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Abstract 

Desertification has been identified as the resultant effect of dryland loss. Desertification is catalysed by 

anthropogenic modifications and variations in environmental/climatic conditions. The situation in Nigeria is 

further exacerbated by the growing demand for land by the population. To this effect, this study performed a 

space-time analysis of vegetative cover between 2001 and 2020 to unravel patterns and trends across the 

semiarid region of the dryland system in Nigeria. The dynamics during the rainy season (May and September) 

were examined using the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) dataset subjected 

to space-time analysis. Generalised Difference Vegetation Index (GDVI) was computed to the power of 2 to 

quantify vegetative cover across the study area. The results showed that the average of the GDVI ranges 

between -0.40 and 0.94, with a standard deviation of 0.11. Time series cluster analysis revealed that there are 

two temporal clusters: (1) no statistically significant trend (Statistics= 1.33, p-value = 0.18) and (2) 

statistically significant downtrend (Statistics = -2.37, p=0.02), with cluster 1 covering 95% of the areas 

examined. The most dominant (97% of the area) emerging space-time pattern was cold-spots (persistent, 

diminishing, sporadic, oscillating, and historical types). In conclusion, most of the areas showed no definite 

temporal pattern of vegetation pattern during the period, while more than 90% of the areas have witnessed a 

decline in vegetative cover. There is a need for a more coordinated approach to desertification control, 

constant monitoring is pertinent while new approaches to restoring degraded land are recommended. 
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Introduction 

Desertification results from a complex interaction between human and environmental factors 

spanning several decades. The dryland system covers around 41% of the earth's surface (Reynolds 

et al., 2007), and land degradation in this region often results in desertification. Due to the high 

variability of the environmental conditions and the high vulnerability of the ecosystem to change, 

people over time have developed very resilient land management systems. However, with the 

continued pressure on the land and the changing climate, the system has been pushed beyond its 

capacity, and many of the land management systems are no longer able to cope. Increasing pressure 

to extract living and resources out of marginal lands undermines the resilience built into the already 

adapted and robust land management hence the increase in desertification. This process is initiated 

by a gradual within-state change in which there is a spatial decline of grassland and replacement 

with sparse vegetation – leading to a loss of productivity for land users and managers. This is 

followed by state conversion whereby the sparse vegetation is soon replaced with the desert as the 

impact of human and environmental factors combined – further exploitation by humans created an 

opportunity for further desert encroachment on the degraded land. Due to the dynamics between 

humans and natural factors, there is a need to monitor the evolution of vegetative cover and, thus, 

identify emerging patterns across the dryland systems. This will ensure that necessary actions are 

taken to mitigate impending degradation in the region. It is based on this that this study carried out 

a space-time analysis of vegetative cover between 2001 and 2020 to identify trends and patterns 

across the semiarid region of the dryland system in Nigeria. 
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Figure 1: Dryland Systems across the Nigeria States 

 

In Nigeria, the human factors in this dryland degradation complex include the poor management 

of land, poor irrigation practices, excessive groundwater abstraction, overgrazing, and 

deforestation. The situation is further aggravated by increasing demand for land in a country with 

a population of over 200 million, human pressure on marginal lands has been incessant and 

resulting in the growing extent of desert in the drylands region of the country. 

Currently, more than 19 States across the north and the middle belt regions of Nigeria (Figure 1) 

are within the dryland ecosystem and under the threat of desertification. The challenge created by 

this loss of ecosystem services and decline in productivity goes beyond food security. It is now 
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impacting human security, leading to various conflicts and clashes across many parts of the 

country. And this is creating a drag on the overall development efforts of the government and spill 

over effects across the West African region. Nigeria ratified the UN Convention to Combat 

Desertification in 1997. It developed a National Action Plan, which has raised the awareness and 

mainstreaming of the development of mitigation actions against desertification in the country. 

