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Abstract 
______________________________________________________________ 

Energy consumption in the residential sector has become increasingly important. This is all 

the more significant considering the pandemic, when people spent more time at home. In 

order to achieve the zero-carbon target of the Paris Agreement of which the UK is a part, 

there is a drive to insulate buildings, on the assumption that the more insulated a building is, 

the more efficient it will perform. In this study, the author examines the effect of peoples’ 

behaviour, particularly window opening, as a behavioural pattern of the occupants and 

examines impact of occupant behaviour on the energy consumption of residential buildings 

in the UK. To identify the key factors that influence occupant behaviour, thermal imaging 

of residential buildings across Nottingham was done, followed by survey with questions 

regarding window opening behaviour of the participants. This was followed by the analysis 

of energy usage in Social Housing. Temperature data collected for a period of 14 months, 

from 17 houses, were analysed and the energy demand was calculated. Findings show that 

energy efficiency of a building holds an explicate relationship with the behaviour of 

occupants in the buildings, regardless of the building insulation properties. A highly 

insulated building could consume as much energy as a badly insulated house, due to people’s 

behaviour. There was empirical evidence that for a well-insulated house with window open, 

the heating time increases by a factor of 1.6 when compared to similar insulated house with 

window closed. Hence the assumption that the more the insulation, the more the energy 

efficiency, might not be true. Findings also show that people’s behaviour could reduce the 

effect of insulation. So, what theoretically is a well-insulated building might behave like a 

badly insulated house in terms of energy efficiency, depending on the behaviour of 

occupants. Thermal imaging is a helpful tool in visualising the impact of window opening. 

and can be used to make occupants aware of the effect of their behaviour. ANN feed forward 

neural network model to predict the window opening behaviour based on the room 
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temperature, radiator temperature and outside ambient temperature was developed. Energy 

costs of highly insulated and window open house defers from that of badly insulated and 

window open house only by 2%, while there is a difference of 10% between highly insulated 

and window open house and highly insulated and window closed house, showing that a well-

insulated house with window open behaves in a similar way to a poorly insulated house. 

ANN feed forward neural network model to predict the window opening behaviour based 

on the room temperature, radiator temperature and outside ambient temperature was 

developed. The model predicted window opening with 98.8% accuracy for well insulated 

window closed house and 92% accuracy for well insulated window open house. The findings 

suggest that people’s behaviour could reduce the effect of insulation in residential buildings. 
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Chapter 1 | Introduction 

1.1. Problem Definition 

In 2008, the UK government committed to reduce 80% of its carbon footprint by 

the year 2050 (Climate Change Act 2008, 2008). Till 2017, the UK was working on 

track with the carbon reduction targets within the second and third budgets (2013- 

2022) and more challenging measures were required in addition to the existing 

progress, to reach the fourth budget target (2023-2027) (How the UK is progressing 

- Committee on Climate Change, 2017).  In 2019, the target was increased to net 

zero carbon emission by the year 2050 (UK Statutory Instruments, 2019). This was 

officially adopted in June 2019, before the impact of the Covid 19 pandemic. The 

hiatus caused by the pandemic and the slowing of global economy has been one of 

the greatest challenges to meeting the net zero target, although there is progress on 

UK’s clean energy policy. The UK energy sector has been hit hard due to the 

pandemic. Gas and electricity bill for a typical household in the UK is estimated to 

go up by 54% in April 2022 (BBC News, 2022). This is because the energy price 

cap, which is the maximum price suppliers can charge households, is being raised, 

because of increase in global gas prices.  Although government has promised 

schemes like the warm Homes Discount Scheme wherein a household can get up to 

£140 off electricity bill for the winter of 2021-22, more households are expected to 

face fuel poverty due to this sudden spike in energy prices. An estimated 13.4% of 

households in England are in fuel poverty, according to 2019 statistics (Department 

for Business Energy & Industrial Strategy, 2021a). With today’s increase in oil 

prices and the significant growth in energy demand, the issue of fuel poverty must 
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be dealt with effectively. Energy savings in heating and cooling of buildings is 

becoming an important area to address to reduce energy consumption and thereby, 

energy bills. Although commercial buildings have the high energy consumption, it 

does not vary significantly due to changes in occupancy levels or room activities.  

The domestic sector attributes to the highest share (40%) of end user Carbon 

dioxide (CO2) emissions in the UK. Between 2019 and 2020, although the overall 

CO2 emissions in the UK fell by 10.7%, the CO2 emissions in the residential sector 

increased by 1.8% as people stayed more at home due to the pandemic(Department 

for Business Energy & Industrial Strategy, 2019, 2021d). With the domestic sector 

contributing to about 40% of the UK emissions (UK Statutory Instruments, 2019), 

this increase is an immense issue. The domestic sector also contributes significantly 

(32%) to the overall energy consumption in the UK. Although the total energy 

consumption across all sectors decreased by 11% in the UK in 2020 due to the 

impact of the pandemic on energy supply, the energy consumption in the domestic 

sector went up by 2.3% when compared to 2019 (Department for Business Energy 

& Industrial Strategy, 2021c).  

These numbers make domestic energy use a salient target for greenhouse gas 

reduction. There has been a steady increase in the number of households in the UK, 

since 1991, contributed by factors such as net immigration rate and the long-term 

trend of single adult households. According to National Statistics, it has reached 

27.8 million in 2020 and it is projected to reach 32.1 million by 2034 (UK 

Government, 2021). This means an expected increase in overall energy 

consumption in the domestic sector.     

To improve energy efficiency in the domestic sector, the government introduced 

Green Homes Grant scheme to in August 2020, which provided households with 
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vouchers to make energy efficient improvements to the house. The scheme had to 

be cancelled after reaching only 10% of the target since it did not perform as 

expected (Davies, 2021; Department for Business Energy & Industrial Strategy, 

2021b). Other policies such as feed-in-tariffs (FIT) or renewable portfolio standards 

support the attainment of these tariffs have also been introduced (European Union, 

2009). The effectiveness of this approach is questionable since they rely on the 

conventional building energy management systems (BEMS). It was found that 

smart BEMS produce better results when combined with policy measures than 

conventional BEMS (Rocha, Siddiqui and Stadler, 2015). However, UK requires to 

invest in a nationwide upgrade in energy efficiency of the UK housing stock in 

order to meet the country’s 2050 climate commitments (Timperley, 2018). Such a 

retrofit might increase the relative impact of the occupant’s behaviour on energy 

use, thereby defining success more and more as the way a building is being used by 

its occupants (Schweiker, 2017).  

There has been an increase in the evaluation of energy use in buildings in the past 

15 years, and it has been widely acclaimed that there is a considerable gap between 

the predicted and actual energy consumption in buildings. Extensive research has 

been done using energy simulation tools analysing climatic data and properties of 

buildings, but the impact of occupant behaviour in energy performance analysis has 

hugely been overlooked until the past few decades. In the past couple of decades, 

several studies have been undertaken to analyse post occupancy energy use  (Hong 

et al., 2015; Schakib-Ekbatan et al., 2015; Zero Carbon Hub, 2015; Delzendeh et 

al., 2017). However, occupant behaviour is one of the most overlooked parameters 

when considering factors that affect energy efficiency of buildings (Schakib-

Ekbatan et al., 2015). 
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1.2. Research Scope 

Under the Paris Agreement, the UK government has committed to ‘net-zero carbon 

emissions’ by 2050. But steps need to be taken to reach this target (United Nations, 

2015; BBC News, 2021). The Committee on Climate Change (CCC), an advisory 

board to the government of the UK suggests that although UK is progressing well, 

further steps to be taken at the earliest for this target to be met. The net zero strategy 

updated in October 2021 mentions insulation only once. The government also 

scrapped its Green Homes Grant scheme earlier this year. One reason for this might 

be because of the data from the latest English Housing Survey, according to which, 

in 2019, 7% of residents dwelling in residential homes reported that at least one part 

of their home got uncomfortably hot. Of these, 11% lived in homes built in 2003 or 

later, compared to homes built in 1990 or earlier (Ministry of Housing Communities 

& Local Government, 2020). This overheating invariably leads to window opening 

behaviour which in turn contributes to the stochastic nature of energy usage in 

buildings. 

About one third of UK’s energy is used in the domestic sector, which also produces 

about one third of all the CO2 emissions. More than two thirds of the energy used 

in domestic sector, is used in heating, especially during winter. Managing the 

heating in houses can help reduce the nation’s carbon footprint to a great extent. 

Heat pumps and other alternative forms of heating being considered, will 

potentially help in the longer run. However, about 75% of the UK housing stock 

have boilers for heating at present (Ministry of Housing Communities & Local 

Government, 2020). Therefore, helping the residents understand the effect of their 

actions on energy efficiency of the house, can provide a positive impact. This can 

be done only if there is information on the effect of occupant behaviour on energy 
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efficiency. Analysing indoor temperatures with respect to the outside ambient 

temperature, taking into consideration the behaviour of occupants that may 

influence the energy demand, for different types of households, can provide 

statistical information that can help occupants understand in a simple way, the 

impact of their action on energy efficiency. 

1.3. Aim 

This research aims to study the impact of occupant behaviour on the energy 

consumption of residential buildings and to identify the key factors that influence 

occupant behaviour that affect the energy efficiency of the building, and to provide 

solutions and recommendations to improve energy efficiency in buildings using 

mathematical techniques and artificial intelligence. 

1.4. Objectives 

This research has the following objectives as a pathway to achieve the aims of the 

study: 

▪ Identify the key factors that influence occupant behaviour that affect the 

energy efficiency 

▪ Study the impact of occupant behaviour on the energy consumption of 

residential buildings. 

▪ Further enhance the understanding of the energy efficiency of buildings and 

to validate the information regarding the building fabrics, and its relationship to 

occupant behaviour of window opening, by obtaining thermal images of buildings. 

▪  Improve energy efficiency of residential buildings, using mathematical 

techniques 
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▪ Design and develop machine models using artificial neural network, that 

help predict window opening and closing behaviour of occupants, and energy 

demand. 

1.5. Research Questions 

Is there a relationship between the level of building insulation and the internal 

temperature of the building? 

How much does the difference in people’s behaviour influence the energy 

consumption, particularly the heating? 

Why do people open windows in winter? 

How important and how significant is thermal insulation to reduce energy 

consumption? Can we ignore people’s behaviour? 

How can we reduce the ‘energy performance gap’ in buildings? Can adding sensors 

in buildings over long time, allow us to identify the difference between people’s 

behaviour and building characteristics? 

Can control theory/ first order system modelling be used to characterise the 

performance of a building based on the opening and closing of windows? How 

helpful is T-constant in characterising building characteristics? 

What characteristics of the people’s behaviour needs to be addressed for better 

energy consumption in residential buildings? How can data be better represented?  

1.6. Contribution to Knowledge 

The research study was carried out considering the above aims, objectives and 

research questions, the following contributions to knowledge were obtained as a 

result: 

Sherna Salim
1.

Sherna Salim
2

Sherna Salim
3.

Sherna Salim
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▪ Energy efficiency of a building holds an explicate relationship with the 

behaviour of occupants in the buildings, regardless of the building insulation 

properties. 

▪ A highly insulated building could consume as much energy as a badly 

insulated house, due to people’s behaviour. Hence the assumption that the 

more the insulation, the more the energy efficiency, might not be true. 

▪ People’s behaviour could reduce the effect of insulation. So what 

theoretically is a well-insulated building might behave like a badly insulated 

house in terms of energy efficiency, depending on the behaviour of 

occupants 

▪ Mathematical models can be used to characterise performance of a building 

based on opening and closing of windows using first order system modelling 

and to predict energy usage in a building. 

1.7. Thesis Structure 

The thesis consists of 9 chapters as explained below: 

Chapter one provides a clear synthesis of the background of the research and 

defines the problem that is being addressed. This is followed by the aim of the 

research, its objectives, and the research questions. 

Chapter two elaborates on the literature review that is sectioned into reviews about 

energy efficiency in buildings, occupant behaviour in residential buildings, thermal 

imaging of buildings, use and scope of machine modelling in building energy 

efficiency, existing artificial neural network models in the field of building energy 

consumption and their limitations. 
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Chapter three presents the methodology followed in carrying out the aims and 

objectives of the PhD. The methodology comprises of literature review, qualitative 

and quantitative methods of analysis and experimental work which are explained in 

the chapter. 

Chapter four examines the results of the qualitative analyses performed to 

understand occupant behaviour of window opening in residential buildings.  This 

includes thermal image analysis of residential buildings to understand heat-loss due 

to window opening, and the second part investigates reasons as to why people open 

windows in winter, with the help of a survey. 

Chapter five presents the first stage of analysis of energy usage in social housing 

using data obtained from sensors fitted in Nottingham City Houses, with the aim of 

understanding the impact of occupant behaviour on energy efficiency of the 

dwelling.  

Chapter six presents the second stage of analysis of energy usage in social housing 

using data obtained from sensors fitted in Nottingham City Houses, with aim of 

understanding the impact of occupant behaviour on energy consumption of the 

building. Here, energy consumption of four houses with specific patterns of 

occupant behaviour and building fabric properties, is compared.  

Chapter seven includes the development of artificial neural network models with 

Nottingham city council houses data, to predict the energy consumption of house 

based on widow status and to predict the window status based on the energy 

consumption. 

Chapter eight is the final chapter, with the results and discussion of the research, 

indicating how the research aim, objective and research questions are met. The 
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chapter also includes the contribution to knowledge of the research undertaken, 

before adding limitations and recommendations for further study. 

1.8. Summary 

This chapter firstly describes the present situation in the UK regarding meeting net 

zero targets and the role of energy efficiency in buildings in meeting the net zero 

targets. The current situation of energy consumption in buildings and the 

discrepancy in actual and predicted value in energy consumption in buildings, is 

conferred. The role of occupant behaviour in energy consumption of buildings is 

looked into, and the scope for analysing occupant behaviour to understand its 

impact on energy efficiency of buildings is discussed. This is followed by 

addressing the aim of the research which is to assess the impact of people’s 

behaviour on energy efficiency of buildings and to identify the key factors that 

influence occupant behaviour that affect the energy efficiency and to provide ideas 

for improving energy efficiency, by using mathematical techniques and artificial 

intelligence. The objectives and research questions are presented after the aim. 

Finally, the chapter wise structure of the thesis is briefly stated.
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Chapter 2 | Literature Review 

2.1. Introduction 

The UK government aims to achieve net zero carbon emissions by 2050. In the housing 

sector the efforts to reduce energy usage has been focused on improving the insulation by 

retrofitting and other ways of improving building envelope performance. Several studies, 

presented in the previous section, show that this approach does not give a good outcome. In 

fact, in many cases, it has been proved to give a worse outcome than expected. This is 

because of the under-representation of role of occupant behaviour in energy efficiency of 

any building. Improving building insulation increases the internal temperature, even when 

the occupant demand is not higher temperature (Shipworth, 2011). This leads to the occupant 

trying to reduce the heat in the dwelling by resorting to methods like opening the window 

which impacts the energy usage to a great extent. This research aims to focus on the role of 

occupant behaviour in the energy efficiency of buildings.  

Energy consumption depends highly on heating, and one way to reduce energy consumption 

is to improve energy efficiency in homes. To this end, the government installed cavity and 

loft insulation to achieve the new Building Regulations of reaching thermal efficiency 

standards. This was carried out such that between 2015 and 2020, 16.9 million homes out of 

25.4 million homes were insulated. Moreover, smart meters were installed such that 42% of 

all meters in domestic households were smart(Department for Business Energy & Industrial 

Strategy, 2018a). However, the energy consumption still highly depended on the weather, 

since it rose by 2.7% in the third quarter of 2017, in colder weather but went down by 2.4% 

in the third quarter of 2019, reflecting the comparatively warmer weather(Department for 

Business Energy and Industrial Strategy, 2017, 2019). 
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Improving energy efficiency is a challenging multi objective optimisation problem and the 

measures employed must consider various factors like energy consumption, costs, 

environmental performance etc. (Diakaki et al., 2010).   Several policies have been brought 

forward by the government in the past decade to improve energy efficiency in the domestic 

sector. The green deal, The Energy Act 2011, incentives to improve insulation in houses 

(solid wall insulation and loft insulation) all concentrate on improving building performance 

by improving the fabrics of existing buildings (UK Public General Acts, 2011; UK Statutory 

Instruments, 2014; Davies, 2021). However, government statistics show that despite 

improvement to the buildings’ fabric, houses do not meet the originally set energy targets. 

This has been inferred from a report after the analysis of data from a subset of 76 homes by 

the Innovate UK’s Building Performance Evaluation Programme (BPE) (Innovate UK, 

2016).  In its strategies to achieve carbon budgets, it has been clearly stated that ‘We can 

achieve a reduction in energy demand either by improving the energy efficiency of buildings, 

lighting and appliances, or by changing the way we behave so that we use energy more 

intelligently and reduce the amount we need.’(Department of Energy and Climate Change, 

2011).  

Providing smart meters to every home and business by 2020 is another government 

commitment. According to the post installation survey was carried out to understand 

consumer experience, it was found that 62% of respondents felt that their energy use 

remained the same and 14% felt that it had increased. Of the latter group, 26% attributed the 

increase in energy use to having the heater on more (Department for Business Energy & 

Industrial Strategy, 2018b)  

All these contribute to the idea that occupant behaviour (OB) plays a pivotal role in energy 

efficiency of residential buildings. Several studies have been performed, particularly in the 

past decade, to understand the effect of occupant behaviour in buildings, its impact on the 
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energy efficiency and the energy gap. This chapter includes literature review about the 

studies, in a comprehensive manner. 

2.2. Energy Efficiency in Buildings 

Energy use in buildings is influenced by six parameters: climate, building envelope, building 

energy and services system, indoor design criteria, building operation and maintenance and 

occupants’ behaviour  (International Energy Agency, 2016; Balvedi, Ghisi and Lamberts, 

2018). The performance of a building is the measure of how well it functions, based on 

criteria like physical, social, or environmental considerations. Although energy consumption 

in winter is accounted for mostly by space heating, in the UK, limited research has been 

done in this area  (Sen and Al-Habaibeh, 2020). In the last couple of decades, energy efficient 

design strategies have been introduced with the help of more stringent energy codes with the 

aim of reducing the carbon footprint. Mallaburn and Eyre (2014) reviewed history of energy 

efficiency policies in the UK from 1973 to 2013 and shows that while the early policies 

focussed on technologies, the later ones started considering the demand side as well, i.e., 

people.  These strategies would be successful depending on how occupants interact with the 

building, or rather, on the energy-related lifestyles they assume (Barthelmes et al., 

2017) .  Dowson et.al (2012) conducted a detailed review of the thermal performance of the 

existing UK housing stock, to assess energy savings, financial payback etc and to review 

key outcomes of various fabric incentives. They concluded that although Green Deal, which 

aims to refurbish UK housing stock for better energy efficiency, is scheduled to be UK’s 

main energy efficiency scheme, there is a risk that the payback period for these 

refurbishments will be very long. Marshall et.al carried out an investigation where low 

energy thermal comfort was delivered to three distinct household occupancy patterns. The 

results showed that energy consumption depended on appropriate matching between 

occupancy type and energy efficiency measures (Marshall et al., 2016).  



 13 

Sustainable energy economy can be improved greatly with the factor of energy efficiency in 

the built environment. The need for improving the efficiency of a building has been tried to 

be solved by incremental goals to improve the component efficiencies. Insulate Britain, an 

environmentalist group founded last year, who believe that retrofitting homes is fundamental 

to achieve UK’s zero-carbon target.  They initiated a series of protests, blocking motorways 

to meet their demand of the UK government agreeing to insulate all social housing in Britain 

by 2030 (Insulate Britain, 2021). This old approach must be replaced by the newer approach 

that focuses on the fact that energy use is influenced by a complex matrix of factors that 

include ambient temperature, building load, building controls, ventilation, and occupancy.  

2.3. Impact of Occupant Behaviour of Window Opening on Energy Efficiency in 

Buildings 

The effect of Occupant Behaviour (OB) on energy demand in residential buildings has been 

focussed on, only in the last couple of years. It is a complex process, depending on and 

varying based on the stochastic behaviour of occupants. Various factors contribute to it, 

some of which are natural ventilation or the window opening behaviour of occupants, space 

heating energy demand are two important factors that contribute to the varying energy 

demand, in addition to other factors like natural light, direction of the house with regarding 

to sun, etc. 

One of the main aims of built environment is achieving deep building energy efficiency. 

Lack of knowledge about factors determining energy use is one of the most significant 

barriers to achieving energy efficiency. Extensive research has been carried out to analyse 

building energy efficiency using energy simulation tools, analysing climatic data and 

properties of buildings, but the impact of occupant behaviour in energy performance analysis 

has hugely been overlooked. The IEA project EBC Annex 53 (mentioned in Section 1.3) 

results showed the user related aspects and behaviour effects of energy use by the difference 

in energy usage in similar buildings and argued that better prediction of building and energy-
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related behaviour may result in benefits for energy savings, cost saving and better thermal 

comfort of occupants (Yoshino, Hong and Nord, 2017). 

Dynamic building simulation has been used to predict the energy saving potential of 

common refurbishment methods, based on occupant behaviour. The study was conducted 

because of lack of evidence or clarity as to whether occupant behaviour should be included 

in building simulation models. The study was done in a public building and the results 

showed that there is significant impact on predicted energy saving potential of refurbishment 

measures; the experiment revealed that opening windows longer will reduce the impact of 

refurbishment drastically (Wei et al., 2017). Balvedi et.al (2018) reviewed the current 

methods occupant behaviour in residential buildings. They found out that although occupant 

behaviour models applied in building performance simulations, a well-designed model 

including evaluation of accurate scenarios for human-building interactions would enhance 

building energy performance. Hong et.al reviewed literature and proposed a ‘Drivers - Needs 

- Actions - Systems’ framework to standardise the representation of energy-related occupant 

behaviour in buildings, based on needs, actions and drivers of behaviour of occupants, to act 

as supporting ontology to research aimed at standardising energy related occupant behaviour 

in buildings (Hong et al., 2015).  

The Zero Carbon Hub was established in 2008 (discontinued in 2016), to achieve the target 

of delivering zero carbon homes in the UK by 2016. It investigated the design and delivery 

of 24 flats, half of which were built in compliance with Code for Sustainable Homes and the 

other half built to achieve Fabric Efficiency Standards. The post occupancy evaluation of 

the project showed that the measured gas usage was higher than predicted for both sets of 

flats, higher for the latter ones. Breakdown of gas consumption confirmed that occupant 

behaviour had a string impact on consumption (Zero Carbon Hub, 2015). Many studies have 

been conducted, showing that occupant behaviour is one of the most overlooked parameters 
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during energy efficiency design of buildings (Wilson, Bhamra and Lilley, 2010; Schakib-

Ekbatan et al., 2015).  

There has been an increase in studies related to OB analysis in building in the past decade. 

Pilkington et al., (2011) analysed the effect of occupant’s behaviour on energy efficiency of 

6 similar passive solar dwelling with sun spaces and found that space heating demand varied 

between dwellings by a factor of 14, with evidence showing that it could vary up to a factor 

of 45. Esmaeilimoakher (2019) monitored indoor temperatures of households in Australia 

and found that OB significantly affected the thermal performance with respect to heating 

and cooling systems, thereby affecting the energy consumption. Jang and Kang studied 

individual apartments in a high rise building and developed a model integrating and 

implementing the unit specific consumption difference and found that the heating 

consumption varied with different locations from 96 to 171 kWh/m2/year (Jang and Kang, 

2018). Van den Brom, Meijer and Visscher (2018) compared the average actual energy 

consumption with the theoretical values of 1.4 million social housing households in the 

Netherlands, one of their suggestions was that renovated buildings did not perform as well 

in reality, as expected. Da Yan et.al (2015) critically analysed literature regarding OB 

focussing on occupant monitoring and data collection, model development, evaluation, and 

implementation into simulation tools.  

According to Steg and Vlek (2009)., three main factors influence domestic energy 

consumption; Occupants’ knowledge about energy conservation and energy in general; the 

effect of individuals’ energy usage in conservation of energy; and the readiness of occupant 

in engaging in energy conservation practices Darby (2008) proposed five categories of 

feedback for effective change in energy usage, which are direct feedback, indirect feedback, 

inadvertent feedback, utility-controlled feedback and energy audits. She argues that by 

allowing the user to analyse their own energy usage, the gap in action can be bridged better 
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than by trying to generate a sense of social obligation. Wilson, Bhamra and Lilley (2010b) 

of Loughborough University examined the role of design in reducing domestic energy 

consumption. They suggest that providing feedback about energy consumption would 

promote energy conserving attitude in the occupants. They agree that the way the 

information is provided is vital for motivation. Design for Sustainable Behaviour is a branch 

of sustainable design theory that can be used by the designer to shape user perception, 

learning and interaction (Lilley, 2009; Tang, 2010). The aim was to bring about change in 

behaviour in the context of energy efficiency and to build upon the framework of DfSB to 

make it applicable in other contexts (Wilson, Lilley and Bhamra, 2013). The Carbon, Control 

and Comfort (CCC) is an interdisciplinary project aimed at reducing domestic energy usage 

by 20%, by exploring the relationship between fabric of houses, heating systems and 

occupant behaviour that work towards optimum comfort levels and the energy usage in the 

process. It explored the relationship between three ‘components’ of a domestic heating 

system occupants, heating systems, the fabric of houses - and how these three things interact 

to create comfortable environments - and the amount of energy being used during the 

process. The investigators of the project found it to be a complex problem and by trying to 

address it, realised that there is a lot of variability between and within households and over 

time. They found thermostat setting varied from as low as 15oC to as high as 30oC. Although 

energy costs were cited as a source of concern, the setting was found to be based on comfort 

rather than cost for most participants. They also found that the central heating was used in 

many ways; some of them adjusted the thermostat directly, some set timers, and some turned 

the whole heating system on and off as required (Wilson, Bhamra and Lilley, 2010b; 

Shipworth, 2012b, 2012a). Thermal performance of residential buildings is greatly affected 

by OB of natural ventilation, i.e., window opening behaviour. Sorgato and Melo (2016) 

conducted a study in Brazil to evaluate the relationship between window opening behaviour 

of resident and the building thermal mass, in the energy consumption related to HVAC 
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system of the building. They used simulated models to predict difference in energy usage of 

HVAC systems, based on OB. Results of the study showed that OB played an important role 

in the performance of naturally ventilated buildings, but emphasises that generalising OB is 

not recommended, as it can be under or overestimated. 

The study done by D.Yan et.al (2015)  argues that energy performance of buildings a 

considerably influenced by OB and emphasises the representation of OB in building 

simulation models for more accurate results. Fabi et.al (2012) highlighted existing literature 

to identify and highlight the influence of window opening behaviour on energy performance 

of buildings. Behaviour of occupant in a residential building varies depending on factors like 

outdoor ambient temperature, indoor ambient temperature, indoor air quality, humidity etc. 

the past decade has seen an increase in the number of research papers focussing ion window 

opening behaviour of occupants in buildings and its impact of energy efficiency of a 

building. Several models have been tried, stochastic and dynamic ones, to include window 

opening behaviour so that the predicted value resembles the actual value to a good degree.  

These models are based on statistical algorithms to predict the probability of a specific 

condition or event, such as the window state or the window opening/closing action, given a 

set of environmental or other influential factors.   

Occupant's action of window opening or closing has an important impact on building energy 

use and indoor environmental quality (IEQ)by changing the amount of fresh air to the 

building. Currently, there is no sufficient understanding of the relationship between occupant 

behaviour and how it can affect the energy efficiency (Hong et al., 2016). According to 

ASHRAE standards, there are large discrepancies between measured energy consumption 

and actual energy consumption(Fulton and Bsme, 2004; Delzendeh et al., 2017). The 

inherent demand for an energy consumption model based on occupant behaviour arises. 

Delzendeh et.al (2017) did a review of the latest literatures published about the impact of 

occupants’ behaviour on the efficiency of a building and one of their conclusions was that 
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the inter-relationship between energy behaviour of occupants might have significant impact 

on the efficiency but has not been investigated enough. Actual energy consumption 

prediction by dynamic energy simulations tools is undermined by a weak representation of 

human behaviour in any model. D’Oca and Hong(2014) developed a conventional 

methodology by combining probabilistic user profiles for window opening and thermostat 

set-point adjustments into a dynamic building simulation tool (IDA ICE). Mean values of 

probabilistic distribution was compared against the results obtained by deterministic 

simulations. The findings indicated major discrepancies between models using standardised 

occupant behaviour profile in energy simulation and models based on in field measurement 

and probabilistic modelling of occupant behaviour, the latter proving to be much nearer to 

the actual values, thus proving the hypothesis that occupant behaviour is one of the key 

factors for the ‘energy gap’.  

Across the world, occupant behaviour is being identified as one the key drivers of managing 

energy efficiency in residential buildings. UNECE (United Nations Economic Commission 

for Europe) states: Closing the energy performance gap between design intent (and 

regulatory requirement) and the actual performance is likely to become an important issue 

over the next decade if countries are to deliver the climate and environmental targets related 

to buildings (United Nations Economic Commission for Europe, 2018). The World Business 

council for sustainable development recognises OB as having as much impact on energy 

efficiency as the effect of equipment in reducing energy efficiency (World Business Council 

for Sustainable Development, 2007). Measuring OB to understand its impact and implement 

in simulations has been realised to be one of the main drivers for a sustainable development’.  

There has been an increasing evaluation of energy use in buildings in the past 15 years, and 

it has been widely acclaimed that there is a considerable gap between the predicted and actual 
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energy consumption in buildings, one significant being lack of knowledge about the factors 

determining energy use, called the Energy Performance Gap (EPG).  

Delzendeh et al., (2017) reviewed literature based on evaluation of energy demand and its 

use in buildings and estimation, to identify gaps and found that there is an alarming EPG, 

ranging up to 300% difference. According to Yoshino et.al, Building energy use is mainly 

influenced by six factors: climate, building envelope, building services and energy systems, 

building operation and maintenance, occupants’ activities and behaviour, and indoor 

environmental quality (International Energy Agency, 2016b). Although research was more 

focused on the former three factors, in the past, development in social and behavioural 

sciences showed that people were an important factor for energy efficiency in buildings 

(Mallaburn and Eyre, 2014) and more emphasis is being given to the latter three factors as 

well, at present. The International Energy Agency (IEA) employed ‘Annex 53’ to better 

understand energy use in buildings to improve energy use prediction in a more robust way 

to enable better energy saving measures, policies, and techniques. 100 researchers from 15 

countries came together from January 2009 to March 2013 to focus on 4 subtasks for one 

taskforce, namely occupant behaviour. 13 offices and 12 residential buildings from 15 

countries were studied and the key findings showed that simulation models depended on the 

chosen hypothesis and the output is result of assumed behaviour. The actual presented results 

depend very much on user behaviour being addressed, this being one of the most important 

findings of annex 53. The study showed that difference in patterns of heating induced huge 

differences in energy use results showing variation factor of 5 to 20 in case of heating 

(International Energy Agency, 2016b).  

Past decade has seen an increase in the evaluation of energy use in buildings. This has 

brought to notice that there is there is significant discrepancy between the predicted and 

actual energy consumption in the investigated buildings(O’Kane, 2018; Salim and Al-

Habaibeh, 2019). One reason for this is the lack of knowledge about the factors determining 
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energy use (Yoshino, Hong and Nord, 2017). Studies about energy gap in the building sector 

are more recent. Cozza, Chambers and Patel (2020) analysed the existence and extend of 

energy gap in residential buildings in Switzerland and found that buildings with low energy 

ratings (Energy rating C to G) consumed less energy than expected, while buildings with 

high energy rating (A and B) consumed more energy than expected. This contrasted with the 

large drop in CO2 emissions for the A and B labelled houses which is not matched by the 

energy consumption. Jones monitored six identical flats in the UK and compared the actual 

energy consumption with the design stage normative Standard Assessment Procedure 

calculations. Significant Energy performance gap (EPG) was identified between the 

calculated and the measured gas and electricity use (Jones, Fuertes and de Wilde, 2015).  

Similar study was conducted by Bahadori-Jahromi et.al (2022) where actual and simulated 

energy consumption of 7 different single-family houses in the UK were studied. The results 

showed that the actual energy demand could be controlled by proper control of the heating 

set point and window opening schedules. By adjusting the heating set point, and window 

opening schedules by 10%, EPG was found to have reduced by 15%. Cozza et.al (2021) 

introduced the concept of ‘optimal consumption’ which they defined as the ideal energy 

consumption of the building, where the comfort of the occupants is guaranteed. They argued 

that EPG was a combination of the differences between theoretical consumption and optimal 

consumption, and that between actual and optimal consumption. Padey et al., (2021) 

monitored energy use in high energy performance buildings in Switzerland, for a period of 

4 years and compared the measured data to the calculated data. It was found that the 

calculated value under-estimated the actual heating demand by a factor of 2.  

There has been a rise of advance in technologies to improve energy performance in buildings 

in the past few decades. There exist building simulation models but there are not many 

literatures on the effect of occupant behaviour and how it affects energy efficiency of 

buildings. Everyday human activities like opening and closing of windows, switching on 
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and switching off lights and HVAC has been found to be the reason for the ‘energy gap’. It 

has become a crucial aspect that this uncertainty be considered during the building of energy 

simulation models so that the impact of human behaviour and its impact can be incorporated 

into the model.  

It has been established through research, presented in the previous chapter, that occupant 

behaviour plays a major role in the energy efficiency of buildings. 

2.3.1. Factors Influencing Occupant Behaviour of Window Opening 

Occupant behaviour influences energy use in office and residential buildings in various 

ways, which can be understood better by identification of relevant driving factors of energy 

related occupant behaviour, and quantitative approach to modelling it (Polinder et al., 2013). 

