=123 ..) (35)
gk(s>=uek*2Nék*”,/zv—:1Z“k (36)
Y (k-1) ‘
Z**
Ap(9=-ust 2L — 3

They represent independent variables instead of the longitudinal variable s.
The local compressibility parameter k = f, and the sets of parameters satisfy the fol-
lowing corresponding simple recurrent differential equations:

Yt 9ot —0, (38)
u

.~ ds
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Applying the similarity transformations (27) and (34)-(37) the system (24)-(26) can be
written as:

2
a( 82®j+a82+(2—b)f1@82d7+ f, pe_[ﬁ(Dj G D3,
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it on oo A, oA, on? (42)
h 2 _ h 2 \° 2 2
0(Qah), aB2+( b)flq)@_h_ZKfl&a_@+2KQ 20\ 2kg, 320 o0 |
on| Pr on 2B? on B2 p on on? B on2\ on
+ﬂa_h=i ng a_@a_h_a_d)a_h +
B on B?|&g on of, of, on
S (0@ oh 0@ oh) <~ [(oé® oh  od oh
D e e Y | (43)
k1 on 09, 09 0n ) 1= on oA, 0Ay On
The transformed boundary conditions are:
@:aa—(pzo h=h, =cong. for n=0
o (44)
a——>1, h-)he:l—l( fOI‘ T]—)‘X’
n

Neither egs. (42) and (43) nor the boundary conditions (44) contain the outer velocity
of the boundary layer. Therefore, this equation system is generalized and it represents ageneral
mathematical model of the ionized gas flow adjacent to the porous wall of the body within the
fluid for the assumed electroconductivity variation law (5).

Numerical solution

When the generalized equation system (42)-(43) with the boundary conditions (44)
isnumerically solved, afinite number of parametersis adopted and the solutionis obtained in
n-parametric approximation. Due to many difficulties in solution of this equation system, it
can be solved only with arelatively small number of parameters. If it is assumed that:
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f2=f3=...=0, g2=g3=...=0, A2=A3=..=0 (46)

the obtained equation systemis significantly simplified. Furthermore, when the general similar-
ity method is applied, the so-called localization is performed. If we neglect derivatives per the
compressibility, magnetic, and porosity parameters (6/0kx = 0, 6/0g, =0, 6/0A | = 0), the equation
system (42)-(43) issignificantly simplified, and in the four-parametric three timeslocalized ap-
proximation, it has the following form:

2 2 _ 2 2 2
a( a®j+a|3 +@-bf 20 f [pe_[a@” g %@ o

anl = an2 2B2 on2 B2| p |\ on B2 on2 on
Ao Fupf(oo 020 2@
+Z 0°Q _Tmpl [ 00 0 _o0 o (47)
B 0n? B2 ( on onof of on?
h 2 _ h 2\
i ga_h +—aB +(2 b)f @a_h_ﬁ&a_(p.yzl((? o° P +
onl Pr on 2B? on BZ2 p on on?
2 2 h Foof h h
+2K_ga @ a_(p +£a_h: mp a_(pa_h_a_(pa_h (48)
B on2\ on Bon B2 | onof of on

The boundary conditions (44) remain unchanged.

In the equations of the system (47)-(48) the subscript 1 isleft out in some parameters.
Each of the equations contains aterm that characterizes the porous wall of the body within the
fluid.

For the numerical integration of the obtained system of differential partial equations of
the third order, it is necessary to decrease the order of the differential equations. Using [6]:

u oo
—=—=0¢=0(nx f,9.4) (49)
u. 0on
the order of the differential equations is decreased, so the system together with the boundary
conditions comes to:

0 (Q@j+aaz+(z—b)f(Da_cp+L{&_¢2}
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_g_(pgp-{-__(p: mp q)_q)___ (50)
Bon Bon B2 of of on
— 5 3 — 2 —
0[Q0h), aB*+R=D)f ,0h 2T pe 500 , 2000, ATh_
on\ Pr on 2B? on B2 p on B on B on
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“Bz | "ot of o (1)
@ =¢p=0, E:hﬂf =cong. for n=0 (52)
p—1 h—>h =1-k for n—>«
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In order to solvethe obtained system (50)-(52), it isnecessary to determinethe analytic
forms of distribution of certain physical quantitiesthat are themselves part of the equations. For
the non-dimensional function Q[15] and the density ratio pJp [4], thefollowing expressionsare
adopted:

Q=Q(ﬁ)=3hTW. %zﬁ (53)