Land degradation resulting from the adverse impact of climatic variations and human activities 

across the arid, semiarid and dry, humid regions of the world could be termed  desertification 

(UNEP, 1992). Recent estimates indicated that about 41% of the earth surface (dryland systems) 

is currently either deserts or under the threat of desertification (Davies et al., 2015). Estimates by 

the UN put the annual loss to desertification at around 6 million hectares of productive land, and 

the loss of arable land per person was projected to drop to around 0.16ha from 0.21ha in 1998 

(Saier, 2010). 

Controlling desertification is a major global challenge. Because of the enormity of the challenge, 

various methods and techniques have been developed, which can be broadly grouped into three 

categories – engineering, chemical, and vegetative methods (Ci & Yang, 2010). From the 

Millennium Ecosystem Assessment (2006) dryland systems (Figure 1) coverage, we estimated that 

about 672km2, 317km2 and 617km2 belong to the arid, semiarid, and dry subhumid zones 

respectively, across  Nigeria’s dryland ecosystem. 

The population of migrating people and livestock from the frontline States of desertification in 

Nigeria (Kebbi, Sokoto, Zamfara, Kastina, Kano, Jigawa, Bauchi, Yobe, Borno, and Adamawa) is 

putting enormous pressure on other States such as the Federal Capital Territory (FCT), Plateau, 

Taraba, Niger, Kwara, Kaduna State. The pressure is gradually extending beyond these States as 

they are increasingly threatened by desertification due to excessive pressure and the management 
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of marginal lands brought about by increasing demand for land. Recently, the pressure for pasture 

for livestock has precipitated into violence, and the pressure is not only coming from within the 

country. Drought across other countries like Chad and Niger is also leading to increasing cross-

border migration leading to more security and environmental challenges. 

The complexity of the problem of desertification in Nigeria indicates that a multidimensional 

approach must be implemented to fight it. On the one hand, efforts must be made to stop further 

desert encroachment – reforestation, stabilisation of dunes, the establishment of shelterbelts, 

windbreaks, rangeland shelterbelts, etc. there is a need to initiate the reclamation of the degraded 

land to ease the pressure on marginal lands. As the rate of desertification continues to grow 

(0.6km/year in Nigeria) and arable land per person continues to decline (Saier, 2010; The World 

Bank, 2021), there is a need for active and coordinated desertification control. However, before 

this can be done, there is a need to identify the hotspots of vegetative change that can indicate the 

emergence of dryland degradation. 

There are tremendous opportunities offered by Big Earth Data (BED) to fill the data gap that is 

often common across many developing countries – lack of monitoring data at appropriate spatial 

and temporal resolution. This often hampers designs for environmental management and, 

subsequently, the planning for sustainable development and Disaster Risk Reduction (DRR). Most 

importantly, to plan and act on environmental management issues and climate change adaptation, 

countries, and regions need to have access to high-quality data which can guide their actions. 

Despite the grave danger posed by environmental degradation (as a result of resource exploitation) 

and climate change, many countries across the SSA region usually have sparse and non-

representative data, which often hampers planning and proper policymaking. As such, it has 

become pertinent that researchers develop new techniques that can enhance our understanding of 
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earth systems using the latest technologies and developments in earth observation, remote sensing 

(RS) and geographic information system (GIS). This is crucial as BED is making it possible to 

cover the entire globe and provide a consistent standard for comparison. However, to be able to 

use the data, there is a need to transform the data into useful and policy-relevant information for 

decision-making. It is with this understanding that this study is examining the space-time pattern 

of vegetative cover across the dryland ecosystem of Nigeria. This is expected to provide insights 

into patterns and trends of changes across the area. This is vital due to the vastness of this 

landscape. 

