Hacettepe Journal of Mathematics and Statistics \bigcap Volume 44 (2) (2015), 317 – 322

Representation and characterization of rapidly varying functions

Nebojša Elez[∗] and Dragan Djurčić†

Abstract

In this paper representations and characterizations of the class of rapidly varying functions in the sense of de Haan, for index $+\infty$, will be proved. The statements of this theorems will be given in a form that is used by Karamata. Also, some characterization of normalized rapidly varying functions are proved.

2000 AMS Classification: 26A12.

Keywords: Rapidly varying function; Regular variation.

Received 08 /08 /2013 : Accepted 31 /01 /2014 Doi : 10.15672/HJMS.2015449105

1. Introduction and Results

Karamata's theory of regular variation (see e.g. [6]) was appeared during the thirties of last century as a result of the first serious study of Tauberian type theorems for integral transformations (see e.g. [7] and [8]). The main object in this theory is the class of slowly varying functions in the sense of Karamata which is denoted by SV .

A measurable function $f : [a, \infty) \mapsto (0, \infty)$ $(a > 0)$ is called slowly varying in the sense of Karamata if it satisfies the following condition

$$
(1.1) \qquad \lim_{x \to \infty} \frac{f(\lambda x)}{f(x)} = 1,
$$

for every $\lambda > 0$,

L. de Haan in [5] introduced the class of rapidly varying functions (denoted by R_{∞}), with the index of variability $+\infty$. In fact, this notion has already appeared in some Karamata's papers (see e.g. [11]), but in a less distinctly form. In recent years, the Theory of rapid variability and its generalizations have experienced great development in asymptotic analysis and in mathematics in general (see e.g. $[1], [2], [3], [4]$ and $[10],$

[∗]University of East Sarajevo Faculty of Philosophy 71420 Pale Bosnia and Hercegovina. Email: jasnaelez@gmail.com

[†]University in Kragujevac Faculty of technical sciences Svetog Save 65, 32000 Čačak Serbia. Email:dragan.djurcic@ftn.kg.ac.rs

This paper is supported by the Ministry of Education and Science of Republic of Serbia, Grant No. 174032.

simultaneously with Karamata's theory of regular variability (see [1]). Important properties of the class R_{∞} can be seen in [4].

A measurable function $f : [a, \infty) \mapsto (0, \infty)$ $(a > 0)$ is called rapidly varying in the sense of de Haan with the index of variability ∞ , if it satisfies the following condition

$$
(1.2) \qquad \lim_{x \to \infty} \frac{f(\lambda x)}{f(x)} = \infty,
$$

for every $\lambda > 1$.

1.1. Remark. In this paper we will consider a function $f \in R_{\infty}$ defined on the interval $(0, \infty)$. Analogous results can be obtained if the domain of a function f is interval $[a, \infty)$, $a > 0$.

According to results from $[1]$, rapidly varying function f satisfies condition

$$
(1.3) \qquad \lim_{x \to \infty} \inf_{\mu \ge \lambda} \frac{f(\mu x)}{f(x)} = \infty
$$

for every $\lambda > 1$ and it follows that for some $x_0 > 0$ function f is bounded on every interval (x_0, x) . Also, $f(x) \to \infty$ for $x \to \infty$ holds.

Now, we give the representation of a functions from functional class R_{∞} in Karamata's form.

1.2. Remark. In the following theorem, operator D is lower Dini derivative (see [9])

$$
\underline{D}g(x) = \underline{\lim}_{y \to x} \frac{g(y) - g(x)}{y - x}, \quad \text{for } g: \mathbb{R} \to \mathbb{R}, \ x \in \mathbb{R},
$$

and denotation ∼ represents strong asymptotic equivalence relation.

1.3. Theorem. *For a function* $f : (0, \infty) \mapsto (0, \infty)$ *the next assertions are mutually equivalent:*

- (a) *function f belongs* to the class R_{∞} ;
- (b) *there is a non-decreasing, absolutely continuous function* $g : \mathbb{R} \to \mathbb{R}$ *such that* $\lim_{x \to \infty} \underline{Dg}(x) = \infty$ and there is a measurable function $j : (0, \infty) \mapsto (0, \infty)$ such *that* $j(x) \sim x$ *for* $x \to \infty$ *, so that*

 $f(x) = \exp(g(\log(j(x))))$,

for all $x > 0$ *;*

(c) *there are a measurable functions* $j : (0, \infty) \mapsto (0, \infty)$ *and* $h : (0, \infty) \mapsto [0, \infty)$ *, such that* $\lim_{x \to \infty} h(x) = \infty$ *and* $j(x) \sim x$ *for* $x \to \infty$ *, for which holds*

$$
f(x) = exp\left\{c + \int_{0}^{j(x)} h(u) \frac{du}{u}\right\},\,
$$

for all $x > 0$ *and for some* $c \in \mathbb{R}$ *.*

Now, we give the characterization of a elements from the class R_{∞} in Karamata's form.

