Genetic Variation, Genotype by Environment Interactions and Grain Yield Stability Analysis in Finger Millet Accessions Resulted in the Release of an Improved Variety

Dagnachew Lule¹, Kassahun Tesfaye², Santie De Villiers³ and Masresha Fetene⁴

¹Oromia Agricultural Research Institute, E-mail: <u>hawinok@gmail.com</u> ²Ethiopian Institute of Biotechnology, Addis Ababa ³Department of Biochemistry and Biotechnology, Pwani University, Kenya ⁴Department of Plant Biology and Biodiversity Management, Addis Ababa University

Abstract

The use of multiple data sets, such as morphological, biochemical and molecular in combination with appropriate statistical analysis tools are essential in identifying inter and intra-species variation to develop improved cultivars. To this end, a total of 150 finger millet accessions, of which 105 were collected from Ethiopia, 39 introduced from eastern and south eastern Africa and six commercially released Ethiopian varieties were evaluated at Arsi Negele and Gute research sites in 2011. Among those, 138 accessions were genotyped using 20 Simple Sequence Repeat (SSR) markers at International Crop Research Institute for Semi-Arid Tropics (ICRISAT), Nairobi, in 2012. Highly significant $(P \leq 0.01)$ variations were observed among the 150 accessions for grain yield and other agronomic traits. A total of 199 alleles were recorded with an average of 9.95 alleles per microsatellite locus and polymorphism information content (PIC) of 0.57 was observed. Hierarchical clustering based on major phenotypic traits revealed that the majority of accessions from the same region and adjoining geographical region shared strong phenotypic similarity and thus grouped together. Weighted Neighbor Joining based on SSR data grouped the test accessions into three major clusters that were not entirely based on geographical origin. Based on the magnitude of phenotypic and genotypic diversity and blast disease tolerance, 30 finger millet genotypes were selected for further evaluation at multi-location (Arsi Negele, Assosa, Bako and Gute) in the 2012 and 2013. Additive Main effect and Multiplicative Interaction (AMMI), and Genotype and Genotype by Environment Interaction (GGI) biplot analysis revealed that Acc. 203544 was found to be the most stable and highest yielding (3.16 ton ha-1), with yield advantage of 13.7% over the best standard check, Gute (2.78 ton ha-1). Thus, this accession was officially released with the name "Addis-01" and recommended for production in the test environments and similar agro-ecologies in the country.

Keywords: Additive main effect and multiplicative interaction (AMMI), Genotype by Environment Interaction (GGI), Simple Sequence Repeat (SSR).

Introduction

millet (Eleusine Finger coracana subsp. coracana) is extensively cultivated in the tropical and subtropical regions of Africa and India, and is known to save the lives of poor farmers from starvation during times of extreme drought (Upadhyaya et al. 2006). The crop is adapted to adverse agro-ecological conditions, requires minimal inputs, tolerant to moisture stress and acidic soils, and generally thrives on marginal land where other crops cannot perform (Barbeau and Hilu, 1993). Finger millet also plays an important role in food security due to its high nutritional value and good storage quality (Dida et al. 2007).

Archaeological records reveal that the primary center of origin for finger millet is East Africa, particularly Ethiopia (Purseglove, 1972). Understanding the extent of genetic diversity of finger millet genotypes Ethiopia, cultivated in therefore. represents an important resource for the study of finger millet genetics and genome evolution. Genetic diversity assessment aids in understanding intraspecies crop performance that can be exploited improvement in crop (Aremu. 2011). provides and information on the extent of genetic divergence. Diversity assessment also serves as a platform for specific breeding objectives (Thompson et al. identifies 1998) and parental combinations exploitable to create segregating progenies with maximum genetic potential for further selection (Dje *et al.* 2000). Successful genetic conservation and utilization of any crop is largely dependent on understanding the genetic diversity and its distribution in a given region (Varshney *et al.*, 2007).

Although Ethiopia is the center of origin and domestication for finger comprehensive studies millet. on millet finger diversitv using morphological or molecular markers are generally limited (Kebere et al., 2006), few accessions have been characterized at morphological level (Dagnachew et al., 2012a,b; Chemeda et al., 2008, Andualem et al., 2011, Kebere et al., 2006, Yemane and Fasil, 2002) and few study has been conducted at the molecular level using RAPD markers (Kebere, 2011) and SSR marker (Dagnachew et al., 2014 a,b). Identifying adaptable and stable high yielding genotypes with other desirable varying traits under environmental conditions to recommend a new variety (ies) for release as cultivars is fundamental and this has direct bearing on the adoption of a variety, productivity and total production of the crop (Showemimo et al., 2000; Mustapha et al., 2001). Therefore, this study aimed to assess the genetic variations in finger millet accessions collected from various regions of Ethiopia and introduced accessions using morphological and molecular markers and further

evaluate selected diverse genotypes at multilocation in order to identify and release stable high yielding genotypes for wider adaptability.

Materials and Methods

Phenotypic diversity analysis

One hundred and five finger millet accessions collected from the major finger millet producing regional states of Ethiopia (Amhara, Benishangul Gumuz, Oromia, Tigray and Southern Nations Nationalities and Peoples introduced Region (SNNP)), 39 accessions from Kenya, Zambia, Zimbabwe and Eritrea. and six improved varieties were used. The experiment was conducted at Arsi Negele Research Sub-site (altitude 1947 m a.s.l., 07⁰19" N, 38⁰39" E) and Gute Research Sub-site (1906 m.a.s.l., 09°00" N, 36°38" E) in 2011 main cropping season to assess the genetic diversity and eco-geographical patterning. Field data were recorded for the major traits such as days to 50% heading. days to maturity. productive tiller number, plant height (cm), finger length (cm), ear weight (g), finger number per main ear, number of grains per spikelet at the center of the finger, culm diameter, finger width, lodging index, harvest index, thousand grain weight (g) and grain yield per plant (g) following the millet descriptor finger (IBPGR. 1985). Phenotypic traits data were analyzed using SAS (SAS, 2008) for ANOVA and principal component analysis and MINITAB14 (MINITAB, 2003) software for cluster analysis.

DNA Extraction and Polymerase Chain Reaction (PCR)

DNA was extracted from young leaf samples according to the modified CTAB protocol of Mace et al. (2003). Extracted DNA was visualized on a 0.8% (w/v) agarose gel and quantified a Nanodrop® 1000 using spectrophotometer (Thermo Scientific, USA). DNA samples were subjected to genotyping using 20 published SSR markers for finger millet (Dida et al., 2007) (Table1). All forward primers M13-tag contained (5'an CACGACGTTGTAAAACGAC - 3') on the 5' end that was fluorescently labeled allow detection to of amplification products (Schuelke, amplification 2000). PCR was performed in 10 µl reaction volume comprising of 1 x PCR buffer (20 mM Tris-HCl, pH 7.6; 100 mM KCl; 0.1 mM EDTA; 1 mM DTT; 0.5% (w/v) Triton X-100; 50% (v/v) glycerol), 2 mM MgCl₂, 0.16 mM dNTPs, 0.16 uM fluorescent labeled M13-forward primer, 0.04 µM forward primer, 0.2 µM reverse primer, 0.2 units of Taq DNA polymerase (SibEnzyme Ltd, Russia) and 30ng of template DNA. PCR reactions were performed in 384 well microtiter plates on a GeneAmp thermocycler 9700 (Applied Biosystems) with initial denaturation of 94°C for 5 minutes, followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing at 59°C for 1 minute, extension at 72°C for 2 minutes and the final elongation at 72°C for 20 minutes.