The use of RS and GIS in vegetation-related, environmental, and even socio-economic-related 

studies is a growing trend as it leverages the advantages of RS (coverage of large areas, 

inaccessible areas, lower cost, and shorter collection and processing time). Many vegetation 

indices have been developed to study various properties of the environment. They are developed 

on the basis that various elements of the surface or subsurface react and respond differently to 

different regions of the electromagnetic spectrum. Thus, a mathematical combination of selected 

bands can be used to monitor crop health, vegetation canopy water content, vegetation water stress, 

crop/vegetation chlorophyll content, potential drought condition, etc. This approach is beneficial 

for monitoring changes in the dryland as there is an increase in temporal and spectral resolution of 

remotely sensed data which is enhancing the possibilities in several areas of earth observation – 

providing new opportunities and overcoming previous bottlenecks. There are numerous works on 

spectral vegetation indices (VI), from the Simple Ratio (SR) (Knipling, 1970), Normalised 

Difference Vegetation Index (NDVI) (Tucker, 1979) to more recent ones which have corrected the 

shortcomings or limitations of older indices e.g. Global Environmental Monitoring Index (GEMI), 

Soil Adjusted Vegetation Index (SAVI), Optimised SAVI (OSAVI), Enhanced Vegetation Index 
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(EVI), Modified Non-Linear Vegetation Index (MNLI). All these have been very useful in 

environmental monitoring and ecosystem research globally. However, due to the sparseness of 

vegetation in the drylands, many of these indices are not adequate for monitoring vegetation across 

such landscapes. The indices are more sensitive to moderate and densely vegetated lands e.g. forest 

and cropland. For example, Qi et al. (1994) reported that the dynamic range of SAVI was reduced 

after the adjustment using the L factor and this is detrimental to the identification of monitoring 

vegetation in the drylands. Similar observations and uncertainties have also been reported for 

NDVI and EVI (e.g. Lu et al. (2015)). Wu et al. (2013) in their studies of the desert rangelands in 

Ordos, China, noted that subtle changes in greenness across the reclaimed or desertification-

controlled area are almost impossible to identify because of this insensitivity and low dynamic 

range of commonly available VIs. 

Due to the peculiarity of the dryland ecosystem, new indices are being developed. For example, 

GDVI was developed by Wu (2014) from NDVI. They also demonstrated that GDVI increases the 

dynamic range of low and moderately vegetated areas and higher power form ensures saturation 

of index values in the densely vegetated area. The development of GDVI utilised a heuristic 

parametric transformation of the NDVI. Camps-Valls et al. (2021) provided a statistical non-linear 

approach for the monitoring and characterisation of vegetative growth on the planet. 

The importance of dryland and wetland vegetation cannot be overemphasised as they play a 

pertinent role in the ecological functioning of this ecosystem while preventing further 

encroachment by desert. Therefore, monitoring the vegetation across these ecosystems can indicate 

their health and status. It is in this light that remote sensing offers an opportunity for the provision 

of timely information and details for the management of these sensitive environments. It can 

provide up-to-date and relatively accurate information on the dynamics of this system. The use of 
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vegetation in monitoring dryland ecosystem degradation is commonplace. For example, the works 

of Lu et al. (2015); Shao et al. (2018); Wu (2014); Wu et al. (2013); Zhu et al. (2019) showcased 

the relevance of vegetation monitoring in understanding the status and progress of various 

desertification control projects across different regions. 

Recently, Aliero et al. (2021) applied the modified form of Mediterranean Desertification And 

Land Use (MEDALUS) model (Symeonakis et al., 2016) in identifying desertification-sensitive 

areas. This approach computed the geometric mean of soil, vegetation, and climate in the 

identifying sensitive areas. This approach creates an understanding of vulnerable areas, it needs 

more dynamism that the issue of desertification requires. However, it can support actions to 

quickly address vulnerable areas and prevent further expansion. 