Schweiker (2010a) defined occupant behaviour as a human being’s unconscious and 

conscious actions to control the physical parameters of the surrounding built environment 

based on the comparison of the perceived environment to the sum of past experiences. It is 

more than just the action of opening or closing window and happens subconsciously, and 

depends on several parameters like thermal, visual, and auditory etc. The main factor that 

prompts a resident to behave in a certain way is their comfort or how comfortable they are. 

Thermal comfort plays a major role in determining the overall comfort level of a person.  

ASHRAE Standard 55 states ‘Thermal comfort is essentially a subjective response, or state 

of mind, where a person expresses satisfaction with the thermal environment. While it may 

be partially influenced by a variety of contextual and cultural factors, a person’s sense of 

thermal comfort is primarily a result of the body’s heat exchange with the environment. This 

is influenced by four parameters that constitute the thermal environment (air temperature, 

radiant temperature, humidity and air speed), and two personal parameters (clothing and 

activity level, or metabolic rate).’ (ANSI/ASHRAE Standard 55-2004, 2004; Olesen and 

Brager, 2004). Shi et al., studied occupant behaviour in two general wards in a hospital in 

China and found that Indoor air Quality (IEQ), particularly indoor air temperature and 
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relative humidity played a major role in OB of window opening (Shi et al., 2018). To 

ascertain comfort, occupants act in a certain way (Dear and Brager, 1998) or perform a set 

of specific adaptive actions, like wearing suitable clothing, dimming lights, controlling 

blinds, controlling thermostat etc. These actions are driven by various factors that can 

broadly be classified into environmental (temperature, humidity, odour, light intensity etc.), 

contextual factors like building insulation, type of heating system etc., individual factors that 

are unique to each person, like thermal comfort, indoor environmental quality etc., 

physiological factors like age, gender, and other demographic statistical factors. and social 

factors like household composition, community characteristics etc. The cumulative effect of 

these creates the difference in responses of people. The range of thermal comfort found 

acceptable at any one time is ±2oC, which can increase if occupants are given the options to 

control it (Nicol and Humphreys, 2002). Occupants’ well-being and productivity are 

impacted greatly by their thermal comfort. A strong link (84%) has been found to exist 

between physiological parameters like heart rate variation, body temperature etc. and human 

thermal comfort (Pigliautile et al., 2020). Fernández-Agüera et.al (2019) argued that 

airtightness in buildings is not always a good element, when it comes to energy efficiency. 

In a recent study conducted in two houses in Spain, it was found that surface condensation 

as found to be more of a risk in the most airtight dwellings, prompting window opening and 

thereby more consumption in winter. Gupta et.al (2018) investigated the influence of 

building fabric, services, and occupant related factors on energy consumption in six low 

energy social housing in the UK. Difference between predicted and actual energy use was 

compared using data gathered by physical monitoring of indoor environment, window 

opening behaviour, building performance data and qualitative data from surveys. It was 

found that actual energy use was higher than the expected values, by a factor of three.  

Collecting data regarding occupant behaviour that impacts energy consumption has been 

realised to be crucial, in the building sector. Various measuring techniques are implemented 
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to study and collect data regarding different aspects of occupant behaviour like occupancy, 

interaction with building environment, use of control systems etc. to identify the correlation 

between observed conditions and energy performance. 

2.4. Measuring Window Opening Behaviour 

Creating ideal indoor environment has been preoccupation of people living in dwellings. In 

the UK, with the invention of window glazing, air infiltration was controlled to a high degree 

making houses airtight to a good extend. However, occupants became more aware of the 

need for ventilation. Ventilation systems in dwellings have three main functions: to improve 

indoor air quality, to remove odours and moisture due to condensation and pollutants in the 

air and for occupants’ comfort ‘for fresh air’, as commonly said. Nevertheless, the level of 

ventilation and its impact on energy usage varies to a vast degree depending on how the 

ventilation is carried out by the occupants. Uncontrolled or excessive ventilation can cause 

more detrimental effect than benefits. For e.g., opening window when the heating is ON in 

winter can increase energy usage excessively.  

Over the years many investigations had been carried out to understand the effect of 

ventilation on energy usage. One of the earliest studies regarding ventilation is one 

conducted in Princeton university in the US. The study measured energy usage in dwellings 

in the aim of making the occupants aware of their energy usage and encourage better practice 

by providing feedback. The results of the study indicated that energy use can vary up to a 

factor of two depending solely on how occupants operated their windows and doors (Harrje 

and Kempton, 1986). 

Study of air flow through buildings and rooms are more recent. Generally, computer 

simulation modelling techniques are used for studying airflow: zonal modelling for airflow 

through single rooms and multizone modelling for airflow through-out the building. Zonal 

modelling (room air flow) and multizone modelling techniques are the two general types of 
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computer simulation used for the studying of airflow and contaminant transport in buildings, 

with each one having their advantages and disadvantages. While multizone modelling looks 

at the air movement and indoor air quality by evaluating average pollutant concentrations, 

zonal modelling uses computational fluid dynamic program techniques to inspect detailed 

air flow fields in rooms (Fox, 2008).  These calculations are more recent, being available in 

the past two decades. With software packages being more user friendly, the availability is 

more accessible and hence more popular.  

The main aim of occupant behaviour modelling is to understand the reason/ driving force 

behind the behaviour, and to find the relationship between the energy demand and usage 

(Yoshino, Hong and Nord, 2017).  

A post occupancy evaluation study was conducted in the UK in ‘EcoHome’ site in houses 

with excellent rating. Results showed that human factor account for 51% of variance in 

energy efficiency in high (energy) performance dwellings (Gill et al., 2010). They suggested 

addressing human factors as a standard practice in low-energy design homes. 

Occupant monitoring and data collection is further divided into observational studies 

wherein OB and indoor environment variables are passively monitored, possibly over many 

months, since OB changes according to seasons, and surveys (Rijal et al., 2008; O’Brien, 

Kapsis and Athienitis, 2013). Schakib-Ekbatan et al., (2015b) suggested simple logistic 

regression model to evaluate the interaction of occupants with building using a case study of 

an office building in Frankfurt Germany, the findings of which showed that behaviour profile 

of window usage gives useful information regarding the same. Cuerda et al., (2019) tested 

the effect of using occupant profile in simulation models, instead of standard profiles, 

resulting in a difference of up to 15% based on whether actual or standard profiles were used. 

Haldi et al., (2017) proposed a statistical model based on linear mixed models, by employing 

built-in probabilistic terms describing occupant diversity. This was done using collected data 
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from three long term monitoring campaigns, but was not tested with other data, to find the 

reliability of the proposed model. 

Fabi et.al (2012) proposed definitions to highlight OB related to building control systems, to 

develop a theoretical framework that can act help investigate drivers for the any certain OB. 

In their later work, Hong et.al (2017) reviewed approaches implementing occupant 

behaviour in building performance simulation (BPS) models, their strengths, and 

weaknesses and suggested standardising occupant behaviour to enable ease of use in BPS 

programs. A recent study (Dziedzic, Da and Novakovic, 2019) used depth registration 

camera to monitor occupant movement to understand the pattern of occupancy in real-time, 

providing new kind of data which is to help develop occupants transition model. Although 

it does not identify the person, it can be argued that it still interferes into the personal space 

and lifestyle of the participant.  

OB monitoring varies in range from one day to years (Rea, 1984; Haldi and Robinson, 2009). 

To understand habitual behaviour of residents, at least one season or ideally, a year of 

continuous monitoring might be required. Sampling frequency also ranges from a minute to 

several times a day and depending on how long the data has been collected the discrepancies 

are likely to cancel out over a whole year data.   

Accurate monitoring of window opening behaviour of occupants is a challenge because of 

the stochastic nature of occupants. Occupancy detection is done by motion detectors, carbon 

di oxide sensors, wearable sensors, cameras, security-based systems and diaries (Lam et al., 

2009; Attar et al., 2011). Window opening behaviour is generally detected by contact 

sensors, while photographic approach has also been used in some cases (Haldi and Robinson, 

2008; Rijal et al., 2008). 

Most studies focus on the window state as binary i.e., open, or close, since the most common 

type of monitoring device is the contact sensor. Fabi et.al (2013) proposed a probabilistic 
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approach for modelling human behaviour related to control of indoor temperature. Model of 

occupant’s window opening behaviour obtained by measurement, was implemented in 

building simulation programs. Results were presented as probabilistic distribution of energy 

consumption and the air quality inside, based on OB. It was found that the air change rate in 

bedroom of naturally ventilated house was 33.8% higher than mechanically ventilated house.  

Table 2.1 shows literature review of studies with mention of difference in energy usage due 

to occupant behaviour. 

Another study, by D’Oca and Hong, (2014) suggested a methodology that combined 

simulated probabilistic values for window opening and thermostat set points and the values 

were implemented into a dynamic simulation tool. The study compared energy consumption 

values from obtained using probabilistic and deterministic simulations, arguing that 

deterministic standardised simulations were weak when compared to probabilistic models, 

in providing scenarios of OB in buildings. The results showed that houses in which 

occupants control the window opening and closing and heating set-points, had 61% higher 

energy consumption than when the system was controlled in a deterministic way. Results of 

this study established the proposition that OB played a key role in the incongruities between 

predicted and actual energy consumption in houses.   

Zheng et al., used MATLAB to develop an image recognition code and use it to detect open 

windows in the building elevation maps. Although the method identified open windows with 

an accuracy of 92%, and is non-intrusive, the accuracy is questionable as it can be highly 

affected by light reflection on windows, especially in the sun facing side of building (Zheng 

et al., 2019). 

Johnson and Long (2004) developed a linear regression model, where in a stepwise linear 

regression analysis helped identify factors that lead to opening of windows and doors. 

Andersen, Olesen and Toftum (2007) conducted a study to understand the effect of occupant 
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behaviour by simulating a single room with a single occupant. The simulation allowed the 

occupant to control six factors, which included heating, adjusting clothing etc, with an aim 

to keep particle measurement and validation (PMV) value withing predefined limits. Results 

showed a difference of up to 300% between energy consuming and energy efficient models. 

Table 2.2 shows review of studies with mention of difference in energy usage due to 

occupant behaviour. Although several studies have been conducted over the years to 

understand the effect of occupant behaviour on energy efficiency, but the findings were 

inconclusive due to varying lifestyles of the inhabitants and individual requirements. To 

understand the effect of window opening to a high accuracy, the air movement deliberations 

in the building needs to be considered which is not effectively accomplished in most existing 

studies. Some studies suggested intelligent systems should be developed to monitor indoor 

air quality (IAQ) and to automatically adjust the ventilation rate as required. Others 

suggested occupants prefer to control their own environment but require more information 

on how and when to run the installed system more effectively and efficiently. 

2.4.1. Window Opening Behaviour Prediction 

User behaviour was considered as early as 1990. Fritsch et.al. developed a stochastic model 

using Markov chains to generate time series of window opening angle, and then real and 

generated data were compared (Fritsch et al., 1990). This model has later been used in further 

research.  

Since last decade, building energy performance simulations models have been seen to 

consider occupant behaviour by including stochastic models of occupant behaviour in 

relation to energy efficiency of buildings. However, validation of these models has been 

sporadic. Developed models must be validated with similar but not same data, and the results 

analysed to understand the usability of a model. 
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Table 2.1:  Literature review of studies with mention of difference in energy usage due to occupant behaviour 

Authors Case study Short description Energy Gap 

(Bahadori-Jahromi et 
al., 2022) (UK) 

Simulation model of 
7 single-family 
houses  

Actual and simulated energy consumption 
depending on occupant behaviour 

Energy performance gap reduced by 15% by adjusting heating set 
point and window opening schedules 

(Andersen, Olesen and 
Toftum, 2007) 
(Denmark)  

Simulation of single 
room with single 
occupant  

Difference in energy usage between energy 
consuming and energy efficient simulated models alarming EPG, ranging up to 300% difference  

(Polinder et al., 2013)’ 
(International Energy 
Agency) 

Simulation models 
based on 25 
buildings from 15 
countries 

13 offices and 12 residential buildings from 15 
countries were studied to understand difference in 
energy usage due to user beahaviour patterns 

The actual presented results depend very much on user behaviour 
being addressed, this being one of the most important findings of 
annex 53. The study showed that difference in patterns of heating 
induced huge differences in energy use results showing variation factor 
of 5 to 20 in case of heating  

(Andersen et al., 
2013) (Denmark) 15 dwellings Modelling of user behaviour in the context of real 

energy use and applied to a case study 
the air change rate in bedroom of naturally ventilated house was 33.8% 
higher than mechanically ventilated house  

(Haldi and Robinson, 
2011) (Switzerland)  Building simulation with identical design but different behavioural inputs Occupants’ behaviour has an impact that makes energy usage vary by a 

factor of two 

(Harrje and Kempton, 
1986) (US) 

Multifamily building 
with airtight 
construction 

Visual inspection of window opening, enhanced 
with infrared scanning in multifamily building 

The results of the study indicated that energy use can vary up to a 
factor of two depending solely on how occupants operated their 
windows and doors 

(Jones, Fuertes and de 
Wilde, 2015) (UK) 6 identical flats 

Actual energy consumption compared with the 
design stage normative Standard Assessment 
Procedure calculations 

1.5 to 1.7 times difference impact of design independent factors on the 
extent of the performance gap, such as occupant behaviour, variation in 
plug in equipment, etc. 

(Padey et al., 2021) 
(Switzerland) 

High performance 
multifamily 
residential building 

Measured to calculated heating demand 
Measure was underestimated by calculated value a factor of 2. the 
active air flow and the shading factor were identified as the most 
influential parameters on the uncertainty of the heating demand 

(Shipworth, 2012b) 
(UK) 

 Exploration of occupants practice to attain thermal comfort in dwellings 
for development of user centred systems for better house heating practices 

 Identical homes, with different occupants, can vary in energy use by a 
factor of two to three 

(Gill et al., 2010) (UK) 
UK EcoHomes site 
with an excellent 
energy rating  

Post evaluation study to distinguish energy 
efficient and energy consuming behaviour of 
residents in low energy homes 

Occupants’ behaviour account for 51% of variance in heat 
consumption in homes with excellent insulation rating 
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Anderson et.al compared simulated model values to actual values to get an estimate of 

the forecast realism  (Andersen, Fabi and Corgnati, 2016). They proposed a new 

procedure called ‘validation by simulating’ wherein the combined predictive accuracy of 

two existing behavioural models of window opening and thermostat adjustments were 

estimated and compared to actual values taken in sensors fitted in apartments in 

Copenhagen, Denmark. Data was collected for two months and compared with data from 

a simulated model of the same building. Building energy performance simulations 

(BEPS) IDA ICE tool was used for simulation. It was found that although the predicted 

and actual values were in the same range, the model was unable to predict the actual 

indoor environmental conditions, which meant the model needed to be improved. 

Zhang et.al. (Zhang, Wu and Calautit, 2022) reviewed recent studies employing machine 

learning methods to predict occupancy behaviour and patterns. Comparing literature from 

2011 to 2021 it was seen that Neural Network based algorithms and decision tree based 

algorithms were being more frequently used since 2019. Review of literature in this study 

also showed that occupancy detection was of concern due to privacy issues and that 

window status detection could be recorded, as long as it was not affected by the room 

temperature or other sensors in the room. 

Zhou et.al (Zhou et al., 2021a) proposed an action-based Markov chain modelling 

approach for predicting window operating behaviour in office spaces, the validity of 

which was verified using data collected during summer of 2016 and 2018. The inspection 

standards proposed were opening rate, outdoor temperature, time distribution and on-off 

curve. The performance was compared with the more popular state-based Markov chain 

modelling approach to model occupant window operating behaviour. Results showed that 

state-based Markov chain modelling had better stability and accuracy in terms of opening 
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rate, while action-based modelling approach showed good consistency in the measured 

data of on-off curves. 

Another study by Zhou et.al (Zhou et al., 2021b) applied random forest (RF) method to 

predict window opening behaviour of occupants. Data from three open plan offices 

located in China was used. The weightage of each input element out of the eight input 

elements considered, were compared using random forest and was found to be consistent 

with the occupants subjective understanding as determined using a questionnaire. Results 

showed that RF with 4 inputs had the highest accuracy of 80%. The model also showed 

high accuracy and stability in predicting window opening behaviour for the same office 

over a period of time and for different offices as well. The models were also compared 

with two popular machine learning methods namely support vector machine (SVM) and 

XGBoost algorithms and it was found that the RF provided the highest accuracy out of 

the three. 

Another study used Discrete-time Markov logistic regression models and decision tree 

models to predict thermostat use and window opening/closing instances and to identify 

the indoor conditions that trigger these actions, using data collected from two mixed-

mode ventilation buildings in Ottawa, Canada (Liu et al., 2021). The discrete time 

Markov logistic regression model was used to find the probability of increasing and 

decreasing thermostat setpoints. Both Markov chain and decision tree was used to 

understand window opening behaviour and it was found that occupants opened window 

when the indoor temperature was above 24oC, relative humidity (RH) was above 30% 

and outdoor temperature was above 3oC. However, useful information regarding window 

closing action could not be extracted, since they did not relate to the environmental factors 

in this study. 
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Park et.al compared six machine learning algorithms to understand the best model for 

predicting occupant’s behaviour relating to manual control of windows. This was done 

using field data from 23 homes in Seoul, taken every 10 mins. The machine learning 

models compared were K-Nearest Neighbours (KNN), Random Forest (RF), Artificial 

Neural Network (ANN), Classification and Regression Trees (CART), Chi-Square 

Automatic Interaction Detector (CHAID) and Support Vector Machine (SVM). Linear 

regression model was also used, and results compared to the results obtained from the 

machine learning models. Results showed that the machine learning models could predict 

individuals’ behaviour better than linear regression models. Out of the machine learning 

models, KNN had the best predictive performance. However, the larger the training data 

set, the more memory KNN requires to store the data set and the more complicated the 

calculations become, making KNN inefficient (Park et al., 2021). Pan et.al. (2019) used 

Gauss distribution modelling approach to predict window opening behaviour of 

occupants in an office building located in Beijing, China, using indoor temperature 

outdoor temperature and a combination of both, as the variables. It also compared the 

results with logistic regression model approach. Results showed that Gauss distribution 

model 9.5% higher prediction accuracy. However, the field measurement in the study is 

not comprehensive, as the Gauss distribution model uses only the outdoor temperature is 

selected as the input, ignoring other important variables like CO2 concentration etc. Also, 

only the window state is considered and not the window opening/closing action. 

Mo et.al (Mo et al., 2019) adopted XGBoost algorithm to model and predict occupant 

window opening behaviour and compared it with logistic regression model. XGBoost was 

found to have better prediction accuracy (80% vs. 60%). Parameters including indoor and 

outdoor temperature, RH, CO2 concentration and outdoor PM2.5 were considered. 

However, all the selected apartments had a similar layout thus limiting the results to one 
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layout of apartments. A literature review carried out in 2020 (Dai, Liu and Zhang, 2020), 

reviewed the state-of-the-art application of machine learning models on prediction of 

occupancy and window-opening behaviour. It revealed the use of different machine 

learning models including logistic regression, ANN, random forest and SVM in 

prediction of occupancy and window opening behaviour, with satisfactory performances. 

Comparing different studies, it was found that for window opening behaviour, indoor 

temperature, outdoor temperature, and wind speed are the most common predictor 

variables. Logistic regression was found to be the most common model used in window 

opening behaviour modelling. However, it does not perform well for the ‘cut-off’ 

temperature. The literature review study also suggested to include building characteristics 

and occupant features to further improve prediction accuracy. 

Table 2.2 compares different approaches to window opening behaviour prediction, 

discussed  above. 

2.4.2. Window Opening Occupant Behaviour Modelling 

The impact of occupant behaviour on energy efficiency of a building is being increasingly 

addressed, as seen in the previous sections. Several research has been undertaken to 

implement human behaviour model into existing building simulations.  

Machine learning is progressively being used in data analysis. Machine learning is the 

process wherein computational methods are used to create algorithms that help machines 

‘learn’ information directly from data, without relying on a pre-determined equation or 

model. The algorithms find patterns in data to generate insights (‘Machine Learning with 

MATLAB’, 2020). Machine learning can widely be classified into unsupervised learning 

where grouping and interpretation is done based only on input data, and supervised 

learning where a predictive model is developed based on input and output data.  
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Table 2.2:  Comparison of different approaches to window opening behaviour prediction 

Reference  Details of Study Approach to prediction of window opening 
behaviour Results  

(Zhang, Wu and 
Calautit, 2022) 

A review on occupancy prediction through machine learning for enhancing energy 
efficiency, air quality and thermal comfort 

Comparing literature from 2011 to 2021 it was seen that Neural 
Network based algorithms and decision tree-based algorithms 
were being more frequently used since 2019. 

(Andersen, Fabi 
and Corgnati, 
2016) 

Verification of occupants' behaviour 
models in residential buildings  

Compared simulated model values to actual 
values to get an estimate of the forecast realism.  

Although the predicted and actual values were in the same range, 
the model was unable to predict the actual indoor environmental 
conditions 

(Zhou et al., 
2021a)  

Window opening behaviour in an open 
plan office space was studied. The 
opening rate, outdoor temperature, time 
distribution,  and on–off curve were 
proposed as four inspection standards. 

An action-based Markov chain modelling 
approach for predicting window operating 
behaviour in office spaces was proposed. Also 
compared the performance of action-based 
Markov chain modelling approach to state-based 
Markov chain modelling approach. 

State-based Markov chain modelling had better stability and 
accuracy in terms of opening rate, while action-based modelling 
approach showed good consistency in the measured data of on-off 
curves. 

(Zhou et al., 
2021b) 

Predicting open - plan office window 
operating behaviour using the random 
forest algorithm. Data from three open 
plan offices located in China was used.  

Random forest (RF) method to predict window 
opening behaviour of occupants.  

RF with 4 inputs had the highest accuracy of 80%. The model also 
showed high accuracy and stability in predicting window opening 
behaviour for the same office over a period and for different 
offices as well. Also compared with SVM and XGBoost 
algorithms. RF provided the highest accuracy out of the three. 

(Liu et al., 2021) 

Modelling window and thermostat use 
behaviour to inform sequences of 
operation in mixed-mode ventilation 
buildings.  

Discrete-time Markov logistic regression models 
and decision tree models to predict thermostat use 
and window opening/closing instances and to 
identify the indoor conditions that trigger these 
actions. 

Both Markov chain and decision tree was used to understand 
window opening behaviour and it was found that occupants 
opened window when the indoor temperature was above 24oC, 
relative humidity (RH) was above 30% and outdoor temperature 
was above 3oC. Useful information regarding window closing 
action could not be extracted, since they did not relate to the 
environmental factors in this study. 

contd. 
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(Park et al., 
2021). 

Machine learning algorithms for 
predicting occupants’ behaviour in the 
manual control of windows for cross-
ventilation in homes 

Compared six machine learning algorithms to 
understand the best model for predicting 
occupant’s behaviour relating to manual control 
of windows. K-Nearest Neighbours (KNN), 
Random forest (RF), Artificial Neural Network 
(ANN), Classification and Regression Trees 
(CART), Chi-Square Automatic Interaction 
Detector (CHAID) and Support Vector Machine 
(SVM). Linear regression model was also used. 

Results showed that the machine learning models could predict 
individuals’ behaviour better than linear regression models. Out of 
the machine learning models, KNN had the best predictive 
performance. However, the larger the training data set, the more 
memory KNN requires to store the data set and the more 
complicated the calculations become, making KNN inefficient 

(Pan et.al. ,2019) 

A model based on Gauss Distribution 
for predicting window opening 
behaviour of occupants in an office 
building located in Beijing, China 

Gauss distribution modelling approach to predict 
window opening behaviour using indoor 
temperature outdoor temperature and a 
combination of both, as the variables. It also 
compared the results with logistic regression 
model approach. 

Results showed that Gauss distribution model 9.5% higher 
prediction accuracy. However, the field measurement in the study 
is not comprehensive, as the Gauss distribution model uses only 
the outdoor temperature is selected as the input, ignoring other 
important variables like CO2 concentration etc. Also, only the 
window state is considered and not the window opening/closing 
action. 

 (Mo et al., 2019) 
Developing window behaviour models 
for residential buildings using XGBoost 
algorithm 

XGBoost algorithm to model and predict 
occupant window opening behaviour and 
compared it with logistic regression model.  

XGBoost was found to have better prediction accuracy (80% vs. 
60%). Parameters including indoor and outdoor temperature, RH, 
CO2 concentration and outdoor PM2.5 were considered. However, 
all the selected apartments had a similar layout thus limiting the 
results to one layout of apartments. 

 (Dai, Liu and 
Zhang, 2020) 

A review of studies applying machine 
learning models to predict occupancy 
and window-opening behaviours in 
smart buildings 

Compared use of different machine learning 
models including logistic regression, ANN, 
random forest and SVM in prediction of 
occupancy and window opening behaviour, with 
satisfactory performances.  

Logistic regression was found to be the most common model used 
in window opening behaviour modelling. However, it does not 
perform well for the ‘cut-off’ temperature. The literature review 
study also suggested to include building characteristics and 
occupant features to further improve prediction accuracy. 
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Supervised learning aims to build a model taking a known set of input data and known 

set of output data and makes predictions to new data, based on evidence. Creating an 

algorithm and developing a model depends on several factors, including size and type of 

data, the expected outcome of the model and its application.  

Literature shows that there are two fundamentally different approaches in modelling 

human behaviour in buildings: deterministic and probabilistic. Building simulation tools 

generally employ heat transfer and thermodynamic equations with human actions 

represented by predefined fixed schedules or rules, like the window being open after a 

certain indoor temperature, which may result in unrealistic results. On the other hand, the 

evolving empirical models are based on algorithms that predict the probability of 

occurrence of an event under certain conditions. These models have scope for including 

the stochastic nature of window opening behaviour, into the models, since they are based 

on statistical correlation between the window state and factors like external temperature, 

internal temperature, humidity etc. Clarke et al., (Clarke et al. 2008) proposed a 

probabilistic model to indicate occupant discomfort and another probabilistic model to 

for the resulting action, which might cause the problem of ignoring reasons OB not related 

to comfort. Yun et. al developed an algorithm based on the Markov Chain and Mote Carlo 

methods to integrate probabilistic window opening OB model to dynamic energy 

simulation models, with the new algorithm predicted values showing good agreement to 

the actual values.   

The total heat loss coefficient K and the heat capacity C of an empty low consumption 

building can be estimated by measuring transient states during heating and free cooling 

of empty low-consumption house (Mangematin, Pandraud and Roux, 2012). Naspi et al., 

(2018) measured occupant behaviour in buildings to develop human-in-the-loop design o 
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be applied to retrofit interventions. Measurements were done continuously for one year 

with a dedicated sensor network, with a time interval of 10 minutes, and enhanced with 

monthly survey of the occupants regarding thermal environment. Results showed better 

results than a standard approach, with a 26% reduction in discrepancy in window opening 

simulation and 58% in the case of light switching. Chen et al., (2020) developed a Cox 

model using four environmental factors as indicators (indoor air temperature, CO2 

concentration, outdoor air temperature and PM2.5 concentration) to detect window 

opening behaviour, which presented an accuracy of 78.9%. Nicol (2001) suggested the 

temperature change in buildings as a distribution rather than a discrete value; this 

according to him, would help model occupant behaviour as a stochastic process However, 

enough data or analysis has not been carried out on this hypothesis.   

Identifying the factors that impact residential energy consumption is a key factor to be 

considered when designing models and in implementation of policies for energy 

efficiency. To analyse this both the contextual factors like the local climate, building 

characteristics etc and the behavioural factors like the user demography, their behavioural 

differences and energy usage pattern etc must be considered. Schweiker et.al (2012) 

analysed window opening behaviour data from two buildings in Switzerland and one 

building in Japan; the data included the choice of opening angles for axial openings. 

Although the Swiss data set provided a considerably reliable model to predict window 

usage, it was not further tested. Chen et al., (2020) conducted a study in Tianjin in China, 

by measuring four environmental indicators that significantly influence window opening 

behaviour and analysed it using two models: Cox model for survival and logistic model. 

It was found that indoor air temperature, concentration of CO2, outdoor air temperature 

and concentration of particle matter (PM2.5) presented a significant influence on window 

opening behaviour. Window opening probability was the highest when indoor air 
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temperature was between 15-21oC and outdoor air temperature was less than 21oC  

(Schweiker et al., 2011). Fabi et.al. (2013) presented a probabilistic user behaviour model 

in the context of real energy usage and applied the same to a case study. Occupant 

behaviour was used to inferred from the case study and simulated. The results indicated 

the likelihood of open window under different circumstances like, occupancy during time 

of survey, number of occupants, time of year etc, represented as probability distributions 

of energy consumption and occupant behaviour. 

Zhang and Barret (2012) conducted a field study of occupants’ window opening 

behaviour for three months in a ventilated office building in Sheffield. Indoor and outdoor 

temperature, humidity, windspeed etc were observed and it was found that window 

opening behaviour depended strongly on-air temperature, season, time of day and 

occupancy pattern. A stochastic model was used to predict window opening depending 

on outdoor temperature. Haldi and Robinson (2009) verified three alternative approaches 

to modelling occupants’ behaviour, based on probability distribution of state of window 

(open or close), on random processes based on transition probabilities or on distribution 

of time delays between actions. It was found that the model differed in predictive 

accuracy; while logistic models were better for predicting year-round probability of 

window opening, a model based on survival analysis was found to be more robust and 

more computationally efficient than Markov and logistic distribution models tested.  

Barthelmes et.al. (2017) studied the potential applicability of Bayesian networks (BN) to 

capture the relationship between occupant behaviour, particularly window opening 

behaviour and its influence on energy efficiency, with the help of a case study. The aim 

of the study was to bridge the gap between outcome of simulations, and reality, using 

Bayesian Network (BN) framework. Data was collected from a residential apartment 
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located in Copenhagen, Denmark and Data collected in 10 min intervals continuously for 

3 months. The study demonstrated the potential benefits of using Bayesian Network 

Framework for stochastic modelling of window opening behaviour in residential 

buildings. Results indicated that stochastic nature of window opening behaviour can be 

well captured by BN, provided the initial set up and variable selection is correctly set up.  

Jones et al., (2017) developed a stochastic model of main bedroom window operation, 

based on data collected from 10 houses in the UK over a period of one year. Multivariate 

logistic regression is used to predict window status depending on environmental and time 

factors. Although the model showed the influence of environmental factors on window 

status, the accuracy of the model is questionable.  The current challenge is integrating 

these systems and to make them work together to provide a truly integrated system in 

which different Building Management Systems (BMS) could communicate, based on 

continuous monitoring, provide improved performance to have optimum energy 

efficiency along with optimum comfort to its occupants. To achieve this, new and 

innovative technologies must be introduced or rather added to the existing systems, to 

gather valuable data. By doing this, the behaviour patterns of the occupants and various 

other information can be collected and used to analyse and deliver the required 

information, to enable them to take the necessary actions for better performance.   

One of the most effective ways to bridge the difference between predicted and actual 

energy consumption in residential buildings is by analysing occupant behaviour and its 

relationship with the energy efficiency of the building. However, effective statistical and 

data mining approaches resulting in meaningful correlation is largely undiscussed. Last 

few decades have seen a change, giving way to more probabilistic models, wherein a 

correlation is established between the recorded environmental conditions and observed 

factor of human-building interaction (Hong et al., 2017). The output of such models is 
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the probability of the occupant factor like window opening occurring, due to various 

changes in the environmental factors. As discussed in Chapter 2, multivariate analysis is 

more common, with OB models selecting different variables as the influencing factor. As 

a result, a standardised method for representing OB in BPs is lacking. 

2.5. Investigating Effect of Window Opening Behaviour on Energy Efficiency of 

Buildings and Reasons for Window Opening Behaviour of Occupants 

2.5.1. Thermal Imaging 

Infrared thermography is the process of observing the heat transfer due to electromagnetic 

radiation emitted by the object. The applications of infrared thermography (IRT) in the 

commercial and industrial sector have increased in the past 50 years. In the building 

sector, initially, IRT was used for quick periodic inspections and preventive maintenance 

of buildings (Lucchi, 2018). Later, with the introduction of single IR camera, the scope 

of its applications widened to include building diagnosis focussed on characterisation of 

structures, materials, surface defects etc.(Milne and Reynolds, 1985; Moropoulou et al., 

2013). Youcef et al., (2020) used passive IRT to analyse energy performance of buildings 

with based on insulation level of walls. According to Steffan-Boltzmann law, the net heat 

transfer due to radiation is partly a function of the temperature of the object. Al-Habaibeh 

et. al. conducted a case study of deep retrofitted to bring it closer to Passivhaus standard. 

Artificial intelligence was used to predict the energy savings due to retrofitting and this 

was compared with the actual values. The thermal performance of the building after 

retrofitting, was evaluated using infrared thermography (Al-Habaibeh, Sen and Chilton, 

2021). Goodhew et.al (2015) conducted two studies with 43 and 87 houses in each study, 

to understand the effect of thermal imaging on energy conservation households.  

Participant households were provided with thermal image of their houses, to show heat 

escaping from or cold air entering the house. A post evaluation study of the first study, 
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showed that householders who saw the thermal image reduced their energy use and 

householders who were provided carbon footprint audit and non-intervention control did 

not show any change in energy usage. The second study showed that occupants were five 

times more likely to install draught proofing measures after seeing thermal image. The 

explicit descriptive nature of thermal imaging can be used to study otherwise unnoticed 

loss of heat in buildings. The same can be used to understand the amount of heat loss due 

to window opening behaviour of occupants in dwellings. 