SSR fragment detection and data analysis

Amplification was confirmed by running the PCR products on a 2% (w/v) agarose gel stained with GelRed® (Biotium. USA) and visualized under UV light. Amplification products $(1.5 \ \mu l - 3.5 \ \mu l)$ of each) were co-loaded in sets of 3 to 4 markers together with the size standard GeneScan[™] −500 LIZ® (Applied Biosystems) and Hi-DiTM Formamide (Applied Biosystems), and separated by capillary electrophoresis using an ABI Prism® 3730 Genetic analyzer (Applied Biosystems). Allele performed calling was with GeneMapper 4.0 (Applied Biosystems). PowerMarker ver. 3.25 software (Liu and Muse, 2005) was polymorphism used to calculate information content (PIC) and other summary statistics. The weighted Neighbor Joining based clustering was computed using DARwin v.5 (Perrier and Jacquemoud 2006).

Comparison of selected genotypes with the original study materials

Ten percent of the best performing accessions were sorted for each phenotypic trait independently and compared with the total accessions. The absolute value of Student's Z test was calculated following the formula suggested by Singh (2001) to compare the values of the 10% best selected genotypes with the base population as:

$$Z = \frac{(\bar{X} - \mu)}{\delta / \sqrt{n}}$$

Where \overline{X} = mean of selected genotypes, μ = mean of the base populations. δ = for standard deviation the base populations and n = number of genotypes selected from the base population for better performance. The significance of the difference between the total and sampled accessions trait mean tested using the Z table. When the calculated value of the Z-test is more than the tabulated Z difference is considered value. the significant (Singh, 2001).

Genotype by Environment interactions and stability analysis

Based on phenotypic and molecular diversity, the SSR genetic distances and their potential resistance/tolerance to blast disease, a total of 30 genotypes were selected and evaluated along with two standard checks (Gute and Tadesse) across four locations (Arsi Negele, Assosa, Bako and Gute) in 2012 and 2013 main cropping seasons. The design used was randomized complete block design (RCBD) replicated three times. Data for grain yield and yield related traits were collected. Additive Main effect and Multiplicative Interaction (AMMI), Eberhart and Russell regression model, Genotype and Genotype by Environment Interaction (GGE) biplot analysis were employed to identify stable and high yielding genotypes for possible release

Primer	Forward primer sequence	Reverse primer sequence	Repeat motif	Mapped
UGEP05	TGTACACAACACCACACTGAT	TTGTTTGGACGTTGGATGTG	(TC)12AC(TC)4	9B
UGEP20	GGGGAAGGCAATGATATGTG	TTGGGGAGTGCCAACAATAC	(GA) ₂₀	ND
UGEP27	TTGCTCTGAGGTTGTGTGTTGC	TCAAGCATAGTGCCCTCCTC	(GA) ₁₉	ND
UGEP24	GCCTTTTGATTGTTCAACTCT	CGTGATCCTCTCCTCTCTG	(GA)26	3B
UGEP12	ATCCCCACCTACGAGATGC	TCAAAGTGATGCGTCAGGTC	(CT)22	8B
UGEP84	GGAACTTCCGTCAGTCCTT	TGGGGAAGGTGTTGAATC	(CT) ₂₄	ND
UGEP96	TAATGGGCCTAATGGCAATG	CAAAATCCGAGCCAAGATTC	(CT)10	ND
UGEP98	GTCTTCCATTTGCAGCAACC	ACGCGTACTGACGTGCTTG	(GCC)8	ND
UGEP67	CTCCTGATGCAAGCAAGGAC	AGGTGCCGTAGTTTGTGCTC	(TC)22TT(GT)5	ND
UGEP79	CCACTTTGCCGCTTGATTAG	TGACATGAGAAGTGCCTTGC	(CT)12	ND
UGEP33	TAGCCGTTTGCTTGTTGTTTTG	AAGGCCCTAGAACGTCAAGC	(TC) ₁₈	ND
UGEP46	CAAGTCAAAACATTCAGATGG	CCACTCCATTGTAGCGAAAC	(GA) ₁₄	ND
UGEP53	TGCCACAACTGTCAACAAAAG	CCTCGATGGCCATTATCAAG	(AG)26	2A
UGEP57	CCATGGGTTCATCAAACACC	ACATGAGCTCGCGTATTGC	(AG) ₁₆	ND
UGEP64	GTCACGTCGATTGGAGTGTG	TCTCACGTGCATTTAGTCAT	(CT) ₂₃	ND
UGEP66	CAGATCTGGGTAGGGCTGTC	GATGGTGGTTCATGCCAAC	(AG) ₂₉	ND
UGEP95	AGGGGACGCTTGGAGTTTG	GCCTCTACCTGTCTCCGTTG	(TC) ₁₄	ND
UGEP73	GGTCAAAGAGCTGGCTATCG	ACCAGAACCGAATCATGAGG	(CT)4CC(CT)10	ND
UGEP106	AATTCCATTCTCTCGCATCG	TGCTGTGCTCCTCTGTTGAC	(AC)12	9B
UGEP110	AAATTCGCATCCTTGCTGAC	TGACAAGAGCACACCGACTC	(CT)12	7AB

Table 1: List of SSR markers used for study, repeat motifs and primer sequences

Key: ND=not done, B=B genome, A= A genome, AB=both A and B genome of *Eleusine coracana* subsp *coracana* (Dida *et al.*, 2007)

Result and discussion

Analysis of variance and mean performances

The combined analysis of variance (ANOVA) over the two locations showed significant location effects for all quantitative traits considered in the present study (Table 2). Genotype mean squares were also significant (P ≤ 0.01) for all quantitative traits except ear weight, implying the possibility for selection. Similarly, highly significant variations among finger millet genotypes were reported in previous studies (Kebere et al., 2006; Yemane and Fasil, 2002).

Patterns of quantitative traits variation and its intrinsic value for breeding

Wider ranges of variations were observed among finger millet accessions for all quantitative traits (Table 3). Such variation is crucial for effective collection, conservation and sustainable improvement of finger millet by combining the desirable traits. Days to maturity ranged from 143 days for accession 230103 of Eritrea collected from altitude of 1700 days for m.a.s.l. to 167 Acc BKFM0018 of Oromia collected from altitude of 1667 m.a.s.l. This offers flexibility for great developing improved varieties suitable for various agro-ecologies of the countries or regions with variable length of growing period and also can be recommended for various cropping systems. It also guides breeders to develop a variety which can escape late season drought by improving traits which correlate to days to maturity in the required direction.