Ibrahim et al. (2022) conducted a 25-year study of north-eastern Nigeria to study desertification in 

the Sahel region of Yobe State. The study revealed a doubling of areas covered by dunes between 

1990 to 2015. Furthermore, they reported that lower temperature and increasing rainfall did not 

translate into increasing vegetative cover, thus, indicating that other factors are at play. They 

concluded that desertification in the study area is more of a product of human activities than 

climate change. The study also highlighted the relevance of monitoring vegetation to identify areas 

with successful sand dune reclamation. Ekundayo et al. (2021) utilised vegetative cover to assess 

desertification in the Sudano-Sahelian savanna region of Nigeria. They examined monthly NDVI 

from MODIS satellite at 1km spatial resolution from 2000-2010. This formed the basis of their 

classification of different areas into water body, desert and bare-land, semi-desert, steppe, shrub 

and grassland, dense vegetation and forest. The study revealed the changes in extent of these 

classes over the period under consideration. These works utilised NDVI in monitoring degradation 

and changes in vegetation as a proxy of dryland degradation in Northern Nigeria. However, these 
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works were executed based on changes over time and in extent. This approach ignored the 

importance of spatial and temporal autocorrelation in monitoring desertification or dryland 

degradation. This current approach addressed this and provided a more holistic monitoring 

framework. Furthermore, these studies utilised NDVI in an environment where it has been reported 

to be suboptimal because of its insensitivity and low dynamic range (Lu et al., 2015; Wu, 2014; 

Wu et al., 2013). 

Temporal analysis of land use/land cover and other environmental characteristics is commonplace, 

which takes into cognisance the relevance of time in allowing the interactions between people and 

the natural world. Many changes as observed over space often occur in clusters (e.g. deforestation, 

erosion, pollution episodes, crime activities), the time also plays a role. For example, a perceptively 

near place may still only be visited if the time to travel to it is allocated, thus spatial proximity 

does not guarantee a visit to that location. In essence, human activity decision and the way they 

have modified the planet is not only dependent on space or time, but it is also affected by the 

combination of spatial and temporal factors – Space-time constraints (Hägerstraand, 1970). The 

constraints dictated by this understanding may be as a result of laws, rules, norms, etc. (authority 

constraints) or social interaction (coupling constraints) or physical/biological limits (capability 

constraints). From the perspective of environmental change, space-time pattern analysis examines 

the distributions and patterns of changes in the context of both space and time, thus, it examines 

the distribution and pattern of environmental change from three dimensions – space (x,y) and time 

(z). Application of such approach (space-time analysis) in monitoring drylands could provide a 

better insight into space-time pattern and trend of vegetation, thereby, creating another approach 

at understanding progress in desertification control and status of desertification. 
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Figure 2: Kastina, Kano and Jigawa States and environs 

Data and Methods 

Study Area 

The study focussed on Kastina, Kano, and Jigawa States (Figure 2). The area is dissected by several 

rivers, major ones include Karaduwa, Bunsuru, Turami, Watari, Chalawa, Kano, Jakara, Gari, 

Hadejia, Dudurun Gaya, Dudurun Warwade, Iggi, Dogwala, Garanga, etc. Some of these formed 



Combining Remote Sensing and Space-Time Analysis for Desertification Monitoring  

125 

 

large water accumulations that could be found around places like Djibia, Kadaji, Garfi, Dustin Wai 

in Katsina. In Kano, such could be found near places such as Bawai, Unguwar Fari, Ungwuwa 

Kwari, Kongo Kura, Dan Amale, Fegi, Bagwai, Baita, Sakkwatawa, Kofar Chiri and around places 

like Warwade, Limawa in Jigawa State. 