A concrete numerical solution of the obtained system of non-linear and conjugated
differentia partial equations (50)-(52) is performed using finite differences method, i. e, “pas-
sage method” or TDA method. Based on the scheme of the planeintegration grid [6], the system
(50)-(52) is brought to the following system of linear algebraic equations:

aiM,K+1‘pivv| i~ 200 k1P F O k1P = I ke (54)
h - K+1 bM K+1h . +CI{/I K+1hM+1 K+1 gl{/I,K-#l (55)
M=223,..,N-1 K=0,1,2 .., i,j=0,1,2,...
@} =0, =0 h)  =h,=const. for M=1 (56
Prgsr =1 hl\{,K+l =l-x for M=N
Thecoeff|0|entsa'M Kol b,'vI k1 C K+1’andgi\/|,K+1 of the dynamic equation are de-

termined with the expressions:
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RS Af 2 BY o2 BlY
o An)?2 . F i71K+1
bi -1 I Gl PN ( n K 1(p|—l 1+ mp, (58)
MK+l — M ,K+1 2(BK+1)2 +1PM K41 Af
j-1 _An (pil\zj,-K 1
CIM K+l = I{A,K+1 = (QM K+1 QM K+1 2 (BK+1)2 +(2 b)fK+l — +
2(B ) 2
1 K+1 (59)
LEiILf Dyl ~ Pk } An g gl AN An A
K+1 ' K+1 M K +1
2 Af 2 Bl 2 B,
| _ (An)2 f HI\jI,K+1 Fi-l f i1 Pwm K 60
Om k1 = (B Kl = T Fpk K+1‘PM,K+1T (60)
K+1

For the thermodynamic equation, these coefficients are;
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_B' 1 g(q’Mﬂ K+l (pll\A—l,K+1)((pil\ZJ:K+l)2 (64)
K+1
From the algebraic egs. (54)-(56), the following formulae are obtained :
(pil\l,K+l =1 (65)
Pukr = Kinen P ki Pk (66)
Q’LKA =0 (67)
N =LK (68)
I\JI,K - Kli/l K+l M K+th+l K+1 (69)
th+l h,, = cond.. (70)

M=N-1 N-2..,32 i,j=123...

and they are used to calculate the values of the functions ¢ and h at discrete pointsin the direc-
tion of decrease of the subscript M.
In the formul ae (65)-(70), the passage coefficients for the dynamic equations are:

al Ki _gi
Ki M,K+1" "M -1,K+1 M, K+1 Ki §0i =0 (71)
MK+~ i i ! 1LK+1 1K+1
2b;\/l K+1 a‘IM,K+1LIM—1,K+1 :
cl
i M,K+1 i
Ly ko = o — - T L, =0 (72)

M,K+1 M, K+1™M-1,K+1

These coefficientsfor the thermodynamic equation have the same form but they are es-
sentially different:
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_ al K] -g) . _ _
j M K1Y M-1,K 41 M ,K+1 i _hi _ _
KM K+l T 2bJ j Lj ' K1,K-¢-l - h1,K+1 - hW = cond. (73)
M,K+1 a‘M,K+1 M-1,K +1
. c A
L _ M ,K+1 Llj -0
M, K+1 i i ; ’ K+l 74
j _al j
2bM,K+1 aM,K+lLM—l,K+l (74)

M=23..., N-2 N-1

Based on the recurrent formulae (71)-(74), the passage coefficients in the direction of
theincrease of the subscript M are cal culated. After all the discrete pointsof the calculating layer
have been gone through twice, the solutions of the functions ¢ and h that correspond to that
layer are calculated. The procedureisthen repeated for all the calculating layers of the planein-
tegration grid until the integration is performed in the whole range of the possible change of the
parameter of the form f. Based on [13], the number of nodes is determined for each calculating
layer asN = 401.

Prandtl number depends little on the temperature, therefore in this paper its value is
considered to be constant and for air it isPr =0.712. According to [6], the optimal valuesfor the
constantsa and b are: a = 0.4408, b = 5.7140.

Results

For the numerical solution of the equation system (50)-(52), aprogramin FORTRAN
program language has been written. Asthe first derivative is neglected due to localization per
the compressibility, porosity, and magnetic parameters, the program is designed to enable the
solution of the equations for in advance given values of these now simple parameters. Numeri-
cal solutions are obtained in the output database in the tabular form.

The following results have been obtained.

Regardless of the fact whether theionized gasisinjected into the main flow or gjected
fromit, at different cross-sections of the boundary layer, the non-dimensional velocity u/u, very
quickly converges towards unity (fig. 1).
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Figure 1. Diagram of the non-dimensional Figure 2._Distribution of the non-dimensional

velocity u/u, enthalpy h
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Figure 3. Distribution of the non-dimensional Figure 4. Distribution of the characteristic
enthalpy for different valuesof the parameter f, function F

The compressibility parameter k = f, haslittleinfluence on the corresponding distribu-
tions of the non-dimensional velocity.

In the presented (figs. 2 and 3) and other diagrams for distribution of the non-dimen-
sional enthapy we notice a great change of the enthalpy near the wall of the body within the
fluid and near the outer edge of the boundary layer.