Likewise, plant height ranged from 41.13cm for Acc. 214991 of Zambia collected from 1330 m.a.s.l to 103.35 cm for Acc. 215802 of Amhara collected from 1950 m.a.s.l. For finger length, Acc. 229730 collected from Amhara attained the highest score (11.4cm) and Acc. 203357 of Zimbabwe were the shortest (3.53cm). Thousand grain weights ranged from

3.5g for Acc. 203546 (Kenya) to 1.4g for Acc. 229724 (Benishangul Gumuz). Grain yield per plant was highest (41.6g) for Acc. 242132 of Amhara collected from an altitude of 1910 m.a.s.l, and lowest (6.12g) for Acc. 214991 of Zambia collected from 1330 m.a.s.l. The variation in plant height, culm diameter, culm branch and tillering capacity indicated the possibility to combat lodging. Variation in number of fingers per main ear, finger length, number of grains per spikelet, harvest index, thousand grain weight and grain yield per plant implied that it is possible to create a variety with higher grain yield and/or other biological yields.

Table 2. Mean squares for 14 quantitative traits of 150 finger millet genotypes evaluated two locations, Gute and Arsi Negele, in Ethiopia 2011

Source of variation	df	DH	DM	PTN	PLHT	FL	FN	EW
Environment Genotype	1 149	4066.4** 315.40**	11102.6** 89.26**	3087.2** 11.48**	47638.2** 491.75**	28.1** 15.1**	36.66** 4.85**	72.5** 5.32*
GxE	149	51.24	44.13**	8.20**	122.75**	2.45**	1.21**	1.09**
Error CV (%)	298	46.83 7.05	13.01 2.29	1.19 19.55	35.58 8.68	0.94 12.12	0.65 11.09	0.74 32.44
LSD (5%)		7.98	4.21	1.27	6.95	1.13	0.94	1.00
Mean		97.01	157.73	5.55	68.75	7.98	7.23	2.65
Environment	1	135**	2129**	13.2**	0.02	228150**	27859.1**	28912**
Genotype G x E	149 149	1.07** 0.37	0.389** 0.32	0.08** 0.05	0.8** 0.20	1546.3** 642.79**	673.3** 239.7**	182.8** 111.90
Error	298	0.34	0.27	0.05	0.17	82.50	199.96	53.61
CV (%)		12.21	22.01	28.72	18.52	20.57	31.30	35.85
LSD (5%)		0.71	0.61	0.26	0.49	10.59	16.48	8.54
Mean		4.39	2.37	0.79	2.26	44.15	23.10	20.42

KEY: CD=culm diameter, CV=coefficient of variation, df= degree of freedom, DH=days to50% heading, DM= days to maturity, EW= finger weight, FL= finger length, FN= finger number, FW=Finger width, G x E = genotype by environment interaction, GYPLN=grain yield per plant, HI=Harvest index, LSD = least significant difference, LOG= lodging index, NGPS=number of grain per spikelet, PLHT= plant height, PTN= productive tiller number, TGW=thousand grain weight

Among regions and countries of origin, the mean days to maturity, plant height, finger length and finger number were higher for accessions from Ethiopia (B/Gumuz, Oromia, Amhara and SNNP). Accessions from Eritrea were characterized as early maturing with fewer fingers per ear. Accessions from Zambia had shorter plants and least grain yield per plant, but higher number of grains per spikelet. Lowest number of grains per spikelet and thousand grain weight were recorded for B/Gumuz region. The highest mean grain yield per plant and thousand grain weights were recorded for Kenya (Table 3). The existence of a vast range of genetic variability in finger millet germplasm were also reported by Yemane and Fasil (2002).

Table 3. Patterns of genetic variability for 14 major quantitative traits among finger millet accessions and regions of origin

Traits	Accession/population level			Regional	/country lev	el	Mean ±SE
	Minimum	Maximum	Range	mini	max	Range	-
Days to 50% heading	82.25	117.00	34.75	86.69	107.59	20.90	97.01±0.73
Days to 50% maturity	143.0	167.25	24.25	150.72	161.75	11.03	157.73±0.39
No. of productive tillers	2.58	10.50	7.92	4.08	6.93	2.85	5.55±0.14
Plant height (cm)	41.13	103.35	62.22	56.03	77.17	21.14	68.75±0.91
Finger length (cm)	3.53	11.40	7.87	5.07	9.83	4.76	7.98±0.16
Finger number	5.10	11.68	6.58	6.71	8.16	1.45	7.23±0.09
Ear weight(g)	1.10	5.53	4.43	1.58	4.54	2.96	2.65±0.09
No. of grains/spikelet	2.95	6.35	3.40	3.83	4.65	0.82	4.39±0.06
Culm diameter (cm)	1.57	3.29	1.72	1.99	2.61	0.62	2.38±0.03
Finger width (cm)	0.60	1.77	1.17	0.69	0.89	0.20	0.79±0.01
Lodging (%)	7.50	80.00	72.50	30.18	59.91	29.73	44.15±1.61
Harvest index (%)	9.39	51.96	42.57	15.7	30.47	14.77	22.71±0.65
1000 grain weight (g)	1.40	3.50	2.10	1.92	2.91	0.99	2.26±0.04
Grain yield/plant (g)	6.12	41.60	35.48	15.27	25.85	10.58	20.42±0.49

Marker characterization

Analysis of polymorphism revealed that polymorphic information content (PIC) ranged from 0.12 (UGEP 96) to 0.94 (UGEP 24) with an average of 0.57 PIC per marker (Table 3). Some microsatellite markers such as UGEP024. UGEP067. UGEP064 and UGEP066 revealed the highest PIC of 0.94, 0.90, 0.88 and 0.87, respectively, and amplified higher numbers of alleles but had low major allele frequencies. Markers UGEP110 and UGEP005 amplified sets of alleles in two clearly different size ranges and hence were split and scored as two

separate markers each (Table 3). Markers UGEP98 and UGEP20 were excluded from analysis and interpretation due to monomorphisms and poor amplification, respectively. About 60% of the markers depicted PIC values above the average (0.57)indicating that the majority of markers able distinguish to the were differences among the examined finger millet accessions (Table 3). Relatively average PIC values lower were reported in other studies conducted on finger millet; using SSRs (Panwar et al., 2010); using RAPD (Kebere 2011;

Das and Misra, 2010); and using Cyt P450 gene (Panwar *et al.*, 2010).

The number of alleles per locus varied from 2 (UGEP084) to 24 (UGEP024), and a total of 199 alleles were observed with an average of 9.95 alleles per locus. Similar results were reported by Das and Misra (2010) and Kebere (2011) using different molecular markers in finger millet. Besides, highly significant ($P \le 0.01$) and significant ($P \le 0.05$) allelic differences were detected by 15 and 2 SSR markers, respectively, but three markers (UGEP96, UGEP110_1 and UGEP005_1) showed non-significant allelic differences (Table 3). The high number of alleles per locus and total genetic diversity found in this study demonstrated the presence of genetic variation among finger millet accessions studied.