With every part of the globe impacted by human activities, identifying biomes across any part of 

the world should indicate anthropogenic biomes. According to Ellis and Ramankutty (2008), the 

common biomes across these States includes Cropped and pastoral villages, rainfed villages and 

dense settlements (Figure 3). Residential irrigated cropland and residential rangeland could also 

be found scattered across the landscape. While some pastoral villages are found across Katsina, 

none of such can be found across Kano and Jigawa States. The mapping showed that every aspect 

of the landscape had been impacted by human activities in one form or the other. 
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Figure 3: Spatial distribution of anthropogenic biomes across Katsina, Kano, Jigawa and 

neighbouring States 

From the Koppen-Gieger Classification (Kottek et al., 2006), the three States fall within the 

Equatorial savanna with dry winter (Aw) and Steppe Climate (BSh) – Figure 4. The Steppe climate 

zone is typical of the arid region – hot and arid conditions. The equatorial savannah or tropical 

savanna found in this region has a longer dry season with rainfall amount decreasing with distance 

from the equator. The hot desert climate (BWh) is found in Yobe and beyond in the Northeast of 

Nigeria  
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Figure 4: General climate classification according to Koppen-Gieger 

 

The States has a mixture of high, low activity and sandy soils (Figure 5), these include Leptosols, 

Chernozems, Podzols, Podzoluvisols and Gleysols. These soils vary in their distribution across 

each State. However, across the northern part of these States, sandy soils are dominant. while the 

podzols and the podzoluvisols constitute a segment of the high activity soils. The gleysols and 

some of the podzols constitute the low activity soils along the southern edges of the States. 
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Figure 5: Soil distribution across the three States and their neighbours 

 

Combining the socio-economic and demographic characteristics of the populaces, Lawal and 

Adesope (2019) showed that adaptive capacity varies across the States (Figure 6). The capacity to 

adapt declines as the distance from the major urban centre increases. The situation is worse across 

many parts of Jigawa, northern and western parts of Katsina State (Figure 6). 
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Figure 6: Combination of socio-economic and demographic characteristics- adaptive index for the 

three States 

Data and Methods 

Data 

The study utilised the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) dataset. 

The data was extracted from the vegetation indices (MOD13Q1) Version 6 data (Didan, 2015) and 

this version is made up of 16 days average of the NDVI and the other bands at 250m resolution. 

However, we collated only the Near Infrared (NIR) and the Red bands for this study. The study 
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focussed on the dynamics during the rainy season; therefore, data were collated for periods 

between May and September from 2001 to 2020. 

Method of Analysis 

The study utilised GDVI based ability to augment the dynamic range of the typical NDVI values. 

This approach addresses the poor sensitivity of NDVI. The GDVI was calculated as follows: 

𝐺𝐷𝑉𝐼𝑛 =
𝜌𝑁𝐼𝑅
𝑛  − 𝜌𝑅

𝑛

𝜌𝑁𝐼𝑅
𝑛  + 𝜌𝑅

𝑛     Equation 1 

Where n is power, an integer greater than 1, ρNIR and ρR are reflectance values from the NIR and 

Red bands, respectively. 

The dynamic range for the GDVI is equal to that of NDVI if n=1, and the values range between -

1 and 1. This study computed GDVI for n = 2. This allows for the amplification of the dynamic 

range for the low and moderately vegetated areas as found in the drylands. 

Space-time analysis can shed more light on the relationship between space and time regarding the 

occurrence of certain events. Many of the techniques for this analysis were developed in the field 

of epidemiology (e.g., Besag and Newell (1991); Knox and Bartlett (1964); Kulldorff and 

Nagarwalla (1995); Mantel and Bailar (1970)). These techniques are also useful in the analysis of 

crime, conflicts, and other events with spatial and temporal dimensions (Lawal, 2018). The work 

of Lawal and Chimenwo (2019) provides details of the procedure utilised in the implementation 

of the Space-time analysis within ArcGIS. For this analysis, the GDVI across each year’s rainy 

season was averaged to create a single raster for each year. This averaging resulted in 20 raster 

files covering the study area. The trend was examined at yearly intervals. 
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Result and Discussion 

GDVI Distribution 

Over the 20 years of the rainy season data, the GDVI average ranges between -0.40 and 0.94 

(Figure 7) with a standard deviation of 0.11. The distribution of the average values reflects the 

season with most of the area showing an indication of some vegetative cover (GDVI > 0.45). More 

so, the standard deviation shows that the variability of GDVI values is moderate across the areas. 