2.5.2. Survey 

Pattern of occupancy is determined by various factors including lifestyle, preferences, 

personal comfort perception, general characteristics of the household etc. It has been 

understood with many previous studies that personal factors play an important role in the 

way people use heating systems (Andersen et al., 2009; Schweiker, 2010; Valentina, 

Andersen and Corgnati, 2012; Esmaeilimoakher et al., 2016; Hamilton, 2018; Salim and 

Al-Habaibeh, 2020). Therefore, it is an advantage to understand the perception of 

occupants as preliminary part of a research. Several OB studies use surveys to understand 

actual perception of occupants. Nevius and Pigg (2000) conducted a study to understand 

space heating and thermostat usage pattern in households. It was found that there was not 

much difference in energy use between houses with programmable thermostat and 

manual thermostat since many occupants use programmable thermostat as an on-off 

switch. Esmaeilimoakher (2016) conducted a survey which collected information about 

several building and occupant related factors, including floor area, household size, 

household income in Perth, West Australia.  Perth is warm throughout the year with 

temperatures ranging in between 15oC to 30oC any time of the year. The survey showed 

that floor area, household size, income were significant factors affecting energy 

consumption, rather than window opening behaviour. This might be because the survey 
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did not include any temperature data or window opening behaviour data, and because it 

is a warm country where heating was not a factor contributing to high energy 

consumption. Shipworth et al., (2009) conducted national survey on central heating 

demands and temperatures and found that thermostat setting was found to be based on 

comfort rather than cost for most participants. Energy consumption in residential 

buildings can be better understood with a better idea of OB patterns, which will help 

understand the effect of OB in energy use. A standard behavioural pattern can be 

understood form the results from statistical analyses of surveys (Andersen et al., 2009). 

This can be used on calculation of OB factor in energy consumption of building in 

building simulation models. Goodhew et.al (2017) interviewed 25 participants to explore 

their understanding of how heating systems in dwellings worked. Participants were asked 

their notion of various factors regarding home heating, like how thermostat worked, how 

heat flows around the house, how insulation works etc.  A variety of ideas and impressions 

could be seen in the participants. It was evident that most occupants had their own idea 

of how a heating system worked and behaved accordingly. For example, one of the 

assumptions was that the higher the thermostat setting, the faster the house gets warm.  

Occupant behaviour in dwellings is unpredictable, making it difficult to model. 

Understanding peoples’ perception of energy usage and their reasons for different actions 

to attain thermal comfort in homes, will contribute extensively to understand the patterns 

in occupant behaviour that impact energy efficiency in dwellings.  

2.6. Summary 

This chapter provided a comprehensive summary of review of literature done during this 

doctoral research. With the upcoming increase in energy tariffs in the UK, managing 

energy efficiency of buildings is of primary concern.  Review has shown that there is a 

gap in the predicted and actual energy usage in buildings and that occupant behaviour has 
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a considerable impact on energy efficiency of buildings.  Various methods have been 

implemented by different studies shown in literature, to understand, measure and include 

the stochastic behaviour of occupants in buildings. Window opening behaviour in 

particular, has been found to have a strong impact on the energy efficiency of a building. 

Studies involving window opening behaviour and its effect on energy efficiency in 

buildings are new. It is evident from review of literature that there is still a gap in 

knowledge to understand the effect of people’s behaviour on energy for different type of 

houses. Most studies focus on single buildings or single buildings with multiple 

occupants. The effect of window opening on energy efficiency has not been explored 

much on an urban scale.  Understanding the effect of window opening in social housing 

will provide a valuable insight and contribution to this research area. Although several 

studies have been carried out employing various qualitative and quantitative methods, 

providing distinct acuities on energy consumption in buildings, the adaptation and 

incorporation of these insights into building simulation models are still a challenging area 

of research, and substantial developments in predicting occupant behaviour in buildings 

are yet to be obtained. Also, there is still a gap in knowledge regarding studies comparing 

the impact of occupant behaviour on energy efficiency of different types of buildings.  

Although machine models have been used to model occupant behaviour of window 

opening, most of the studies use a deterministic model wherein occupant behaviour is 

assumed based on few instances. Few studies have been done to predict occupant 

behaviour and relate it to the energy efficiency based on the pattern of window opening. 

Understanding the reasons behind window opening behaviour of occupants is a vital 

factor to be considered when studying the impact of occupant behaviour on energy 

efficiency of buildings. The pattern of window opening needs to be analysed in detail to 

quantify the effect of occupant behaviour on energy consumption. Therefore, a mixed 
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methods approach is required for a comprehensible understanding of the effect of 

occupant behaviour in energy efficiency of residential buildings.   
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Chapter 3 | Methodology 

3.1. Introduction 

This chapter explains the methodology followed to achieve the aims and objectives of the 

research. The different stages of the research are presented, and the methods implemented 

to complete them are presented.  

This research follows a mixed method. In mixed method of research, qualitative and 

quantitative data are systematically integrated in order to answer research questions 

(Tashakkori & Newman, 2010). Mixed method research starts with the researcher 

gathering evidence based on the nature of the research aim and research questions.  

Qualitative methods are inductive methods to help the researcher understand the ‘why’ 

or ‘how’ of an occurrence and their effects. The quantitative methods are employed for 

the deductive reasoning and for inference of causality (Pasick et al., 2009). Mixed 

methods involve collection of both qualitative data (e.g., surveys with open ended 

questions, observations, interviews etc.) and quantitative data (e.g., surveys, data 

collection like temperature data etc.) and integrating the assets of both the data to answer 

the research questions (Greene, 2006). A mixed method is employed in this research to 

develop a complete understanding of the research problem. The quantitative outcomes 

are enhanced and better comprehended using the qualitative outcomes.  

3.2. Overview 

The research is split into three phases. The first phase is literature review which gathers 

insights about background and scope of the research, which is followed by the qualitative 

analysis. This includes thermal imaging of residential buildings and survey which 

includes open ended questions, to understand occupant behaviour. This is followed by 
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quantitative analysis, wherein data collected form social housing is analysed to 

understand occupant behaviour, which is done in two stages. The first stage involves a 

macro level investigation into the energy usage and temperature characteristics in social 

housing. The second stage involves a more detailed analysis of four houses shortlisted 

form the first stage of analysis. Figure 3.1 shows the stages followed during this research. 

 

Figure 3.1:  Overview of stages of this research study 

3.3. Literature Review  

Literature review is the initial phase of the research and continues through the research. 

Energy consumption in buildings is reviewed initially and the role of heating in increasing 

energy consumption is explored. This gives an insight into the impact of human behaviour 
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in increasing energy use in residential buildings. This is further reviewed, to understand 

the existence of ‘energy gap’ and factors leading to it. Literature on different approaches 

of measuring occupant behaviour is investigated, and the advantages and limitations of 

various methods are studied. Occupant behaviour models using ANN and other 

algorithms, are reviewed. The stochastic nature of occupant behaviour has been model in 

a deterministic manner, with a few studies using a probabilistic model. It is evident from 

literature review that there is a considerable discrepancy between actual and predicted 

energy usage in residential buildings and window opening behaviour is one of the main 

reasons contributing to this discrepancy. This led to the next stage of the research where 

thermal images and survey helped enhance knowledge about impact of OB on energy 

usage in dwellings.  

3.4. Investigating Effect of Window Opening Behaviour on Energy Efficiency of 

Buildings and Reasons for Window Opening Behaviour of Occupants 

The initial stage phase of the research included qualitative analysis, which comprised of 

thermal imaging and survey collection to understand the impact of window opening on 

the heat energy demand of a dwelling. Occupants in dwellings perform various actions 

for their thermal comfort. One main action is window opening, the reason being its speed 

of reaction: when room is hotter than the occupants comfort level, opening a window 

reduces the temperature of the room quickly, bringing it back to occupant’s comfort level.  

Here, the factor of energy usage is disregarded to give more importance to occupants’ 

comfort level. There may be other reasons for opening a window, like the indoor air 

quality, odour removal etc. An inductive study to understand occupants’ thought process, 

their reasons for opening windows, their comfort temperature etc. gives a solid 

understanding of occupant behaviour and the drivers leading to window opening. 
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3.4.1. Thermal Imaging 

The impact of occupant behaviour on energy efficiency is complex and depends on 

various factors. Visualising the thermal characteristics of buildings brings to light areas 

of heat loss in the building that are otherwise not observed. To understand impact of 

window opening behaviour on energy usage in dwellings, thermal images of residential 

buildings in Nottingham, were collected on two cold winter nights. Heat transfer in object 

occur by means of conduction, convection, and radiation. Transfer of heat from one solid 

to another is conduction and convection is transfer of heat through fluids. Radiation is the 

heat transferred due to electromagnetic radiations from the object. Although heat transfer 

is not visible to human eye, infrared radiation which is one of the electromagnetic waves 

emitted by the object, can be detected by an infrared camera. Infrared thermography is 

the process of using infrared camera to capture infrared image to understand thermal 

patterns, by calibrating the emissive power of surface at various temperature range  

(Balaras and Argiriou, 2002)The neat heat energy (q) emitted by the surface of an object 

is: 

                                                 𝑞 =  Ɛ𝜎𝑇4      (3.1) 

𝑤ℎ𝑒𝑟𝑒  Ɛ is the emissivity of the surface (0 < Ɛ < 1), σ is the Stephan Boltzmann’s constant 

(5.67 x 10-8 W/m2K4) and T is the absolute surface temperature (K) of the object.  

By using infrared technology, areas of heat-loss in the buildings can be identified.  

Random sampling technique was used, to understand window opening pattern in different 

types of housing across Nottingham. Thermal images of buildings were taken on two cold 

winter nights and were studied based on their temperature range and the building features. 

The images collected were of buildings built in different decades, with different types of 

insulations.  The images helped understand the amount of heat lost by leaving window 

open. The insulation properties of houses were also visible in the thermal images, making 
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it comparable to the heat lost through open window. The thermal images were captured 

using FLIR T640 thermal imaging camera (FLIR, 2013) and FLIR software was used to 

analyse the temperature readings. 

3.4.2. Survey 

People are shaped by everyday behaviours and when these behaviours are performed 

repeatedly over time, a habit is formed (Orbell and Verplanken, 2010). Households affect 

the energy performance of buildings directly and indirectly (Estiri, 2015; Belaïd, 2017). 

Incorporating household energy use and the impact of behaviour of occupant on energy 

consumption in the choice processes is drawing attention (Kelly, 2011). The extend to 

which occupant behaviour affects energy use depends on various factors, including 

climatic conditions, personal preferences, building thermal properties etc. (Guerra-Santin 

and Itard, 2010; Wei, Jones and de Wilde, 2014). This study focusses on occupant 

behaviour, in particular window opening behaviour of occupants, in residential buildings. 

Occupant behaviour in general has been evaluated since 1951, however, the significance 

and number of studies noticeably increased since 2001 (Yan et al., 2017). Studies show 

difference in energy performance between households of similar size and type, based on 

behaviour of occupants (Yun, Tuohy and Steemers, 2009).   

The high complexity and unpredictability of occupant behaviour is known to be the main 

cause for the discrepancy between actual and predicted energy consumption in buildings 

(Fabi et al., 2013). Adjusting window position is one of the most common adaptive 

actions, particularly in naturally ventilated buildings (Yun, Tuohy and Steemers, 2009). 

A complex combination of physical, comfort, and behavioural models influences 

occupants' window opening behaviour (Markovic et al. 2018). The above reviews 

emphasise the importance of understanding occupant perception and occupant behaviour, 

with respect to energy efficiency of a residential building. The survey was designed, to 
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understand perception of occupants on their own window opening behaviour, and to 

understand their knowledge about how it affects energy efficiency of the building. 

Ethnography is the study of social interactions, behaviours, and perceptions that exist 

within groups, organisations, or communities, providing rich and holistic insight into 

peoples’ perceptions and behaviours (Reeves et al., 2008). The survey can be considered 

to be an ethnographic study, since it includes detailed qualitative observations of the 

participants, regarding the considered criteria, which is window opening behaviour in this 

case. As mentioned in section 3.1, this research follows a mixed method of research, 

wherein qualitative and quantitative data are systematically integrated in order to answer 

research questions. Based on review of literature and to further understand research 

question ‘Why do people open windows in winter’, the survey was developed. It also 

aimed to understand why people open windows even in winter and if opening window 

when the heating is turned on, is s common practice across the UK.  

To explore the impact of occupants’ behaviour on energy efficiency of a building and 

enhance understanding of energy usage by understanding people’s perceptions, with the 

focus on opening of windows, a survey was carried out. The survey was aimed at people 

(over the age of 18) residing in the UK.  Random sampling is sampling technique in which 

participants are selected depending on availability and willingness to respond (Gravetter 

& Forzano, 2006). The survey was structured in such a way to include questions with 

answers in accordance with a Likert scale with options for open-ended answers where the 

participants were welcome to express their own opinions if they chose to. The questions 

in the survey were intended at examining the windows-opening behaviour of people and 

its consequent effect on the energy efficiency of buildings. The objective close ended 

Likert scale and objective answer questions contributed to the quantitative data while the 

answers to open ended questions provided valuable data toward qualitative analysis of 
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the reasons for window opening and the conditions that came together for an occupant in 

a house to open windows in winter when heating is ON. 

A survey link, containing a brief information on the aim of the research and purpose of 

the survey, was sent through emails and social media groups to a collective of people 

across the UK. A survey collecting website called prolific was also utilised to collect 

survey from a representative sample of the UK.  

3.4.2.1. Ethical Considerations 

An ethical approval process was followed during this research work to make sure that 

the study complied with all ethical clearance requirement of the university,namely the 

Joint Inter-College Ethics Committee (JICEC). This included ensuring that privacy and 

confidentiality of the participants was satisfied. The survey was kept short and could be 

answered within 5 mins so that participants did not feel constrained. 

3.4.2.2. Sample Size 

To make reliable inference about a population, with an empirical study, like a survey, 

choosing the right sample size is important. Confidence interval (CI) is the quantitative 

representation of uncertainty associated with the collected data, calculated from the data 

statistics. The most common CI employed is 95%. The margin of error is the percentage 

of random sampling error that can occur. A reasonable margin of error of 5.5-6% is 

chosen for this study. With the above values, the sample size is calculated using normal 

distribution and z-score values, to be between 267-318.  

The survey results with objective answers were analysed and the open-ended questions 

were qualitatively analysed and the observations from the results that revealed 

information relevant to the research, were reported. 
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3.5.  Analysis of Energy Usage in Social Housing 

 Preliminary qualitative analysis was followed by the nest phase of the research. This 

included the quantitative analysis of data obtained. Nottingham Trent University (NTU), 

in partnership with Nottingham City Homes (NCH), conducted a study to better 

understand energy efficiency in social housing. The project focussed on 40 homes based 

in Nottingham with a diverse construction design, constructed over a period ranging from 

1902 to 2012. The experiment was conducted over a period of 51 weeks from Feb 2013 

to March 2014 and data was collected. The data obtained, from the above-mentioned 

experiment, was analysed using MATLAB, with a goal to capture patterns of energy 

usage and its relationship to occupant behaviour, based on outside ambient temperature.  

The analysis aims to look at some hypothesis regarding relationship between:  

1. External ambient temperature and radiator usage  

2. External ambient temperature and room ambient temperature  

3. Room ambient temperature and room radiator temperature  

4. Room ambient temperature and status of window in the room(open/close)  

5. Window usage and outside ambient temperature  

6. Window usage and radiator usage 

The analysis has been carried out for data collected from houses with different 

architecture, insulation and built year. While this helps to have a wider range for analysis, 

it should be noted that these houses may not be typical of all such houses. The data 

included in this study are from houses that have successful data collection from all the 

sensors installed and does not include houses that have faulty sensor readings are from 

houses that do not have missing sensor readings for the specific period mentioned in the 

forthcoming analysis. They will reflect the energy usage characteristics of occupants 
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based on various factors, particularly based on the opening of windows in the bedroom 

and lounge.  

 

Figure 3.2: Location of sensors in the house 

Bedroom ambient 
temperature sensor

Window status 
sensor Bedroom radiator 

temperature sensor



 53 

3.5.1. Sensor set-up 

Houses were equipped with Wireless Sensor networks (WSN) to record the utility 

readings, ambient temperature of rooms, radiator temperatures and to monitor the opening 

and closing of doors and windows.  

Figure 3.2 shows the representation of the location of the sensors in the bedroom of the 

house. The bedroom considered in this analysis is the master bedroom, and the variables 

considered are, bedroom ambient temperature, bedroom radiator temperature, bedroom 

window status and the outside ambient temperature. The temperature is sensed using 

sensor LoRa RF PT100 from Invisible systems. 

 

Figure 3.3: Sensors measuring room temperature 

 

Figure 3.4: Sensors measuring radiator temperature 
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To detect the ambient temperature of room, the sensor is installed high on the wall, near 

the ceiling, away from doors, windows, and radiators, to capture the average temperature 

without compromising the value, as shown in Figure 3.3. The radiator temperature is 

detected by installing a temperature sensor right next to the radiator. Temperature sensors 

installed near radiator, for two houses are shown in Figure 3.4. 

Window status is sensed using Invisible systems status transmitter, shown in Figure 3.5. 

The status transmitter is a wireless transmitter that captures the status of the required 

equipment, normally via open/closed contact.  The sensor used comes with a magnetic 

switch to report the status. The switch has two parts that must be installed to report change 

in status with respect to contact/ no-contact with the other part of the switch. In the 

experiment conducted, one part of the switch was connected to the frame of the door/ 

window and the other part was attached to door itself, in such a way that when the door 

was closed the two parts were in contact with each other and signal would be send out, as 

1, representing a closed circuit, as shown in Figure 3.6(a). 

 

Figure 3.5: Sensor measuring window status 
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Figure 3.6: Working of the window status sensor  

When the window was open the circuit remained open and the value transmitted, would 

be zero as shown in Figure 3.6(b).   In short, ‘1’ indicated a closed window and ‘0’ 

indicated an open window. However, the measure of opening of the window cannot be 

identified, using this system.  The system would remain in ‘0’, regardless of the window 

being fully open or partially open. Each sensor in each house was identified using the 

unique serial number marked on the side of the sensor, together with the barcode, to 

identify the values form different houses, after data collection. 

3.5.2. Data Cleansing 

Data was collected from forty houses over a period of 51 weeks.  The quality and usability 

of any data set depends on several factors. Any shortcoming in the quality of the data may 

impact the performance of the decisive process (Islam et al., 2014). Therefore, it is crucial 

that the data is cleaned before analysis. The data cleansing process followed in this study 

is concisely given below: 

1. A copy of the obtained raw data was made. 

2. The raw data was checked for corrupt values. 

3. Outliers were identified and removed. 

4. The data was then checked for missing values and imputed, using interpolation 

or extrapolation depending on the location of missing data in the whole data set. 

(b) Window Closed(a) Window Open
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5. Since the data was collected using wireless sensors, the time stamp of the 12 

different sensors varied. The data from all the sensors were synchronised, using 

interpolation wherever required. 

6. The whole process was performed using MATLAB, which is an ideal software 

for iterative analysis and design processes.  

There were sensors that did not work for major part of the data collection and sensors that 

were faulty. After consolidation and for clarity of analysis, 17 houses that had data from 

all the sensors and had negligible missing data, were chosen for this analysis.  

The cleansed data was saved in two different data sets: first one based on house data (17 

data sets with data from 12 sensors) and the second one based on sensor data (12 sensors 

each having data from 17 houses). All data was dealt with in such a way as not to lose 

any valuable data during analysis. Data, starting form raw data obtained from the houses 

was categorised, coded, and documented to make sure it was safe. 

3.5.3. Heat Energy Demand Calculation 

The increase in temperature of a room depends on several factors. Human body 

temperature is around 37.4oC, which is less than room temperature. Therefore, there is 

transfer of heat form human body to room. Sunlight accounts for increase in heat of a 

room, the intensity of which depends on the season and weather. Electrical appliances 

and human activities like cooking also contribute to the increase in heat. But the major 

increase in room temperature is attributed to the heating system. The energy used for 

maintaining temperature of comfort in the room, depends on the outside ambient 

temperature. The lower the temperature outside, the more energy required to maintain 

ambient temperature inside. The amount of heat required to maintain a temperature 

comfortable to the occupant also varies depending on several factors as discussed earlier.  
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Calculating energy demand in residential buildings is an intricate process since it involves 

energy loss due to building fabric, energy loss due to ventilation, energy loss due to 

infiltration and other factors. Each of these in turn depend on various factors. Energy loss 

through ‘cold bridges’, such as pipes inside walls and metal coves, and cracks in walls 

are not considered. 

Heat loss through building fabric is constant for a building depending on factors like 

construction, built year, insulation type etc. Hence, while calculating energy demand, heat 

loss in a house, due to building fabric does not change over time. On the other hand, heat 

loss due to ventilation is highly fluctuating since it depends on the behaviour of the 

occupant of the building. Opening and closing of windows is the most common way of 

controlling room temperature in dwelling. However, in winter, the action of opening 

window leads to increase in energy usage. This is because when window is opened, the 

warm air form inside the room leaves the room through the open window, to be replaced 

by cold arti form outside. The heating system must then provide heat energy to warm the 

air again to the required thermal comfort temperature. This energy used to heat the cold 

air is called heat loss due to ventilation. Quantifying heat loss due to ventilation is a 

complex process due to the number of factors involved. The rate, time and degree of 

window opening depends on the occupants and is highly stochastic. 

However, ventilation varies depending on the type of ventilation: automated, where in it 

depends on the set time of ventilation; or manual wherein it is unpredictable since 

occupants tend to open windows or increase thermostat temperature base on their thermal 

comfort. The total energy demand in a room can be calculated as the sum of energy loss 

through building fabric and energy loss through ventilation. 

Energy consumption Qec is given by 

𝑄𝑒𝑐 =  𝑄𝑓 + 𝑄𝑣           (3.2) 
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where  Qf is the heat loss due to building fabric and Qv is the heat loss due to ventilation 

3.5.3.1. Heat-loss due to Building Fabric 

𝑄𝑓 = (∑ 𝑈𝑦 𝐴𝑦)  ×  ∆𝑇     (3.3) 

where Uy is the U value of individual elements of the building fabric, Ay is the area of 

individual elements of the building fabric and ΔT is the difference in temperature between 

the considered room and outside. From (3.3), the contribution of heat loss due to building 

fabric to overall heat-loss is 

𝑄𝑓

∆𝑇
=  ∑ 𝑈𝑦 𝐴𝑦      (3.4) 

𝑄𝑓

∆𝑇
=  𝑈1𝐴1 +  𝑈2𝐴2 + 𝑈3𝐴3                                                 (3.5)                             

Table 3.1: U-values of different fabrics with different insulation types 

Wall Types 
U-value 

(W/m2K) 

Solid wall in very old buildings  2.3 ~ 2 

Solid wall in old buildings  1.7 ~ 2 

Unfilled cavity wall 1.5 ~ 2 

Solid wall with 100mm thick external insulation 0.32 ~ 0.3 

Filled Cavity wall with 100 mm thick external insulation 0.25 ~ 0.3 

Double Glazed windows 2.8 

Insulated Roof 0.15 

Uninsulated Roof 2.5 

Heat energy can be lost through the walls facing the external atmosphere, through the 

window frames and glass and through the roof. The rate of heat loss can be calculated by 

knowing the U value of each element mentioned. The heat loss through the fabric is the 

U-value multiplied by the total area of the fabric, as given in (3.4) and expanded in (3.5). 

Hence, the contribution of heat loss due to fabric elements is given by 

𝑄𝑓

∆𝑇
=  𝑈1𝐴1 +  𝑈2𝐴2 + 𝑈3𝐴3    (3.5) 
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where U1A1 is U value and area of wall with one side facing outside atmosphere, U2A2 is 

U-value and area of window fabric and U3A3 is U-value and area of roof. The U-values 

of different materials in a building fabric, are given in Table 3.1. 

3.5.3.2. Heat loss due to Ventilation 

As given in (3.2) the total heat-loss Qec of a house is the sum of the heat-loss due through 

building fabric (Qf) and heat-loss through ventilation (Qv). Majority of dwellings in the 

UK are naturally ventilated. Heat loss due to ventilation, Qv is most commonly due to the 

opening and closing of windows. When windows are opened in winter, cold air from the 

outside replaces the existing warm air. The cold air has in turn to be heated to the required 

temperature set by the occupant. The amount of heat energy required to maintain thermal 

comfort in a room or the energy consumption due to ventilation, can be calculated 

considering heat capacity of the room, as  

𝑄𝑣 = 𝑚 × 𝐶𝑝 × 𝐴𝐶𝐻 × ∆𝑇    (3.6) 

where m  - mass of air in kg, Cp - specific heat of air (under constant pressure) which is 1 

kJ/kgK at 300K (26.85oC), ∆T - rate of change of temperature and ACH – Air Change 

Rate per hour. 

Mass of air (m) is given by  

𝑀 =  𝜌𝑣            (3.7) 

where 𝜌 is density of air which is 1.225kg/cubic metre and v is the volume of air in the 

room (l x b x h cubic metre). Therefore, Energy demand Eh is  

Qv       =  𝜌   ×  v  ×  Cp  × ACH  ×  ∆T     (3.8) 

Qv    = 1.3  × bvol  ×  1    × ACH ×   (Troom – Tout) (3.9) 

where Troom is the ambient temperature of the room and Tout is the ambient temperature 

outside. The unit is derived as (kg x m x m x m x (kJ/kgK) x K ) which simplifies to kJ or 

kiloJoules or (kJ/3600) Watts. The contribution to total heat-loss due to ventilation is 

given by 

     
𝑄𝑣
∆𝑇

=  1.2 𝑥 𝑏𝑣𝑜𝑙 𝑥 𝐴𝐶𝐻
3600 

                   (3.10) 
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From (3.5) and (3.10), the total energy consumption Qec is 

𝑄𝑒𝑐 = (𝑈1𝐴1 + 𝑈2𝐴2 + 𝑈3𝐴3) + (1.2 𝑥 𝑏𝑣𝑜𝑙 𝑥 𝐴𝐶𝐻
3600 

)) ∆𝑇 𝑊𝑎𝑡𝑡𝑠   

 (3.11) 

Energy demand is usually expressed in kWh. Therefore expressing (3.11) in kWh 

𝑄𝑒𝑐 =  (𝑄𝑓+𝑄𝑣)∆𝑇
1000

 𝑘𝑊ℎ    (3.12) 

Air Changes per hour 

There are standard regulations given for air tightness for different types of ventilated 

buildings.  Calculating the air changes per hour of a naturally ventilated building is a 

complex process, since there are many factors to be considered in the process, including 

dimension of window, area of window that is open, height of window from ground 

outside, height of window from floor inside, height from ceiling to window, speed and 

direction of wind, outside ambient temperature etc. The speed of wind and the outside 

ambient temperature for the considered time frame, has been obtained from MET office 

data (Weather Observation Website, n.d.). For this study, the ACH for window open and 

window closed houses, has been calculated using a calculator(Air Change Rate 

Calculator | Estimate Air Change | WindowMaster, n.d.). 

3.5.4. Analysis - Stage I 

The analysis has been carried out for data collected from houses with different 

architecture, insulation and built year. While this helps to have a wider range for analysis, 

it should be noted that these houses may not be typical of all such houses. The data 

included in this study are from houses that have successful data collection from all the 

sensors installed and does not include houses that have faulty sensor readings are from 

houses that do not have missing sensor readings for the specific period mentioned in the 
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forthcoming analysis. They will reflect the energy usage characteristics of occupants 

based on various factors, particularly based on the opening of windows in the bedroom. 

In the first stage of analysis of energy usage in social housing, the construction type, built 

year, and insulation type of houses are explored. The window opening pattern in the 

houses are also studied. This study focusses on the window status of the main bedroom 

window. Several previous studies show that the main bedroom is most often used for 

ventilation in domestic buildings (Brundrett, 1977; Centre, 1986; Dubrul, 1988; Fox, 

2008; Jack et al., 2015; Jones et al., 2015; Pretlove, 2000). Installation notes indicate that 

the bedroom chosen for the study in the houses was the master bedroom and hence the 

bedroom for all the houses is the master bedroom throughout the analysis. Since energy 

consumption variation is more evident in winter, data from the winter months were 

chosen for analysis.  Houses are categorised based on their insulation type and window 

opening behaviour. A detailed description of the analysis is given in Chapter 6.  

3.5.5. Analysis - Stage II 

In the previous section, the methodology followed in the first stage of analysis of energy 

usage in social housing is explained. Following the analysis of all the houses, a more 

detailed analysis of four houses is done, to further understand and quantify the effect of 

energy efficiency and to compare values between high insulation and low insulation 

houses. Four houses are selected based on their insulation property and window opening 

frequency: high insulation window open house, high insulation window closed house, 

low insulation window open house and low insulation window closed house. By 

comparing the energy usage in these four houses, a robust representation of difference in 

energy usage in window open and closed houses and its relationship to insulation property 

of the house, can be understood. 
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3.6. Development of ANN Model to predict energy usage and window opening 

behaviour in residential buildings 

Occupant behaviour (OB) is a major factor influencing energy efficiency of a building, 

but not represented enough in building performance simulation (BPS) models. In most 

BPS until the past few decades, OB is represented by predetermined ‘deterministic’ 

schedules or fixed settings, which, when incorporated into BPS, provides a homogenous 

model which does not consider the stochastic nature of OB. Past few decades have seen 

an increase in probabilistic models of OB representation, which are derived from data 

collected, including the temperature details of indoor and outdoor environments, other 

physical parameters and the factors that change due to occupant behaviour. Different 

studies use different combination of these variables and therefore a standardised model is 

lacking.  

This study follows a stochastic model of representing OB, with measured temperature 

data and indoor and outdoor environmental conditions, window opening frequency and 

the building fabric properties. Artificial neural network is used to develop models to 

predict energy usage in buildings based on indoor room temperature, radiator 

temperature, outside ambient temperature, and window status of the house. The thermal 

characteristics of the room and its relationship to occupant behaviour of window opening 

is investigated. By analysing the collected data, the temperature patterns that lead to an 

occupant opening window is extracted, to develop Artificial Neural Network model to 

predict window opening behaviour and energy consumption based on window opening 

behaviour of occupants. Deciding on an algorithm and developing a model depends on 

various factors in a multi-variate analysis. There will be some trade-off between model 

speed, accuracy, and complexity. A systematic workflow is required to choose the right 

model.  
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Multivariate statistic modelling poses an inherent difficulty of visualising data with many 

variables and to find the relationship between variables, their relevance and correlation. 

It is important to find out the driving force that governs the behaviour of the system 

(MathWorks, 2021). A key question in predicting window opening behaviour and 

stochastic modelling is the identification of the key variable/variables responsible for 

window opening behaviour. It is important to figure out the main factor that triggers the 

behaviour for ideal modelling of residential buildings to include the predictability of 

window opening. In this study, supervised learning is used, since both input and output 

characteristics are being observed to find optimum conditions of window opening 

behaviour of occupants, for better energy efficiency. The overall algorithm of the whole 

process is given in Figure 3.7. 

MATLAB Neural Network is used to create models. To understand and predict window 

opening behaviour, different models are tried.  

3.6.1. Steps to Development of Model 

Selecting a model involves considering all factors to be considered, and a trade-off 

between specific characteristics of the algorithm like speed, memory usage, transparency 

etc. The study aims to understand the window opening behaviour of occupants; to find 

the conditions under which window is opened.  

Measurements of window opening and room temperature, radiator temperature, time of 

day and outside ambient temperature are taken. Window opening temperature is the 

‘input’ and the other variables are the ‘targets’. This makes supervised learning technique 

more apt for the development of a model. Supervised learning can in turn broadly be one 

of the two types, namely, classification or regression. The optimum model is chosen by 

trial and error. Different algorithms are tried and the best performing one is chosen.  
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Figure 3.7: A) Block Diagram explaining process followed; B) further details of the 

process 

A) 

B) 
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Only features with the most predictive power are chosen, to create a model that 

generalises well to any data set of the same type. 

3.6.1.1. Data Pre-processing - Feature Extraction 

The obtained data has pre-processed to suit stochastic modelling for prediction of window 

opening behaviour.  The variables in question are all different data types, requiring 

different pre-processing techniques. The sensor values are numerical. The room 

temperature and radiator temperature are continuous values while the window 

temperature is made discrete by considering it as two states (open or close). 

3.6.1.2. Variable Selection 

The focus of study of this research is the relationship between window opening and its 

impact on energy efficiency (EE).  Hence House A (High Insulation -Window Open) and 

House B (High Insulation, Window Closed) are the houses chosen for development of 

neural network models. The variable considered for Model development are the room 

temperature, radiator temperature, window status and calculated energy demand. Each 

house data is grouped into days, with 83 samples in each day. This helps predict energy 

demand and window open status per day.  The data is split into winter 1 and winter 2 data 

with 29 days data in winter 1 and 13 days data in winter 2. 

3.6.1.1. Correlation between variables 

Development of statistical stochastic models depend to a great extend to the correlation 

between variables being considered. Only then can the effect of individual variables on 

window opening behaviour be identified. The analysis of correlation between the 

variables are given in detail in the previous chapters. 

3.6.1.2. Develop Models 

The data is split into training and testing data. The training data is used to develop a 

machine learning model. The testing data is used to validate the developed model. This 
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is done by testing the data with the developed model and comparing the result with the 

actual measured value. The percentage error of the model is calculated.  

The input in this study is binary - window open or closed which is expressed as a logical 

array (1 - open, 0 - closed). The total error is the number of times the window status (open 

or closed) is predicted wrong.  

Therefore, the error is the sum of inequality between the two logical arrays, as shown in 

equation. The percentage error is the total error over the total number of observations. In 

this study, data is collected every minute giving observations of 1440 per day. 