Table 3. Summa	y of 20 SSR	markers used	in the	present study
----------------	-------------	--------------	--------	---------------

Marker	Maj.Allele Freq.	Allele No	Heterozygosity	PIC	P-Value
UGEP53	0.36	13	0.11	0.78	0.001
UGEP84	0.53	2	0.00	0.37	0.001
UGEP27	0.24	15	0.10	0.84	0.000
UGEP95	0.25	7	0.07	0.77	0.001
UGEP64	0.16	16	0.15	0.88	0.000
UGEP67	0.20	20	0.16	0.90	0.000
UGEP106	0.60	9	0.17	0.57	0.018
UGEP110_1	0.79	5	0.00	0.32	0.383
UGEP110_2	0.77	3	0.00	0.30	0.000
UGEP57	0.44	8	0.12	0.68	0.000
UGEP96	0.94	5	0.07	0.12	0.813
UGEP66	0.20	20	0.11	0.87	0.000
UGEP79	0.64	5	0.15	0.45	0.004
UGEP12	0.34	12	0.16	0.73	0.000
UGEP73	0.90	6	0.03	0.18	0.014
UGEP005_1	0.93	6	0.00	0.13	0.141
UGEP005_2	0.90	5	0.02	0.18	0.001
UGEP24	0.10	24	0.26	0.94	0.000
UGEP46	0.34	7	0.23	0.70	0.003
UGEP33	0.46	11	0.30	0.62	0.001
Mean	0.50	9.95	0.11	0.57	

PIC = Polymorphic information content

Hierarchical clustering using phenotypic traits Population level

At 85% similarity level, all 150 accessions were grouped into eight clusters but three accessions (Acc216057, Acc-241768 and Acc-238344) and one improved cultivar (Wama) found to be outlier (Fig not shown). The majority of accessions from the same region and adjoining geographical regions, for instance,

Amhara, Tigray and Eritrea shared phenotypic similarity strong and grouped together. The similarity could be either due to the fact that farmer's selection criteria for a given trait might have been similar particularly based on the adaptive role of traits for the environment, or the primary seed source could have been the same, or there might be a high tendency of seed exchange. Supportive results were also reported by Reddy et al. (2009); Kebere et al. (2006) and; Yemane and Fassil (2002). On the other hand. collections from Oromia. SNNP. Benishangul Gumuz and Zambia were distributed across several of the clusters to variable degrees, which indicated variation among accessions of the same region or country.

Regional/country level

All the accessions were grouped into four clusters at 85% similarity level but three varieties that remained as an outliers (Fig. 1). Accessions collected from Tigray and Amhara strongly related with those from Eritrea and grouped in the first cluster (C-I). Accessions in this cluster are mainly characterized by longer mean finger (9.07cm), larger number of productive tillers (6.3), high grain yield per plant (22.56 g) and harvest index (26.91%), but found to have the lowest ear weight (1.86 g). The second cluster (C-II) comprised of accessions from and Benishangul Oromia Gumuz regions, and the accessions were found to have late heading (104 days) and maturity (161) periods. Accessions introduced from Kenya, Zambia and

Zimbabwe were grouped in the third cluster, and this cluster was known for its shorter mean plant height (63cm) and longer finger (5.87cm). Reddy *et al.* (2009) reported finger millet accessions collected from Kenya, Tanzania and Uganda were grouped together, but accessions from Ethiopia and Burundi were in separate clusters each.

The improved varieties such as Gute and Padet were grouped in the fourth cluster, these varieties showed the highest mean plant height (75.45cm), culm diameter (3.14cm) and finger width (1.1cm), but the lowest number of productive tillers (3.08). Bereda, Boneya, Taddesse and Wama as well as accessions from SNNP stood alone as outliers.

Comparison of selected accessions with the original study materials

The base finger millet accessions were compared against the top 10% best performing accessions for major quantitative traits having significant association with grain yield. Highly significant differences were observed between the means of selected subsets of the top 10% of accessions and the base finger millet accessions for all quantitative characters (Table 4). This revealed the possibilities for different of improvement levels through selection. The highest differences of 90.94% and 73.57% were observed for ear weight and lodging index. respectively (Table 4). The selected 10% best yielding accessions showed

53.77% increment over the mean of the base population. Comparison of mean grain yield of the 10% best accessions showed 30.75% vield advantage over the nationally released variety (Tadesse). Most of those best performing genotypes for grain yield and other traits were promoted to further multilocation evaluation for grain vield stability and other important agronomic traits.

Weighted Neighbor joining analysis

The weighted Neighbor Joining tree constructed from pairwise genetic distances in the current study revealed unlike the phenotypic traits, that. clustering of African accessions was entirely based not on their geographical origin (Fig. 2). Dida et (2008), Kebere (2011) al. and Manyasa et al. (2014) reported similar findings to the present study.

Fig1. The genetic relatedness of finger millet accessions collected from different regions and countries based on 14 quantitative traits

Key: C= cluster, S= solitary or ungrouped

Parameters/ Traits	Selected genotype mean (\overline{X})	Total population mean(µ)	Change due to selection	Change as % of population parameters	Z-calc
Productive tiller number	8.60	5.50	3.10	56.36	7.18**
Finger length	10.79	7.98	2.81	35.21	5.60**
Finger number	9.57	7.23	2.34	32.37	8.31**
Earweight	5.06	2.65	2.41	90.94	8.09**
Number of grains per spike	5.72	4.39	1.33	30.30	7.08**
Finger width	1.08	0.79	0.29	36.71	7.94**
Thousand grain weight	3.20	2.26	0.94	41.59	8.35**
Grain yield per plant	31.40	20.42	10.98	53.77	7.12**
Lodging index	11.67	44.15	32.48	73.57	6.40**

Table 4. Comparison of the mean performances of the top 10% highest yielding accessions with the average performances of all finger millet accessions used in the present study.

Key: ** = highly significant, Z-calc = Z-calculated

Genotype by Environment Interaction (GEI) and grain yield stability analysis

Additive Main Effects and Multiple Interaction (AMMI) model

Combined analysis of variance revealed highly significant (P≤0.01) variations among environments, GEI and Interaction Principal Component Axis (IPCA) (Table 5). This revealed that there was a differential yield performance among the finger millet genotypes across testing the environments and also the existence of strong GEI. About 88.3% of the total GEI was explained by the first three IPCAs: IPCA-I (66.0%), IPCA-II (12.8%) and IPCA-III (9.5%) (Table remaining five IPCAs 5). The explained only 11.7% of the total GEI. Because of their higher proportional contribution to the GEI, the first two principal components (IPCA-I and IPCA-II) were used to create a 2dimensional GGE biplot (Fig. 4). Gauch and Zobel (1996) suggested that the most accurate model for AMMI can be predicted by using the first two PCAs. Several authors took the first and second IPCA for GGE biplot analysis (Yuksel *et al.*, 2002; Farshadfar, 2008; Misra *et al.*, 2009).