Areas with high GDVI values (>0.6) occurred in a linear pattern which indicates vegetation growth 

around floodplains (croplands). The reservoirs around the study area were easily identified with 

most of them having GDVI values less than 0.19. There are lots of sparse vegetation patches 

around the northern and the western part of the study area. Moderately (0.56 – 0.66) vegetated 

areas are most the predominant based on the average of the 20 years rainy season data. 

 

Figure 7: The 20 years rainy season GDVI average 
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Space-Time Trend 

From the computation, the space-time cube (x,y,z) of the GDVI  results  (Figure 8) showed that 

during the rainy season when vegetative cover emerges, about 43% of the area examined showed 

an upward trend in GDVI values over the 20 years examined. Within this area (those with an 

upward trend in GDVI values), 15%, 17.5% and 10.5% displayed an upward trend with 99%, 95% 

and 90% confidence. These levels of confidence are statistically robust to still consider such areas 

as locations with improvements in vegetative cover. 

About 2% of the area (Figure 8) displayed a downward trend over the same period. This 

computation indicated that over the 20 years across the selected area, about 86.54km² displayed a 

decreasing value of GDVI in the study region. This indicated that during the rainy season over the 

20years, just about 2% of the area examined showed a decline in vegetative cover. 

More than half (55%) of the area showed no statistically significant temporal trend in GDVI values. 

This result indicated that while there are changes, the trends observed are not statistically distinct 

to be classified as uptrend or downtrend. However, it should be noted that there are changes across 

the period.  
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Figure 8: Space-time trend of GDVI values 2001 -2020 

 

The analysis of the time series showed, based on the values, that there are two clusters of time 

series discernible from the dataset (Figure 9) – using the Mann-Kendal trend statistics (MKTS). 

Cluster 1 (Figure 9a) showed an average ranging between 0.54 and 0.62 over the 20 years. 

Therefore, these areas maintain a moderately vegetated cover through the period under 

consideration. It should be noted there were some sharp declines – notably 2006 – 2008, 2012 – 

2016 and 2019 -2020 for this cluster. The trend statistics showed that for these areas, there is no 

statistically significant trend (MKTS = 1.33, p-value = 0.18). In the case of Cluster 2 (Figure 9b), 

the average GDVI across the 20 years is higher (0.74 -0.80) than that of Cluster 1. However, this 

time series cluster experienced more fluctuation across the years. A decline started in 2004 and 

ended in 2010; this was followed by a sharp increase till 2012 after which another decline started 
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and continued until 2016. This cluster has witnessed on average an increase and stabilisation of 

GDVI since then. From the trends statistics, the cluster displayed a statistically significant 

decreasing trend of GDVI (MKTS = -2.37, p=0.02). 

Examination of the distribution of these clusters (Figure 10) showed that about 95% of the area 

belongs to Cluster 1 with the remaining belonging to Cluster 2. The second time series clusters 

appear most often around floodplains indicating that they are croplands (so also due to their 

relatively high GDVI). 
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Figure 9: Typical time-series clusters identified from GDVI values across the rainy season in the 

study area (a) Cluster 1 and (b) Cluster 2. 
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Figure 10: Time series cluster distribution across the study area 

 

Emerging Space-Time Pattern 

The space-time pattern combines the neighbourhood effect for time and space to identify the 

emerging pattern of the GDVI values over the 20 years considered for the study area during the 

rainy season. The result (Figure 11) showed that there are 7 different emergent space-time patterns. 