1.4. Theorem. Let $f : (0, \infty) \mapsto (0, \infty)$ be a measurable function. Then $f \in R_{\infty}$ if *and only if for all* $\alpha > 0$ *there is a measurable function* $j_{\alpha} : (0, \infty) \mapsto (0, \infty)$ *such that* $j(x) \sim x$, for $x \to \infty$, and there is a non-decreasing function $k_{\alpha} : (0, \infty) \to (0, \infty)$, so *that*

$$
f(x) = x^{\alpha} \cdot k_{\alpha}(j_{\alpha}(x)), \quad \text{for } x > 0.
$$

318

The following theorem gives a few characterization of elements of one proper subclass of class R_{∞} , which could be called class of normalized rapidly varying functions (see, e.g., $[1]$).

1.5. Theorem. For a measurable function $f : (0, \infty) \mapsto (0, \infty)$ the following assertions *are mutually equivalent:*

- (a) $\lim_{\substack{x \to \infty \\ \lambda \to 1_+}} \log_{\lambda} \frac{f(\lambda x)}{f(x)}$ $\frac{\partial f(x)}{\partial f(x)} = \infty$;
- (b) $\frac{f(x)}{x} = o \left(\underline{D}f(x) \right)$, for $x \to \infty$ (o is Landau symbol [1]);
- (c) there exists a function $g : \mathbb{R} \to \mathbb{R}$ such that $\lim_{x \to \infty} \underline{D}g(x) = \infty$ so that holds:

 $f(x) = \exp(g(\log(x)))$

for all
$$
x > 0
$$
;

(d) *for all* $\alpha \in \mathbb{R}$ *function* $\frac{f(x)}{x^{\alpha}}$ *is increasing on some interval* $[x_{\alpha}, \infty)$ *.*

- **1.6. Remark.** 1) Theorem 1.5 holds even without assumption that the function f is measurable, but this assumption should be included because in Theorem 1.5 one important subclass of class R_{∞} is characterized.
	- 2) The fact that for a measurable function $f : (0, \infty) \mapsto (0, \infty)$ exists a measurable function $h : (0, \infty) \mapsto \mathbb{R}$ such that $\lim_{x \to \infty} h(x) = \infty$, and for which is $f(x) =$ $\exp\{c + \int_0^x h(u) \frac{du}{u}\}\$ for all $x > 0$ and some $c \in \mathbb{R}$, implicates (c) from Theorem 1.5 (and, also implicates (a), (b) and (d) from Theorem 1.5). The proof is analog to the proof $(c) \Rightarrow (a) \Rightarrow (b)$ from Theorem 1.3. The opposite direction need not to be true without additional conditions.
	- 3) If f is absolutely continuous function, opposite direction in 2) is true. That can be proved analogously to the proof (b) \Rightarrow (c) from Theorem 1.3.

2. Proofs

Proof of Theorem 1.3. (a) \Rightarrow (b) Let $f \in R_{\infty}$. Let construct sequence (x_n) of positive real numbers with the following properties:

- 1° (x_n) is strictly increasing sequence and $\lim_{n\to\infty} x_n = \infty$,
- 2° $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$ $\frac{n+1}{x_n} = 1$, and
- $3^\circ \frac{f(x)}{f(x)}$ $\frac{f(x)}{f(y)} > 2$ for all $x > 0$ and all $y > 0$, for which $x \geq x_{n+1} > x_n \geq y \geq x_1$, where $n \in \mathbb{N}$.