𝐸𝑟𝑟𝑜𝑟𝑒𝑛𝑒𝑟𝑔𝑦𝑑𝑒𝑚𝑎𝑛𝑑 = 𝐸𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐸𝐷𝑎𝑐𝑡𝑢𝑎𝑙

𝐸𝐷𝑎𝑐𝑡𝑢𝑎𝑙
 𝑥 100         (3.13)            

            Errorwinstat = (winstat predicted ~= winstatmeasured)                   (3.14)             

Percentage error = ∑ 𝐸𝑤𝑖𝑛𝑠𝑡𝑎𝑡
𝑛
𝑖=0

𝑛
 ×  100                     (3.15) 

where n = 83.  

The training and prediction process is repeated 15 times, each time increasing in step, the 

number of days taken for training, to see the overall performance of the machine learning 

model with different data sets.  

 

Figure 3.8: Block Diagram of Methodology of development ANN models 
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3.6.1.3. Compare Models 

Once the models are developed, they are compared to check for accuracy and 

repeatability, while making sure over fitting is not done.  

The best model is chosen, based on various conditions and it is chosen to be used as a 

base for testing on data form House B and House C and for further development.  The 

block diagram of methodology is shown in Figure 8.         

3.6.1.4. Testing and validation 

Window status is considered as the input. The targets are radiator temperature, room 

temperature, timeofday and outside ambient temperature. The data is divided into three 

subsets. The first subset is used for gradient computation and weight adjustments. The 

second subset is used to validate the first set. The third subset is used to test the model 

and see the error. In this study, the data is divided randomly into three subsets, with 70% 

of the data in subset 1, 15% of the data in subset 2 and 15% in subset 3.  

The input class is binary, window open or window closed. Initially, one day data is taken 

for training and model is created. The model is used to test the other days data of winter 

1. The predicted data is compared with actual data and the percentage error is calculated. 

Model is modified to have 2 days data as training data and the other 14 days are tested. 

The process is repeated with up to 15 days data. The created models are tested with the 

rest of the data. The model with the least average percentage error is chosen as the best 

model.  

3.7. Summary  

 The aim of this research is to assess the effect of window opening behaviour of occupants 

on energy efficiency of buildings. Based on this aim, the objectives were set out and 

consequently, the research questions were formulated. A methodology was followed to 
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achieve the aim and objectives, with guidance of the research questions. The methodology 

followed for this research study is elaborated in this chapter. Mixed method of analysis 

was followed for the research, which included qualitative analysis with data from thermal 

images and survey, and quantitative analysis with data from social housing. The 

methodology was carried out in three stages. The first stage being literature review which 

continued throughout the course of the study, the second stage being the preliminary 

analysis of thermal images and survey and the second stage being analysis of energy use 

in social housing, to understand the impact of window opening on energy usage. This was 

followed by development of artificial neural network models to predict energy usage and 

window opening behaviour of occupants.
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Chapter 4 | Investigating the Effect of and Reasons for 

Window Opening Behaviour of Occupants 

4.1. Introduction 

Literature review emphasised the role of occupant behaviour, particularly, window opening 

behaviour of occupants, in energy efficiency of a building. To investigate this further, two 

courses of action were undertaken:  

1. To get a visual understanding, thermal images of residential buildings across 

Nottingham were collected. Infrared thermography was used to identify areas of 

heat-loss in buildings. 

2. A survey was carried out, to understand why people open windows in residential 

buildings and the key ‘drivers’ to window opening behaviour in occupants. 

This chapter discusses both the above, which contribute to the qualitative analysis of the 

study. 

4.2. Thermal imaging 

Heat transfer in object occur by means of conduction, convection, and radiation. Transfer of 

heat from one solid to another is conduction and convection is transfer of heat through fluids. 

Radiation is the heat transferred due to electromagnetic radiations from the object.  

The net heat energy due to Infrared (IR) radiations is given in Chapter 3, equation (3.1). 

While IR radiation ranges between 0.7µm and 100µm atmospheric IR transmission is 

between 3 µm to 13µm (FLIR, n.d.). Different IR thermal imaging cameras capture different 

ranges of IR, depending on the application. IR thermography can be valuable tool to identify 

heat loss in buildings in a non-destructive way. Several studies have been done in the past 
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fifty years, where IR thermography has been used to understand heat characteristics of 

buildings, which have been reviewed in Section 2.5.2. 

Several studies use thermography has been used in non-destructive analysis of cultural 

architecture and building defect diagnostics  (Al-Habaibeh et al., 2021; Al-Habaibeh & 

Siena, 2012; Costanzo et al., 2015; Daffara et al., n.d.; Fokaides & Kalogirou, 2011; Glavaš 

et al., n.d.; Grinzato, n.d.; Lo & Choi, n.d.). However, the ‘ease of understanding’ aspect of 

IR thermography has not been utilised to it full extent. Goodhew et. al investigated 

behavioural changes in occupants, by providing them with thermal image of heat loss in their 

homes. IR images of the building interior and exterior were provided to occupants. Results 

showed that residents who received thermal images were more prone to reduce their energy 

usage (Goodhew et al., 2015).  The impact of occupant behaviour of window opening can 

be better understood using thermal imaging.  

4.2.1. Data Collection  

To better understand and evaluate occupant behaviour with respect to thermal comfort, a 

survey was done on two cold nights in February 2019, in different areas of Nottingham, 

United Kingdom, as given in Table 4.1.  

Table 4.1: Specifics of data collection 

Location Date Time Outside Ambient 
Temperature (oC) 

 City Centre, NG1 11/02/2019 17.30 to 19.30 3 

Sneinton, NG2 12/02/2019 19:15:00 5 

Forest Field, NG7 12/02/2019 19:30:00 5 

Broxtowe, NG8  12/02/2019 19:45:00 5 

Lenton, NG7 12/02/2019 20:15:00 5 

Calverton, NG14 12/02/2019 21:00:00 5 
By using infrared technology, areas of heat-loss in the building can be specified. Thermal 

images of buildings were taken on two cold winter nights and were studied based on their 
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temperature range and the building features. The images collected were of buildings built in 

different decades, with different types of insulations. A selection of the images is presented 

in this chapter. 

4.2.2. Analysis and Discussion 

As discussed in literature review chapter, residential buildings play an important part in 

increase in energy consumption and thereby emissions, in the UK. Renovating old buildings 

and construction of new buildings with good insulation formed an important part of the 

government’s plan to reduce energy consumption and improve energy consumption 

practices in the domestic sector, However, in the past few decades, the importance of 

occupant behaviour in energy consumption is being realised. There are studies documenting 

the benefits of environmentally responsible behaviour (ERB) of occupants (Hamilton, 2018). 

This section focusses on thermal images taken from outside student halls. Studies shows that 

there is a lack of student awareness of energy conservation strategies (Collins, 2010). 

Thermal images make it possible to observe heat dissipation which is otherwise invisible to 

the human eye. IR radiation from the surface of the building emits heat, which is visible in 

the thermal imager camera. This can be compared with the environmental temperature. In 

winter, the difference between the indoor and outdoor temperature is high. Therefore, the 

thermal image depicts a clear idea of where heat energy is lost, in the building. This helps 

capture the stochastic behaviour of occupants in a dynamic manner. Thermal images make 

it possible to observe heat dissipation which is otherwise invisible to human eye. IR radiation 

from the surface of the building emits heat, which is visible in the thermal imager camera. 

This can be compared with the environmental temperature. In winter, the difference between 

the indoor and outdoor temperature is high. Therefore, the thermal image depicts a clear idea 

of where heat energy is lost, in the building. This helps capture the stochastic behaviour of 

occupants in a dynamic manner. 
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Images were captured from Nottingham Trent University campus student accommodations, 

on a cold winter night. The outside ambient temperature was 3oC. Nottingham Trent 

University campus buildings are post 2000 built high insulation buildings. Figure 4.1 shows 

images of windows left open in the student halls. One of the windows is wide open, 

regardless of the temperature outside (3oC). The same trend is seen in other buildings across 

the area. There is a lack of student awareness of energy conservation strategies (Collins, 

2010). Several studies have been undertaken to understand the energy awareness of students 

living in residence halls (Amin et al., 2016; Dixon & Parker, 2021; Emeakaroha et al., 2014; 

Jami et al., 2021; Laurent et al., n.d.; Wisecup et al., 2017). Energy use in student halls vary 

to a great extent depending on the characteristics of energy use in the actual house of the 

students (Amin et al., 2016). This is evident from the collected thermal images. Airflow Q 

through window is given by the equation  

   𝑄 = 𝐴𝑐𝑣𝑐                (4.1) 

 where Ac (m2) is the minimum cross section area of air flow through the opening and vc 

(m/s) is the velocity of air through this area. Ac can be determined by 

 𝐴𝑐 = 𝐶𝑐𝐴         (4.2) 

where Cc is contraction co-efficient, and A (m2) is the area of the opening.  

It is clear from (4.3) that the degree of window opening affects how much air flow occurs. 

The higher the value of A, the higher the quantity of cold air form outside entering the 

building. This in turn makes the room cold, prompting the occupant to increase heating. 

Figure 4.2 show thermal images were captured from Nottingham City Centre buildings and 

nearby areas.  
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Figure 4.1: Thermal image of NTU Student Halls 
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Figure 4.2: Thermal image of buildings in Nottingham City 

To further understand the characteristics of occupant behaviour, thermal image collection was 

continued the next day. The outside ambient temperature at the time of data collection was 5oC. Other 

areas of Nottingham, with different age houses, were covered. This was done to understand the 

impact of insulation in window opening behaviour. Figure 4.3 shows semi-detached social housing 

and an early 19th century-built terrace houses, both having windows open when outside ambient 

temperature is 5oC.  

It aims to identify the key factors that influence occupants’ behaviour, like lifestyle, 

perception of comfort and household characteristics  (Andersen et al., 2009; Schweiker & 

Shukuya, 2009). Several studies that explain variation in energy efficiency in residential 
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buildings have been discussed in Chapter 2. Understanding behaviour patterns and trends in 

energy usage in homes, will help reduce energy consumption.   

 

Figure 4.3:  a) Semidetached house and b) a terrace house with window open when 

outside ambient temperature is 5oC 

From the thermal images people tend to open windows even on cold winter nights and there 

is loss of heat through the open window. This understanding strengthened the basis for the 

analysis on the collected data and would help in recognising patterns of window opening 

amongst the participants in various instances of the data. 

4.3. Survey 

Thermal imaging illustrated the effect of occupant behaviour of window opening and how it 

can potentially affect the energy efficiency of a building. To understand why people open 

window in winter, a survey was conducted. Chapter 3 explains the relevance of the survey 

and how the survey questions were developed. 

4.3.1. Data Collection 

To explore the impact of occupants’ behaviour on energy efficiency of a building and 

enhance understanding of energy usage by understanding people’s perceptions, with the 

focus on opening of windows, a survey was carried out. The survey was aimed at people 

(over the age of 18) residing in the UK.  The survey was structured in such a way to include 

b 
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questions with answers in accordance with a Likert scale with options for open-ended 

answers where the participants were welcome to express their own opinions if they chose to. 

The questions in the survey were intended at examining the windows-opening behaviour of 

people and its consequent effect on the energy efficiency of buildings. The objective close 

ended Likert scale and objective answer questions contributed to the quantitative data while 

the answers to open ended questions provided valuable data toward qualitative analysis of 

the reasons for window opening and the conditions that came together for an occupant in a 

house to open windows in winter when heating is ON. 

A survey link, containing a brief information on the aim of the research and purpose of the 

survey, was sent through emails and social media groups to a collective of people across the 

UK. A survey collecting website called prolific was also utilised to collect survey from a 

representative sample of the UK. 

4.3.2. Sample sizing 

To make reliable inference about a population, with an empirical study, like a survey, 

choosing the right sample size is important. Confidence interval (CI) is the quantitative 

representation of uncertainty associated with the collected data, calculated from the data 

statistics. The most common CI employed is 95%. The margin of error is the percentage of 

random sampling error that can occur. A reasonable margin of error of 5.5-6% is chosen for 

this study. With the above values, the sample size is calculated using normal distribution and 

z-score values, to be between 267-318.  

Overall, 300 responses were collected for the survey which is analysed in the following 

sections. 

Survey characteristics 

The survey took account of household characteristics that were regarded to have an impact 

on energy efficiency of the building. Demographics like size of household, age, main 
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occupation, building ownership status (rented/ shared/ own house etc.) were collected. There 

is an assumption that there is a relationship between age of the occupant and energy usage; 

hence age of the occupants and of other household members were considered. This also 

helped indicate the presence of child/senior citizen. The entire questionnaire can be seen in 

Appendix. 

 

Figure 4.4: Survey demographic details 

Building and other associated particulars 

Participants were asked about the type of accommodation they live (Detached/Semi-

detached/Flat/Bungalow/Terraced), type of ownership (Own/Rented/Shared/council 

House/Other), type of insulation (External Wall/Internal Wall/Cavity Wall/Loft/Other/Not 

Sure), type of heating (Electric/Gas/Both/Other/Not Sure), preferred ambient temperature, 

type of heating control (Programmable/Manual etc). 
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Occupant behaviour 

The questionnaire focussed on questions that would help understand the factor that prompted 

window opening, like ‘How often do you open your windows in winter’, ‘How long do you 

leave them open’, ‘are windows open when heating is ON’, ‘What time of the day are you 

most likely to open windows’ etc. Option was provided for detailed answer for some of the 

questions, for qualitative analysis. 

 

Figure 4.5: Type of heating and heating control 

Please mention the type of heating used in your house.

What kind of heating control do you use.
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4.4. Analysis of Survey Results 

Figure 4.4shows the demography of the participants, which is seen to be representative of 

the UK population.  75% of the participants used gas boilers to heat their houses and 84% 

of the participants had manual or programmable thermostats to control the temperature 

(Figure 4.5). 

4.4.1. Frequency of Window Opening 

Participants were asked how often they open windows of their house, in winter. Figure 4.6 

shows the frequency of window opening in winter. 35.3% of participants open their window 

once every day.  Only 5.6% of the participants never open the window. One out of the 300 

respondents answered, ‘Whenever central heating isn't on and feel the need to do so (usually in the 

afternoons)’. 

 

Figure 4.6: Frequency of window opening 

Although this does not derive any conclusions, it can be seen that energy efficiency factor 

of making sure the heating is off before opening the window was considered mandatory by 

only one participant. It is to be noted that of the 22 participants who left their windows 

always, 18 were adults and 2 were senior citizens; 3 of the households had adults and 

children in them; none of them had babies in their household. Further studies need to be done 

In winter, how often do you open windows in your house?
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to understand whether age of household occupants is a relevant factor that leads to window 

opening behaviour. 

4.4.2. Duration of Window Opening 

Participants were asked regarding the duration of window opening. Figure 4.7 shows the 

response for this question. The duration varied, with 80% of the participants opening their 

window for a duration ranging from 5 minutes to 5 hours. 34.7% of the respondents opened 

their window 2 hours or more, with 5.9% leaving window open all through the day. 23.8% 

left their window open 30 mins to an hour a day. While one of the respondents answered, all 

day and night’, another left 2 windows open throughout the day and another one during 

cooking (‘Usually 2 windows 24/7 for ventilation. Another one during cooking.’).   

 

Figure 4.7: Duration of window opening 

Concern about viral spread was another one of the reasons mentioned. While some were 

attempting to act in an energy efficient manner to an extent (‘Kitchen windows are open during 

cooking as heat from oven and hob counter act the heat loss. Bedroom windows open for 2 mins per 

day to allow circulation’, ‘I leave the bathroom window open (roughly a centimetre) on a latch all the 

time and fully open after a bath or shower, the bedroom window is always open (roughly a handspan) 

and the living room one is shut in winter and kitchen open when cooking’), others considered air 

quality (‘I have my bedroom window open all night during the Winter. The heating is turned off at night. 

I open all our windows for an hour on Sundays as it's the only day I can safely air out the house due to 

When windows are opened (in winter) how long are they left open for, usually?
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lower traffic levels. Opening windows is also important to reduce viral spread’, ‘Usually when cleaning 

to get ventilation’, ‘just to let fresh air in and take condensate out’).  

The stochastic nature of occupant behaviour was understood evidently through some of the 

responses: 

‘I open some windows more than others. The window in the kitchen gets open all the time as the cat 

goes in and out and I need to let out the smoke as I burn the food a lot (I am quite distracted person). 

The bedroom gets window open as my husband does not feel cold and that window stays open 

sometimes a day or two. The windows in the children's rooms get opened hardly ever. Maybe once a 

week a bit. The living room....not often as it is noisy and quite a bit of pollution.’ 

‘Windows are open for a few hours to all day in the bedroom to air out the bed. Rest of the house we 

tend to open windows in the bathroom for an hour or so after getting ready. Open windows in all other 

rooms when needs, e.g. when airing out laundry, get rid of smells, while cooking etc.’ 

‘I'm opening my windows everyday, few times a day for 10 min.’ 

4.4.3. Window Opening Time of Day 

Participants were asked the time of the day they were most likely to open windows in winter. 

There was a mixed response with 32.3% of participants most likely to open windows early 

in the morning. The pie chart of all the responses for this question is given in Figure 4.8. The 

responses were very stochastic, some of them given below (Full response data is given in 

Appendix A): 

‘Bedroom windows in morning and kitchen during evening dinner’ 

‘Only when it snow’ 

‘Only open if needed e.g. steam in bathroom, cooking in kitchen, this is random.’ 

4.4.1. Window Opening when Heating is ON 

Participants were asked frequency of window opening when heating was ON. Although 

52.5% of the participants never or rarely opened their windows, 47% of them opened their 

windows at least occasionally, if not always or frequently open. Of this 47%, 18.9% left 

their window open always or frequently. 
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Figure 4.8: Time of day when window is opened  
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Figure 4.9: Frequency of window opening when heating is ON 

To understand if the type of insulation of the house affected the frequency of window opening 

when window is open, this set of 57 respondents were investigated further to find any corelation 

between house insulation and window opening when heating ON. 

Table 4.2: Response analysis - ‘Window open always or frequently, when heating is ON’ 

Row Labels No. of 
responses 

A.Internal Wall Insulation 2 
B.External Wall Insulation 2 
C.Cavity Wall Insulation 4 
D.Loft Insulation 7 
Group1 26 

E1.Cavity Wall Insulation, Loft Insulation 18 
E2.External Wall Insulation, Internal Wall Insulation 1 
E3.External Wall Insulation, Loft Insulation 1 
E4.Internal Wall Insulation, Loft Insulation 2 
E5.Internal Wall Insulation, Cavity Wall Insulation, Loft 
Insulation 2 
E6.External Wall Insulation, Internal Wall Insulation, Cavity 
Wall Insulation, Loft Insulation 2 

Total 41 

How often do you open windows when the heating is ON?
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15 out of 57 were not sure of the insulation type of their house and one response was not 

complete. This brought the number of respondents who left their window open always or 

frequently, to 41. 

The insulation type of the dwelling of the 41 respondents were investigated, as shown in Figure 

4.10. 18 respondents out of the 41 (44%) had cavity wall and loft insulation in their houses. 26 

(63.4%) of them had more than one type of insulation in their house.  

Table 4.2 shows the insulation type of the dwelling of the 41 respondents. This is indicative of 

the effect of insulation on the window opening behaviour of occupants. It can be argued from 

these results that well insulated houses can behave as bad as a poorly insulated house, in terms 

of energy usage. 

 

Figure 4.10: Number of responses where participant leave window always/frequently open 

when heating is ON 

Depending on the comfort perception of the occupant, people living in well insulated houses 

may feel ‘too warm’ and open the window even when heating is ON. This contradicts the actual 
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purpose of insulating the house, which is energy efficiency. Some of the reasons for window 

opening (when heating is ON), relevant to this research, are given below: 

‘My son sometimes decides his room is too warm and opens the window while heating is on.’ 

‘As mentioned our bathroom windows & office windows are open mostly even when heating is on.’ 

‘I’ll open the windows if it gets too hot but only for a short time to keep the warmth.’ 

‘Thermostatic control mean the heating doesn't have a regular on/off cycle. So heating can come on while 

windows are open.’ 

 

Figure 4.11: Reasons for opening window in different rooms in the house 

Occupants were asked to select the various reasons that prompt them to open windows in 

different rooms. Figure 4.11 shows the frequency of response for reasons for window opening. 

72% of the occupants open their main bedroom widnwo for fresh air, while 63.7% participant 

opened living room window for the same reason. Another rmain reason for window oepning 
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was to remove odour from rooms, especially kitchen, where 71.6% of participants open 

window. 52.8% of participants open bathroom window to reduce condensation.  

4.4.2. Reason for Opening Window 

It can be inferred that one of the main rooms where occuants open window is the main bedroom 

(72% of participants) while kitchen is the next common room where window isopened (71% of 

participants).  

 

Figure 4.12: Preferred ambient temperature of house 

4.4.3. Ambient Temperature of House 

Participants were asked the ambient temperature preference in their dwelling (Figure 4.12). 

66% of participants have a preferred ambient room temperature between 18 - 22oC, while 21.5% 

had a preference of Troom to be between 10 - 17oC. 

Responses from participants show awareness to energy efficiency to an extent. One participant 

responded ’our incentive for reducing heating is financial to save money’ indicating fuel poverty, while 

another response showed how window opening action of a dwelling affected another: I’m rarely 

able to achieve my desired temps as the windows in the flat above are open all winter, I'm lucky if I can 
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manage to get any part of my flat as high as 16c in the winter despite using a fan heater to supplement the 

central heating.’ 

4.5. Summary 

‘Energy gap’ is a major concern in building model simulations, as seen in Chapter 2. The 

thermal images demonstrate that window opening behaviour of residents vary, regardless of the 

temperature outside.  Including occupant behaviour in simulation models is critical to overcome 

major discrepancies between the designed and real energy usage in buildings. 

Thermal imaging was done with the aim of studying the impact of occupant’s behaviour on 

energy consumption of residential buildings. The findings suggest that occupants’ behaviour 

could have a great influence on the energy efficiency of buildings. 

Survey was done with the aim of studying the impact of occupant’s behaviour on energy 

consumption of residential buildings and to identify the key factors that influence occupants’ 

behaviour; thus, providing ideas for improving energy efficiency by suggesting enhanced 

policies, approaches, and techniques. 93.7% of the survey participants open windows in winter, 

with 47% of them opening windows when heating is ON. The duration of window opening 

varied, with 80% of survey participants opening their windows for a duration within the range 

of 5 minutes to 5 hours. The most opened window was that of the main bedroom, with 72% of 

the participants opening their main bedroom window for fresh air, while 19% opened because 

they were feeling too hot or humid. It is evident from the survey results that people do open 

windows in cold weather and when heating is ON. The open-ended answers to the survey 

questions showed the range of reasons for window opening, varying from person to person.  

Thermal imaging illustrated the occupant behaviour of window opening across Nottingham, 

even on two cold winter nights, in different type of buildings. The results of the survey showed 

similar findings, where people across UK had similar practice of opening window in winter 
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even when the heating was ON. To quantify the effect of this occupant behaviour of window 

opening in the energy efficiency of a building the next stage of research was carried out.
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Chapter 5 | Analysis of Energy Usage in Social Housing 

Stage I 

5.1. Introduction 

Literature review and the three consecutive chapters brought to light the impact of occupant 

behaviour on energy consumption. However, the unpredictability and the wide variability of 

window opening behaviour (WOB) between houses makes it difficult to incorporate the 

pattern into energy consumption models. The capability to estimate energy usage in 

residential buildings to a good standard depends on the first-hand knowledge of a home’s 

window usage. The performance of a building depends on several variables including 

human, environmental, and physical and each of these need to be studied concomitantly post 

occupancy. The qualitative analysis carried out by the capturing thermal images of buildings 

in winter showed that regardless of the outside ambient temperature, people tend to open 

windows, even when outside ambient temperature is 3oC to 5oC. The various reasons for 

opening windows, even in winter, by the occupants were further understand with the help of 

survey responses, which has been discussed in detail in the previous chapter. The next two 

chapters help quantify these findings with data collected from social housing. The following 

two chapters explains the quantitative analysis part of this research. Along with investigation 

into occupant behaviour with the help of survey explained in chapter 5, this chapter focusses 

on the analysis of the environmental factor of energy performance in conjunction with 

occupant behaviour of window opening.   

5.2. Methodology 

Energy performance depends on the building fabric properties as well. Hence the veracity of 

the building characteristics, like insulation properties, ventilation rates etc are also 



 90 

considered. This is because dwellings of different physical properties are considered in the 

study. To have a precise understand of the impact of occupant behaviour of window opening 

it must be analysed considering the physical properties as well.  

To understand and quantify the effect of window opening behaviour (WOB), an 

investigation was carried out on window opening behaviour in 40 houses in Nottingham. 

The project focussed in 40 homes based in Nottingham with a diverse construction design, 

constructed over a period ranging from 1902 to 2012. The experiment was conducted from 

over a period of 51 weeks from Feb 2012 to March 2014 and data was collected. Each house 

was fitted with twelve sensors. The sensors were fitted in different areas of the house, as shown in and 

their names are shown. The experiment was conducted over a period of fourteen months in forty 

houses. The data obtained from the above-mentioned experiment, forms the basis of 

investigative study of this research. The data was analysed using MATLAB, with a goal to 

capture patterns of energy usage and its relationship to occupant behaviour, based on outside 

ambient temperature. 

To understand the impact of occupant behaviour on energy efficiency, several studies have 

been carried out in the past few decades, as elaborated in chapter 2. Occupant behaviour is 

predominantly subjective and difficult to measure and interpret, since it depends on several 

variables that might include physical, emotional, contextual, habitual characteristics of 

occupants. These factors come together to give inimitable results of usage if tangible factors 

like heating, electricity, and water consumption. Due to its highly stochastic nature, 

outcomes of such studies are simplified to a certain degree based on the relevance and 

importance of each factor. 

The overall methodology, sensor set-up, data cleansing and heat energy demand calculation 

are given in Chapter 3 (Section 3.5). As mentioned in Chapter 3, 17 houses are considered 

for the analysis, after data cleansing and scrutiny. Table 5.1 shows the category, building 

construction and built year of the 17 considered houses. Each house is fitted with sensors to 
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log various factors including room temperature, radiator temperature and window opening. 

Each sensor in each house can be identified using the unique serial number marked on the 

side of the sensor, together with the barcode, to identify the values form different houses, 

after data collection.  

Table 5.1: Archetype and built date of the considered houses 

House 
Identification 

Number 
Category Building Construction Built Year 

1 Radburn Concrete 1960 - 1980 

2 Semi-detached Cavity Wall Traditional Cavity 1930-1940 

3 Concrete Concrete 1940-1960 

4 Concrete Concrete 1960 - 1980 

5 Concrete Concrete 1940-1960 

6 Concrete Concrete 1940-1960 

7 BSIF BSIF 1940-1960 

8 Semi-detached Solid Brick Traditional solid brick semi terrace 1920-1930 

9 Semi-detached Solid Brick Traditional solid brick semi terrace 1920-1930 

10 Semi-detached Solid Brick Traditional solid brick semi terrace 1920-1930 

11 Semi-detached Solid Brick Traditional solid brick semi terrace 1920-1930 

12 Sheltered Housing Traditional Cavity 1960-1980 

13 Sheltered Housing Traditional Cavity 1960-1980 

14 New Built  Traditional Cavity 2000+ 
(2012) 

15 New Built  Traditional Cavity 2000+ 

16 Solid brick terrace Traditional solid-brick terrace 1901-1919 

17 Solid brick terrace Traditional solid -brick terrace 1901-1919 

The houses also have different insulation properties. The houses are categorised based on 

the insulation properties. In the UK, the most common constructions are solid brick and 

cavity wall buildings. The insulation properties considered in each house are: 

i. Roof insulation 

ii. Internal Wall Insulation 

iii. External Wall insulation  

iv. Cavity Wall Filling 
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According to the Energy Saving Trust of UK, 45% of heat in a house is lost through 

uninsulated solid walls, 33% is lost through uninsulated cavity walls, 25% of heat is lost 

through the loft (National Insulation Association, n.d.). Uninsulated solid walls can be 

insulated either externally or internally. External Wall insulation is the addition of insulation 

boards to the outside wall of the property.  Even a 10cm PIR board helps increase the R-

value to a great extent. It also helps the house to withstand the elements of nature. Internal 

wall insulation increases energy savings significantly at comparatively less installation costs, 

but at the loss of internal space of the property. Based on the above given assumptions a 

weightage is given to each type of insulation property of each house, indicated as House 

Insulation Property value (HIP value). Table 5.2 gives the HIP values for each type of 

insulation property of a house and different combination of insulation properties. 

Table 5.2: House insulation property weightage 

Roof 
Insulation 

Solid Wall Cavity 
Wall Roof + 

Internal 
Roof + 

external 

Roof 
+ 

cavity 

Roof + 
internal 

+ 
external 

Internal 
Wall 

Insulation 

External 
Wall 

Insulation 

Cavity 
Wall 

Filling 

0.25 0.45 0.45 0.33 0.7 0.7 0.6 1.15 

Table 5.3: House Insulation Property (HIP) value range 

House Insulation 
Property Value 

(Maximum 1.15) 

 
Percentage  House Insulation Type 

0 to 0.4 0 to 25% Low Insulation (LI) 
0.41 to 0.58 25 to 50% Medium Insulation (MI) 
0.6 and above 50% and above High Insulation (HI) 

Table 5.4 shows the insulation property of the 17 houses and their house insulation property 

(HIP) calculation. The HIP values of the houses based on this calculation, can be seen in 

Table 5.5. 
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Table 5.4: Insulation property of the house and their HIP value 

House 
number 

Roof Insulation  Solid Wall Cavity Wall 

Total Out of % YES(1) 
/ 
NO(2) 

Weightage Wall Internal 
insulation  

Wall External 
insulation  Cavity fill 

1 1 0.25 2 0 1 0.45 2 0 0.7 1.15 60.87 

2 1 0.25 2 0 2 0 1 0.33 0.58 1.15 50.43 

3 1 0.25 2 0 1 0.45 2 0 0.7 1.15 60.87 

4 1 0.25 2 0 1 0.45 2 0 0.7 1.15 60.87 

5 1 0.25 2 0 2 0 2 0 0.25 1.15 21.74 
6 1 0.25 2 0 1 0.45 2 0 0.7 1.15 60.87 
7 1 0.25 2 0 2 0 2 0 0.25 1.15 21.74 

8 1 0.25 1 0.45 2 0 2 0 0.7 1.15 60.87 

9 1 0.25 1 0.45 2 0 2 0 0.7 1.15 60.87 

10 1 0.25 2 0 1 0.45 2 0 0.7 1.15 60.87 

11 1 0.25 2 0 1 0.45 2 0 0.7 1.15 60.87 

12 1 0.25 2 0 2 0 1 0.33 0.58 1.15 50.43 

13 2 0 2 0 2 0 1 0.33 0.33 1.15 28.70 

14 1 0.25 2 0 2 0 1 0.33 0.58 1.15 50.43 

15 1 0.25 2 0 2 0 1 0.33 0.58 1.15 50.43 

16 1 0.25 2 0 2 0 2 0 0.25 1.15 21.74 

17 1 0.25 1 0.45 2 0 2 0 0.7 1.15 60.87 

5.3. Analysis  

As mentioned earlier, the houses were initially categorised based on the architecture, in to 9 

categories. The 17 houses considered have different built and insulation properties and built 

year. The houses are of one of five different building construction types (Concrete, 

traditional cavity, BSIF, traditional solid brick terrace and traditional cavity). Based on built 

year the houses can be divided into five (1901-1919, 1920-1940, 1940-1960, 1960-1980, 

2000+). As the first stage, the window opening characteristics of the house, during winter, is 

explored. 
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Table 5.5: House Insulation Property 

Sl.No 
House 

Numbers 

House 
Insulation 
Property 

(HIP) 

Insulation 

1 h1 1.1 HI 

2 h2 0.58 HI 

3 h3 0.7 HI 

4 h4 0.7 HI 

5 h5 0.25 LI 

6 h6 0.7 HI 

7 h7 0.25 LI 

8 h8 0.65 HI 

9 h9 0.65 HI 

10 h10 0.7 HI 

11 h11 0.7 HI 

12 h12 0.58 HI 

13 h13 0.33 MI 

14 h14 0.58 HI 

15 h15 0.58 HI 

16 h16 0.25 LI 

17 h17 0.65 HI 

Figure 5.1 shows the thermal image of bedroom window status for all houses from Feb 2013 

to March 2014.  It was identified that there was no linear relationship between the age of the 

house and heating pattern and hence the energy consumption of the house, which questioned 

the hypothesis that the older the house, the more the energy consumption. 

h3, h11 are all high insulation houses as seen Table 5.5. However, the frequency of window 

opening is quite high in these houses. In the past, natural ventilation in residential buildings 

was not considered to be of importance when considering the energy efficiency of a building. 

However, with building construction improving air tightness of buildings, occupants tend to 

open windows more as can be seen from Figure 5.1. To understand the extent of the effect 

of window opening on energy usage, the window opening frequency of the houses on a cold 

winter day when temperature was below 5oC is considered, as shown in Figure 5.2. House 
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11, which is a high insulation house, has the highest frequency of window opening on a cold 

winter day. The occupants of the house leave window open for more than 59% of the time. 

 

Figure 5.1: Bedroom Window Status 

Figure 5.2 shows that 70% of the houses open their windows at least once even when the 

outside ambient temperature is less than or equal to 5oC. Even at a temperature of 5oC or 

below, 43% of the houses keep the windows open more than 5% of the time, of which 29% 

keep it open more than 30% of the time. The impact of window opening on energy usage 

can be inferred.  

