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Representation and characterization of rapidly
varying functions

Nebojsa Elez* and Dragan Djurcic¢t

Abstract

In this paper representations and characterizations of the class of
rapidly varying functions in the sense of de Haan, for index +oc0, will
be proved. The statements of this theorems will be given in a form
that is used by Karamata. Also, some characterization of normalized
rapidly varying functions are proved.
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1. Introduction and Results

Karamata’s theory of regular variation (see e.g. [6]) was appeared during the thirties
of last century as a result of the first serious study of Tauberian type theorems for integral
transformations (see e.g. [7] and [8]). The main object in this theory is the class of slowly
varying functions in the sense of Karamata which is denoted by SV.

A measurable function f : [a,00) — (0,00) (a > 0) is called slowly varying in the
sense of Karamata if it satisfies the following condition

1y um 108
7@
for every A > 0,

L. de Haan in [5] introduced the class of rapidly varying functions (denoted by R ),
with the index of variability 4+oco. In fact, this notion has already appeared in some
Karamata’s papers (see e.g. [11]), but in a less distinctly form. In recent years, the
Theory of rapid variability and its generalizations have experienced great development
in asymptotic analysis and in mathematics in general (see e.g. [1], [2], [3], [4] and [10]),
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simultaneously with Karamata’s theory of regular variability (see [1]). Important prop-
erties of the class Roo can be seen in [4].

A measurable function f : [a,00) — (0,00) (@ > 0) is called rapidly varying in the
sense of de Haan with the index of variability oo, if it satisfies the following condition

(1.2)  fim LO%) _ o

A @)
for every A > 1.

1.1. Remark. In this paper we will consider a function f € R. defined on the interval
(0, 00). Analogous results can be obtained if the domain of a function f is interval [a, 00),
a > 0.

According to results from [1], rapidly varying function f satisfies condition

o flpx)
(L3 o Ty =

for every A > 1 and it follows that for some zo > 0 function f is bounded on every
interval (xo,x). Also, f(z) — oo for £ — oo holds.

Now, we give the representation of a functions from functional class R in Karamata’s
form.

1.2. Remark. In the following theorem, operator D is lower Dini derivative (see [9])

Dg(zx) = lim M7

forg:R—R, z € R,
y—z y—x

and denotation ~ represents strong asymptotic equivalence relation.
1.3. Theorem. For a function f : (0,00) — (0,00) the next assertions are mutually
equivalent:

(a) function f belongs to the class Roo;

(b) there is a non-decreasing, absolutely continuous function g : R — R such that
lim Dg(z) = oo and there is a measurable function j : (0,00) — (0,00) such
xTr—r 00

that j(z) ~ x for © — oo, so that

f(z) = exp(g(log(j()))),
for all x > 0;
(c) there are a measurable functions j : (0,00) — (0,00) and h : (0,00) — [0, 00),
such that lim h(z) = oo and j(x) ~ x for x — oo, for which holds
T —r 00

J(z)
du

flx)=exp{c+ h(u)— 3,

it

for all x > 0 and for some c € R.

Now, we give the characterization of a elements from the class R. in Karamata’s
form.

1.4. Theorem. Let f: (0,00) — (0,00) be a measurable function. Then f € R if
and only if for all a > 0 there is a measurable function jo : (0,00) — (0,00) such that
j(x) ~ x, for x — oo, and there is a non-decreasing function kq : (0,00) — (0,00), so
that

f(@) = 2% ka(jalz)), for z > 0.
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The following theorem gives a few characterization of elements of one proper subclass
of class Rs, which could be called class of normalized rapidly varying functions (see,

e.g., [1]).

1.5. Theorem. For a measurable function f : (0,00) — (0,00) the following assertions
are mutually equivalent:

(a) [lim logy f00) _ o
A=l f(:C)
(b) @ =o0 (Df(x)), for x — oo (0 is Landau symbol [1]);
c) there exists a function g : R +— R such that lim Dg(x) = co so that holds:
h f R—R h that lim D hat hold
T —r 00

f(z) = exp(g(log(z)))

for all x > 05
(d) for all @ € R function % is increasing on some interval [Tq, 00).