Let $x_1 > 0$ so that f is locally bounded on the interval $[x_1, \infty)$ and let $x_{n+1} =$ $(\lambda_n + \frac{1}{n})x_n$ for $n \in \mathbb{N}$, where $\lambda_n = \sup\{\lambda \geq 1 \mid f(\lambda x_n) \leq 2 \sup_{x_1 \leq t \leq x_n} f(t)\}\.$ Clearly, for

all $n \in \mathbb{N}$ there exists λ_n in \mathbb{R} and $x_n \leq \lambda_n x_n < x_{n+1}$. If $x \geq x_{n+1} > x_n \geq y > 0$, then $x > \lambda_n x_n$ for $n \in \mathbb{N}$, and according to the definition of the sequence (λ_n) it is $f(x) > 2f(y)$ for $x_1 \leq y \leq x_n$. Especially, $f(x_{n+1}) > 2f(x_n)$ for $n \in \mathbb{N}$, which yields $\lim_{n\to\infty} f(x_n) = \infty$. As f is locally bounded function on the interval $[x_1,\infty)$, it follows $\lim_{n\to\infty}x_n=\infty.$

According to the definition of sequence (λ_n) it can be concluded that sequences (μ_n) and (y_n) are such that, for every $n \in \mathbb{N}$, it follows that $\mu_n \in (\lambda_n - \frac{1}{n}, \lambda_n)$ and $y_n \in [x_1, x_n]$, for which it is $\frac{f(\mu_n x_n)}{f(y_n)} \leq 2$. Then, according to the theorem of uniform convergence for rapidly varying functions (see (1.3) or [1]), it follows $\limsup_{n\to\infty}$ $\mu_n x_n$ $\frac{n\omega_n}{y_n} \leq 1$, i.e., $\limsup_{n\to\infty} \mu_n \leq$ 1, so it follows that $\lim_{n\to\infty}\lambda_n=1$. Thus, $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}$ $\frac{n+1}{x_n} = 1.$

Let $g : \mathbb{R} \to \mathbb{R}$ be a linear function on $[t_n, t_{n+1}]$ such that $g(t_n) = \ln f(x_n)$, where $t_n = \ln x_n$, for every $n \in \mathbb{N}$. Also, $g(t) = e^t - x_1 + g(t_1)$, for $t < t_1$. Now, we have that g is a continuous, piecewise smooth and strictly increasing (hence, absolutely continuous and non-decreasing) function, and (from 1° and 3°) it satisfies

$$
g'(t) = \frac{g(t_{n+1}) - g(t_n)}{t_{n+1} - t_n} = \frac{\ln f(x_{n+1}) - \ln f(x_n)}{\ln x_{n+1} - \ln x_n} > 0,
$$

for any $t \in (t_n, t_{n+1}), n \in \mathbb{N}$. Furthermore, (from 2° and 3°) it satisfies

$$
\lim_{t \to \infty} g'(t) = \lim_{n \to \infty} \frac{\ln \frac{f(x_{n+1})}{f(x_n)}}{\ln \frac{x_{n+1}}{x_n}} \ge \lim_{n \to \infty} \frac{\ln 2}{\ln \frac{x_{n+1}}{x_n}} = \infty,
$$

for $\mathbb{R} \ni t \neq t_n$, for every $n \in \mathbb{N}$. Thus, $\lim_{x \to \infty} \underline{D}g(x) = \infty$.

Now, let $j(x) = e^{g^{-1}(\ln f(x))}$, for $x > 0$. A function $j(x)$ is measurable, because $f(x)$ is a measurable function, and $\exp(g^{-1}(\log(t)))$ is a piecewise smooth function (and hence it is absolutely continuous function), for $t > 0$.

Now, we will show that $j(x) \sim x$, for $x \to \infty$. From condition 3[°] it follows that $f(x)$ $\frac{f(x)}{f(x_{n-1})} > 2$ and $\frac{f(x_{n+2})}{f(x)} > 2$, for some $x \in [x_n, x_{n+1})$ and $n \in \mathbb{N}, n \ge 2$. For those x and n we obtain

$$
f(x_{n-1}) < f(x) < f(x_{n+2}),
$$

so, we have

$$
g^{-1}(\ln f(x_{n-1})) < g^{-1}(\ln f(x)) < g^{-1}(\ln f(x_{n+2})).
$$

Furthermore, for those x and n , we have

$$
t_{n-1} = \ln x_{n-1} < \ln j(x) < \ln x_{n+2} = t_{n+2},
$$

and finally we obtain that

$$
\frac{x_{n-1}}{x_{n+1}} < \frac{x_{n-1}}{x} < \frac{j(x)}{x} < \frac{x_{n+2}}{x} < \frac{x_{n+2}}{x_n}
$$

Hence, from 2[°] it is satisfied that $j(x) \sim x$, for $x \to \infty$, and $f(x) = \exp(g(\log(j(x))))$ for $x > 0$.