The GGE biplot indicate that Acc. 203544 (G6) produced the best average grain yield $(3.16 \text{ ton } ha^{-1})$ and attained an IPCA-1 value relatively close to zero (-0.15) indicating that it was a stable and widely adaptable cultivar (Fig 3). Genotypic stability is crucial in addition to grain yield (Naroui et al., 2013) for a given varietv to be considered for commercialization. Acc. 203362 (G30) had the lowest IPCA-1 score (-0.0002) and medium grain yield of 2.85 ton ha⁻¹ (Fig 3). Genotypes with below average yield, such as Acc. 242617 (G1),

Weighted neighbor joining based clustering of 138 finger millet accessions using 20 polymorphic SSR markers. Key: Amh = Amhara, Oro = Oromia, Tg = Tigray, BG = Benishangul Gumuz, SN = Southern Nation Nationalities and peoples region, KNE = Kenya, Zam = Zambia, ERT = Eritrea, Zim = Zimbabwe. The number following each region/letter on the graph indicates finger millet accessions serial number sequentially as listed in Annex 1 under column SNJP

Source	df	SS	MS	Eigenvalue	% G x E	% cumulative interaction
Environments	7	1126.96	160.99**			
Genotype	31	59.542	1.921*			
G x E interaction	217	433.914	2.00**			
IPCA 1	37	286.61	7.75**	95.53552	66.05	66.05
IPCA II	35	55.5	1.6**	18.52138	12.81	78.86
IPCA III	33	41.1	1.244**	13.68863	9.46	88.32
Residual	496	32.523	0.065			

Table 5. ANOVA for grain yield using AMMI model

Key: df = degree of freedom, SS = sum of squares, MS = mean squares, IPCA = Interaction Principal Component Axis, ** = highly significant, * = significant

Figure 3. AMMI biplot of genotypic mean grain yield (ton ha⁻¹) versus IPCA-1 for 30 accessions evaluated across eight environments.

Tadesse (G32), Acc. 229722 (G4) and Acc. BKFM0034 (G22) also showed IPCA-1 near to zero, indicating that these accessions had consistently lower grain yield across locations. Acc. 242111 (G2) (3.08 ton ha⁻¹), BKFM0051 (G10) (3.07 ton ha⁻¹) and Acc. 229738 (G9) (2.99 ton ha⁻¹) yielded better than Gute (2.82 ton ha⁻¹) but showed relatively high IPCA-1 scores of 0.70, 0.52 and 0.85, respectively (Fig 3). This shows site specific adaptation of the accessions. Acc. BKFM0028 (G23) had the least grain yield (1.99 ton ha⁻¹) and the highest IPCA-1 score (-1.06). Besides, Acc. 203546 (G17), Acc. 229722 (G4) and Acc. 230104 (G1) are among the low yielding genotypes (Fig 3).

Analysis based on Eberhart and Russell regression model

Eberhart and Russell (1966) model also revealed that the best yielding showed accession, 203544 (G6) regression coefficient (b_i) closer to unity (1.08) and was thus a more stable and widely adaptable candidate cultivar than the remaining accessions, although its deviation from regression was quite different from zero (0.42)(Table 6). High yielding genotypes with regression coefficients (b_i) closer to one, but squared deviation from regression (s²di) different from zero should also be considered as stable and adaptable cultivars (Eberhart and Russell, 1966). The next three highest vielding accessions. Acc. 242111 (G2), Acc. BKFM0051 (G10) and Acc. 229738 (G9) recorded regression coefficients higher than one (1.40, 1.41 and 1.32, respectively) and squared deviation from regression different from zero (0.54, 0.27 and 1.40, respectively). This implied that highly these genotypes were responsive to the changes in environment and were therefore favorable recommended for environmental conditions with appropriate agronomic practices.

Genotype and Genotype by Environment interaction (GGE) biplot analysis

Mean grain yield data of both years were used to assess the relationships between the different test

environments, which was visualized bv the line connecting each environment to the biplot origin or environment vectors (Fig 4). The cosine of the angle between two environments was used to estimate the correlation between the environments (Dehghani et al., 2009; Kaya et al., 2006). Environments, Bako (BK) and Gute (GT), correlated positively (acute angle), Assosa (AS) and Arsi Negele (AN) correlated negatively (obtuse angle), whereas AN and GT did not correlate at all (right angle). According to Yan and Tinker (2006), a strong negative correlation indicated high crossover or GEL

Environments and genotypes that fall in the central (concentric) circle are considered ideal environments and stable genotypes, respectively (Yan and Rajcan, 2002). Acc. 203544 (G6) fell in the central circle indicating its high yield potential and relative stability compared to the rest of genotypes evaluated in this study (Fig 4). An environment is more desirable and ideal when located closer to the center circle (Naroui et al., 2013). The Average-Environment Axis (AEA) or Average-Tester-Axis (ATA) is the line that passes through the average environment and the biplot origin (Yan and Rajcan, 2002). A test environment with a small angle with the AEA is more representative than other environments (Yan and Rajcan, 2002). In the present study, Bako was the most stable environment due to the

stable performance of genotypes during both years followed by Gute (Fig. 4). Arsi Negele and Assosa showed variable genotype performance over years and thus high crossover, although the former was high yielding and the latter a poor yielding environment. Similarly, Odewale *et al.* (2013) reported that only one environment as stable, representative and discriminating among nine environments for the performance of 5 coconut genotypes evaluated in southern Nigeria.

rabio o. mour grain yiola (torrita / por location, / imm and rogrobolori anaryolo paramotor	Table 6.	Mean g	rain yie	d (ton ha	⁻¹) pe	r location,	AMMI and	l regression	analysis	parameters
---	----------	--------	----------	-----------	--------------------	-------------	----------	--------------	----------	------------