1.6. Remark. 1) Theorem 1.5 holds even without assumption that the function f
is measurable, but this assumption should be included because in Theorem 1.5
one important subclass of class R is characterized.

2) The fact that for a measurable function f : (0, 00) — (0, c0) exists a measurable
function h : (0,00) — R such that zli)nolo h(z) = oo, and for which is f(z) =

exp{c+ [ h(u)9%} for all > 0 and some c € R, implicates (c) from Theorem
1.5 (and, also implicates (a), (b) and (d) from Theorem 1.5). The proof is analog
to the proof (¢) = (a) = (b) from Theorem 1.3. The opposite direction need
not to be true without additional conditions.

3) If f is absolutely continuous function, opposite direction in 2) is true. That can
be proved analogously to the proof (b) = (c¢) from Theorem 1.3.

2. Proofs

Proof of Theorem 1.3. (a) = (b) Let f € Ro. Let construct sequence (z,) of positive
real numbers with the following properties:

1° () is strictly increasing sequence and lim z, = oo,

n— o0
2° lim 2nFL — 1, and
n—oo Ip
3° % > 2 for all x > 0 and all y > 0, for which > x,4+1 > x, > y > z1, where
n € N.

Let 1 > 0 so that f is locally bounded on the interval [z1,00) and let zpy1 =
(A + %)xn for n € N, where A, = sup{A > 1| f(Azn) <2 sup f(¢t)}. Clearly, for

z1<t<wn
all n € N there exists A, in R and z,, < Apxn < Tpg1. If xl_z_rm_l >z, 2>y > 0,
then > Anzn for n € N, and according to the definition of the sequence (\,) it is
flz) > 2f(y) for z1 <y < z,. Especially, f(znt+1) > 2f(zn) for n € N, which yields
nlingo f(zn) = co. As f is locally bounded function on the interval [z1,00), it follows

lim z,, = oco.
n—o0

According to the definition of sequence () it can be concluded that sequences (pn)
and (yn) are such that, for every n € N, it follows that u, € ()\n—%, An) and yn € [z1, Zn],
f(pnn)

fyn)

for which it is < 2. Then, according to the theorem of uniform convergence for



320

rapidly varying functions (see (1.3) or [1]), it follows lim sup HnZn <1, ie., limsup p, <

n—oo Yn n—oo

1, so it follows that lim A, = 1. Thus, lim Tntl _ g
n—oo n—oo Ip

Let g : R — R be a linear function on [tn,tn+1] such that g(¢t») = In f(z,), where
tn = Inx,, for every n € N. Also, g(t) = e’ — x1 + g(t1), for t < t;. Now, we have that
g is a continuous, piecewise smooth and strictly increasing (hence, absolutely continuous
and non-decreasing) function, and (from 1° and 3°) it satisfies

g/(t) _ g(tn+1) - g(t") _ lnf(‘r""rl) —1In f(x")

= > 0,
tnt1 — tn Inzpt1 —Inz,

for any t € (tn,tn+1), n € N. Furthermore, (from 2° and 3°) it satisfies

f(@ni1)
In In2
i / : f(zn) ; n
= > —_— =
Ap e 0= rma 2 M o =

for R 5t # tn, for every n € N. Thus, lim Dg(z) = cc.
Tr—>00

Now, let j(z) = e‘fl(lnf(z)), for z > 0. A function j(z) is measurable, because f(x) is
a measurable function, and exp (gfl(log(t))) is a piecewise smooth function (and hence
it is absolutely continuous function), for ¢ > 0.

Now, we will show that j(z) ~ =z, for z — oco. From condition 3° it follows that

f(@) > 92 and f(@n+2)
fl@n—1) f(z)

and n we obtain

f(@n—1) < f(z) < f(@n+2),

so, we have

97 (Inf(zn-1)) <g~ ' (Inf(x)) < g™ ' (In f(znt2)).