.

(b) \Rightarrow (c) Let functions g and j have properties given in (b). Let

$$
g_0 = \begin{cases} g(x), & \text{for } x > 0, \\ g(0), & \text{for } x \le 0. \end{cases}
$$

Let $h(x) = \underline{D}g_0(\ln x)$ for $x > 0$. Then h is measurable, locally integrable, and $\lim_{x \to \infty} h(x) =$ ∞ holds. Also, it is

$$
\int_{0}^{j(x)} h(u) \frac{du}{u} = \int_{0}^{j(x)} Dg_0(\ln u) \frac{du}{u} = \int_{-\infty}^{\ln j(x)} Dg_0(t) dt =
$$
\n
$$
= \int_{0}^{\ln j(x)} Dg(t) dt = g(\ln j(x)) - g(0) = \ln f(x) - c,
$$

for a constant $c = g(0) \in \mathbb{R}$, and for all $x > 0$.

Thus, $f(x) = \exp\left\{c + \int_0^{j(x)} h(u) \frac{du}{u}\right\}$, for all $x > 0$ and for mentioned $c \in \mathbb{R}$.

(c) \Rightarrow (a) Let $\lambda > 1$ and $M \in \mathbb{R}$. Then, there is $x_0 > 0$ such that $h(x) > \frac{2M}{\ln \lambda}$ $\frac{\sinh}{\ln \lambda}$ and $\lambda^{-\frac{1}{4}} < \frac{j(x)}{x}$ $\frac{(x)}{x} < \lambda^{\frac{1}{4}}, \text{ for } x > \frac{x_0}{\lambda}$ $\frac{\partial v}{\partial \lambda}$. Hence, it follows

$$
\ln \frac{f(\lambda x)}{f(x)} = \int_{0}^{j(\lambda x)} h(u) \frac{du}{u} - \int_{0}^{j(x)} h(u) \frac{du}{u} = \int_{j(x)}^{j(\lambda x)} h(u) \frac{du}{u} > > \frac{2M}{\ln \lambda} \cdot (\ln j(\lambda x) - \ln j(x)) = \frac{2M}{\ln \lambda} \cdot \ln \left(\lambda \cdot \frac{j(\lambda x)}{\lambda x} \cdot \frac{x}{j(x)} \right) > > \frac{2M}{\ln \lambda} \cdot \ln \left(\lambda \cdot \lambda^{-\frac{1}{4}} \cdot \lambda^{-\frac{1}{4}} \right) = M,
$$

for $x > x_0$. Therefore, it holds that $\lim_{x \to \infty} \frac{f(\lambda x)}{f(x)}$ $\frac{f(x,y)}{f(x)} = \infty$, for every $\lambda > 1$. Also, f is a measurable function, as a composition of three function: a measurable function j , an absolutely continuous function $\int_{0}^{x} h(u) \frac{du}{u}$ $\frac{du}{u}$ and an exponential function. Hence, $f \in$ R_{∞} .

Proof of Theorem 1.4. (\Rightarrow) If $f \in R_{\infty}$, then $\frac{f(x)}{x^{\alpha}} \in R_{\infty}$, for $x > 0$, and every fixed $\alpha > 0$. From Theorem 1.3, it follows that $\frac{f(x)}{x^{\alpha}} = \exp \left\{ g_{\alpha} (\log(j_{\alpha}(x))) \right\}$, for that α and every $x > 0$, where $g_{\alpha} : \mathbb{R} \to \mathbb{R}$ is a non-decreasing function and $j_{\alpha} : (0, \infty) \mapsto (0, \infty)$ is a measurable function such that $j_{\alpha}(x) \sim x$, for $x \to \infty$. If we take that $k_{\alpha}(t) =$ $\exp\{g_{\alpha}(\log(t))\},\$ for $t > 0$, we obtain that Theorem holds for this direction. (\Leftarrow) For arbitrary $\alpha > 0$, if there is a measurable function $j_{\alpha} : (0, \infty) \mapsto (0, \infty)$ such

that $\lim_{x \to \infty} \frac{j_\alpha(x)}{x}$ $\frac{x}{x} = 1$ and a non-decreasing function $k_{\alpha} : (0, \infty) \mapsto (0, \infty)$, that is satisfied $f(x) = x^{\alpha} \cdot \tilde{k}_{\alpha}(j_{\alpha}(x)),$ for $x > 0$ we obtain that