To maintain the desired temperature in a room the heating must be turned on and off, 

depending on the prevailing ambient temperature of the room. This is done either manually, 

using a manually operated thermostat, or automatically, where the thermostat is set such that 

it turns on when the room temperature falls below the set temperature. The frequency of 

heating on/off cycle varies depending on the occupant’s perception of thermal comfort. 

Houses are insulated in the expectation that the heat is retained, and the radiator heating 

cycle can be reduced consequently reducing the energy usage.  Considering one day in 
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winter, the frequency of the radiator cycle was checked, to verify the hypothesis that better 

insulation leads to better energy usage.  

 

Figure 5.2: Bedroom window opening frequency (Tout ≤ 5oC) 
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Figure 5.3: Frequency of radiator on/off cycle 

As seen in Figure 5.3,  there was no linear relationship between the frequency of radiator 

cycle and the insulation property of the house. To further understand the window opening 

frequency, the percentage of window opening for in winter is considered. The collected data 

consist of data from two winters:  

i. Winter 1 - Feb 2013 to March 2013 

ii. Winter 2 - Nov 2013 to Feb 2014 

The percentage of time window is open in winter 1 and winter 2, for the 17 houses, is shown 

in Table 5.6. Based on the percentage of time the window is open the houses are categorised 

into two as shown in Table 5.7. Therefore, based on the house insulation property and 

window opening percentage the houses are categorised as shown in Table 5.8. 
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Table 5.6: Percentage of time window is open in Winter 1 and Winter 2 for the 17 houses 

House 
No. 

Upstairs Bedroom Window Status  
Winter 1 Winter 2 

12 Feb 2013 to 31 March 2013 1 Dec 2013 to 21 Feb 2014 
% Window open status % Window open status 

1 0 Closed  0 Closed all the time 

2 1.87 Open rarely 0.06 Open rarely 

3 25.87 Open sometimes 29.2 Open sometimes 

4 2.4 Open rarely 0.55 Open rarely 

5 0 Closed  0 Closed  

6 0 Closed  0 Closed  

7 0.5 Open rarely 0.015 Open rarely 

8 9.2 Open rarely 9.81 Open rarely 

9 0.83 Open rarely 0.57 Open rarely 

10 1.99 Open rarely 1.51 Open rarely 

11 53.1 Open frequently 49.57 Open frequently 

12 5.88 Open rarely 0.07 Open rarely 

13 0 Closed  64.6 Open frequently 

14 32.4 Open sometimes 10.83 Open rarely 

15 0.76 Open rarely 0.25 Open rarely 

16 15.73 Open sometimes 27.85 Open sometimes 

17 2.8 Open rarely 0.57 Open rarely 

Table 5.7: Window open percentage range for categorisation 

Window open 
percentage 

House category based 
on window status 

0 to 15% Window closed (WC) 
 15% and above Window Open (WO) 

Table 5.8: House Categories based on house insulation and window opening frequency 

Sl.No House 
Numbers Insulation 

Window 
Open 
Status 
(WOS) 

Category 

1 h1 HI WC HI-WC 
2 h2 HI WC HI-WC 
3 h3 HI WO HI-WO 
4 h4 HI WC HI-WC 
5 h5 LI WO LI-WO 
6 h6 HI WC HI-WC 
7 h7 LI WC LI-WC 
8 h8 HI WC HI-WC 
9 h9 HI WC HI-WC 
10 h10 HI WC HI-WC 
11 h11 HI WO HI-WO 
12 h12 HI WC HI-WC 
13 h13 MI WO MI-WO 
14 h14 HI WO HI-WO 
15 h15 HI WC HI-WC 
16 h16 LI WC LI-WC 
17 h17 HI WC HI-WC 
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5.4. Heat Energy Demand Calculation 

Domestic sector accounts for 42% of total energy consumption in the UK ((Department for 

Business, 2021) and almost 30% of the CO2 emissions (BEIS, 2021). To meet the net zero 

target, residential sector, the entire elimination of emissions from the residential sector will 

be necessary. Studies show that importance of behaviour of people in influencing energy use 

of a building, is at least as imperative as that of the building’s properties. Studies also show 

that CO2 in houses are most sensitive to change in the ambient temperature inside the house, 

which depends highly on the occupants (Energy efficiency and human behaviour | University 

of Cambridge, 2013). Analysis of actual measured data provides a good understanding of 

OB and provides possibilities of improving the energy efficiency (EE) of buildings.  

5.4.1. Heat loss due to Building Fabric 

The insulation properties of the building contribute to the heat loss of the building, hence 

must be considered to understand the heat loss due to ventilation to good standardisation. 

The heat loss due to building fabric is calculated for the houses, based on the construction 

year and U-values of the building construction materials. The calculation of the contribution 

to heat loss of each material of the building and consequently their sum, is the total heat loss 

due to building fabric, denoted by Qf Watts. The equations for the calculation of Qf are given 

in the methodology chapter (Chapter 3, Section 3.5.3).  Equation (3.4) gives the contribution 

of heat loss due to building fabric to overall heat-loss. Based on the U-values of different 

materials (given in Table 3.4, Chapter 3), Qf  for the houses are calculated and tabulated, as 

seen in Table 5.9. The dimensions of the main bedroom which is the considered room for 

the analysis as mentioned in methodology, is shown in Table 5.10. For standardised value, 

the average dimension of the 17 houses is considered for the analysis. The standard window 

dimension in the UK is considered and the window is awning window, which is the most 

common type of window in the UK. 69% of dwellings int eh UK have double glazing 

(Department for Communities and Local government, 2010).  As given in (3.3), heat loss 
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due to fabric is the sum of heat loss of different elements of the building wall facing the 

external environment, multiplied by the difference in temperature between the inside and 

outside environments. Since the main bedroom is the room of interest, heat loss in main 

bedroom is considered. Figure 5.4 visualised heat loss through building fabric and heat loss 

through ventilation, for the main bedroom in a house. Considering the main bedroom, which 

is most commonly on the first floor of the house, there will be heat loss through the roof, 

heat loss through wall facing external environment (assuming all rooms in the house will 

have the same temperature) and heat loss through windows. The area of wall facing outside 

is the total area of the wall minus the area of the window.  

 

Figure 5.4: Heat-loss in main bedroom through building fabric and ventilation 
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Table 5.9: Actual Wall area (after taking away window area) for calculation of U-value 

House 
No. 

Room dimensions Window Dimensions 

Actual wall 
Area = Wall 

Area - 
Window 

Area (m2)  

Length (m) Width(m) Height(m) Area(m2) Volume(m3) Length (m) Width(m) Area(m2) 

1 3.79 3.49 2.8 13.23 37.04 0.89 0.64 0.57 12.66 

2 3.16 3.54 3.2 11.19 35.80 0.89 0.64 0.57 10.62 

3 3.2 3.175 3 10.16 30.48 0.89 0.64 0.57 9.59 

4 4.3 2.5 2.8 10.75 30.10 0.89 0.64 0.57 10.18 

5 3.81 3.84 3 14.63 43.89 0.89 0.64 0.57 14.07 

6 3.91 3.56 3 13.92 41.76 0.89 0.64 0.57 13.35 

7 3.56 3.4 3 12.10 36.31 0.89 0.64 0.57 11.54 

8 4.17 3.43 2.6 14.30 37.19 0.89 0.64 0.57 13.74 

9 3.16 3.54 2.6 11.19 29.08 0.89 0.64 0.57 10.62 

10 3.61 3.35 2.6 12.09 31.44 0.89 0.64 0.57 11.53 

11 4 2.7 3.3 10.80 35.64 0.89 0.64 0.57 10.23 

12 3.78 3.45 2.8 13.04 36.51 0.89 0.64 0.57 12.48 

13 3.8 2.66 2.8 10.11 28.30 0.89 0.64 0.57 9.54 

14 2.95 3.6 2.5 10.62 26.55 0.89 0.64 0.57 10.05 

15 3.18 4.47 2.5 14.21 35.54 0.89 0.64 0.57 13.65 

16 3.2 3.89 3.5 12.45 43.57 0.89 0.64 0.57 11.88 

17 4.49 3.58 3.5 16.07 56.26 0.89 0.64 0.57 15.51 

Average 3.65 3.42 2.91 12.40 36.20 0.89 0.64 0.57 11.84 
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Table 5.10: Calculation of co-efficient of heat loss due to building fabric 

Hous
e No. Building Construction Insulation Built Year 

U-Value (W/m2K) Fabric Heat Loss (Qf)(W/K) 
Total 

Qf Wall Windo
w Roof Wall Windo

w Roof 

1 Concrete Roof Insulation and External Wall insulation H 1960 - 1980 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

2 Traditional Cavity Roof Insulation and Cavity Wall insulation M/H 1930-1940 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

3 Concrete Roof Insulation and External Wall insulation H 1940-1960 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

4 Concrete Roof Insulation and External Wall insulation H 1960 - 1980 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

5 Concrete Roof Insulation Only L 1940-1960 2.00 2.80 0.15 21.55 1.58 1.84 24.97 

6 Concrete Roof Insulation and External Wall insulation H 1940-1960 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

7 BSIF Roof Insulation Only L 1940-1960 2.00 2.80 0.15 21.55 1.58 1.84 24.97 

8 Traditional solid brick semi 
terrace Roof Insulation and Internal Wall insulation H 1920-1930 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

9 Traditional solid brick semi 
terrace Roof Insulation and Internal Wall insulation M/H 1920-1930 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

10 Traditional solid brick semi 
terrace Roof Insulation and External Wall insulation H 1920-1930 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

11 Traditional solid brick semi 
terrace Roof Insulation and External Wall insulation H 1920-1930 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

12 Traditional Cavity Roof Insulation and Cavity Wall insulation M/H 1960-1980 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

13 Traditional Cavity Cavity Wall Insulation Only M 1960-1980 0.30 2.80 2.50 3.23 1.58 19.19 24 

14 Traditional Cavity Roof Insulation and Cavity Wall insulation H 2000+ (2012) 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

15 Traditional Cavity Roof Insulation and Cavity Wall insulation H 2000+ 0.30 2.80 0.15 3.23 1.58 1.84 6.67 

16 Traditional solid  brick terrace Roof Insulation Only L 1901-1919 2.00 2.80 0.15 21.55 1.58 1.84 24.97 

17 Traditional solid  brick terrace Roof Insulation and Cavity Wall insulation M/H 1901-1919 0.30 2.80 0.15 3.23 1.58 1.84 6.67 



 103 

Table 5.11: Dimensions of the 17 houses and average dimensions 

House No. Length (m) Width(m) Height(m) Area(m2) Volume(m3) 

1 3.79 3.49 2.8 13.23 37.04 

2 3.16 3.54 3.2 11.19 35.80 

3 3.2 3.175 3 10.16 30.48 

4 4.3 2.5 2.8 10.75 30.10 

5 3.81 3.84 3 14.63 43.89 

6 3.91 3.56 3 13.92 41.76 

7 3.56 3.4 3 12.10 36.31 

8 4.17 3.43 2.6 14.30 37.19 

9 3.16 3.54 2.6 11.19 29.08 

10 3.61 3.35 2.6 12.09 31.44 

11 4 2.7 3.3 10.80 35.64 

12 3.78 3.45 2.8 13.04 36.51 

13 3.8 2.66 2.8 10.11 28.30 

14 2.95 3.6 2.5 10.62 26.55 

15 3.18 4.47 2.5 14.21 35.54 

16 3.2 3.89 3.5 12.45 43.57 

17 4.49 3.58 3.5 16.07 56.26 

Average 3.65 3.42 2.91 12.40 35.57 

Table 5.12: Heat-loss through building fabric 

House 
No. 

Fabric Heat Loss (Qf)(W/K) Total Qf 
(W/K) 

House 
Insulation 

Type Wall Window Roof 

1 3.23 1.58 1.84 6.67 HI 

2 3.23 1.58 1.84 6.67 HI 

3 3.23 1.58 1.84 6.67 HI 

4 3.23 1.58 1.84 6.67 HI 

5 21.55 1.58 1.84 24.97 LI 

6 3.23 1.58 1.84 6.67 HI 

7 21.55 1.58 1.84 24.97 LI 

8 3.23 1.58 1.84 6.67 HI 

9 3.23 1.58 1.84 6.67 HI 

10 3.23 1.58 1.84 6.67 HI 

11 3.23 1.58 1.84 6.67 HI 

12 3.23 1.58 1.84 6.67 HI 

13 3.23 1.58 19.19 24.97 LI 

14 3.23 1.58 1.84 6.67 HI 

15 3.23 1.58 1.84 6.67 HI 

16 21.55 1.58 1.84 24.97 LI 

17 3.23 1.58 1.84 6.67 HI 
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The U-Values of each material is given in Chapter 3 (Table 3.4).  the calculation of actual 

area of wall for the 17 houses is given in Table 5.9. From the room dimensions, the area 

of roof is calculated and from the area of the wall, window and roof, and their U-values, 

the contribution to heat loss of each element is calculated, with Equation (3.5) and the 

values are given in Table 5.10. It can be seen from Table 5.12, there is a vast difference 

in coefficient heat loss due to building fabric (Qf ) between insulated and uninsulated 

houses, with insulated house having a Qf coefficient of 6.67 and uninsulated house having 

a Qf  of 24.97. Table 5.11 gives the length, breadth, height, area and volume of the upstairs 

bedroom of the 17 houses. It also gives the average values of the above, for the 17 houses. 

5.4.2. Heat loss Due to Ventilation 

Heat loss due to ventilation in winter effects the energy usage of the house. To understand 

the level of impact of window opening, the heat loss due to ventilation needs to be 

considered when calculating the energy demand of a house. Heat loss due to ventilation 

due to open window, can be calculated as the amount of heat energy required to heat the 

cold air coming in through the open window, replacing the already existing warm air.  

This heat energy demand is given by Equation (3.6) in Chapter 3. The equation considers 

the specific heat capacity of the volume of air in the room multiplied by the difference in 

temperature between inside and outside, multiplied by the air changes per hour. 

Few studies include heat loss due to ventilation with respect to window opening. Window 

opening is a very stochastic characteristic, which is complex to predict and include in 

calculations. For this study, they type of window considered is awning window, as seen 

in most UK houses. The volume of air through entering a room due to opening of awning 

window (example shown in Figure 5.5)  is 70% (Breezeway, 2012)The values and graph 

of the calculations are given in Appendix.   
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Figure 5.5: Awning window 

 

 

Figure 5.6: ACH of main bedroom when window is closed
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Figure 5.7: ACH of main bedroom when window is open 

Table 5.13: Heat-loss due to ventilation 

House 
No. 

Window Open Status Ventilation Heat Loss (Qv) 

wos % 

**Air 
Changes 

per Hour n 
(ACH) 

Average  
Volume 

(m3) 

Qv = 
0.33*n*V 

(W/K) 

1 Closed  0 0.50 35.57 5.87 
2 Open rarely 0.06 0.50 35.57 5.87 
3 Open  29.2 4.00 35.57 46.95 
4 Open rarely 0.55 0.50 35.57 5.87 
5 Closed  0 0.50 35.57 5.87 
6 Closed  0 0.50 35.57 5.87 
7 Open rarely 0.015 0.50 35.57 5.87 
8 Open rarely 9.81 0.50 35.57 5.87 
9 Open rarely 0.57 0.50 35.57 5.87 

10 Open rarely 1.51 0.50 35.57 5.87 
11 Open frequently 49.57 4.00 35.57 46.95 
12 Open rarely 0.07 0.50 35.57 5.87 
13 Closed  0 0.50 35.57 5.87 
14 Open  10.83 4.00 35.57 46.95 
15 Open rarely 0.25 0.50 35.57 5.87 
16 Open sometimes 27.85 4.00 35.57 46.95 
17 Open rarely 0.57 0.50 35.57 5.87 
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The air changes per hour for the main bedroom when window is open and window is closed, 

is a complex process and is calculated, as mentioned in Chapter 3, using an online calculator. 

The area of opening when window is open is 70% of the whole area. 

𝑎𝑤𝑜 = 𝑎𝑤  × 70
100

 = 0.57 × 70
100

= 0.399    (6.1) 

The area of opening when window is closed is considered to be 0.05. The speed of wind and 

the outside ambient temperature for the considered time frame, has been obtained from MET 

office data (Weather Observation Website, n.d.). Plugging in the values in the software, the 

air changes per hour of the room when window is open and when window is closed, is 

calculated. Screenshots of the calculation is shown in Figure 5.6 and Figure 5.7. 

Table 5.14: Fabric heat-loss + Ventilation heat-loss 

House 
No. Building Construction Insulation 

Window Open Status Qf+Qv 

wos %  

1 Concrete Roof and External Wall insulation HI WC 0 12.54 

2 Traditional Cavity Roof and Cavity Wall insulation HI WC 0.06 12.54 

3 Concrete Roof and External Wall insulation HI WO 29.2 53.62 

4 Concrete Roof and External Wall insulation HI WC 0.55 12.54 

5 Concrete Roof Insulation Only LI WC  0 30.84 

6 Concrete Roof and External Wall insulation HI WC 0 12.54 

7 BSIF Roof Insulation Only LI WC 0.015 30.84 
8 solid brick semi terrace Roof and Internal Wall insulation HI WC 9.81 12.54 
9 solid brick semi terrace Roof and Internal Wall insulation HI WC 0.57 12.54 

10 solid brick semi terrace Roof and External Wall insulation HI WC 1.51 12.54 
11 solid brick semi terrace Roof and External Wall insulation HI WO  49.57 53.62 
12 Traditional Cavity Roof and Cavity Wall insulation HI WC 0.07 12.54 
13 Traditional Cavity Cavity Wall Insulation Only MI WC 0 29.87 
14 Traditional Cavity Roof and Cavity Wall insulation HI WO 10.83 53.62 
15 Traditional Cavity Roof and Cavity Wall insulation HI WC 0.25 12.54 

16 Traditional solid brick 
terrace Roof Insulation Only LI WO 27.85 71.92 

17 Traditional solid brick 
terrace Roof and Cavity Wall insulation HI WC 0.57 12.54 

5.4.1. Total Coefficient of Heat loss due to Fabric and Ventilation 
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Combing the values form Table 5.12 and Table 5.13, the total coefficient of heat loss due to 

building fabric and ventilation can be calculated, as shown in Table 5.14. The energy 

consumption in the house will be heat loss coefficient times the inside outside temperature 

difference (Troom – Tout).  

5.5. Discussion 

Inference 1 

With the values calcualted in the previsou sections of this chapter, the energy consumption 

for the 17 hosues is calculated. Figure 5.8 shows the energy consumption in the 17 houses for 

Winter 1 (Feb 14 – March 14, 2013), with the insulation property and window status of the 

houses specified in the graph. In ideal situation where windows are closed, and the insulation 

property of the hosue is high, the energy demand of the house is lower than the average energy 

demand of the 17 houses.  

In high insualiton and window open houses (h3, h11, h14), the energy demand is higher htan 

the average nergy demand. In case of low insualtion houses, energy demand is similar when 

window is open or closed. While houses with high insulation and window closed have low 

energy consumption, the energy consumption can be seen to be more than double houses with 

high insulation, but windows open. Under typical circumstances, thermal insultion can reduce 

heat loss through conduction of building fabric , to a good extend. However, if the occupants 

leave windows open frequently, the heatloss due to ventilation becomes excessive, thereby 

negating the effect of insulation to an extend. 

Inference 2 

Inference 1 showed that EC relied more on other ‘drivers’, than the insulation property of the 

dwelling. To understand the impact of window opening, two houses with similar frequency of 
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window opening are compared. The window opening frequency and ED from Feb 12 to Feb 

28, 2013, is considered. 

 

Figure 5.8:Energy Consumption in main bedroom of the houses (Feb-March 2013) 

While h12 has EC of 230.8 kWh, h11 has an EC of 509.5 kWh which is more than double the 

EC of house 12.  The correlation between the radiator temperature (Trad), room temperature 

(Troom) and the window opening frequency for h11 and h12 can be seen in Figure 5.9. From 

the figure it is evident that the occupants of h11 open windows when radiator is on; this might 

be a contributing factor to the fact that although the radiator is heating up to 60oC, the average 

room temperature of the house is 17.9oC. In the case of house 12 the radiator heats up to 60oC 
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occasionally and the average room temperature is 18.9oC, which is higher than that of House 

11. 

House 11 and House 12 are two similar houses with high insulation property and similar built 

construction but different window opening frequencies, as shown in Figure 5.9. the occupants 

of h11 open windows very frequently while those of h12 do not open windows. Figure 5.10 

shows the scatter plot of radiator temperature, ambient room temperature and window status 

of house 11 and house 12 for two weeks in February 2013. The calculated energy consumption 

(EC) of the two houses is also displayed in the figure. 

 

Figure 5.9: Window opening frequency of main bedroom for one month in Winter 

Looking at the bedroom radiator temperature, comparing it to the window open pattern. It can 

be seen that the occupants of h11 open windows when the radiator temperature frequently, 

regardless of the heating status, resulting in heat loss and more energy consumption. When a 

house is well insulated, the occupants tend to open the window due to increase in the ambient 

temperature of the room. Occupants in less insulated houses also tend to open windows, since 

Window Open Status (Feb 2013)

Open

Closed
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they have the radiator temperature at high, most of the time and the room gets too hot. In both 

cases, the thermal comfort of the occupant depends on the ventilation in the room. The energy 

consumption depends highly on the occupant behaviour of opening windows. 

 

Figure 5.10: Comparison between two high insulated houses (scatter plot) 

Figure 5.11 shows the correlation between the radiator temperature (Trad), room temperature 

(Troom) and window status (WS) of the 17 houses. The correlation coefficient given in the 

figure is that of window open percentage and radiator temperature (Trad). In this case, a 

positive correlation means higher window open percentage (WOP), higher Trad. 
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Figure 5.11: Relationship between Troom, Trad and window status 

From Figure 5.11, it can be seen that a positive correlation exists between Trad and WOP 

when WOP is higher than 10%, as seen in houses 3,8,11 and 14. Energy consumption is seen 

to be high for houses where Trad fluctuated (Houses 3,4 ,11,14). These houses have a positive 

correlation between Trad and WOP (specified in Figure 5.11). There are exceptions to this 

hypothesis, as seen in house 5, where ED is still high although the WOP is not high. This may 

be again due to occupant behaviour, where in the thermal comfort of the occupant is satisfied 

only when room temperature is maintained high. To investigate this further, the scatter plot of 

Trad, Troom and WS for all the houses is plotted.  
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Figure 5.12: Correlation between Troom, Trad and window status (Scatterplot) 

Figure 5.12 shows the scatterplot of Troom, Trad and WS of the hosues, with the energy 

demand and mean Troom displayed. It can be seen that ED is high then the avewarge room 

teemprature is high. ED is also high when window opening percentage in the house is high. 

This implies that window opening percentage plays a major role in the enregy consumption 

of  a dwelling. The need for thermal comfort of the occupant is a principal factor that plays an 

important role in deciding the enregy consumption of a building.  

The first stage of analysis indicated that there is a higher correlation between energy use and 

window opening frequency, than the building insulation property. This can be better 

understood considering houses under four scenarios/ conditions: 

1. House A - High insulation house with frequently open windows (HI and WO) 

2. House B - High insulation house with rarely open windows (HI and WC) 

3. House C - Low insulation house with frequently open windows (LI and WO) 

4. House D - Low insulation house with rarely open windows (LI and WC) 
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5.6. Summary  

This chapter elaborates on the first stage in the survey of data obtained from sensors set up in 

Nottingham City Council houses.  The project focussed in 40 homes based in Nottingham 

with diverse construction design and built date. Houses were equipped with Wireless Sensor 

networks (WSN) to record the utility readings, ambient temperature of rooms, radiator 

temperatures and to monitor the opening and closing of doors and windows. The experiment 

was conducted from over a period of 51 weeks and data was collected. The first stage of 

analysis of the data is explained in this chapter, involves data cleaning, explanation of the 

sensor set up and preliminary analysis of data. The findings show that WOB plays a crucial 

role in the energy consumption of a residential building. 

The action of window opening is the most common and technique impulsive used by people, 

to obtain the required thermal comfort in a room. Regardless of the type of housing or building 

construction, occupants open windows purely based on their comfort levels, thereby making 

it difficult to standardise the element in building simulation model energy consumption 

calculations.  
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Chapter 6 | Analysis of Energy Usage in Social Housing      

Stage II 

6.1. Introduction 

Chapter 7 implied that opening a window in winter will increase heat loss and consequently, 

the energy consumption of a building. However, taking into consideration the 

unpredictability of WOB, incorporating it into building simulation models for better energy 

prediction, is complex. This chapter attempts to quantify the impact of WOB on energy 

consumption of a building. Energy consumption of four types of houses is compared and the 

results are analysed. There is no definitive answer to the question how big the sample size 

should be for a study. Studies shows that as long as there is reasonable amount of data 

collected from each sample, based on nature and design of the study and quality of the data, 

so as to unfold rich understanding of the factor being studied, then a few participants are 

sufficient (Morse,2000). In this study, considering the scope of the study, 4 houses were 

considered for the further analysis as a pilot study, to be used as a benchmark for future 

studies which can include larger number of samples. 

6.2. Analysis 

The first stage of analysis indicated that there is a higher correlation between energy use and 

window opening frequency, than the building insulation property. This can be better 

understood considering houses under four scenarios/conditions: 

1. House A - High insulation house with frequently open windows (HI and WO) 

2. House B - High insulation house with rarely open windows (HI and WC) 

3. House C - Low insulation house with frequently open windows (LI and WO) 

4. House D - Low insulation house with rarely open windows (LI and WC) 
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Table 6.1: Insulation and WOS of the 17 dwellings 

House 
No. 

Main Bedroom Window Status  
Insulation 

 

Winter 1 Winter 2  
12 Feb 2013 to 31 

March 2013 
1 Dec 2013 to 21 Feb 

2014 
Properties Type 

 

% Window open 
status % Window open 

status  

1 0 WC 0 WC Roof Insulation and External Wall 
insulation HI  

2 1.9 WC 0.1 WC Roof Insulation and Cavity Wall 
insulation HI HI-WC 

3 26 WO 29 WO Roof Insulation and External Wall 
insulation HI  

4 2.4 WC 0.6 WC Roof Insulation and External Wall 
insulation HI  

5 0 WC 0 WC Roof Insulation Only LI LI-WC 

6 0 WC 0 WC Roof Insulation and External Wall 
insulation HI  

7 0.5 WC 0 WC Roof Insulation Only LI  

8 9.2 WC 9.8 WC Roof Insulation and Internal Wall 
insulation HI  

9 0.8 WC 0.6 WC Roof Insulation and Internal Wall 
insulation HI  

10 2 WC 1.5 WC Roof Insulation and External Wall 
insulation HI  

11 53 WO 50 WO Roof Insulation and External Wall 
insulation HI HI-WO 

12 5.9 WC 0.1 WC Roof Insulation and Cavity Wall 
insulation HI  

13 0 WC 65 WO Cavity Wall Insulation Only MI  

14 32 WO 11 WO Roof Insulation and Cavity Wall 
insulation HI  

15 0.8 WC 0.3 WC Roof Insulation and Cavity Wall 
insulation HI  

16 16 WO 28 WO Roof Insulation Only LI LI-WO 

17 2.8 WC 0.6 WC Roof Insulation and Cavity Wall 
insulation HI  

Table 6.1 shows the houses with the window open frequency and the insulation properties. 

Considering the four conditions, as described in the previous chapter (Chapter 6), 4 houses 

are chosen. The houses chosen are shown in Table 6.2. Data from Feb-March 2013 is 

considered as Winter 1 and Nov 2013 - Feb 2014 is considered as Winter 2. It is to be noted 
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that the instances chosen are when the window is open in WO houses (and closed in WC 

houses). 

Table 6.2: Houses chosen for analysis 

House 
House 

number Type 
No. of 

Bedrooms 
Boiler 
Type Property Type 

House A 11 Semi detached 3 Combi High Insulation Window Open HI-WO 
House B 2 Semi detached 3 Combi High Insulation Window Closed HI-WC 
House C 16 Mid terrace 3 Combi Low Insulation Window Open LI-WO 
House D 5 Semi detached 3 Combi Low Insulation Window Closed LI-WC 

 

Figure 6.1: The four houses considered for analysis 

The English Housing Survey, one of the oldest government polls in the UK, is a 

comprehensive study of housing circumstances, conditions, energy efficiency in England. 
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The first section of the report focusses on households, covers tenure, demographic, and 

economic characteristics of people who live in different tenures. The second sections give a 

general overview of the housing stock in England, including the age, size and kind of homes 

as well as their energy efficiency, decentness, dampness, mould problems and smoke alarms. 

According to the English housing survey, about 75% of the UK housing stock use 

combination boilers (English Housing Survey, 2020).  

Figure 6.1 shows the image of the four houses considered for further analysis. The four 

houses are seen to have combination boiler for heating. Energy consumption due to heating 

depends on the heating cycle of boilers. A diagnostics study of 221 boilers revealed that half 

50% of them had an average of 50 starts per day (Bennett, Elwell and Oreszczyn, 2019). The 

efficiency standards are not met due to this detrimental performance. Cycling contradicts 

assumptions in efficiency testing standards, which assume steady state operation, weighted 

by full and part power measurements. To understand energy consumption due to heating, a 

micro level investigation of the heating cycle is beneficial. This is described in the following 

sections.    

6.3. Heat Energy Demand Analysis 

Thermal comfort and indoor air quality of a room are the factors that occupants in a room 

are concerned of most commonly. Any person in a room in their house, would prefer to be 

in a thermal environment in which they are comfortable. To attain the degree of comfort they 

envision, they easiest way is to open window of the room they are in, to let ‘fresh air’ in and 

reduce the temperature in the room, in case of over-heating. This behaviour of occupants, of 

window opening, has a significant effect on energy consumption. Studies show that the main 

bedroom is one of the most common rooms where window is left open in residential 

buildings, as mentioned in Section 7.3 (Chapter 7). Therefore, the main bedroom is focussed 

on this study. The volume of bedroom for the four houses are given in Table 6.3. bvol is the 
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average value of the volume of the main bedroom for the four houses. By considering the 

average value, the energy demand to heat the same volume of room for different house 

conditions, can be compared. To analyse the relationship between house insulation property, 

WOS and the enregy demand of the house, energy demand in the four houses are calculated, 

using measured values bvol,Troom and Tout and compared. Energy consumption in the houses 

are calculated using the formulas given in Equation (3.12) in Chapter 3.  

Table 6.3: Volume of main bedroom 

House Length Breadth Height Volume 
(m3) 

A 4 2.7 3.3 35.64 
B 3.16 3.54 3.2 35.80 
C 3.2 3.89 3.5 43.57 
D 3.81 3.84 3 43.89 

Average volume of main bedroom (bvol) 39.72 

To have a comprehensive understanding of changes in the indoor environment, the 

regulating mechanisms that contrbute to the changes, need to be studied. With this objective, 

the field measurment data collected form social housing and tapered down to four houses, is 

explored. The energy consumption is calculated for all of Winter 1 and Winter 2 with the 

temeprature data collected.  By comparing energy usage of high insulation and windowopen 

and higjh insualtion window clsoed hosues, the imapct of energy usage can potentially be 

quantified. For anlaysis purposes, some instances from winter 1 and winter 2 are considered, 

to analyse the realtionship between window opening and the temperature environment of the 

room. 7 instances from winter 1 and 11 instances from winter 2 are analysed. Each instance 

was a 24 hour duration. The instances selected are given below: 

Winter 1 Instances 

1. Inst1 = [18-Feb-2013 00:00:00 ; 18-Feb-2013 23:59:00] 

2. Inst2 = [19-Feb-2013 22:00:00 ; 20-Feb-2013 22:00:00]  

3. Inst3 = [22-Feb-2013 09:00:00 ; 23-Feb-2013 09:00:00]  

4. Inst4 = [02-Mar-2013 00:00:00 ; 02-Mar-2013 23:59:00]  
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5. Inst5 = [03-Mar-2013 00:00:00 ; 03-Mar-2013 23:59:00] 

6. Inst6 = [04-Mar-2013 15:00:00 ; 05-Mar-2013 15:00:00] 

7. Inst7 = [09-Mar-2013 00:00:00 ; 09-Mar-2013 23:59:00] 

Winter 2 Instances 

1. Inst1 = [20-Nov-2013 00:00 ; 20-Nov-2013 23:59] 

2. Inst2 = [21-Nov-2013 00:00 ; 21-Nov-2013 23:59]  

3. Inst3 = [22-Nov-2013 00:00 ; 22-Nov-2013 23:59]  

4. Inst4 = [23-Nov-2013 18:00 ; 24-Nov-2013 18:00]  

5. Inst5 = [24-Nov-2013 18:00 ; 25-Nov-2013 18:00] 

6. Inst6 = [25-Nov-2013 18:00 ; 26-Nov-2013 18:00] 

7. Inst7 = [26-Nov-2013 18:00 ; 27-Nov-2013 18:00] 

8.  Inst8 = [27-Nov-2013 18:00 ; 28-Nov-2013 18:00] 

9.  Inst9 = [28-Nov-2013 18:00 ; 29-Nov-2013 18:00] 

10. Inst10 = [30-Nov-2013 00:00 ; 30-Nov-2013 23:59] 

11. Inst11 = [01-Dec-2013 20:00 ; 02-Dec-2013 20:00] 

Window opening behaviour in buildings are best studied with field measurements due to its 

stochastic nature. Previous study results show that there are large discrepancies in household 

energy consumption even of similar layout (Bahaj & James, 2007; Ouyang & Hokao, 2009). 

The radiator heating time (in minutes) for the four houses for the considered instance is 

charted, shown in Figure 6.2(a). This is calculated by adding the time when the radiator is 

heating during the 24 hours considered.  