About 2% of the patterns were found to be statistically significant hot spots for the GDVI. New 

hot spots are areas that became hot spots (in time and space) just in the last time step and were 

never hot spots in previous years i.e., these are areas where GDVI values increased across 

neighbours both in time and space just in the year 2020. Another type of hot spot identified is the 

oscillating hot spot. These areas were found to be hot spots in 2020 but had cold spots sometimes 

in the past while being hot spots for less than 90% of the time steps. These areas have witnessed 
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changes from a cold spot to a hot spot and vice versa in the past; however, they are hot spots in the 

final time step. This oscillation captures the trend of the GDVI values both in time and space. 

About 1% of the area showed no discernable space-time pattern, thus, even though there are 

noticeable changes in space and time, the patterns are not statistically significant to be classified. 

This result indicated that a very small proportion of the area considered could not be 

spatiotemporally distinguished in terms of their GDVI values during the rainy season between 

2001 and 2020. 

 

Figure 11: Space-time emerging pattern of GDVI (2001-2020) 

 

About 97% of the total area examined belongs to the space-time cold spot. These areas have low 

GDVI value neighbours in time as well as in space. Five statistically significant classes of cold 

spots were identified. The majority belongs to the Persistent cold spot, these areas have been cold 
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spots for 90% of the time with no clear trend of increase or decrease in the values of GDVI over 

time. These areas have neighbours with low GDVI values surrounded by neighbours with low 

GDVI values while over time shows no clear trend of increase or decrease in GDVI values. The 

indication is that these areas are slightly stable with low vegetative cover. The diminishing cold 

spot is the second dominant type of cold spot. This cold spot type covered about 36% of the area 

considered in this analysis. They represent areas where for 90% of the time, they were cold spots 

(including the last time step - 2020), moreover the clustering of low GDVI values was decreasing 

across each time step. This indicated that these areas are cold spots over time however, the intensity 

of the clustering of the cold spot is decreasing over space. Oscillating cold spot covers around 5% 

of the area, these areas are cold spots in the final time step but in the 20-year history have been hot 

spots at some time and less than 90% of the time step have been cold spots. These areas changed 

from cold to hot spots at some time during the 20 years, however, they are cold spots in the most 

recent time. Sporadic and Historical cold spots were also found with each covering about 1% of 

the study area. Historical cold spots have the most recent time not as cold spots but at least 90% 

of the time they were cold spots. Thus, for at least 18years these areas were cold spots for GDVI 

during the rainy season, but they were hot spots in 2020. In the case of sporadic hot spots, they 

were never hot spots during any period, but have been cold spots for less than 90% of the time 

while sometimes changing between cold spots and no pattern areas. 

 

Discussion 

The result of the temporal analysis (Figure 7) showed that across the 20 years examined, most 

areas displayed no clear trend in vegetative cover, while many other places showed a temporal 

increase (over the 20 years) in GDVI values. This finding indicated that vegetative cover, as 
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indicated by GDVI witnessed no distinct trend over this period. Furthermore, another 43% of the 

areas showed an uptrend in their GDVI values. It should be noted that an increase in GDVI value 

does not necessarily mean we have luxuriant vegetation - an increase is just an increase in GDVI. 

However, clustering the time series data (20 years average) showed two clusters. The clusters thus 

point to the cropped areas around floodplains and other vegetated areas, which combine cropped 

woodland and rangeland. The first time-series cluster identified could be seen as a mixed 

vegetative surface that could survive with the available rainfall (most notably sparse vegetation of 

shrubs, woody perennials, and some grasses). Due to the spatial resolution of the dataset, it is not 

possible to clearly distinguish between these different classes of vegetative covers. These findings 

revealed the importance of considering the temporal dimension in spatial analysis. 

From the spatial distribution of the 20 years average of the GDVI, it is evident that relatively high 

GDVI values are compact - occurring around floodplains. This observation is understandable since 

the terrain, or the characteristics of the place influence the occurrence of more luxuriant vegetation 

around such areas. This phenomenon captures the first-order effect whereby the conduciveness of 

a place for specific events to occur drives the non-randomness in the distribution of the GDVI. 