The change of the porosity parameter has a great influence on the distribution of the
non-dimensional enthalpy h in the ionized gas boundary layer (fig. 3).

Themagnetic field hasagreat influence on the characteristic of theboundary layer F,,
(fig. 4) and the non-dimensional friction function(. By increasing the val ues of the magnetic pa-
rameter, the separation of the boundary layer is postponed (fig. 5).

Based on the diagramsthat are not presented here, it can be concluded that variation of
the porosity parameter haslittleinfluence on the profiles of the non-dimensional vel ocitiesu/u,.

The porosity parameter A has a great influence on the non-dimensional friction func-
tion¢ (fig. 6). Consequently, it also hasagreat influence on the boundary layer separation point.
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Figure 5. Distribution of the non-dimensional Figure 6. Distribution of the non-dimensional

friction function £(g) friction function £(A)
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Itisnoted that the injection of air postpones the separation of theionized gas boundary layer be-
cause the separation point moves down the flow.

This parameter has a significant influence on the characteristic function of the bound-
ary layer on the porouswall ..

Conclusions

This paper studiesthe ionized gas planar steady flow in the boundary layer adjacent to
the porous wall. Theionized gas of the same characteristics as the gasin the main current isin-
jectedi. e, gjected perpendicularly to the wall. The outer magnetic field is perpendicul ar to the
contour of the body. The gas electroconductivity is assumed a function of the longitudinal ve-
locity gradient.

The aim of the investigation is to apply the general similarity method to the studied
problem and solve the obtained equations. The governing equation system is transformed,
brought to a general form, and then numerically solved by application of the finite differences
method. However, the numerical solution is fraught with difficulties, mainly of mathematical
nature, although there are some difficulties related to thermochemical and physical processes of
the gas flow.

Complex fluid flow problems can be successfully solved using general similarity
method. Distributions of the solutions of the ionized gas boundary layer equations for the used
electroconductivity variation law are shown to be same as with other similar compressible fluid
flow problems. Some new facts about the influence of the magnetic field and the porosity on the
boundary layer separation have also been discovered. Important quality results here obtained
enable an insight in the distribution of physical and characteristic quantities at different
cross-sections of the boundary layer.
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Nomenclature
A, B — boundary layer characteristics, [-] h, — enthalpy at thewall of the body withinthe
B, — induction of outer magnetic field fluid, [Jkg™]
[= Bn(X)] [Vsm™] h, — enthalpy at the front stagnation point of
a,b - constants, [ the body within the fluid, [Jkg™]
Cy — specific heat of ionized gas at constant ij — iteration number, [-]
pressure, [Jkg K™ M — discrete point, [
Fnp  — characteristic boundary layer function, [-] Pr — Prandtl number (= ucy/1), [-]
f, — first form parameter (=1), [] p — pressure, [Pe]
fy — set of form parameters, [-] Q — non-dimensional function, [-]
o, — first magnetic parameter (= g), [-] S — new longitudinal variable, [m]
Ok — set of magnetic parameters, [-] u — longitudinal projection of velocity in the
H — boundary layer characteristic, [-] boundary layer, [ms™]
h — enthalpy, [Jkg™] Ug — velocity at theboundary layer outer edge,
h — non-dimensional enthalpy, [] [ms™]
he — enthal py at the outer edge of the boundary V,, - conditional transversal velocity, [ms™]

layer, [kg™]
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v — transversal projection of velocity in the Ko — knownvaluesof dynamicviscosity of the
boundary layer, [ms™] ionized gas, [Pa-s|
Vw  — velocity of injection (or gection) of the i,  — given distributions of dynamic viscosity
fluid, [ms™] at thewall of the body within the fluid,
X,y  — longitudina and transversal coordinate, [Pas]
[(m] Vo — kinematic viscosity at aconcrete point of
Zr* - function, [g] _ the boundary layer, [m’s™]
z — new transversal variable, [m] P — density of ionized gas, [kgm™]
Greek symbols De — ionized gas density at the outer edge of
. - _ _ the boundary layer, [kgm™]
A" — conditional displacement thicknesses, [m] pw  — givendistributions of density at the wall
A — conditional momentum lossthickness, [m] of the body within the fluid, [kgm™]
¢ — non-dimensional friction function, [ 0o — known values of density of the ionized
n — non-dimensional transversal coordinate, gas, [kgm‘3]
- o c — electroconductivity, [Nm?V2s]
K — local compressibility parameter, (= fo) [-] t,  — shearstressatthewall of thebody within
A, — first porosity parameter (= A), [-] the fluid, [Nm™]
Ay — setof porosity parameters, [-] @ — non-dimensional stream function, [-]
y — thermal conductivity coefficient, v — stream function, [m?s™]
[Wm™K™] v — new stream function, [m’s™]
u — dynamic viscosity, [Pa-s]
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