House A, which is a high insulation window open house (HI-WO) has a radiator heating 

time of 200 mins which is double that of House B, high insulation window closed house (HI-

WC). While defining radiator heating time, it is important to look at the average room 

temperature to get a valid representation. Figure 6.2 (b) shows the ratio of radiator heating 

to the average room temperature during the instance. The following inferences can be made: 
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▪ In House A, radiator takes 11 mins to increase room temperature by 1oC, while in 

House B it takes 5.75 mins for the same which is almost half that of House A. 

▪ The percentage of time the radiator is also longer for House A (14%) when 

compared to House B (7%).  

 

Figure 6.2: Comparison of the houses based on radiator heating time – Winter 1, Instance 1 

▪ The four houses have combi boiler and 5-8 radiators. The cost of gas in UK 

currently is £0.04 per kWh which will increase to £0.07 after 1 April 2022 (Check 

If the Energy Price Cap Affects You | Ofgem, 2022). Assuming they have a 24kW 

boiler, which is the ideal size required for the given numbers, the cost of gas for the 

percentage of time the radiator is ON can be calculated as  

    𝐶𝑜𝑠𝑡 𝑜𝑓 𝑔𝑎𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝐶𝑔𝑟ℎ =  0.04 x 24 x 𝑡𝑟𝑎𝑑ℎ𝑒𝑎𝑡𝑖𝑛𝑔   (7.1) 

The cost of gas House A can be seen to be almost twice that of House B (Figure 6.2d). 
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Figure 6.3: Energy Demand and Cost – Winter 1, Instance 1 

Figure 6.3 shows the energy demand in the main bedroom, for Instance 1, calculated using 

Equation (3.12) from Chapter 3. The energy demand can be seen to be in par with the radiator 

heating rime of the houses discussed in Figure 6.2. for the first instance of 24 hours, the 

energy demand for House A is 32.3 kWh and that of House B is 14.18 kWh. The 

corresponding gas price is £1.29 and £0.57 respectively. 

Figure 6.4 shows the radiator heating time and corresponding variates for the second instance 

in Winter 1. Here, the radiator heating time for House A is 200 mins and the radiator heating 

time for House B is 40 mins. The energy demand and cost for Instance 2 is shown in Figure 

6.5. The energy demand for House A is 73.81 kWh and that for House B is 14.48 kWh.  

Cost of energy demand for one day 
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Figure 6.4: Comparison of the houses based on radiator heating time – Winter 1 Instance 2 

 

Figure 6.5: Energy Demand and Cost - Winter 1, Instance 2 

Cost of energy demand for one day 
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The energy demand for House C (low insulation window open, LI-WO) and House D (low 

insulation and window closed, LI-WC) is higher than that of House A in Instance 1 and 

lower than that of House A in Winter 2.Similar pattern is in instance 1 of winter 2, as show 

in Figure 6.6 and Figure 6.7. the radiator heating time is higher for House A in November 

(250 mins) than February. With the percentage of time the heater is on increasing to 19%, it 

takes 16 mins to raise the room temperature by 1oC for winter 1, instance 1. 

 

Figure 6.6: Comparison of the houses based on radiator heating time - Winter 2, Instance 1 

The energy consumption of House A is also considerable higher for Winter 2, instance 1 

(57.79 kWh), when compared to that of House B (11.77 kwh).  The average energy demand 

and cost and total energy demand and cost is calculated for all of winter 1 (Figure 6.8) and 

winter 2. The graphs for all instances for winter 1 and winter 2 and the average and total 

energy demand and cost for winter 1 and winter 2 are given in Appendix B. 
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Figure 6.7: Energy Demand and Cost - Winter 2, Instance 1 

 
Figure 6.8: Average Energy Demand and Cost - Winter 1 

Cost of energy demand for one day 

Average Cost of energy demand 
for winter 1 
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Figure 6.9: Total Energy Demand and Cost - Winter 1 

The behaviour of occupants in dwellings, that involves interaction with the building 

parameters like heating, lighting, opening of windows is one of the main reasons for 

discrepancy between actual and predicted indoor environmental conditions and as a 

consequence, the energy performance of the dwelling (Bruce-Konuah et al., 2019). 

Comparing energy consumption of houses with similar insulation properties but different 

window opening behaviour indicated the difference in energy usage due to window opening 

behaviour of the occupants. Figure 6.9 shows the total energy demand and the corresponding 

cost for energy, for all the instances in winter 1. It can be seen that well insulated and window 

closed house, House B, has much lower energy demand than the other houses. House A, 

which is a well insulated house with window open has energy demand similar to house C, 

which is a poorly insulated and window closed house. 

Total cost of energy demand for 
winter 1 
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6.3.1. Comparison of Average Energy Demand and Cost 

The energy demand of winter 1 and winter 2 are calculated. From the calculations, average 

energy demand for one month and the same for one day is calculated. The cost of gas in UK 

currently is £0.04 per kWh (which will increase to £0.07 after 1 April 2022).  

Cost of gas based on energy demand    Ced  = 0.04 x EDmonth  (7.2)  

New Cost of gas based on energy demand   Cednew =  0.07 x EDmonth  (7.3)     

Figure 6.10 and Figure 6.11  show the average energy demand and cost for one day and one 

month respectively, for the 4 houses. The results show that in high insulation houses, the 

energy demand of one room can increase by £1 per day by leaving windows open. 

 
Figure 6.10: Average energy demand and cost for one day 
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In case of low insulation houses, energy demand increase of £0.65 in a window open house 

(House C), when compared to window closed house (House D). The energy consumption of 

high insulation window open house (House A) is seen to be comparable to the energy 

consumption of low insulation houses (House C and House D). 

 

Figure 6.11: Average energy demand and cost for one month 

The difference in energy demand is better represented in percentage or as change factor, for 

comparison. The percentage increase in cost of gas, in house where window is open, when 

compared to house of similar insulation, with windows closed, is calculated as 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 =  𝐶𝑔𝑤𝑜−𝐶𝑔𝑤𝑐

𝐶𝑔𝑤𝑐
 × 100   (7.4) 

Where Cgwo is cost of gas in house with window open and Cgwc is cost of gas in house with 

windows closed. The change factor is calculated as  
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𝐶ℎ𝑎𝑛𝑔𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 =  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 ×100
100

   (7.5) 

6.3.2. Inference 

The energy demand of high insulation window open house (HI-WO, House A), high 

insulation window closed house (HI-WC, House B), low insulation window open house (LI-

WO, House C) and low insulation window closed house (LI-WC, House D) were compared. 

The following inferences were made from the conducted study 

▪ In high insulation houses, the energy demand of one room increases by a factor of 

2.9, when comparing a window open and window closed house. 

▪ Consequently, the energy cost increases by £1 for one room per day, between two 

high insulation houses with window open and window closed. 

▪ In poorly insulated houses, energy demand of one room increases by a factor of 1.5, 

in winter months, in a house with windows open, causing an increase of £0.65 for 

one day. 

▪ Considering the average energy demand of one month, in high insulation houses, 

there is a difference of £30 in energy costs between a high insulation window open 

house and high insulation window closed house, for one room in a month. 

▪ There is only a difference of 13% in energy demand of a high insulation window 

open house and a low insulation window closed house. 

▪ As of April 2022, the gas prices will increase from £0.04 to £0.07. Based on this, 

the energy cost in a high insulation and window open house will increase by £1.73 

for one day when compared toa high insulation and window closed house, which 

will account for an increase of £52.57 for one month. 

6.4. Home Heating System as a First Order Control System 

Home heating system is a simple control system, that regulates the temperature of a room. 

The radiator temperature is the controlled input, and the room temperature is the output that 
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acts as feedback and helps in directing the input to the required value, which can be done 

manually or automatically. Figure 6.12 represents the block diagram for a basic home 

heating system, with feedback control, wherein feedback is the returning of the controlled 

variable (ambient temperature of the room) to the controller to further influence the 

controlled variable for optimum thermal comfort of occupant. 

 

Figure 6.12: Home heating(control) system 

The control system above can be represented as differential equations, using transfer 

functions. A transfer function G(s) can be defined as 

where Y(s) is the output and U(s) is the input of the system.

 

Figure 6.13: Block diagram of home heating control system 

𝐺(𝑠) =  
𝑌(𝑠)
𝑈(𝑠) 

  (7.6)               
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Laplace transform can be used to obtain the dynamic response of a system. It also helps in 

understanding the qualitative behaviour of a system and the change in dynamic response of 

a system due to change in parameters. The values can be changed in a trial-and-error method, 

till a desired response is obtained; then it can be verified by solving for the time response of 

the system. This in turn can be used to find the response of an ideal system, for comparison. 

The control system in Figure 6.13 can be represented as block diagram of transfer functions 

in Laplace domain as shown in Figure 6.14, where, the desired temperature is the reference 

signal R(s); the difference in temperature between the actual room temperature and the 

desired temperature is the error signal E(s); the thermostat is the controller with transfer 

function Gc(s); the signal from the thermostat, is the control signal; heat loss is the 

disturbance W(s); the heating system and the room is the plat, with transfer function Gp(s); 

the room temperature is the output Y(s). 

 

Figure 6.14: Block diagram of home heating system as transfer functions 

The output of one component is the input of the next. This representation is useful in 

obtaining the equations of a system, including the effects of the controller and to study its 

behaviour. Figure 6.13 can be represented as block diagram of transfer functions as shown 

in Figure 6.14. 

In the Laplace domain, input signal multiplied by the transfer function gives the output 

signal. Figure 6.14 can be represented into three separate systems with output of one acting 

as input to the next, as shown in Figure 6.15, where block (a) represents the controller block, 

(b) represents the plant block and (c) represents the error signal. 
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Figure 6.15: Transfer function blocks 

Block (a) in Figure 6.15 is equivalent to the equation Gc(s) 

Similarly block (b) in Figure 6.15  is equivalent to the equation 

 

Block (c) can be 
written as 
 
 

which can be combined as  

(7.9) and (7.10) can be combined as  

Which can be rewritten as 

 

Considering the ideal condition where there is no disturbance (W(s) = 0),  

R(s)
Gp(s)Gc(s)

E(s)

W(s)

U(s) Y(s)

(a)

(b)
(c)

Y(s)

𝐸(𝑠). 𝐺𝑐(𝑠) = 𝑈(𝑠)   (7.7)    

[𝑈(𝑠) + 𝑊(𝑠)]. 𝐺𝑝(𝑠) = 𝑌(𝑠) 
 

           (7.8) 

𝑅(𝑠) −  𝑌(𝑠) = 𝐸(𝑠) (7.9) 

[𝐸(𝑠). 𝐺𝑐(𝑠) + 𝑊(𝑠)]. 𝐺𝑝(𝑠) = 𝑌(𝑠)             (7.10) 

                  [[𝑅(𝑠) −  𝑌(𝑠)]. 𝐺𝑐(𝑠) + 𝑊(𝑠)]. 𝐺𝑝(𝑠) = 𝑌(𝑠)    (7.11) 

𝑅(𝑠). 𝐺𝑐(𝑠). 𝐺𝑝(𝑠) + 𝑊(𝑠). 𝐺𝑝(𝑠) = 𝑌(𝑠). [1 + 𝐺𝑐(𝑠). 𝐺𝑝(𝑠)]      (7.12) 
 

𝑌(𝑠) =  𝑅(𝑠). [
𝐺𝑐(𝑠).𝐺𝑝(𝑠)

1+𝐺𝑐(𝑠).𝐺𝑝(𝑠)
] + 𝑊(𝑠). [

𝐺𝑝(𝑠)

1+𝐺𝑐(𝑠).𝐺𝑝(𝑠)]  

 

(7.13) 
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(7.14) can be represented as system diagram as shown in Figure 6.16 

 

Figure 6.16: System diagram 

 

 

(7.15) is called the closed loop transfer function since it includes the effect of feedback in 

the loop. It can be concluded that if Gc(s) and Gp(s) are known, then the output of the system 

can be obtained by multiplying the reference input to the closed loop transfer function of the 

system. 

Step Response of a first order system 

The first order system with controlled variable y(t), input u(t) can be written as 

                                                
𝑦(𝑡) + 𝑎. 𝑦(𝑡) = 𝐾. 𝑎. 𝑢(𝑡)̇  

 

(7.16) 

where K and a are constants. In Laplace domain, the equation can be represented by 

considering Figure 6.16 and (7.15) as 

 𝑌(𝑠)
𝑅(𝑠) = 𝐺(𝑠)

1+𝐺(𝑠) 
(7.17)  

Substituting  𝐺(𝑠) = 1
𝑠𝑇

, we get 

𝑌(𝑠) = ( 1
𝑠𝑇+1

) 𝑅(𝑠) (7.18) 

where Y(s) is the Laplace Transform of the output signal y(t), R(s) is the Laplace Transform 

of the input signal r(t) and T is the time constant 

         𝑌(𝑠) =  𝑅(𝑠). [
𝐺𝑐(𝑠).𝐺𝑝(𝑠)

1+𝐺𝑐(𝑠).𝐺𝑝(𝑠)
] (7.14) 

𝐺𝑐(𝑠).𝐺𝑝(𝑠)

1+𝐺𝑐(𝑠).𝐺𝑝(𝑠)
 

 

(7.15) 
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The step response is important to determine how quickly a system response to changing 

inputs. For unit step signal r(t) = u(t).  Applying Laplace Transform, we get 

𝑅(𝑠) =  1
𝑠
         (7.19)   

Combining (7.18) and (7.19) and applying inverse Laplace Transform, we get 

𝑐(𝑡) = (1 − 𝑒−(𝑡
𝑇)) 𝑢(𝑡) (7.20)  

The time constant can be calculated using the above formula. The response of a system can 

be analysed using the time constant of the system. (7.20) can be represented as shown in 

Figure 6.17. It is the time taken for the response to reach 63.2% (36.8% for a falling curve) 

of its final value. Smaller value of T corresponds to faster systems. The performance of a 

system can be understood by studying the T response of a system. 

 

Figure 6.17: Step response of a first order system 

6.4.1. Comparison of Time constant T 

Time constant T denotes the speed of response of the system or the response rate of the 

process variable to changes in the output of the system. In terms of the home heating system, 
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it is the change in radiator temperature with change in room temperature. Comparing the 

time constant of the 4 houses will help in quantifying the difference in energy consumption. 

Hence the time constant T of the four houses is compared. 

Trising and Tfalling 

The heating cycle consists of the heating curve and the cooling curve. The T constant of the 

rise time is denoted as Trising and that of the falling curve is Tfalling. Figure 6.18 shows one 

heating cycle of House A which is HIWO, for one instance considered (Feb 18, 7:00am to 

1:00pm, 2013). The time taken for the radiator to reach 63.8% of the maximum value, i.e. 

the Trising value, is 32.24mins. When the heating is turned off, the time taken for the 

temperature to fall to 36.8% of its end value, i.e. the Tfalling value, is 48.78 mins.  

 

Figure 6.18: House A-Trising and Tfalling values for one heating cycle 

Figure 6.19 shows the Trising and Tfalling values of House B (HIWC), for the same instance. 

The Trising is 27mins, meaning the radiator heats faster than HIWO house. Tfalling is 91 mins 

which is almost twice that of HIWO house. 
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Figure 6.19: House B-Trising and Tfalling values for one heating cycle 

The Trising and Tfalling values for the four houses for the above-mentioned instance, is shown 

in Figure 6.20. 

 

Figure 6.20: T-response of the four houses for one instance 
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Figure 6.21: T response - Average of all instances 

Seven such instances across winter 1 (Feb 2013 – March 2013) and 11 instances from Winter 

2 (Nov 2013 to Feb 2014) are considered, shown below: 

Winter 1 Instances: 

1. TRInst1 = [18-Feb-2013 04:40:00 ;18-Feb-2013 13:00:00] 

2. TRInst2 = [20-Feb-2013 05:00:00 ;20-Feb-2013 12:00:00] 
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3. TRInst3 = [22-Feb-2013 16:00:00 ;23-Feb-2013 01:50:00] 

4. TRInst4 = [02-Mar-2013 14:00:00 ;03-Mar-2013 01:59:00] 

5. TRInst5 = [03-Mar-2013 05:00:00 ;03-Mar-2013 11:59:00] 

6. TRInst6 = [05-Mar-2013 04:00:00 ;05-Mar-2013 11:59:00] 

7. TRInst7 = [09-Mar-2013 04:30:00 ;09-Mar-2013 14:59:00] 

Winter 2 Instances: 

1. TRInst1 = [20-Nov-2013 04:30:0020-Nov-2013 09:59:00] 

2. TRInst2 = [21-Nov-2013 05:00:0021-Nov-2013 10:30:00]  

3. TRInst3 = [21-Nov-2013 10:50:0022-Nov-2013 09:59:00]  

4. TRInst4 = [23-Nov-2013 04:30:0023-Nov-2013 12:30:00]  

5. TRInst5 = [25-Nov-2013 05:30:0025-Nov-2013 10:00:00] 

6. TRInst6 = [26-Nov-2013 06:00:0026-Nov-2013 19:00:00] 

7. TRInst7 = [27-Nov-2013 06:00:0027-Nov-2013 14:00:00] 

8. TRInst8 = [28-Nov-2013 05:30:0028-Nov-2013 09:30:00] 

9. TRInst9 = [29-Nov-2013 04:30:0029-Nov-2013 10:00:00] 

10. TRInst10 = [30-Nov-2013 04:30:0030-Nov-2013 10:59:00] 

11. TRInst11 = [02-Dec-2013 05:00:0002-Dec-2013 09:30:00] 

The Trising and Tfalling values of the 4 houses for all the instances are in Appendix C. The 

average Trising and Tfalling all 18 instances in winter 1 and winter 2 is shown in Figure 6.21.  

6.4.2. Inference 

The abbreviations used here are 

HI   - High insulation  

WO - Window open 

LI    - Low insulation 

WC - Window closed 

The following inferences are obtained from the investigation 
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▪ In HI houses, by leaving window open, the heating time increases by a factor of 

1.6. 

▪ The heating time of a HI-WO house differs from that of HI-WC house by 43% 

while there is only 12 % difference in heating time between HI-WO and LI-WC 

house. 

▪ In HI houses, by leaving window open, the heat retaining time reduces by a factor 

of 1.2. 

▪ The behaviour of HI-WO house resembles that of LI-WC house more than HI-WC 

house. 

6.5. Summary  

Occupant behaviour plays a critical role the energy demand of a residential building. The 

energy demand of four houses selected based on their insulation and window opening 

properties, was compared in this Chapter. The first part explains analysis done considering 

home heating system as a first order control system. The response time of the heating system 

of the 4 houses was compared to find that a HI-WO house takes higher response time than 

HI-WC house. The second part of the chapter explains energy demand analysis. It has been 

found that occupant behaviour of window opening is a major driving factor in controlling 

the energy demand in a dwelling. It can be summarised that a HI-WO house most resembles 

LI-WC house, than a HI-WC house.  
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Chapter 7 | Development of ANN Model to Predict Energy 

Usage and Window Opening Behaviour in 

Residential Buildings 

7.1. Introduction 

The residential sector contributes significantly to the overall energy consumption in the UK. 

Occupant behaviour is major factor that is being overlooked when considering energy 

efficiency of a building. Although building simulations plays a major role in the design of 

energy efficient buildings, a lot of discrepancies have been seen between the actual and 

predicted energy values in simulation models, one reason being under representation of the 

effect of occupant behaviour. Innovate UK conducted a building Performance Evaluation 

Programme the aim of which was to make design match reality. Their results included the 

following statistics (Innovate UK, 2016): ‘Nearly ten times as much energy was used in the 

highest energy-consuming home as the lowest.’ ; ‘Average total carbon emissions were 2.6 

times higher than the average design estimate. None of the ‘zero-carbon’ design estimates 

were achieved in practice.’ 

They recommended that the simplest controls be specified for heating, lighting, and 

renewable energy systems, since majority of households were not willing to spend time in 

learning complex systems. ANN models have been used in studies to predict energy demand 

and window status, some of which are reviewed in Chapter 2.  However, there is limited 

research on prediction and comparison of energy demand based on the relationship between 

the window status and radiator temperature. By including radiator temperature as one of the 
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predictors, the correlation between energy consumption and window opening behaviour can 

be clearly understood. In the previous chapter, the difference in energy consumption between 

high insulation window open house, high insulation window closed house, low insulation 

window open house and low insulation window closed house were analysed. Results showed 

a difference in energy consumption between window open and window closed houses. In 

this chapter, the development of artificial neural network (ANN) models to predict energy 

demand and window status, is presented. Three models are discussed: Model A, to predict 

energy demand (in kWh), based on radiator temperature (Trad), ambient room temperature 

(Troom), outside ambient temperature (Tout) and window status; Model B, to predict window 

status (open/closed) based on Trad, Troom, Tout and energy demand; Model C, to predict the 

characteristic of the house (good practice/bad practice) based on Trad, Troom, Tout and window 

status. In the following study two houses are considered for model development and 

prediction: House A which is high insulation and window open house, and House B which 

is high insulation and window closed house.  

7.2. Development of Models 

Neural networks are a network of simple elements working in parallel to provide a complex 

reasoning capability, the performance of which is largely determined by the connections 

between the elements. These connections are termed weightages. The general block diagram 

of ANN model is given in Figure 7.1. ANN generally consists of three layers: input layer, 

hidden layer, and output layer, which are connected through a collection of nodes.  

Depending on the type of neural network model, the weightage assignment varies. The 

weights and biases in the hidden layer are optimised during the training process so that the 

network gives an output as close to the actual target, as possible. To get a suitable model the 

ANN architecture and optimisation algorithm must be chosen carefully. This study follows 

a stochastic model of representing occupant behaviour (OB), with measured temperature 
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data and indoor and outdoor environmental conditions, window opening frequency and the 

building fabric properties. 

 

Figure 7.1: General block diagram of ANN model with feedback 

The thermal characteristics of the room and its relationship to occupant behaviour of window 

opening is investigated. By analysing the collected data, the temperature patterns that lead 

to an occupant opening window is extracted, to develop Artificial Neural Network model to 

predict window opening behaviour and energy consumption based on window opening 

behaviour of occupants. Deciding on an algorithm and developing a model depends on 

various factors in a multi-variate analysis. There will be some trade-off between model 

speed, accuracy, and complexity. A systematic workflow is required to choose the right 

model, depending on the input variables and the output target. The models developed in this 

study has one target variable and 4 input variables. The methodology followed for 

development of ANN model is given in chapter 3 (Section 3.6.1).   

Heat energy demand calculation 

In this study, the energy consumption in the main bedroom in residential buildings is 

calculated, using the values obtained by recording the internal temperature of the house and 

the outside ambient temperature. The total energy consumption in a room is the sum of heat-
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loss through building fabric and heat-loss through ventilation. The calculation of heat energy 

consumption is shown in detail in chapter 3 (section 3.5.3). Equation (3.12) is used to 

calculate the total energy consumption in kWh. Using equation (3.12) the energy 

consumption is calculated for all of winter 1 and winter 2 of the collected data from the 

houses. the considered data set consists of the indoor and out temperature variables of main 

bedroom of House A and House B, with the calculated energy demand in kWh.  The data set 

is divided into days, with each day having 83 samples. The total energy demand for the day 

is the sum of the energy demands of the 83 instances in the day. The energy demand for the 

winter 1 and winter 2 is the sum of energy demand of days considered in winter 1 and winter 

2 respectively. For the development of ANN model, 29 days from winter 1 (Feb 14, 2013, 

to March 14, 2013) and 13 days from winter 2 (Nov 20, 2013 to Dec 02, 2013) is considered, 

corresponding to the instances considered for analysis explained in chapters 6 and 7. The 

predicted target is compared with the output and the weights are adjusted till the network 

output matches the target.  The error of an ANN model is the difference between the ANN 

predicted value of the target and the actual value of the target. The target is energy demand 

in case of Model A, and window status in case of Model B. In case of Model C, the house is 

house following good practice, if the windows are open less than 10% of the time, and bad 

practice, if windows are open more than 10% of the considered time. The percentage error 

is calculated using equation (3.13) for Models A and equation (3.15) for Model B. The 

models are developed with different number of days data taken for training, to find the model 

with the lowest percentage of error between the actual and predicted values of the target. 

The dataset is trained with different algorithms to find the best performing model.  

7.3. Model A - Feed Forward Neural Network to Predict Energy Demand 

To attain the required thermal comfort in a room, occupants perform adaptive behaviours, 

some of which lead to notable changes in the energy consumption of the dwellings. One of 

the key adaptive behaviours carried out by occupants, due to which the energy consumption 
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is affected, is window opening and closing. However, the rate of effect of occupant 

behaviour varies widely, due to differences in each occupants’ perception of thermal comfort 

and consequently, behaviour. For the same reason, modelling occupant behaviour is a 

tedious task, and the design of the model impacts the model performance significantly. 

Choosing the right set of parameters is an important factor that impacts the prediction 

accuracy of an ANN models. To predict energy demand in main bedroom of the house, the 

predictors are room ambient temperature (Troom), radiator temperature (Trad), outside ambient 

temperature (Tout) and window status (0 for window closed and 1 for window open). The 

target variable is calculated energy demand in kWh.

 

Figure 7.2: Feed forward neural network model  

There are different ANN architectures that can be used to develop a model, feed forward 

neural network, pattern recognition neural network, clustering, fitting being some of the 

architectures, based on the algorithm used. In this study, feed forward network is considered 

first, for the development of ANN model (Model A) for prediction of energy demand. Feed 

forward neural network consists of single or multiple layers of computational units. In feed 

forward neural network, the connections between the nodes of input layer, hidden layer and 

output layer, do not form a loop. No feedback is given from the output back to the input. The 
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hidden layer is between the input and output layers and consists of a set of weighted inputs 

and produce an output through an activation function. The general representation of feed 

forward neural network is shown in Figure 7.2. Energy consumption in a room depends on 

the room temperature, the radiator temperature, the outside ambient temperature during the 

considered time.  

From chapter 6 and 7 it can be seen that energy demand depends to a great extend to the 

window status of the room as well. Hence, the inputs considered for Model A is the room 

temperature, radiator temperature and window status of main bedroom, and the recorded 

outside ambient temperature for the considered time. The block diagram of the feed forward 

neural network of Model A, with the inputs and target is shown in Figure 7.3.  

 

Figure 7.3: Block diagram of feed forward neural network to predict energy demand 

The neural network architecture (generated using MATLAB) for pattern recognition model 

to predict window opening behaviour (Model A) is shown in Figure 7.4, where w stands for 

weights and b stands for biases. These ‘hidden layers’ are chosen depending on the accuracy 

of the model. Different number of hidden layers are trialled, to choose one. The error 

percentage for 1 to 10 hidden layers with different number of days data taken for training 

are found and the best performing model is chosen. 
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Figure 7.4:  Network diagram of Model A neural network [Source: generated using MATLAB 

software] 

 

Figure 7.5: Total mean percentage error of feed forward neural network with 10 hidden 

layers, for House A, with 1-15 days data taken for training

Figure 7.6: Total mean percentage error of Model A (feed forward neural network with 10 

hidden layers), for House B, with 1-15 days data taken for training 
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ANN models are developed with different number of hidden layers and different number of 

days data taken for training. Models are tried with 1 to 10 hidden layers. Training data was 

selected as follows: for House A, first model was tried with winter 1, day1 data for training 

and tested with the other 28 days and 13 days of winter 2 data. The second model was tried 

with winter one, day 1 and day 2 data and tested with the other 27 days and 13 days of winter 

2. The process is repeated, and 15 different models are tried with up to fifteen days data 

taken for training and tested with the rest of data form Winter 1 and 13 days data from Winter 

2.  

For house B the same process is repeated with the data from House B. The percentage of 

error for House A and house B for all days in winter 1 and winter 2, when considering 1 to 

15 days data for training, can be seen in Appendix D. Comparing the models, the feed 

forward neural network with 6 days data taken for training, and 10 hidden layers was found 

to perform considerably well for House A and House B. The percentage of error of the 

predicted energy demand when compared to the calculated energy demand, for the different 

models, are compared. 

Figure 7.5 shows the total mean percentage error between the ANN predicted energy demand 

and calculated energy demand for House A in Winter 1 and Winter 2. Figure 7.6 shows the 

same for House B. Comparing, the model using 6 days data for training is found to have an 

average percentage error of 7.6% for House A and 0.25% for House B.  Hence the model 

using 6 days data for training for each house is chosen as Model A.  

Figure 7.7 shows the ANN predicted energy demand and the calculated energy demand for 

House A, from day 7 to day 29 (the first 6 days are taken for training). Figure 7.9 shows the 

same for House B. Figure 7.8 shows the ANN predicted energy demand and the calculated 

energy demand for House A for 13 days in Winter 2.  
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Figure 7.7: ANN Model A Results - House A - Winter 1  
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Figure 7.8: ANN Model A Results - House A - Winter 2 
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Figure 7.9: ANN Model A Results - House B - Winter 1 
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Figure 7.10: ANN Model A Results - House B – Winter 2 



 152 

 

Figure 7.11: Comparison of calculated and ANN predicted energy demands of Winter 1 and Winter  
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Figure 7.10 shows the same for House B. Model A feed forward neural network 

thus satisfactorily predicts the energy with the inputs provided. By including the 

window status of the room as one of the inputs, the difference in energy demand 

due to window opening, can be understood. This information can potentially be 

used in understanding and modelling occupant behaviour in building simulation 

models. Figure 7.11 shows the comparison between actual and ANN predicted 

energy demand for House A and House B for Winter 1 and Winter 2.  The figure 

shows the effect of window opening on energy demand in winter, in two high 

insulation houses, one with window open and one with window closed. It can be 

seen that in House A, which is a high insulation window open house, the calculated 

energy consumption when window is open accounts for 89.5% of the total energy 

consumption, when considering the average energy demand for Winter 1 and winter 

2. Also, the actual energy demand has been predicted to a good degree of precision 

by the ANN model developed. It can be seen for Model A, that: 

▪ The developed feed forward neural network model predicts energy 

demand for House A, a high insulation, window open (HI-WO) house 

(winter 1 and 2) with 92.4% accuracy (7.6% error).  

▪ The proposed feed forward neural network model predicts energy demand 

for House B, high insulation window closed (HI-WC) house (winter 1 and 

2) with 99.8% accuracy (0.2% error). 

7.4. Model B - Pattern Recognition Neural Network to Predict Window Status 

Analysing the window opening behaviour (WOB) to understand patterns in it will 

help find solutions to reduce WOB without compromising on thermal comfort. As 

initial step towards this, Model B is developed to predict window status based on 



 154 

the temperature variables and energy demand of the main bedroom of House A and 

House B.  

Literature showed that logistic regression is the most common machine learning 

model used for prediction of window opening behaviour. Few studies have used 

artificial neural networks (ANN) to predict window opening behaviour. However, 

the predictors (inputs) used for study do not include the radiator temperature. As 

seen earlier and in previous chapters, the window opening behaviour impacts 

energy efficiency of a building. By including radiator temperature as one of the 

predictors, the direct correlation between window opening behaviour and energy 

efficiency of the building can be identified. This study proposes the development 

of ANN model to predict window opening behaviour based on room temperature, 

radiator temperature, outside ambient temperature, and energy demand.  

Occupant behaviour of window opening is very stochastic in nature and varies from 

household to household. Each household has their own characteristics and reasons 

for opening windows, thereby having a unique pattern of window opening. To 

identify and predict the pattern of window opening, the pattern recognition 

architecture of artificial neural network, is chosen. 

Artificial Neural Network models use pattern recognition algorithm to recognise 

patterns in data, using neural networks. Data is trained to automatically discover 

regularities in data, which is used to classify the data into categories.   

The general block diagram of pattern recognition neural network is shown in Figure 

7.12. The pattern is identified from the training data and the data is classified based 

on the recognised pattern.  
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Figure 7.12: Block diagram of pattern recognition model 

 

Figure 7.13: Model B Neural network to predict window status 

The block diagram of the proposed pattern recognition neural network model 

(model A) is shown in Figure 7.13.  For the proposed pattern recognition model 

(Model B), the input variables are outside ambient temperature (Tout), ambient room 

temperature (Troom), radiator temperature (Trad) and the calculated energy demand 

of the room (in kWh). Each variable is data collected from the main bedroom in one 

day, with 83 samples per day. The target is the observed and recorded window 

status, with window closed represented by 0 and window open represented by 1. 
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The predicted variable is window status. This is compared to the observed window 

status and the process is repeated till error is minimum (see Chapter 3, Figure 3.4). 

The trained model then uses the recognised pattern to identify similar pattern in the 

variables being tested.  

Figure 7.14 shows the neural network architecture (generated using MATLAB) for 

pattern recognition model to predict window opening behaviour. The model is 

trained with different number of hidden layers and the error is seen to remain the 

same regardless of the number of hidden layers (Appendix D). Therefore, the 

number of hidden layers chosen is 10 and the training data is divided randomly such 

that 70% of the data is used for training, 15% for testing and 15% for validation. 

 

Figure 7.14: Network diagram of ANN Model B  

[Source: generated using MATLAB software] 
Choosing the training data is crucial to get optimum results. The objective of the 

proposed model is to identify the window status, based on room temperature, 

radiator temperature, energy demand of the room, and outside ambient temperature. 