Therefore, the abundance of water in and around the floodplains drives the clustering of high GDVI 

values around these places. 

The space-time analysis created an understanding of how vegetative covers are clustered over 

space and in time. Thus, revealing where the changes in time and space create new conditions for 

vegetative cover. Over the 20 years across the rainy season, there is an indication of more cold 

spots than hot spots. This result showed that there are more areas where vegetative cover remained 

low over time and space. More so, emerging patterns like diminishing cold spots represent areas 
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that require attention, as the results suggest that such areas are witnessing declining GDVI. This 

observation could help identify where dryland degradation may be emerging. 

The locations with decreasing GDVI values represent areas that require further examination 

because the declining GDVI values could: 

1. signify an initial phase of degradation; 

2. highlight areas with opportunities to intervene before the situation worsens; 

3. represent areas with high human pressure resulting in negative impacts; and 

4. reveal areas with a need for more monitoring to prevent further degradation. 

The hot spots identified are also worth monitoring due to the delicate nature of the dryland 

ecosystem. If the pressure becomes excessive and land management is not carefully executed, 

these highly productive areas could quickly become badlands. As pressure on high-quality lands 

and water mounts due to increasing population, the need for closer monitoring of the drylands 

becomes pertinent in ensuring that desertification does not set in. Sporadic and historical cold spots 

are likely to be areas where production is currently low due to the interaction between human 

activities and the climate. While they may be less productive now, there is an opportunity that 

since there is less pressure on such places, it is plausible that soil restoration across these areas 

could enhance ecosystem services in the region. 

The resilience of the dryland ecosystem is well known; however, the pressure from human 

activities is one of the leading causes of its degradation. This resilience has often given land 

managers the confidence to continue to manage the land as they deem fit without paying attention 

to sustainability. The results have shown that there is a decline across the period examined, and 

the lack of attention toward building the resilience of the system will have dire consequences if 

appropriate actions are not taken at all levels. This challenge has implications for food security, 

human security, and the economic sustainability of the entire country. 
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Conclusion and Recommendations 

From the temporal analysis, we conclude that there seems to be no temporal pattern for most places 

across the 20 years of rainy season data of vegetative cover. However, other places within the area 

have indications of an uptrend in vegetative cover. Thus, a mix of both increase and no pattern. 

Time-series clustering examined the GDVI values across time to find statistically significant trend 

clusters. From the findings, we conclude that most of the areas showed no particular temporal 

trend, while a small proportion (5%) showed decreasing trend. These areas are found around the 

floodplains and represent areas where there is a need for attention to mitigate continued ecosystem 

service degradation. 

The space-time analysis revealed the pattern formed over time and in space; thus, we can conclude 

that 97% of the area has witnessed a decline in GDVI, and there is a need to pay close attention to 

controlling dryland degradation. If the delicate balance continues to be tipped in the direction of 

unsustainable utilisation of resources (bush burning, deforestation, firewood collection, 

overgrazing, etc.), restoration of the dryland and negative impacts of degradation might continue 

in this region. The impacts are likely to remain in the northern region of the country. Therefore, 

addressing dryland degradation is not just a northern issue; it is a national issue. 

It is recommended that further studies should explore higher power GDVI in studying dryland 

degradation in the region. Furthermore, higher resolution remotely sensed data and the computing 

facilities to handle such Big Earth Data should be deployed to facilitate monitoring and prompt 

delivery of solutions. 

Deployment of desertification control measures and programmes is laudable, however, without 

active monitoring and coordinated actions, the impact of such projects and programmes will 

remain minimal owing to the enormity of the task. There is a need for a new dimension in the 
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effort to reverse desertification and dryland degradation in Nigeria, such a new dimension should 

include the restoration of degraded soil, bringing such lands back to a state where they can be 

utilised sustainably. 

 

Data Availability 

Data used for this study is openly available from USGS MODIS Data Archive. 
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