Furthermore, for those z and n, we have

> 2, for some x € [Zn,Zny1) and n € N, n > 2. For those z

th—1 = lna:n_1 < ln](x) < lna:n+2 = tn+2,
and finally we obtain that

Tl _ Tn-1 _ j(z) < Tn42 _ Tnt2

Tt x x T Tn
Hence, from 2° it is satisfied that j(x) ~ z, for z — oo, and f(z) = exp(g(log(j(=x)))) for
x> 0.
(b) = (c) Let functions g and j have properties given in (b). Let

_ Jg(=z), forxz>0,

90 = g(0), for z <0.

Let h(z) = Dgo(Inz) for z > 0. Then h is measurable, locally integrable, and lim h(x) =
r—r00

oo holds. Also, it is

J(x) J(x) In j(x)
[ n@® = [ o ® = [ Dooterar -
0 0 —o0

In j(x)

= [ Dottt = glinj()) - 9(0) =In f(z) -
0
for a constant ¢ = g(0) € R, and for all z > 0.
Thus, f(z) = exp {c + foj(x) h(u)%“}, for all x > 0 and for mentioned ¢ € R.
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(¢) = (a) Let A > 1 and M € R. Then, there is zo > 0 such that h(z) > M and
)

In A
ATE < % < )\%, for z > %. Hence, it follows
FOw) i) i J(z) i i(Az) i
x U u u
1 = - — -~ = ==
n 70 / h(u) " / h(u) " / h(u) e
0 0 i(=)
2M , . _2M jAz)
> (Inj(Az) —Inj(z)) = ") In ()\ @) >
2M O
> m-ln()\-)\ Toa 4) - M,
f(Az)

for x > xo. Therefore, it holds that lim

a measurable function, as a composition of three function: a measurable function j,

= oo, for every A > 1. Also, f is

& du
an absolutely continuous function [ h(u)— and an exponential function. Hence, f €
0 u

Reo. O

Proof of Theorem 1.4. (=) If f € R, then /() € R, for x > 0, and every fixed
xot

a > 0. From Theorem 1.3, it follows that £&) = exp {ga(log(ja (z))) }, for that a and

every > 0, where go : R — R is a non-decreasing function and j, : (0,00) + (0, 00)
is a measurable function such that jo(x) ~ z, for x — oo. If we take that kq(t) =
exp {ga(log(t))}, for t > 0, we obtain that Theorem holds for this direction.

(«=) For arbitrary «a > 0, if there is a measurable function j : (0,00) — (0,00) such
that lim Jalz) = 1 and a non-decreasing function ke : (0,00) — (0, 00), that is satisfied

xTr—ro0

T
flz) =2z ka(ja(x)), for z > 0 we obtain that
f(A.’E) _ @ ka(]a(Al‘)) @
=A== >\
f(x) ka (ja(z))
for A > 1 and sufficiently large x. The previous inequality holds because jo(Az) >
VAz > jo(x) for mentioned «, A and sufficiently large z. Therefore, it follows that

. fQz)
Jm Ty =

oo, for A > 1. Also, f is a measurable function. Finally, f € Re. O

Proof of Theorem 1.5. (a) < (c) Let introduce function f in the following way: f(z) =
exp(g(log(z))), for z > 0. Then, equivalence (a) < (c) follows from:

SO _ L gt +8) —gt)

lim log =
T—>00 A f(l') t—o00 5 t— 00
A—=1y §—04

(b) & (c) Again, let introduce function f as f(z) = exp(g(log(x))), for =z > 0.

D
Then, from the fact that Dg(x) = D(In f(e®)) = *J;((ZZ))G , for all € R, it follows
lim Dg(z) = oo is equal to the fact that @ = o(Dyg(t)), for ¢ = oo. This proves the
Tr—r0o0

equivalence (b) < (c).
(c) < (d) Once more, let introduce function f by f(z) = exp(g(log(z))), for > 0.
Then the function f(z), x > 0 and a € R, is increasing on an interval [z, c0) if and only

Tz

f(e)

eat

if the function In = g(t) — at, for t € R and the same « € R, is increasing on an
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interval [tq,00), and this last condition is equivalent to the fact that lim Dg(t) > « for

t— o0
all & € R. The last fact is equivalent to the fact that tlim Dg(t) = 0. O
—00
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