For the initial trials, training data was chosen as follows: training data 1 was a 

combined matrix of Winter 1 day 1 data of House A and Winter 1 day 1 data of 

House B; training data 2 was Winter 1 day 2 data of House A and Winter 1 day 2 

data of House B, and so on to training data 6 which was Winter 1 day 6 data of 

House A and Winter 1 day 6 data of House B. However, the average percentage 
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error between the predicted window status and actual window status was 

exceedingly high. This is since in House A, the main bedroom window is open more 

than 50% of the time, on some days the windows remain closed more than 50% of 

the time when considering the day, making modelling more complex. Hence for 

simplification, training data is chosen such that window is fully closed for House B 

and fully open for House A. Based on the window opening percentage (WOP), 

training days are chosen as shown in Table 7.1. For House A, windows are open 

100% of the time on day 7 and day 10 in winter 1, and day 10 and day 11 in Winter 

2. For House B, windows are closed 100% of the time for most of the days, 

including day 1 and day 2 of Winter 1 and Winter 2.  

Table 7.1: Selection of training data for Model B neural network 

Winter 1 
Training 

data 

Training data is matrix containing 

  
House A (days with window 

open percentage 100%) House B 
1 1   day 7 data  day 1 data 
  2 Training data 1 day 10 data day 2 data 
2 1   day 10 data day 1 data 
  2 Training data 1 day 11 data day 2 data 

The target class for this model, which is the window status, is binary, with 0 for 

window closed and 1 for window open, represented as a logical array. The total 

error for each day is the number of times the window status is predicted wrong. The 

percentage error is calculated using the formula shown in Chapter 3, equation (3.14) 

and (3.15) shown: 

 ewinstat = (winstat predicted ~= winstatmeasured)                   (3.14)       

ep = ∑ 𝐸𝑤𝑖𝑛𝑠𝑡𝑎𝑡
𝑛
𝑖=0

𝑛
 ×  100                     (3.15) 

where n= 83, ewinstat is error in window status prediction for one day, and winstat is 

window status. The average percentage error for each day is calculated. It was seen 
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that for House A, for days when window was open more than 50% of the time, the 

error was considerably high.  Hence the testing days for House A was chosen such 

that the window is open more than 50% of the time on the day. For House B, the 

average percentage error for days when window is open more than 50% of the time, 

is considered for testing.  

 

Figure 7.15: Average percentage error for House A and B for Winter 1 with training 

data 2 

 

Figure 7.16: Average percentage error for House A and B for Winter 2 with training 

data 2 
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Figure 7.17: Performance of Model B neural network for House A Winter 1 
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Figure 7.18: Performance of Model B neural network for House B Winter 1 
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Figure 7.19: Performance of Model B neural network for House A Winter 2 
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Figure 7.20: Performance of Model B neural network for House B Winter 2 
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The model with training data 2 was found to have slightly higher performance for both 

houses and for Winter 1 and Winter 2. The average percentage error for the tested days 

for House A and House B, for winter 1, with training data 2, is shown in Figure 7.15 

and the same for winter 2 for House A and house B, are shown in Figure 7.16.  the 

average percentage error for both houses for both winters, when trialled with training 

data 1, is shown in Appendix D.  

Figure 7.17 to Figure 7.20 show performance of Model B pattern recognition neural 

network for House A and House B for Winter 1 and winter 2. For House A, only days 

where window is open more than 50% of the time is tested.  The overall average 

percentage error for House A, considering both Winter 1 and winter 2, is 21.8% and 

for House B is 26.1%.  

7.5. Model C - Pattern Recognition Neural Network to Predict Occupant 

Behaviour (Good Practice/Bad Practice) 

In Model B, although the overall percentage error for both House A and house B was 

less than 30%, the average percentage error for some days were considerably high. For 

House A, the error went up to 90% while for House B it went up to 50%. This is 

because when the window open status is considered as the target, the actual occupant 

behaviour is difficult to predict due to the stochastic nature of window opening. 

Therefore, instead of predicting the window status for each day, the house is 

categorised based on window status behaviour, radiator temperature, room 

temperature and outside ambient temperature and based on these predictors, the days 

are categorised into good practice day or bad practice house. 

Pattern recognition algorithm is chosen for Model C as well, since the purpose of the 

Model is to recognise pattern and categorise the data. Based on pattern recognition 

algorithm, another model is developed, to predict occupant behaviour. 
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Figure 7.21: Block diagram of ANN Model C 

 

Figure 7.22: Network diagram of ANN Model C [Source: generated using MATLAB 

software] 

The predictors are Troom, Trad, and window status of main bedroom window, and Tout. 

The target is occupant behaviour based on the predictors. In this model, the window 

status is binary, represented by 2 variables. Window closed is represented as 01 and 

window open is represented as 10. Depending on the chosen predictors, the house is 

categorised as ‘Good practice’ house (GP) or ‘Bad Practice’ house. GP houses have 

low overall window open percentage (WOP) leading to low energy demand (ED) and 

BP houses have high WOP and ED. 
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Figure 7.23: Model C - Percentage Error between actual and predicted occupant behaviour for House A and B - Winter 2 
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Figure 7.24: Model C - Percentage Error between actual and predicted occupant behaviour for House A and B - Winter 2 
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Good practice is when the correlation between radiator temperature, window status and 

room temperature is such that the energy demand will not be high. Bad practice is when 

the correlation between radiator temperature, window status and room temperature is such 

that window is open and radiator is ON and the thermal comfort temperature or the 

ambient temperature of the room is high, leading to high energy consumption. The target 

is binary, with good practice represented as 0 and bad practice represented as 1. The 

criterion for categorisation is based on the characteristics of House A and House B. The 

block diagram and network diagram of developed ANN Model C is shown in Figure 7.21. 

The neural network architecture for Model C, generated by the neural network app in 

MATLAB software, is shown in Figure 7.22, showing 4 inputs/predictors, 10 hidden 

layers, and 2 output/target variables. 

Table 7.2: Selection of training data for Model C 

Training 
data 

Training data is matrix containing 

 House A  House B 

1  day 1 data day 1 data 

2 Training data 1 day 2 data day 2 data 

3 Training data 2 day 3 data day 3 data 

4 Training data 3 day 4 data day 4 data 

5 Training data 4 day 5 data day 5 data 

6 Training data 5 day 6 data day 6 data 

The relationship between the room temperature, radiator temperature, window status and 

the outside ambient temperature determines characteristic of the house, in this neural 

network model. Table 7.2 shows the selection of training data for ANN Model C. winter 

1 data is taken for training. Training data 1 is Winter 1 day 1 data of House A and House 

B, training data Winter 1 day 2 data of House A and House B and so on. The model is 

tried for up to training data 6 which is Winter 1 day 6 data of House A and House B. 

Model C with 6 days data taken for training is seen to have the best results. The target 
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class for this model, which is the occupant behaviour is binary, with 0 for good practice 

and 1 for bad practice, represented as a logical array. The total error for each day is the 

number of times the characteristic, depending on occupant behaviour, is predicted wrong. 

The percentage error is calculated using the formula  

 eob = (obpredicted ~= obmeasured)                     (8.1)       

epob = ∑ 𝑒𝑜𝑏
𝑛
𝑖=0

𝑛
 ×  100                     (8.1) 

where n= 83, eob is error in house characteristic prediction for one day. The average 

percentage error, that is the prediction of the practice or characteristic of the days taken 

for testing, for House A and House B, is calculated. The developed pattern recognition 

neural network model is tested with the rest of the days data. The average percentage 

error for predicting characteristic of the house on that day, depending on the general 

characteristic of the house, based on training data, is calculated for the testing data which 

is day 7 to day 29 for winter 1, for House A and House B. Similarly, the average 

percentage error for prediction of practice of 13 days in Winter 2 is calculated for House 

A and House B. Figure 7.23 shows the percentage error in predicting occupant behaviour 

of House A and House B, for Winter 1. The overall average percentage error for House 

A for Winter 1 is 22.5% and that for House B for Winter 1 is 18.9%. Figure 7.24 shows 

the percentage error in predicting occupant behaviour of House A and House B, for 

Winter 2. The overall average percentage error for House A for Winter 2 is 16.8% and 

that for House B for Winter 2 is 10.8%.  considering Winter 1 and Winter 2 together, the 

overall average percentage error for Model C for House A is 19.6% and the overall 

average percentage error for House B, considering Winter 1 and winter 2 together, is 

14.8%. Based on the prediction, the occupants can be made aware of the consequent 

increase in energy usage, prompting them to change their pattern of window opening. 

Figure 7.23 shows the percentage error for House B for winter 1 and Figure 7.24 shows 
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the percentage error for House A Winter 2 and House B Winter 2. The total average 

percentage error for both winters, for House A is 19.7% and that for House B is 14.9%. 

This means that depending on the internal temperatures of the house (including the 

radiator temperature), the window status, and the outside ambient temperature, data of a 

day, Model C can predict of the occupants have followed good practice or bad practice 

on the day. Model C can potentially be developed to a tool that helps provide occupants 

with information on their practice and their behaviour leading to increase in energy 

consumption in the house.  

7.6. Summary 

Based on analysis of social housing, artificial neural network models were developed to 

predict energy demand, window status and general occupant behaviour in the main 

bedroom of high insulation window open house and high insulation window closed house. 

Literature review showed that machine learning models are effective in predicting 

window opening behaviour of occupants in residential building. Although the variables 

used in modelling vary, room temperature, window status and outdoor ambient 

temperature are some of the most common predictors used. Including radiator 

temperature in predicting energy demand and window opening behaviour of occupants, 

has not been carried out extensively.  This chapter describes the development of artificial 

neural network models developed. Three models were developed:  

▪ Model A, to predict energy demand per day, in kWh, of main bedroom of high 

insulation window open house and high insulation window closed house. The 

predictors are room temperature, radiator temperature, window status and 

outside ambient temperature. The model predicted energy demand with 92.4% 

accuracy (7.6% error) for high insulation window open house and 99% accuracy 

(0.25% error) for high insulation window closed house.  
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▪ Model B, to predict window status of the house in a day, for high insulation 

window open house and high insulation window closed house. The predictors 

are room temperature, radiator temperature, energy demand and outside ambient 

temperature. The model predicted window status with 78.2% accuracy (21.8% 

error) for high insulation window open house and 73.9% accuracy (26.1% error) 

for high insulation window closed house. 

▪ Model C, to categorise the house as a good practice house or bad practice house, 

depending on the relationship between room temperature, radiator temperature, 

window status and outside ambient temperature. Depending on the general 

characteristic of the house, the tested days for the house was categorised as good 

practice day or bad practice day. The model predictor the characteristic of high 

insulation window open house, with (19.75% error).  

The above findings relate to the findings of existing studies in the field (Gill et al., 2010; 

Haldi and Robinson, 2011; Jones, Fuertes and de Wilde, 2015),discussed in detail in 

Chapter 2. The developed models can be developed further to understand the patterns of 

energy usage in well insulated and poorly insulated houses and to compare them to see 

the effect of window opening behaviour of occupants. 

The validity of any developed model increases with increase in number of real-life 

scenarios they are tested. Due to time constraints, the developed models in this study were 

tested with the 4 houses that were chosen for analysis previously in the study. Future work 

can include validating the results with a greater number of real-life scenarios. 
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Chapter 8 | Discussion and Conclusion 

8.1. Introduction 

Occupant behaviour plays a critical role in managing the energy efficiency of a residential 

building, arguably more than insulation property of the building. There is no single solution 

to achieve energy efficiency, there are some general areas to be considered and some general 

principles that can be followed to increase the energy efficiency in buildings. Getting the 

right balance can be done by having a holistic approach, considering a building in its context, 

significance and all the factors affecting energy use as the starting point for an optimum 

energy efficiency strategy. To achieve this, a clear understanding of why people open 

windows in residential buildings is necessary. Understanding the impact of occupant 

behaviour on energy usage and implementing it in building simulation models helps predict 

energy usage in realistic terms.  

The aim and objectives of the research was fulfilled by following a systematic methodology. 

The results of this research confirm the hypothesis that OB is one of the key reasons for 

discrepancies between actual predicted energy consumption in residential buildings. This 

chapter discusses the results of the research concisely, comparing it with the objectives of 

the research. The key findings and contribution to knowledge are summarised. Limitations 

of the work and recommendations for future work are also presented.  

8.2. Achievement of Research Aims and Objectives  

The aim of this research was to study impact of occupant behaviour on the energy 

consumption of residential buildings and to identify the key factors that influence occupant 

behaviour that affect energy efficiency and to provide ideas to improve energy efficiency, 

by suggesting mathematical techniques and artificial intelligence. The primary focus of the 
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thesis was to evaluate the effect of window opening on the energy efficiency of a residential 

building, regardless of the insulation property of the house. To achieve the aim, it was broken 

down into objectives which were attained with the help of the formulated research questions. 

The achievement of the objectives of the research are: 

➢ Study the impact of occupant behaviour on the energy consumption of residential 

buildings:  

This objective was achieved with the help a comprehensive literature review starting with 

review of energy efficiency in buildings and covering effect of insulation, energy gap and 

summarising the impact of occupant behaviour and ending with review of existing models 

of predicting window opening behaviour was done. It brought to light the explicate 

relationship between occupant behaviour and energy efficiency in buildings. This helped in 

making informed decision about the direction of research. 

➢ Further enhance the understanding of the energy efficiency of buildings and to 

validate the information regarding the building fabrics, and its relationship to 

occupant behaviour of window opening, by obtaining thermal images of buildings: 

Literature review followed by preliminary research helped achieve this objective. Thermal 

images of residential buildings across Nottingham were collected. The images helped 

visualise loss of heat due to opening of windows. The exercise validated the assumption that 

window opening behaviour occurred in houses especially in well insulated buildings.  

➢ Identify the key factors that influence occupant behaviour that effect the energy 

efficiency: 

Preliminary research phase was further enhanced by conducting a survey, which helped 

achieve this objective. Questions focussing window opening in winter were included in the 

survey questionnaire. Data was collected from a representative sample of people across UK. 

Results of the survey showed the wide-ranging set of reasons that prompted people to open 

windows of their dwelling in winter. The findings highlight the fact that OB in their house 
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is strictly based on personal comfort and interrelated to IEQ and the energy efficiency of the 

building. 

➢ Provide ideas to improving energy efficiency of residential buildings, by 

mathematical techniques: 

Chapter 6 elaborates on the achievement of this objective.  Energy efficiency in social 

housing was analysed. The window opening pattern in several houses of different building 

insulation properties were compared to understand the difference between the actual and 

predicted energy usage. This gave an insight into the impact of WOB in energy usage. It also 

helped compare the difference between energy usage in well insulated and poorly insulated 

buildings with windows open and closed. 

➢ Design and develop models with the help of artificial neural networks, that help 

predict window opening and closing behaviour of occupants, and energy demand: 

Chapter 7 explains the achievement of this objective. Artificial Neural Network Models were 

developed to predict the energy usage and the difference between actual and predicted 

energy usage when window is open. The models gave a clear indication of the energy gap 

occurring due to WOB of occupants.  

8.3. Key Findings 

The key findings obtained by achieving the aim and objectives through a set of structured 

research questions are: 

➢ There is a strong relationship between energy efficiency of a building and the 

behaviour of occupants in the building. 

➢ From the thermal image of buildings, it was inferred that thermal image of 

residential buildings can enhance the understanding and validate the impact of 

occupant behaviour in energy efficiency of a building. 
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➢ The survey provided an insight into the frequency of window opening in winter, 

and the wide range of reasons as to why people open windows in winter. 43% of 

the respondents open their windows in winter at least once a day, with 7.3% of 

them leaving it open always. 47% of the participants open their window when 

heating is ON. The survey revealed that energy consumption in houses is 

influenced to a great extent by occupant behaviour. People open window in their 

houses in winter due to diverse range of reasons, regardless of the type of insulation 

of their house. 

➢ A comparative study four specific houses based on two categories (window 

opening and house insulation property) was carried out.  with high insulation and 

window open behaves almost as badly as a house with poor insulation.  

➢ The theory of first order control system can be used to understand building 

characteristics based on window opening and closing. 

➢  In high insulation houses, the energy demand of one room increases by a factor of 

2.9, when comparing a window open and window closed house. 

➢ Consequently, the energy cost increases by £1 for one room per day, between two 

high insulation houses with window open and window closed. 

➢ In poorly insulated houses, energy demand of one room increases by a factor of 1.5, 

in winter months, in a house with windows open, causing an increase of £0.65 for 

one day.  

➢ Considering the average energy demand of one month, in high insulation houses, 

there is a difference of £30 in energy costs between a high insulation window open 

house and high insulation window closed house, for one room in a month. 

➢ There is only a difference of 13% in energy demand of a high insulation window 

open house and a low insulation window closed house. 
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➢ As of April 2022, the gas prices will increase from £0.04 to £0.07. Based on this, 

the energy cost in a high insulation and window open house will increase by £1.73 

for one day when compared toa high insulation and window closed house, which 

will account for an increase of £52.57 for one month. 

ANN feed forward neural network model to predict energy consumption based on the room 

temperature, radiator temperature and outside ambient temperature was developed. 6 days 

data was taken for training. The model predicted energy consumption with 98.8% accuracy 

for high insulation, window closed house and 92% accuracy for high insulation, window 

open house. 

➢ Artificial neural network model to predict window status based on radiator 

temperature, room temperature, outside ambient temperature and window status 

and EC, was developed. Pattern recognition algorithm was used. The model worked 

best with 10 hidden layers and 2 days data taken for training, with an accuracy of 

76%. The models predict window status with an overall average error of 24.2% for 

high insulation, window open house and 23.6% for high insulation, window closed 

house. 

➢ Artificial neural network model to predict general occupant behaviour regarding 

window opening, (or practice of window opening) based on radiator temperature, 

room temperature, outside ambient temperature was developed. Pattern recognition 

algorithm was used. The model worked best with 10 hidden layers and 6 days data 

taken for training. The models predict window status with an overall average error 

of 19.7% for high insulation, window open house and 14.9% for high insulation, 

window closed house 

8.4. Contribution to Knowledge 

The contributions to knowledge, from this research work are: 
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➢ Energy efficiency of a building holds an explicate relationship with the behaviour 

of occupants in the buildings, regardless of the building insulation properties. 

➢ A highly insulated building could consume as much energy as a badly insulated 

house, due to people’s behaviour. Hence the assumption that the more the 

insulation, the more the energy efficiency, might not be true 

➢ People’s behaviour could reduce the effect of insulation. So what theoretically is a 

well-insulated building might behave like a badly insulated house in terms of 

energy efficiency, depending on the behaviour of occupants 

➢ Thermal imaging is a helpful tool in visualising the impact of window opening. The 

same can be used to make occupants aware of the effect of their behaviour.  

➢ The survey acts as guidance helping policy makers understand the effect of a 

variety of window open behaviour. This stochastic nature is one of the main 

reasons for the discrepancies between actual energy usage and energy usage 

predicted by building simulation models. The survey shows that insulating a 

building alone cannot improve energy efficiency of a building.  

Development of a mathematical model to characterise performance of a building based on 

opening and closing of windows using first order system modelling.  

➢ Mathematical model to predict energy usage in a building. 

➢ Artificial neural network architecture to predict energy usage based in window 

status. 

➢ Artificial neural network architecture to predict window status based on internal 

and external temperatures and energy usage. 

➢ The developed ANN models will aid post-occupancy evaluations of performance of 

buildings, thereby help explain commonly observed discrepancies between actual 

and predicted energy use, as the energy efficiency white papers of the UK does not 

account for occupant behaviour as a factor of energy loss. 
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8.5. Limitations and Recommendations for Future Work 

The window monitoring system used in this research collected data regarding the state of the 

window and not the position, which indicates the degree of window opening. Only one house 

of each type has been considered based on data availability. The study can be further 

enhanced by including more houses of each type.  

Although the objectives of the pilot study were achieved, the sample size can be considered 

small. A bigger sample size would provide an in-depth analysis and explicit correlations 

between the variables considered in the study. 

ANN models were the only models tried for this study, other machine learning models like 

SVM and XGBoost etc can be used to develop models to compare the results to choose an 

optimum model to be represented. 

The thermography survey can in future include input from the residents of the buildings to 

obtain more benefit 

Although the government studies in UK agree that occupant behaviour has a large influence 

over the gas consumption in the domestic sector, and that external temperature is one of the 

most influential variables, it does not account occupant behaviour as one of the drivers 

concerning these two important factors that account for gas consumption variations 

(Department for Business Energy & Industrial Strategy, 2021). The findings from this study 

can be used to emphasise the importance of including occupant behaviour in housing energy 

consumption surveys and policy making. 

The research analysis, interpretations and developed models must be taken as starting point 

for future research in the field of occupant behaviour analysis, for the development of robust 

stochastic building simulations models. Testing of the developed models with new data can 

be done, to strengthen the validity of the model. Implementing a more accurate statistical 
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model by including the window opening angle can be done for a more precise prediction of 

energy use.  

Going forward, indoor air quality must be the primary focus of the research. The humidity, 

CO2 and ppm in the rooms will be considered to suggest a suitable ventilation practice. 

8.6. Final Conclusion 

The main aim of the research was to understand the impact of occupant behaviour on energy 

efficiency of buildings. Energy consumption pattern in similar insulated buildings differed 

based on occupant behaviour, was one of the key findings of the research. This chapter 

provides an overall summary of the thesis, focussing on the achievement of aims and 

objectives. The key findings are presented along with the contribution to knowledge, 

limitations of the research and recommendations for future work. The aim and objectives of 

the thesis was achieved by answering the research questions. The overall argument and key 

findings of the study have been summarised. The entire PhD has been a learning process, 

helping the author understand the impact a minor action like window opening can have on 

the energy usage of a dwelling. The PhD journey proved to be an insightful one to the author, 

with lessons on patience, resilience, and commitment. 
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Online	surveys

Survey	on	window	opening	behaviour	of	people

Showing	303	of	303	responses

With	4	responses	excluded	and	1	response	deleted

Showing	all	questions

Response	rate:	303%

1 I	agree	to	participate	in	the	research	study.	I	understand	the	purpose	and	nature	of	this	study	and	I
am	participating	voluntarily.

Yes	 303		(100%)

2 I	grant	permission	for	the	data	generated	from	this	survey	to	be	used	in	the	researcher's
publications	on	this	topic
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Yes	 303		(100%)

3 In	winter,	how	often	do	you	open	windows	in	your	house?

Always	open	 22		(7.3%)

Once	everyday	 107		(35.3%)

Once	every	two	days	 45		(14.9%)

Once	a	week	 62		(20.5%)

Once	a	month	 27		(8.9%)

Once	in	two	months	 21		(6.9%)

Never	 17		(5.6%)

Other	 2		(0.7%)

3.a If	Other,	please	specify

Showing	all	2	responses

Twice	a	day 729640-729631-75505759

Whenever	central	heating	isn't	on	and	feel	the	need	to	do	so	(usually	in	the

afternoons)

729640-729631-75510217

4

When	windows	are	opened	(in	winter)	how	long	are	they	left	open	for,	usually?

Sherna Salim
   Appendix A
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4

less	than	5	mins	a	day	 31		(10.2%)

5	-	15	mins	a	day	 42		(13.9%)

About	30	mins	a	day	 45		(14.9%)

30	mins	to	1	hour	a	day	 72		(23.8%)

2-	5	hours	 52		(17.2%)

More	than	5	hours	 12		(4%)

During	day	time	 18		(5.9%)

During	the	evening/	night	time	 23		(7.6%)

Other	 8		(2.6%)

4.a If	Other,	please	specify

Showing	all	8	responses			

Don’t	open	because	I	have	a	house	cat. 729640-729631-75505723

Always	locked	open	a	crack 729640-729631-75506608

All	the	time 729640-729631-75507511

Never	opened	so	no	duration... 729640-729631-75506936

overnight	and	early	morning 729640-729631-75509360

all	day	and	night 729640-729631-75512700

Usually	2	windows	24/7	for	ventilation.	Another	one	during	cooking. 729640-729631-75516912

If	it’s	frosty,	not	leaving	windows	open	during	the	night,	otherwise	a	slight

opening	of	the	window	throughout	the	day	and	night	is	the	norm	in	my

house.

729640-729631-75537057

4.b Please	add	any	additional	comments	for	the	above	question,	here

Showing	all	98	responses			

I	have	my	bedroom	window	open	all	night	during	the	Winter.	The	heating

is	turned	off	at	night.	I	open	all	our	windows	for	an	hour	on	Sundays	as	it's

the	only	day	I	can	safely	air	out	the	house	due	to	lower	traffic	levels.

Opening	windows	is	also	important	to	reduce	viral	spread.

729640-729631-75504884

Usually	only	bathroom	window,	after	a	shower	or	bath,	occasionally	kitchen

window

729640-729631-75505391

Bathroom	Windows	&	office	windows	stay	open	almost	permanently	except 729640-729631-75505911
4	/	32

Bathroom	Windows	&	office	windows	stay	open	almost	permanently	except

when	in	the	bathroom.

729640-729631-75505911

I	leave	the	bathroom	window	open	(roughly	a	centimetre)	on	a	latch	all	the

time	and	fully	open	after	a	bath	or	shower,	the	bedroom	window	is	always

open	(roughly	a	handspan)	and	the	living	room	one	is	shut	in	winter	and

kitchen	open	when	cooking

729640-729631-75506143

Depends	on	the	room!	Bathroom	always	open.	Bedroom	at	night.	Kitchen

while	cooking	etc.	Etc.

729640-729631-75506460

Only	bedroom	window	is	left	open	in	winter 729640-729631-75506434

Can	range	from	15	mins	to	the	whole	daytime	depending	on	which	window

or	what	the	weather	is	like.	Occasionally	open	them	in	the	evenings	as	well.

729640-729631-75506086

Bedroom	window	is	usually	open	all	the	time;	sometimes	on	the	draft

setting,	sometimes	open.	All	other	windows	are	usually	closed	most	of

winter

729640-729631-75506432

Usually	when	doing	a	deep	clean 729640-729631-75506790

it's	usually	only	cracked	open	a	little	bit 729640-729631-75506636

Kitchen	windows	are	open	during	cooking	as	heat	from	oven	and	hob

counter	act	the	heat	loss.	Bedroom	windows	open	for	2	mins	per	day	to

allow	circulation

729640-729631-75506502

in	the	morning	to	get	rid	of	smell	and	fog	on	windows	after	sleep 729640-729631-75506619

Usually	when	cleaning	to	get	ventilation 729640-729631-75506683

Windows	are	usually	left	on	the	catch.	Neither	open	or	closed 729640-729631-75506730

these	can	sometimes	be	open	during	the	day 729640-729631-75506650

have	storage	heaters,	Would	open	bedroom	windows	for	longer,	but	once

the	heat	leaves	the	room,	cannot	turn	the	heating	back	on	to	reheat	the

room.	Just	cold	all	day.

729640-729631-75506173

Open	to	help	with	damp/mould	in	some	rooms. 729640-729631-75506632

I	overheat	sometimes	and	will	open	and	close	windows	often 729640-729631-75506445

just	to	let	fresh	air	in	and	take	condensate	out. 729640-729631-75506933

Bedroom	window	throughout	night 729640-729631-75507001

I'm	opening	my	windows	everyday,	few	times	a	day	for	10	min 729640-729631-75506878

Bathroom	window	is	left	open	longer 729640-729631-75507063

We	have	windows	open	while	we	are	sleeping.	Bathroom	windows	opened

after	showering

729640-729631-75506916

We	live	on	a	busy	road 729640-729631-75507387

I	open	front	and	back	to	create	a	through	draft 729640-729631-75507333

I	have	a	house	cat	so	only	open	1	window	she	doesnt	have	access	to,	and

that's	for	my	tumble	dryer	hose.

729640-729631-75507250

Bedroom	window	always	open 729640-729631-75507283
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Its	too	cold	in	winter	and	lets	all	the	heat	out	so	i	dont	do	it	in	winter 729640-729631-75507107

only	in	our	bedroom 729640-729631-75507443

to	clear	condensation	on	the	windows 729640-729631-75507470

Depends	on	how	cold	it	is	really.	So	would	open	the	window	on	a	"warmer

day"	during	the	week.

729640-729631-75507246

Windows	may	be	opened	to	air	out	rooms	for	brief	amounts	of	time	that

add	up	to	2+	hours

729640-729631-75507358

I	always	open	the	bedroom	windows	for	a	few	hours. 729640-729631-75507357

It	depends	on	whether	I	am	home	or	at	work. 729640-729631-75507361

length	of	time	depends	on	weather/cold	conditions 729640-729631-75507648

Bathroom	slightly	open	all	day	and	night,	every	day	of	the	year 729640-729631-75507563

If	it	is	extremely	cold	and	windy	then	the	above	data	does	not	apply 729640-729631-75507439

in	bathroom	to	prevent	windows	streaming 729640-729631-75507809

Sometimes	windows	are	open	longer	if	my	housemate	has	been	cooking. 729640-729631-75507289

Open	a	few	windows	such	as	bathroom	and	kitchen	but	only	very	slightly 729640-729631-75507533

I	tend	to	open	the	back	door	instead	of	our	windows.	Are	windows	are	very

old	single	glazed	and	on	thier	last	legs

729640-729631-75507320

while	I	am	cleaning 729640-729631-75507751

House	is	at	1400'	and	exposed. 729640-729631-75506936

bedroom	windows	always	open 729640-729631-75507795

Mainly	bedroom	and	bathroom	windows 729640-729631-75507640

usually	in	response	to	cooking/smokey	atmosphere 729640-729631-75507702

We	usually	leave	a	window	open	when	we	go	out	to	run	errands 729640-729631-75507224

I	open	the	window	to	my	balcony,	maybe	that	is	technicalyl	a	door? 729640-729631-75508166

If	they	are	opened	(smells	etc)	then	it	is	for	a	short	a	time	as	possible. 729640-729631-75507388

This	is	dependent	on	how	cold	it	is 729640-729631-75508167

We	don't	open	all	windows	in	winter.	Usually	just	bedroom	windows 729640-729631-75508210

Need	to	air	out	the	place	everyday 729640-729631-75508290

I	open	some	windows	more	than	others.	The	window	in	the	kitchen	gets

open	all	the	time	as	the	cat	goes	in	and	out	and	I	need	to	let	out	the

smoke	as	I	burn	the	food	a	lot	(I	am	quite	distracted	person).	The	bedroom

gets	window	open	as	my	husband	does	not	feel	cold	and	that	window	stays

open	sometimes	a	day	or	two.	The	windows	in	the	children's	rooms	get

opened	hardly	ever.	Maybe	once	a	week	a	bit.	The	living	room....not	often

as	it	is	noisy	and	quite	a	bit	of	pollution.

729640-729631-75507972

I	live	in	a	very	poorly	insulated	building,	my	upstairs	neighbour	is	able	to

drop	my	temps	by	over	4c	in	winter	by	leaving	windows	open	24/7,	as	a

result	I	open	mine	as	little	as	possible	in	order	to	not	do	the	same	to	the

729640-729631-75508093
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result	I	open	mine	as	little	as	possible	in	order	to	not	do	the	same	to	the

bloke	beneath	me.

Mainly	opening	bathroom	windows	after	showers	etc., 729640-729631-75508521

It	depends	in	how	cold	it	is 729640-729631-75508672

Normally	to	dissipate	steam	in	kitchen	when	cooking. 729640-729631-75508354

Windows	are	open	for	a	few	hours	to	all	day	in	the	bedroom	to	air	out	the

bed.	Rest	of	the	house	we	tend	to	open	windows	in	the	bathroom	for	an

hour	or	so	after	getting	ready.	Open	windows	in	all	other	rooms	when

needs,	e.g.	when	airing	out	laundry,	get	rid	of	smells,	while	cooking	etc.

729640-729631-75508239

I	mainly	open	bedroom	window	but	usually	open	back	door	as	well 729640-729631-75508512

I	only	open	the	windows	when	the	heat	in	the	house	gets	too	much	for	me. 729640-729631-75508590

This	is	too	fixed.	What	do	I	mean	-	depending	on	the	weather	I	might	open

the	windows	less.	In	the	kitchen,	bathrooms	I	may	well	open	windows

daily.

729640-729631-75508395

Our	bathroom	window	is	open	nearly	every	day	and	our	bedroom	most

days	but	it	depends	on	how	cold	it	is	outside.	If	mild,	we	open	windows

every	day.

729640-729631-75507682

Open	overnight	in	occupied	bedrooms	unless	very	cold	or	stormy 729640-729631-75508914

We	like	to	have	fresh	air	into	the	bedroom	at	night...just	a	little	in	the

winter	and	wider	in	the	summer

729640-729631-75508430

When	cooking 729640-729631-75508955

Only	in	the	bedroom 729640-729631-75508780

open	small	window	in	bedroom	overnight	all	year	round	except	in	wet	or

windy	conditions

729640-729631-75508724

usually	bedroom	&	bathroom	windows,	upstairs 729640-729631-75509162

i	only	open	the	windows	in	the	bedrooms 729640-729631-75509226

Bedroom	and	bathroom	windows	are	open	at	all	times.	I	have	answered	the

previous	question	relating	to	living	room	windows	only.

729640-729631-75508901

This	might	only	be	1	window	not	all	the	windows	in	the	house.	If	I	leave

them	open	it	will	only	be	partially.	wins

729640-729631-75508556

I	do	sometimes	have	a	window	open	all	night	as	I	like	fresh	air	in	the

bedroom.	Never	with	the	heating	on.

729640-729631-75508905

window	trickle	vents	are	left	open	to	prevent	condensation 729640-729631-75509699

I	mean	the	kitchen	and	bathroom	windows	in	the	mornings	in	winter 729640-729631-75509470

The	windows	are	opened	only	when	drying	clothes	indoors,	or	cooking	and

it	gets	steamy.

729640-729631-75508979

We	open	quarter	lights	in	our	bedroom	when	we	go	to	bed,	unless

extremely	windy

729640-729631-75508906

I	would	only	open	the	kitchen	window	to	allow	smoke	to	escape	when

cooking.

729640-729631-75509571
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cooking.