G#	Acc. name	Mean grain yield over locations (ton ha-1)									bi	s2di
		AN12	AS12	BK12	GT12	AN13	AS13	BK13	GT13	Mean		
1	230104	1.23	3.60	1.40	2.93	3.67	2.13	2.07	0.99	2.25	0.56	0.64
2	242111	3.97	2.00	2.33	2.90	7.00	1.87	2.50	2.03	3.08	1.40	0.54
3	203360	3.43	1.90	1.57	2.10	6.63	1.93	2.23	0.76	2.57	1.30	0.45
4	229722	2.47	1.57	1.77	2.67	5.20	1.47	0.99	1.77	2.24	0.96	0.18
5	242120	2.53	2.20	1.80	3.10	6.23	1.43	1.53	1.13	2.49	1.26	0.01
6	203544	3.30	3.43	2.03	4.73	5.50	2.07	2.27	2.00	3.16	1.08	0.42
7	238346	4.23	1.70	2.50	1.60	7.00	0.94	2.40	1.53	2.76	1.32	1.17
8	214993	3.13	1.00	1.93	3.23	7.00	1.20	1.57	1.70	2.60	1.40	0.61
9	229738	5.40	1.40	2.43	3.37	6.67	1.70	1.67	1.20	2.99	1.32	1.40
10	BKFM0051	3.23	2.43	2.63	2.70	7.60	1.83	2.30	1.80	3.07	1.41	0.27
11	AAUFM-33	3.77	1.07	3.10	2.37	5.63	1.27	1.17	0.46	2.36	1.12	1.03
12	229730	3.87	0.90	2.07	3.50	5.03	0.79	1.77	1.05	2.37	0.99	0.97
13	BKFM0047	2.37	3.17	2.10	2.00	6.07	2.10	2.00	1.40	2.65	1.07	0.23
14	203545	3.07	2.20	2.70	1.63	6.17	1.43	2.33	1.73	2.66	1.05	0.53
15	243636	2.63	1.87	2.20	2.83	7.53	1.53	1.53	1.80	2.74	1.48	0.31
16	230103	2.43	3.97	2.67	1.97	4.40	2.27	2.27	1.30	2.66	0.61	0.49
17	203546	2.10	2.07	1.07	3.30	4.00	1.43	1.50	1.80	2.16	0.68	0.24
18	242617	2.30	2.60	1.73	2.03	5.40	1.57	1.70	0.70	2.25	1.05	0.08
19	214995	1.37	3.27	1.90	3.50	3.93	2.17	0.83	1.43	2.30	0.65	0.64
20	BKFM0005	2.70	3.50	1.93	3.17	4.37	2.10	1.63	2.30	2.71	0.63	0.18
21	214988	1.40	3.67	2.17	2.13	4.13	2.03	1.60	0.88	2.25	0.67	0.54
22	BKFM0034	2.43	3.27	1.70	1.97	5.33	1.73	1.97	1.77	2.52	0.90	0.20
23	BKFM0028	0.92	3.83	0.60	3.40	2.87	2.20	0.79	1.30	1.99	0.47	1.41
24	BKFM0042	1.67	4.20	1.77	3.10	3.77	1.90	1.97	1.90	2.54	0.51	0.64
25	BKFM0043	1.90	3.83	1.70	3.73	4.60	2.10	2.00	1.50	2.67	0.76	0.49
26	BKFM0010	1.30	3.33	2.77	3.33	3.70	2.87	2.10	1.80	2.65	0.37	0.53
27	214990	1.83	3.90	1.77	2.67	5.63	1.77	1.37	1.30	2.53	1.08	0.38
28	237443	4.40	0.75	2.20	2.10	6.63	0.44	1.06	0.61	2.27	1.47	1.34
29	214989	1.47	2.50	1.73	3.77	5.20	1.83	1.12	1.43	2.38	0.99	0.39
30	203362	3.10	3.20	1.11	3.93	6.17	1.93	2.23	1.10	2.85	1.23	0.31
31	GUTE	2.23	3.07	2.13	3.53	5.79	1.97	2.07	1.73	2.78	1.02	0.09
32	Taddesse	2.07	2.77	1.13	2.23	6.37	1.97	1.53	2.13	2.53	1.17	0.38
	MEAN	2.63	2.64	1.96	2.86	5.50	1.72	1.75	1.44	2.56	0.99	0.53

Key: G# = Genotype number, AN = Arsi Negelle, AS = Assosa, BK = Bako, GT = Gute, the number following each location indicates the year (12 = 2012, 13 = 2013), CV = Coefficient of variation, LSD = Least significance difference, GEI = Genotype by Environment Interaction, b_i = Regression coefficient, s²di = Squared deviation from regression

Generally, GGE biplot analysis and AMMI model revealed that Acc-203544 (G6) was a stable and high yielding (3.16 ton ha⁻¹) variety with 13.7% yield advantage over the best standard check Gute (2.78 ton ha⁻¹) and therefore, officially released in 2015 and recommended for production

under wider environmental conditions. The name Addis-01 was given to the variety with the pedigree of Acc-203544, and it was registered as the first variety released from Addis Ababa University in collaboration with Bako Agricultural Research Center.

PC1 - 73.13%

Fig. 4: GGE biplot analysis of 30 Finger millet accessions evaluated across four environment for two years showing ideal environments and stable genotype

Conclusion and Recommendation

Hierarchical clustering based on phenotypic traits revealed regional grouping of accessions from Amhara, Tigray and Eritrea. Whereas. Weighted Neighbor Joining-based clustering grouped the total test accessions into three major clusters with no particular regional clusters Based phenotypic, observed. on genotypic and blast disease record, widely diverse and best performing genotypes for grain yield, blast disease resistance and other agronomic traits selected for further multiwere location trial. Accordingly, Additive Multiplicative effect and Main Interaction (AMMI) and Genotype and Genotype by Environment Interaction (GGI) biplot analysis revealed that Acc. 203544 was stable and high yielding (3.16 ton ha⁻¹) with a yield advantage of 13.7% over the best standard check, Gute $(2.78 \text{ ton } ha^{-1})$, thus officially released for and production with wider environmental adaptability. In general, the present study portrayed the application of different breeding tools in identifying potential varieties for release

Acknowledgement

This study was supported by the SIDA Bio-Innovate collaborative research project 01/2010. Staff members of Bako Agricultural Research Center, Asosa Agricultural Research Center and Arsi Negele Research Sub site are acknowledged for their support in field work. Staff members of ICRISAT molecular lab (Nairobi), are highly acknowledged for assisting me on the routine lab activities.

References

- Aremu, C.O. 2011. Genetic Diversity: A review for need and measurements for intra-species crop improvement. Journal of Microbiology and Biotechnology Research. 1:80-85.
- Andualem Wolie and Temesgen Dessalegn. 2011. Correlation and path coefficient analyses of some yield related traits in finger millet (*Eleusine coracana* (L.) Gaertn.) germplasms in northwest Ethiopia. African Journal of Agricultural Research. 6: 5099-5105.
- Barbeau, W.E. and Hilu, K.W. 1993.
 Protein, calcium, iron and amino acid content of selected wild and domesticated cultivars of Wnger millet. Plant Foods & Human Nutrition 43:97–104.
- Chemeda Daba and Abera Debelo. 2008. Correlation and path analysis in finger millet. Ethiopian Journal of crop Science 1:38-44.
- Dagnachew Lule, Santie de Villiers, Sewalem Tsehay, Mathews Dida, Masresha Fetene, W. Kimani and Kassahun Tesfaye. 2014a. Genetic diversity and eco-geographical distribution of *Eleusine* species collected from Ethiopia. African Crop Science Journal. 22:45 – 57.
- Dagnachew Lule, Awol Asefa, Masresha Fetene and Kassahun

2014b. Microsatellite Tesfay. variation & grain vield performance of finger millet evaluated under genotypes moisture stress environment. Plant Cell Biotechnology and Molecular Biology. 15:51-66.