$$
\frac{f(\lambda x)}{f(x)} = \lambda^{\alpha} \cdot \frac{k_{\alpha}(j_{\alpha}(\lambda x))}{k_{\alpha}(j_{\alpha}(x))} \geq \lambda^{\alpha},
$$

for $\lambda > 1$ and sufficiently large x. The previous inequality holds because $j_{\alpha}(\lambda x) \geq$ $\sqrt{\lambda}x \geq j_{\alpha}(x)$ for mentioned α , λ and sufficiently large x. Therefore, it follows that $\lim_{x \to \infty} \frac{f(\lambda x)}{f(x)} = \infty$, for $\lambda > 1$. Also, f is a measurable function. Finally, $f \in R_{\infty}$.

Proof of Theorem 1.5. (a) \Leftrightarrow (c) Let introduce function f in the following way: $f(x) =$ $\exp(q(\log(x)))$, for $x > 0$. Then, equivalence (a) \Leftrightarrow (c) follows from:

$$
\lim_{\substack{x \to \infty \\ \lambda \to 1_+}} \log_{\lambda} \frac{f(\lambda x)}{f(x)} = \lim_{\substack{t \to \infty \\ \delta \to 0_+}} \frac{g(t + \delta) - g(t)}{\delta} = \lim_{t \to \infty} \underline{D}g(t).
$$

(b) \Leftrightarrow (c) Again, let introduce function f as $f(x) = \exp(g(\log(x)))$, for $x > 0$. Then, from the fact that $Dg(x) = D(\ln f(e^x)) = \frac{Df(e^x)e^x}{f(x)}$ $\frac{f(e^{\theta})e}{f(e^x)}$, for all $x \in \mathbb{R}$, it follows $\lim_{x\to\infty} \underline{D}g(x) = \infty$ is equal to the fact that $\frac{f(t)}{t} = o(\underline{D}g(t))$, for $t \to \infty$. This proves the equivalence (b) \Leftrightarrow (c).

(c) \Leftrightarrow (d) Once more, let introduce function f by $f(x) = \exp(g(\log(x)))$, for $x > 0$. Then the function $\frac{f(x)}{x^{\alpha}}$, $x > 0$ and $\alpha \in \mathbb{R}$, is increasing on an interval $[x_{\alpha}, \infty)$ if and only if the function $\ln \frac{f(e^t)}{e^{ct}}$ $\frac{e^{i\theta}}{e^{i\alpha t}} = g(t) - \alpha t$, for $t \in \mathbb{R}$ and the same $\alpha \in \mathbb{R}$, is increasing on an interval $[t_{\alpha}, \infty)$, and this last condition is equivalent to the fact that $\underline{\lim}_{\alpha} Dg(t) \geq \alpha$ for all $\alpha \in \mathbb{R}$. The last fact is equivalent to the fact that $\lim_{t \to \infty} \underline{D}g(t) = \infty$.

References

- [1] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge Univ. Press, Cambridge, 1987.
- [2] D. Djurčić, D. R. Kočinac, M. R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl. **327(2)** (2007), 1297-1306.
- [3] D. Djurčić, A. Torgašev, Some asymptotic relations for generalized inverse, J. Math. Anal. Appl., 335(2) (2007), 1397–1402.
- [4] N. Elez, D. Djurčić, Some properties of rapidly varying functions, J. Math. Anal. Appl., 401(2) (2013), 888–895.
- [5] L. de Haan, On Regular variation and its applications to the weak convergence of sample extremes, Math. Centre tracts, Vol. 32, CWI, Amsterdam, 1970.
- [6] J. Karamata, Sur un mode de croissance régulière des functions, Mathematica (Cluj) 4 (1930), 38–53.
- [7] J. Karamata, Neuer Beweis und Verallgemeinerung der Taubersche Sätz, welche die Laplacessche und Stieltjessche Transformationen betreffen, J. Reine Angew. Math. 164 (1931), 27–39.
- [8] J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamenteaux, Bull Soc. Math. France 61 (1933), 55–62.
- [9] I.P. Natanson, Theory of functions of a real variable, (Translated by Leo F. Boron with the collaboration of Edwin Hewitt), Frederick Ungar Publishing Co., New York, 1955.
- [10] S. Matucci, P. Řehák, Rapidly varying decreasing solutions of half-linear difference equations, Math. and Com. Modelling, 49(7-8), (2009), 1692–1699.
- [11] E. Seneta, Functions of regular variation, LNM Vol. 506, Springer, New York, 1976.