- Dagnachew Lule, Kassahun Tesfaye and Masresha Fetene. 2012a. Oualitative traits diversity and ecogeographical distribution in finger millet (Eleusine coracana. subsp. Coracana) landraces from eastern and south eastern Africa: An implication for germplasm collection and conservation. African Journal of Plant Science. 6: 346-354.
- Dagnachew Lule, Kassahun Tesfaye, Masresha Fetene and Santie de Villiers. 2012b. Multivariate Analysis for Quantitative Traits in Finger Millet (Eleusine coracana subsp. coracana) Population Collected Eastern from and Southeastern Africa: Detection for Patterns of Genetic Diversity. International Journal of Agricultural Research. 7:303-314.
- Das, S. and Misra, R.C. 2010. Assessment of genetic diversity among finger millet genotypes using RAPD markers. Indian Journal of Agricultural Research. 44: 112 – 118
- Dehghani, H., Sabaghnia, N. and Moghaddam, M. 2009. Interpretation of genotype-byenvironment interaction for late maize hybrids grain yield using a

biplot method. Turkish Journal of Agricultural Forestry. 33:139–148.

- Dida, M., Wanyera, N., Dunn, M., Bennetzen, J. and Devos, K.M. 2008. Population structure and diversity in finger millet germplasms. Tropical Plant Biology 1: 131–141.
- Dida M, Srinivasachary M, Ramakrishnan S, Bennetzen JL, Gale MD, Devos KM, 2007.The genetic map of finger millet, *E. coracana*. Theory and Applied Genetics. 114:321–332.
- Dje, Y., Hevretz, M., Letebure, C. and Vekemans, X. 2000. Assessment of genetic diversity within and among germplasms accessions in cultivated sorghum using microsatellite markers. Theory and Applied Genetics. 100:918-925.
- Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing cultivars. Crop Science 6:36-40.
- Farshadfar, E. 2008. Incorporation of AMMI Stability Value and Grain Yield in a Single Non-Parametric Index (Genotype Selection Index) in Bread Wheat. Pakistan Journal of Biological Science. 11: 1791-1796.
- Gauch, H.G. and Zobel, R.W. 1996. AMMI analysis of yield trials. In: Genotype by environment interaction. pp. 85-122 (Kang, M. and Gauch, H. eds.). Boca Raton. CRC press, New York.
- IBPGR. 1985. Descriptors for finger millet (*Eleusine coracana* (L.)

Gaertn). Rome, Italy: International Board for Plant Genetic Resources (IBPGR). 20 pp.

- Kaya, Y., Aksura, M. and Taner, S. 2006. GGE-Biplot analysis of multi-environment yield trials in bread wheat. Bahari Dağdaş International Agricultural Research Institute. Turkish Journal of Agricultural Forestry. 30: 325-337.
- Kebere Bezawuletaw. 2011. Genetic Diversity of Finger Millet [*Eleusine coracana* (L.) Gaertn] Landraces Characterized by Random Amplified Polymorphic DNA Analysis. Innovative Systems Design and Engineering 2: 207-218.
- Kebere Bezawuletaw, Sripichit, P., Wongyai, W., Hongtrakul, V. 2006. Genetic variation, heritability and path-analysis in Ethiopian finger millet (*Eleusine coracana* (L.) Gaertn) landraces. Kasetsart Journal of Natural Science. 40: 322-334.
- Liu, K. and Muse, S.V. 2005. Power Marker: Integrated analysis environment for genetic molecular data. Bioinformatics 21: 2128-2129
- Mace, E.S., Buhariwalla, H.K. and Crouch. J.H. 2003. Α highthroughput DNA extraction protocol for tropical molecular breeding programs. Plant Molecular Biology Report 21:459a-459h.
- Manyasa E.O., Tongoona, P., Shanahan, P., Mgonja, M.A., De Villiers, S. 2014. Genetic diversity in East African finger millet

(Eleusine coracana (L.) Gaertn) landraces based on SSR markers and some qualitative traits. Plant Genetic Resource 13:45-55

- MINITAB. 2003. MINITAB statistical software, version 14.13.0.0, Minitab Inc.
- Misra, R.C., Das, S., Patnaik, M.C. 2009. AMMI Model Analysis of Stability and Adaptability of Late Duration Finger Millet (*E. coracana*) Genotypes. World Applied Science Journal. 6: 1650-1654
- Mustapha, A.A., Showemimo, F.A., Aminu-kano, A. 2001. Yield stability analysis of promising Triticale cultivars in Nigeria. Journal of Arid Agriculture. 11: 1– 4.
- Naroui Rad M.R., Abdul Kadir, M., Rafii Hawa, M.Y., Jaafar Naghavi, M.R., Farzaneh Ahmadi. 2013. Genotype Х environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivum) under normal and drought stress conditions. Australian Crop Journal of Science. 7(7):956-961
- Odewale JO, Ataga CD, Agho C, Odiowaya G, Okoye MN, Okolo EC. 2013. Genotype evaluation of coconut (*Cocos nucifera L.*) and mega environment investigation based on additive main effects and multiplicative interaction (AMMI) analysis. Research Journal of Agriculture and Environmental Management. 2: 001-0103

- Panwar, P., Manoj Nath, Vijay Kumar and Anil Kumar. 2010. Comparative evaluation of genetic diversity using RAPD, SSR and cytochrome P450 gene based markers with respect to calcium content in finger millet (*Eleusine coracana* L. Gaertn). Journal of Genetics. 89: 121-133
- Perrier, X. and Jacquemoud, J. 2006. DARwin software. Available at http:// Darwin.cirad.fr/Darwin
- Purseglove, J.W. 1972. *Tropical Crops*: Monocotyledons. Longman Group Limited, London.
- Reddy, G., Upadhaya, H.D., Gowda, C.L.L., Sube Singh. 2009. Characterization of East African finger millet germplasm for qualitative and quantitative characters at ICRISAT. Journal of SAT Agricultural Research. pp 7-9.
- SAS Institute Inc. 2008. SAS/STATA Guide for personal computers version 9.2 edition. SAS Institute Carry NC, USA.
- Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology. 18:233-234.
- Showemimo, F.A., Echekwu, C.A. and Yeye, M.Y. 2000. Genotype x environment interaction in Sorghum trials and their implication for future variety evaluation in Sorghum growing areas of northern Nigeria. The Plant Scientist. 1: 24–31.
- Singh, P. 2001. Numerical Problems in Plant Breeding and Genetics. Kalyani Publishers, New Delhi, India.
- Thompson, J.A., Nelson, R.L. and Vodkin, L.O. 1998. Identification of diverse soybean germplasm using

RAPD markers. Crop Science. 38:1348-1355.

- Yemane Tsehaye and Fasil Kebebew. 2002. Morphological diversity and geographical distribution of adaptive traits in finger millet (*Eleusine corracana* (L.) Gaertn.Subsp. *coracana* (poaceae) population from Ethiopia. Ethiopian Journal of Biological Science. **1:**37-62.
- Upadhyaya, H.D., Gowda, C.L.L., Pundir, R.P.S., Reddy, V.G. and Singh, S. 2006. Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genetic Resource and Crop Evolution. **53**: 679–685.
- Varshney, R.K., Chabane, K., Hendre, P.S., Agarwal, R.K. and Graner, A. 2007. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science. 173: 638-649.
- Yan, W. and Rajcan, I. 2002. Biplots analysis of the test sites and trait relations of soybean in Ontario. Crop Science. 42:11-20.
- Yan, W. and Tinker, N.A. 2006. Biplot analysis of multi-environment trial data: principles and application. Canadian Journal of Plant Science. 86:623-645
- Yuksel Kaya, Cetin Palta and Seyfi Taner. 2002. Additive Main Effects and Multiplicative Interactions Analysis of Yield Performances in Bread Wheat Genotypes across Environments. Turkish Journal of Agricultural Forestry. 26: 275-279.

No	Acc.name	Region	Altitude	No	Acc.name	Region	Altitude
1	242133	Amhara	1825	46	BKFM0052	Oromia	2200
*2	BKFM0034	Oromia	1454	47	203354	Zimbabwe	1420
*3	230104	Eritria	1800	48	230102	Eritrea	1850
**4	Padet	Released		*49	229730	Amhara	1850
5	AAUFM-42	Tigray	2058	50	215982	Amhara	1850
6	AAUFM-22	Tigray	2142	51	Tadesse	Released	
**7	BKFM0026	Oromia	1479	**52	242617	Tigrav	1700
8	215989	Amhara	2000	53	238300	Tigray	1980
9	230106	Eritrea	1800	54	203356	Zimbabwe	1420
*10	BKFM0042	Oromia	1867	**55	244798	SNNP	2169
11	BKFM0028	Oromia	1608	56	Wama	Released	
12	215985	Amhara	1940	57	242616	Tigrav	1400
13	203350	Zimbabwe	1400	58	BKFM0048	Oromia	1337
14	BKFM0032	Oromia	1390	59	BKFM0024	Oromia	1913
15	BKFM0006	Oromia	1479	60	237584	SNNP	1990
16	AAUFM-4	Tigray	1896	61	229723	B/Gumuz	1300
17	235835	Amhara	1930	62	214991	Zambia	1330
18	BKFM0022	Oromia	1926	63	Bereda	Released	
19	AAUFM-34	Tigray	1568	64	215976	Amhara	1860
20	AAUFM-32	Tigray	1630	*65	242111	Amhara	2100
*21	AAUFM-33	Tigray	1620	66	242624	Tigray	1400
22	216039	Oromia	1950	67	229728	B/Gumuz	1440
23	241768	SNNP	1500	68	216036	Tigray	1900
24	AAUFM-8	Tigray	1812	69	216033	B/Gumuz	1930
*25	BKFM0047	Oromia	1334	70	214994	Zambia	1160
26	229731	Amhara	1950	71	241769	SNNP	1500
27	BKFM0029	Oromia	1251	72	237472	Tigray	1800
28	AAUFM-19	Tigray	1811	73	203358	Zimbabwe	1420
*29	214995	Zambia	1130	*74	BKFM0005	Oromia	1449
30	203353	Zimbabwe	1420	75	Gute	Released	
31	AAUFM-2	Tigray	1896	76	214996	Zambia	1130
32	235782	Amhara	1860	77	238327	Tigrav	1900
33	242117	Amhara	1915	78	BKFM0018	Oromia	1667
34	237475	Tigray	1750	**79	216046	Tigray	1910
*35	203545	Kenva	1590	*80	214988	Zambia	1300
**36	AAUFM-35	Tigray	1568	81	243639	Amhara	2070
37	215802	Amhara	1950	82	225892	Amhara	1710
38	BKFM0039	Oromia	2144	83	214987	Zambia	1310
*39	230103	Eretria	1700	**84	230110	Eritrea	1700
*40	BKFM0010	Oromia	1484	85	215990	Amhara	1910
41	245087	Tigray	1923	*86	203360	Zimbabwe	1420
42	230105	Fritrea	1600	87	208726	Oromia	1880
43	215887	Amhara	1880	88	BKFM0055	Oromia	1723
44	BKEM0062	Oromia	1923	*89	237443	Amhara	2100
**45	BKFM0002	Oromia	1550	90	BKFM0011	Oromia	1428

Annex 1. Passport data of finger millet accessions used for phenotypic and molecular characterization in the present study.

Annex 1 co	ontinued		A 1111				
No	Acc.name	Region	Altitude	No	Acc.name	Region	Altitude
91	Boneya	Released		*136	242132	Amhara	1910
**92	AAUFM-15	Tigray	1568	**137	243636	Amhara	2100
93	203355	Zimbabwe	1420	138	BKFM0004	Oromia	1445
*94	229722	B. Gumuz	1750	139	BKFM0008	Oromia	1459
95	BKFM0057	Oromia	1707	140	AAUFM-21	Tigray	1722
96	BKFM0060	Oromia	1852	141	216040	Oromia	1940
97	230109	Eritrea	1800	142	BKFM0058	Oromia	1725
**98	100038	Amhara	1980	143	235700	SNNP	1530
99	238344	Amhara	2000	144	235699	SNNP	1440
100	245091	Oromia	1991	145	AAUFM-12	Tigray	1502
101	216056	Oromia	1600	146	230101	Eritrea	1740
102	AAUFM-23	Tigray	2100	147	215981	Amhara	1850
103	203542	Kenya	1540	148	229725	Amhara	1650
104	238341	Amhara	1780	*149	242120	Amhara	1850
*105	203362	Zimbabwe	1420	150	AAUFM-11	Tigray	1502
106	230107	Eritrea	1800				
107	203352	Zimbabwe	1490				
108	242135	Amhara	1910	Kev:	**=accessions	excluded fr	om molecular
109	AAUFM-20	Amhara	2142	analysi	s: *=accessions	selected for G	G x E study
*110	214993	Zambia	1340		-,		
111	229724	B Gumuz	1520				
*112	203546	Kenva	1620				
113	242105	Amhara	1860				
114	216057	Oromia	1800				
115	BKEM0001	Oromia	1580				
*116	238346	Amhara	1940				
*117	214989	Zambia	1210				
118	203361	Zimbabwe	1420				
119	ΔΔI IFM-14	Tigray	1568				
120	2035/3	Kenva	151/				
120	200040	Amhara	2000				
121	200700	Zimbabwe	1/20				
**123	200000	Zambia	1360				
120	236116	Oromia	1030				
124	200440	Zimbabwe	1/20				
120	200007	Ambara	1920				
*107	233140	Zambia	1100				
127	214337	Amboro	2125				
120	242112	Konva	2120				
129 *120	203047 DVEM0054	Oromio	1010				
100	DNTIVIUUD I	Violilia	1105				
101	200044	Amhara	1400				
132	242109	Amnara	2000				
133	203351	Kenya	1490				
"1 3 4	229738	B. Gumuz	1830				
135	203359	Zimbabwe	1420	_			