Unless	very	cold	or	windy	a	bedroom	window	is	open	when	in	bed. 729640-729631-75509638

We	leave	a	small	bedroom	window	(fanlight)	constantly	open 729640-729631-75509791

Heating	would	be	off 729640-729631-75510017

During	the	daytime	and	a	few	times	at	night	if	the	house	is	too	stuffy. 729640-729631-75510216

I	open	my	windows	almost	everyday	for	20-30	minutes	to	let	fresh	air	come

in.

729640-729631-75509954

Tend	to	open	the	window	to	clear	steam	from	the	bathroom	and	more

likely	to	do	it	on	a	sunny	day.	Don't	bother	in	bad	weather.

729640-729631-75509946

Usuall	to	air	bedroom	and	bathroom 729640-729631-75510591

Windows	open	in	master	bedroom	for	fresh	air	while	sleeping 729640-729631-75508560

I	have	at	least	one	window	slightly	open	about	half	and	inch	all	day	for	air

circulation.

729640-729631-75509766

weather	permitting	we	mopen	the	windpws	as	much	as	we	can	upstairts

not	so	much	down	staors

729640-729631-75510644

We	only	try	to	open	windows	in	winter	when	we	have	turned	off	heating 729640-729631-75511182

I	open	only	when	I	clean	the	window. 729640-729631-75510952

We	don’t	open	all	windows	just	some	of	them	once	a	day 729640-729631-75511673

the	windows	would	only	be	opened	if	it	was	a	relatively	warm	day	and	to

bring	about	a	change	of	air	in	the	house

729640-729631-75510367

the	bathroom	window	is	open	all	day	and	night,	others	are	open	during	the

day	time	only

729640-729631-75512700

depends	on	the	weather	outside 729640-729631-75514242

Not	all	windows,	only	kitchen	and	bathroom	but	not	every	day	either. 729640-729631-75514121

I	dont	always	remember	to	open	them	but	we	have	a	cleaner	sometimes

and	she	always	opens	them	when	she's	working	even	in	winter

729640-729631-75520326

Only	open	during	cooking 729640-729631-75528665

Open	in	kitchen	and	bathroom 729640-729631-75508980

Since	I	have	a	weak	chest	I	am	cautious	not	to	be	in	a	draft	directly,	as	a

result	when	frosty	outside	I	leave	no	windows	open	during	the	night,	but

need	fresh	air	usually.

729640-729631-75537057

5 What	time	of	the	day	are	you	most	likely	to	open	your	windows,	in	winter?

5.1 Early	morning
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Most	likely	 98		(32.3%)

Somewhat	likely	 57		(18.8%)

Not	very	likely	 44		(14.5%)

Least	likely	 23		(7.6%)

Unlikely	 81		(26.7%)

5.2 Late	morning

Most	likely	 65		(21.5%)

Somewhat	likely	 130		(42.9%)

Not	very	likely	 42		(13.9%)

Least	likely	 23		(7.6%)

Unlikely	 43		(14.2%)

5.3 Early	afternoon
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Most	likely	 68		(22.4%)

Somewhat	likely	 106		(35%)

Not	very	likely	 61		(20.1%)

Least	likely	 20		(6.6%)

Unlikely	 48		(15.8%)

5.4 Late	afternoon

Most	likely	 32		(10.6%)

Somewhat	likely	 84		(27.7%)

Not	very	likely	 75		(24.8%)

Least	likely	 41		(13.5%)

Unlikely	 71		(23.4%)

5.5 Evening
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Most	likely	 47		(15.5%)

Somewhat	likely	 34		(11.2%)

Not	very	likely	 50		(16.5%)

Least	likely	 53		(17.5%)

Unlikely	 119		(39.3%)

5.6 I	open	windows	randomly

Most	likely	 57		(18.8%)

Somewhat	likely	 68		(22.4%)

Not	very	likely	 52		(17.2%)

Least	likely	 28		(9.2%)

Unlikely	 98		(32.3%)

5.a Please	add	any	additional	comments	for	the	above	question,	here
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Showing	all	24	responses			

before	or	after	work,	same	reason	as	above 729640-729631-75505391

Bedroom	only 729640-729631-75506434

Bedroom	windows	in	morning	and	kitchen	during	evening	dinner 729640-729631-75506502

Sometimes	open	all	windows	before	we	go	out 729640-729631-75506916

Only	when	it	snow 729640-729631-75507343

Kichen	window	will	be	opened	randomlg 729640-729631-75507357

Bathroom	window	only,	others	are	only	opened	occasionally	in	Winter	but

always	in	Summer

729640-729631-75507563

Windows	would	only	be	opened	to	ventilate	due	to	say	burnt	toast. 729640-729631-75506936

Generally	open	windows	when	its	too	hot	or	when	cooking	/	using	shower 729640-729631-75507925

This	will	be	as	and	when	needed 729640-729631-75507388

Late	evening	-	Most	Likely	-	in	the	bedroom 729640-729631-75508430

More	frequent	is	the	toilet	window	for	fresh	air 729640-729631-75508037

Early	afternoon	south	windows,	late	afternoon	west	windows. 729640-729631-75508600

These	answers	depend	on	the	time	of	year. 729640-729631-75508905

Early	morning	-	shower	room	and	bathroom 729640-729631-75509335

sitting	room	windows	randomly	if	the	weather	is	good,	i.e.	sunshine 729640-729631-75509470

Occasionally	open	ceiling	sky	lights	in	kitchen	if	cooking	and	doing	laundry 729640-729631-75508906

This	would	be	to	allow	smoke	to	escape	when	cooking. 729640-729631-75509571

First	thing	in	the	morning	if	the	weather	isn't	too	bad 729640-729631-75509387

Unless	very	cold	or	windy	a	bedroom	window	is	open	when	in	bed. 729640-729631-75509638

I	have	at	least	one	window	slightly	open	about	half	and	inch	all	day	for	air

circulation.

729640-729631-75509766

Kitchen	window	is	open	in	evening	due	to	cooking 729640-729631-75511673

Depends	on	the	window,	bathroom	window	open	nearly	all	day	and	night,

bedroom	windows	when	the	last	person	leaves,	the	kitchen	window	is	open

during	and	after	cooking	then	closed	at	the	end	of	the	day.

729640-729631-75512700

Only	open	if	needed	e.g.	steam	in	bathroom,	cooking	in	kitchen,	this	is

random.

729640-729631-75514121

6 How	often	do	you	open	windows	when	the	heating	is	ON?
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Never	 65		(21.5%)

Rarely	 94		(31%)

Occasionally	 85		(28.1%)

Frequently	 45		(14.9%)

Always	 12		(4%)

Not	applicable	 1		(0.3%)

Other	 1		(0.3%)

6.a If	Other,	please	specify

Showing	1	response

I	switch	off	the	radiator	in	the	room	in	question	and	keep	the	door	shut 729640-729631-75510581

6.b Please	add	any	additional	comments	for	the	above	question,	here

Showing	all	44	responses			

My	son	sometimes	decides	his	room	is	too	warm	and	opens	the	window

while	heating	is	on.

729640-729631-75505035

I	open	windows	on	Sundays	as	traffic	fumes	are	lower. 729640-729631-75504884

if	bathroom	window	open	then	the	door	is	closed	to	minimise	heat	loss	for

the	rest	of	the	house

729640-729631-75505391

As	mentioned	our	bathroom	windows	&	office	windows	are	open	mostly

even	when	heating	is	on.

729640-729631-75505911

We	don't	use	the	heating	often	because	we	can't	afford	it	and	we	all	run

hot	anyway.

729640-729631-75506130

I’ll	open	the	windows	if	it	gets	too	hot	but	only	for	a	short	time	to	keep	the

warmth.

729640-729631-75506574

Bedroom	only 729640-729631-75506434

Mainly	open	before	heating	comes	on 729640-729631-75506502

the	odd	windo	could	be	open	to	llow	air	to	flow 729640-729631-75506650

As	said	above,	old	storage	heaters,	which	limits	opening,	because	cannot

turn	up

729640-729631-75506173
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Heating	off	in	day	time	(9-5pm) 729640-729631-75506632

Usually	bathroom	window	to	prevent	condensation 729640-729631-75507122

Bathroom	windows	may	be	opened	for	a	short	time	while	the	heating	is	on,

depends	when	we	shower

729640-729631-75506916

It	is	for	the	tumble	dryer	as	explained	and	sometimes	heating	is	on	too 729640-729631-75507250

Heating	in	general	is	on	but	windows	open	in	bedrooms	where	radiators	are

off.	Cant	sleep	with	the	central	heating	on!

729640-729631-75507212

would	waste	the	heat	i	just	dont	do	that 729640-729631-75507107

High	thermal	mass	of	building	means	the	heating	is	never	off,	though	it	is

under	thermostatic	control.

729640-729631-75506936

generally	keep	windows	shut	if	heating	on	unless	need	to	let	steam	etc	out

or	when	cooking	etc

729640-729631-75507925

Only	open	in	morning	after	sleeping	and	showering 729640-729631-75507640

Sometimes	if	the	house	gets	too	hot	(rarely!)	when	the	oven	is	on	with	the

heating	for	example	then	i	may	open	a	window	for	a	short	amount	of	time.

729640-729631-75507388

I	dont	use	my	heating 729640-729631-75508233

I	open	the	windows	in	order	to	create	an	air	flow	and	get	fresh	air	into	the

house.	This	may	be	during	the	time	I	have	heating	on,	but	I	don't	open	the

windows	to	bring	the	temperature	down.

729640-729631-75507915

Thermostatic	control	mean	the	heating	doesn't	have	a	regular	on/off	cycle.

So	heating	can	come	on	while	windows	are	open.

729640-729631-75508210

I	tend	to	first	open	the	windows,	then	put	on	the	heating	once	I	close

them.

729640-729631-75507972

We	use	a	thermostat	to	heating	on	off.	Unless	I	open	most	windows	I	don't

actively	turn	the	heating	down.	If	the	house	cools	down	too	much	and	the

heating	comes	on	we	can	hear	this	so	tend	to	close	windows.

729640-729631-75508239

Just	to	let	some	fresh	air	in 729640-729631-75508546

We	have	no	neating	upstairs,	open	fire	in	living	room	and	night-storage	in

kitchen	so	it's	hard	to	say.

729640-729631-75507682

Our	heating	is	turned	off	at	20.00	automatically 729640-729631-75508430

Especially	the	kitchen	windows	if	for	some	reason	there	is	some	smoke 729640-729631-75508037

Try	not	to	loose	too	much	heat. 729640-729631-75508600

I	get	a	lot	of	condensation	and	need	to	open	the	windows	after	cooking	or

bathing

729640-729631-75508556

Try	not	to	waste	energy	so	never	with	heating	on. 729640-729631-75508905

exception	is	the	bathroom	..always	open	during	morning 729640-729631-75509470

Only	if	drying	clothes	indoors,	or	cooking. 729640-729631-75508979

Heating	is	off	at	night	when	we	open	windows	going	to	bed,	but	underfloor

heating	is	always	on	thermostat

729640-729631-75508906
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heating	is	always	on	thermostat

Again	just	to	allow	smoke	to	escape. 729640-729631-75509571

During	the	winter	period,	I	open	the	windows	only	2-3	times	in	a	few	weeks

while	the	heating	is	on.

729640-729631-75510168

I	have	at	least	one	window	slightly	open	about	half	and	inch	all	day	for	air

circulation.

729640-729631-75509766

I	may	open	the	windows	when	heating	is	on	but	it	would	never	be

intentionally.

729640-729631-75509725

occassions	when	this	might	occur	would	be	possiblly	to	remove	odours	or

smoke	from	cooking

729640-729631-75510367

These	windows	tend	to	be	away	from	heat	sources. 729640-729631-75512700

During	cooking 729640-729631-75528665

bathroom	and	kitchen	areas 729640-729631-75508980

But	only	very	slightly,	I	do	have	drafty	windows	in	some	areas. 729640-729631-75537057

7 Select	the	reasons	that	prompt	you	to	open	windows.

7.1 Living	room/	open	plan	living	room

For	fresh	air	 193		(46%)

Feeling	too	hot/humid	 62		(14.8%)

Condensation	on	windows	or	 39		(9.3%)	

walls

When	drying	clothes	indoors	 24		(5.7%)

To	get	rid	of	odour	(eg.	while	 49		(11.7%)	

cooking)

No	specific	reason/other	 7		(1.7%)

Do	not	open	 46		(11%)

7.2 Dining	room
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For	fresh	air	 102		(28.6%)

Feeling	too	hot/humid	 41		(11.5%)

Condensation	on	windows	or	 23		(6.4%)	

walls

When	drying	clothes	indoors	 14		(3.9%)

To	get	rid	of	odour	(eg.	while	 57		(16%)	

cooking)

No	specific	reason/other	 26		(7.3%)

Do	not	open	 94		(26.3%)

7.3 Kitchen

For	fresh	air	 89		(19.3%)

Feeling	too	hot/humid	 44		(9.6%)

Condensation	on	windows	or	 68		(14.8%)	

walls

When	drying	clothes	indoors	 16		(3.5%)

To	get	rid	of	odour	(eg.	while	 217		(47.2%)	

cooking)

No	specific	reason/other	 8		(1.7%)

Do	not	open	 18		(3.9%)

7.4 Main	bedroom
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For	fresh	air	 218		(52.4%)

Feeling	too	hot/humid	 58		(13.9%)

Condensation	on	windows	or	 64		(15.4%)	

walls

When	drying	clothes	indoors	 13		(3.1%)

To	get	rid	of	odour	(eg.	while	 24		(5.8%)	

cooking)

No	specific	reason/other	 11		(2.6%)

Do	not	open	 28		(6.7%)

7.5 Other	bedrooms

For	fresh	air	 159		(43.7%)

Feeling	too	hot/humid	 34		(9.3%)

Condensation	on	windows	or	 43		(11.8%)	

walls

When	drying	clothes	indoors	 16		(4.4%)

To	get	rid	of	odour	(eg.	while	 16		(4.4%)	

cooking)

No	specific	reason/other	 25		(6.9%)

Do	not	open	 71		(19.5%)

7.6 Bathrooms
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For	fresh	air	 104		(24.8%)

Feeling	too	hot/humid	 58		(13.8%)

Condensation	on	windows	or	 160		(38.1%)	

walls

When	drying	clothes	indoors	 6		(1.4%)

To	get	rid	of	odour	(eg.	while	 38		(9%)	

cooking)

No	specific	reason/other	 11		(2.6%)

Do	not	open	 43		(10.2%)

7.a Please	write	down	any	other	reason	for	opening	windows,	not	mentioned	above

Showing	all	43	responses			

help	with	damp 729640-729631-75505193

To	reduce	viral	spread	by	ventilating	the	house.	I'm	extremely	clinically

vulnerable.

729640-729631-75504884

Dining	room	window	ajar	when	drying	clothes	(tumble	dryer	on)	closed

shortly	after	drying	cycle.

729640-729631-75505391

I	also	sometimes	open	when	cleaning,	depending	on	the	products	used 729640-729631-75506189

'No	specific	reason	/	other'	-	selected	for	rooms	I	don't	have	in	my	flat,	so

question	does	not	apply.

729640-729631-75506086

Nice	sunny	day.	Not	too	cold 729640-729631-75506502

To	let	out	insects	the	have	flown	in 729640-729631-75506784

to	allow	smoke	to	go	out 729640-729631-75506650

Aware	of	fresh	air's	role	in	keeping	down	coronavirus,	always	aware	of	that

when	opening	windows	now

729640-729631-75506173

I	don't	know	more	reasons 729640-729631-75506878

To	watch	snow 729640-729631-75507343

Get	rid	of	smells	eg	the	dogs 729640-729631-75507212

Bathroom	has	no	window. 729640-729631-75507361

spring	airing	of	whole	building 729640-729631-75507648

To	get	rid	of	the	smell	of	wet	dog	after	winter	walks! 729640-729631-75507798

Answers	are	for	any	time	of	the	year	not	just	winter.	Winter	would	really

only	see	the	kitchen	window	opened	for	cooking	odours.

729640-729631-75506936
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only	see	the	kitchen	window	opened	for	cooking	odours.

We	do	not	have	a	bathroom	window. 729640-729631-75507224

none 729640-729631-75507388

I	smoke	inside 729640-729631-75508542

Teenage	children	get	smelly.	:-) 729640-729631-75507972

I	open	a	bedroom	for	ventilation	when	on	my	exercise	bike 729640-729631-75508354

To	get	rid	of	smell	of	smoke	from	open	fire.	To	remove	dusty	smell	after

hoovering

729640-729631-75507682

no	windows	in	bathrooms 729640-729631-75508973

No	other	reasons 729640-729631-75508635

We	also	open	hallway	windowsas	this	seems	to	effect	the	whole	house

refreshing	it.

729640-729631-75508808

For	fresh	to	limit	COVID-19	infections	among	our	big	family	members	who

include	school	going	children

729640-729631-75508037

To	refresh	the	air.	

We	do	not	have	a	heat	recovery	system.

729640-729631-75508600

Cleaning 729640-729631-75508556

If	decorating 729640-729631-75509523

There	are	no	windows	in	the	bathrooms,	so	this	part	of	the	question	is	not

applicable	for	my	home.

729640-729631-75508979

To	get	rid	of	musty	smells 729640-729631-75509387

I	open	my	windows	almost	everyday	for	20-30	minutes	to	get	fresh	air. 729640-729631-75509954

Mostly	for	a	short	time	to	get	rid	of	humidity	and	smells 729640-729631-75510365

Like	the	air	during	night	time	or	when	it	rains 729640-729631-75510217

none 729640-729631-75510552

Bathroom	has	no	windows,	but	only	an	extractor	fan 729640-729631-75508560

I	have	at	least	one	window	slightly	open	about	half	and	inch	all	day	for	air

circulation.

729640-729631-75509766

we	have	an	open	plan	kitchen/dining	area/clothes	drying	area	so	need	to

open	the	door	to	garden	for	humidity	reduction.	However	we	tend	to	do

that	when	heating	is	off

729640-729631-75511182

When	clean	the	window. 729640-729631-75510952

To	prevent	mould 729640-729631-75511095

N/A	 729640-729631-75510367

My	policy	is:	windows	and	doors	are	closed	and	central	heating	is	on

permanently	during	winter.	Windows	and	doors	are	open	during	the

spring/summer	with	the	heating	off.

729640-729631-75514121
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Clean	fresh	air	in	the	house,	I	tend	to	leave	the	back	door	(	bedroom	door

to	patio),	first	thing	for	at	least	10	minutes,	whatever	the	weather	and

then	leave	the	window	open	after	closing	that	back	bedroom	door.

729640-729631-75537057

8 Please	mention	the	type	of	accommodation	you	live	in

Detached	house	 53		(17.5%)

Semi-detached	house	 102		(33.7%)

Flats	 71		(23.4%)

Bungalow	 13		(4.3%)

Terraced	house	 61		(20.1%)

Other	 3		(1%)

8.a If	you	selected	Other,	please	specify:

Showing	all	3	responses

Maisonette. 729640-729631-75508905

mobile	home 729640-729631-75509470

upper	maisonette 729640-729631-75524755

9 Please	choose	one	of	the	following
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I	live	in	my	own	house	 194		(64%)

I	live	in	a	rented	apartment	 67		(22.1%)

I	live	in	a	shared	 13		(4.3%)	

accommodation

I	live	in	a	house	provided	by	 13		(4.3%)	

the	city	council

Other	 16		(5.3%)

9.a If	you	selected	Other,	please	specify:

Showing	all	16	responses			

I	live	in	a	rented	housing	association	house. 729640-729631-75504884

Rented	house 729640-729631-75506139

Rented	house 729640-729631-75506256

Flat	owned	with	a	mortgage 729640-729631-75506683

Live	with	parents 729640-729631-75506730

family 729640-729631-75507048

with	parents 729640-729631-75507878

I	live	with	my	parents 729640-729631-75507956

Private	rented	house 729640-729631-75507640

rented	house 729640-729631-75507682

privately	rented	bungalow 729640-729631-75508724

A	rented	flat	with	other	family	members 729640-729631-75508037

Rented	house	from	private	landlord 729640-729631-75509746

owned	by	a	relative 729640-729631-75510217

Rent	house 729640-729631-75508289

House	rented	from	housing	association 729640-729631-75508560

10

Please	state	the	insulation	properties	of	your	house.
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10

External	Wall	Insulation	 28		(6.3%)

Internal	Wall	Insulation	 46		(10.3%)

Cavity	Wall	Insulation	 108		(24.2%)

Loft	Insualiton	 152		(34%)

Not	sure	 107		(23.9%)

Other	 6		(1.3%)

10.a If	Other,	please	specify

Showing	all	6	responses			

None 729640-729631-75504742

none	of	these.	The	house	is	over	two	hundred	years	old	and	has	stone	and

very	thick	walls

729640-729631-75507320

There	is	none,	we	have	cavity	walls	with	no	insulation	between	the	flats,	no

plasterboard	on	the	walls,	no	external	insulation,	worst	housing	I've	ever

had,	no	sound	insulation	either,	it's	so	bad	we	can	hear	each	others

conversations.

729640-729631-75508093

I	live	in	a	grade	2	listed	building.	The	original	builder	did	very	little

insulation.

729640-729631-75508354

Mixed,	no	cavity	wall	insulation	in	original	(1929)	parts	of	house,	but	recent

extension	to	side	and	rear	complies	to	current	building	regs.	Loft	DIY

insulated

729640-729631-75508906

none 729640-729631-75514242

11 Please	mention	the	type	of	heating	used	in	your	house.
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Electric	heaters	 32		(10.6%)

Gas	Boiler	and	radiators	 227		(74.9%)

Both	 19		(6.3%)

Not	sure	 2		(0.7%)

Other	 23		(7.6%)

11.a If	Other,	please	specify
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Showing	all	23	responses			

Oil	boiler	and	radiators 729640-729631-75505969

Small	fan	heater 729640-729631-75506172

Oil	with	radiators. 729640-729631-75505723

Vents 729640-729631-75507005

Coal	central	heating 729640-729631-75507122

Gas	fires 729640-729631-75507226

Oil	fired	central	heating 729640-729631-75507563

oil	fired	radiators	and	we	also	use	two	extra	oil	heaters	in	the	winter,	one	at

the	back	of	the	house	and	one	near	the	front	door	which	is	drafty

729640-729631-75507320

Primary	oil	with	solar	thermal	and	wood	burner	all	feeding	a	thermal	store

for	part.	Other	part	electric	night	storeage	heaters.

729640-729631-75506936

oil	boiler	and	radiators 729640-729631-75507795

Oil	boiler	and	radiators 729640-729631-75507939

gas	fire 729640-729631-75507702

Oil	boiler	and	radiators 729640-729631-75508210

Log	Burner 729640-729631-75508354

night-storage	heater,	electric	heaters	and	open	fire 729640-729631-75507682

Oil	boiler	and	radiators 729640-729631-75509443

Oil	boiler	and	radiators.	Wood	burner 729640-729631-75508556

Oil	and	radiators	-	no	gas	connections	in	village 729640-729631-75509335

oil 729640-729631-75509799

Gas	boiler	and	radiators,	underfloor	heating	in	gf	extension	(half	entire	floor

area)

729640-729631-75508906

Oil	fired	boiler 729640-729631-75509987

Air	heat	transfer	system 729640-729631-75510688

oil	fired	boiler 729640-729631-75510644

12 Please	choose	from	the	following	options.
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I	pay	for	my	electricity	 291		(96%)	

and/or	gas	bills

Electricity	(and/or	gas)	bills	 10		(3.3%)	

are	included	in	the	house-rent	

I	pay

Council	pays	for	my	 0	

electricity	and/or	gas	bills

Other	 2		(0.7%)

12.a If	Other,	please	specify:

Showing	all	2	responses

Parents	pay	for	electricity	and	gas	bill 729640-729631-75506139

Parents	pay 729640-729631-75506730

13 What	is	the	preferred	ambient	temperature	of	your	house.

Less	than	10	degree	Celsius	 4		(1.3%)

10	-	17	degree	Celsius	 65		(21.5%)

18	-	22	degree	Celsius	 200		(66%)

23	degree	Celsius	or	above	 13		(4.3%)

Not	sure	 20		(6.6%)

Other	 1		(0.3%)

13.a If	Other,	please	specify
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Showing	1	response

18	-	22	normally,	but	increased	in	winter	if	there	is	an	easterly	wind 729640-729631-75508906

13.b Please	add	any	additional	comments	for	the	above	question,	here

Showing	all	17	responses			

Lower	temperature	overnight. 729640-729631-75505035

At	night	I	prefer	a	temperature	of	below	18	Deg.	I	use	an	air	conditioner	in

the	Summer	as	high	temperatures	negatively	affect	my	sleep.

729640-729631-75504884

based	on	thermostat	readings 729640-729631-75505391

depends	on	the	weather,	but	usually	18	degrees,	in	summer	it	could	go

below.

729640-729631-75505911

House	ancient,	draughty,	barely	insulated.	Coal	fire	plus	storage	heaters.

Expensive	and	often	too	cold

729640-729631-75506173

I	get	very	hot	due	to	my	age	but	we	try	not	to	open	the	windows	too	much

to	preserve	the	heat	within	the	walls	as	it	does	get	colder	later.	We	tend	to

rely	on	our	aga	in	the	kitchen	for	heat	as	there	is	no	other	radiator	in	that

room	and	our	log	burner	in	the	evening.	We	keep	our	use	of	radiators	etc

to	a	minimum	to	keep	the	costs	down.	I	only	tend	to	open	the	windows

when	it	is	very	hot	and	too	hot	to	cook	without	opening	one.

729640-729631-75507320

I	prefer	mine	at	15	but	everyone	else	favours	18 729640-729631-75507224

I	like	it	hot	and	keep	a	heater	in	my	study.	My	husband	does	not	and	keeps

opening	the	windows	in	the	rest	of	the	house.

729640-729631-75507972

I'm	rarely	able	to	achieve	my	desired	temps	as	the	windows	in	the	flat

above	are	open	all	winter,	I'm	lucky	if	I	can	manage	to	get	any	part	of	my

flat	as	high	as	16c	in	the	winter	despite	using	a	fan	heater	to	supplement

the	central	heating.

729640-729631-75508093

15-16	during	the	night,	18-20	during	the	day 729640-729631-75508239

It	is	often	below	10	degrees	in	the	hall,	landing	and	bedrooms 729640-729631-75507682

Unused	bedrooms	-	heating	turned	down	when	not	in	use 729640-729631-75509335

Sometimes	use	an	efficient	gas	'log	fire'	when	very	cold,	especially	in

Spring/Autumn	when	central	heating	is	off

729640-729631-75508906

Daytime	usually	set	at	20.5	and	down	to	19	at	night. 729640-729631-75509725

our	incentive	for	reducing	heating	is	financial	to	save	money 729640-729631-75511182

In	winter	themostat	is	set	to	20c	during	the	day	if	cold	and	15c	at	night	on

going	to	bed

729640-729631-75510367

I	use	additional	paraffin	heater	to	save	using	the	central	heating	in	the

hallway	and	to	save	money.

729640-729631-75514121
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14 What	kind	of	heating	control	do	you	use.

Analog/	Manual	Thermostat	 127		(41.9%)	

(Change	temperature	as	and	

when	required)

Programmable	Thermostat	(sets	 127		(41.9%)	

timings	to	switch	ON	and	OFF)

Wifi	thermostat	(Can	connect	 29		(9.6%)	

to	a	wireless	network.	

accessible	via	smartphone,	

tablet	etc)

Smart	thermostat	(Uses	 12		(4%)	

Artificial	intelligence;	

learns	your	patterns	and	

adjusts	temperature	for	

optimum	home	comfort)

Other	 8		(2.6%)

14.a If	Other,	please	specify:

Showing	all	8	responses			

Its	a	fan	heater	on	the	floor 729640-729631-75506172

Storage	heaters 729640-729631-75506683

Hahaha.	There	is	no	control	on	our	ancient	heating	system 729640-729631-75506173

Programmable	thermostats	automaticaly	adjust	set	temperature	according

to	time	of	day.

729640-729631-75506936

none 729640-729631-75507795

no	thermostat 729640-729631-75507682

The	landlord	sets	a	fixed	temperature	for	the	shared	central	heating	in	the

evening	which	I	have	no	control	over.

729640-729631-75509766

It	is	very	old,	so	switch	on	and	off	manually 729640-729631-75508980

15 Please	state	your	sex
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Female	 153		(51.2%)

Male	 145		(48.5%)

Prefer	not	to	say	 1		(0.3%)

16 Which	part	of	the	UK	do	you	currently	reside	in

Greater	London	 54		(17.8%)

South	East	England	 49		(16.2%)

South	West	England	 37		(12.2%)

West	Midlands	 29		(9.6%)

North	West	England	 24		(7.9%)

North	East	England	 8		(2.6%)

Yorkshire	and	the	Humber	 28		(9.2%)

East	Midlands	 16		(5.3%)

East	of	England	 26		(8.6%)

Scotland	 19		(6.3%)

Wales	 0

Northern	Ireland	 5		(1.7%)

Not	sure/	Prefer	not	to	say	 8		(2.6%)

17 Please	state	your	ethnicity.
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White	British	 206		(68%)

Other	White	Background	 25		(8.3%)

Mixed	/	Multiple	ethnic	groups	 17		(5.6%)	

(	White	and	Black	Caribbean/	

African,	White	and	Asian,	any	

other	mixed	ethnic	groups)

Asian/	Asian	British	(	Indian/	 27		(8.9%)	

Pakistani/	Bangladeshi/	

Chinese/	any	other	Asian	

background)

Black/	African/	Caribbean/	 22		(7.3%)	

Black	British

Arab	 1		(0.3%)

Other	ethnic	groups	 5		(1.7%)

18 Please	state	your	age	group.

18	-	25	 30		(9.9%)

26	-	34	 52		(17.2%)

35	-	44	 52		(17.2%)

45	-	54	 65		(21.5%)

55	-	64	 61		(20.2%)

65	-	74	 33		(10.9%)

75	or	above	 9		(3%)

19 Please	state	your	level	of	education
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GCSE/	A	levels	or	equivalent	 97		(32%)

Diploma	 34		(11.2%)

Graduate	 73		(24.1%)

Post	Graduate	 62		(20.5%)

Undergraduate	 34		(11.2%)

Prefer	not	to	say	 3		(1%)

20 Please	state	your	employment	status

Student	 19		(6.3%)

Employed	 157		(51.8%)

Unemployed	 22		(7.3%)

Self-employed	 33		(10.9%)

Retired	 55		(18.2%)

Prefer	not	to	say	 7		(2.3%)

Other	 10		(3.3%)

20.a If	you	selected	Other,	please	specify:
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Showing	all	10	responses			

Housewife 729640-729631-75504884

Volunteer 729640-729631-75506730

Stay	at	home	parent 729640-729631-75506784

Unable	to	work 729640-729631-75507250

homemaker 729640-729631-75507585

Born	disabled 729640-729631-75507224

Part	Time 729640-729631-75508290

Part-time	employment 729640-729631-75508037

Disabled 729640-729631-75509443

Freelancer 729640-729631-75511095

21 Please	state	the	number	of	people	in	your	house.

21.1 Babies(aged	0	-	2	yrs)

0	 229		(89.8%)

1	 22		(8.6%)

2	 4		(1.6%)

3	 0

4	 0

5	 0

more	than	5	 0

21.2 Children	(aged	3	-12	yrs)
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0	 207		(78.1%)

1	 43		(16.2%)

2	 13		(4.9%)

3	 2		(0.8%)

4	 0

5	 0

more	than	5	 0

21.3 Youth	(13	-	18)

0	 200		(79.7%)

1	 33		(13.1%)

2	 15		(6%)

3	 2		(0.8%)

4	 1		(0.4%)

5	 0

more	than	5	 0

21.4 Adults	(aged	19	-	64	yrs)
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0	 30		(10.2%)

1	 68		(23.1%)

2	 144		(48.8%)

3	 30		(10.2%)

4	 20		(6.8%)

5	 2		(0.7%)

more	than	5	 1		(0.3%)

21.5 Senior	citizens	(aged	65	yrs	or	older)

0	 184		(78%)

1	 29		(12.3%)

2	 22		(9.3%)

3	 0

4	 1		(0.4%)

5	 0

more	than	5	 0
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Comparison of Energy 
Demand in 4 types of Houses

House A - House 11 - High Insulation and Window Open
House B - House 2 - High Insulation and Window Closed
House C - House 16 - Low Insulation and Window Open   
House D - House 5 - Low Insulation and Window Closed 

Feb – March 2013

Winter 1

1

2

Sherna Salim
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Instances
Inst1 = [18-Feb-2013 00:00:0018-Feb-2013 23:59:00]

Inst2 = [19-Feb-2013 22:00:0020-Feb-2013 22:00:00] 

Inst3 = [22-Feb-2013 09:00:0023-Feb-2013 09:00:00] 

Inst4 = [02-Mar-2013 00:00:0002-Mar-2013 23:59:00] 

Inst5 = [03-Mar-2013 00:00:0003-Mar-2013 23:59:00]

Inst6 = [04-Mar-2013 15:00:0005-Mar-2013 15:00:00]

Inst7 = [09-Mar-2013 00:00:0009-Mar-2013 23:59:00]

a b

c d

3

4
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5

6
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7

8
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9

10
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11

12
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7

13

14
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15

16
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17

18
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Nov - Dec 2013

Winter 2

19

20
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Instances 
Inst1 = ['20-Nov-2013 00:00:00';'20-Nov-2013 23:59:00'];
Inst2 = ['21-Nov-2013 00:00:00';'21-Nov-2013 23:59:00']; 
Inst3 = ['22-Nov-2013 00:00:00';'22-Nov-2013 23:59:00']; 
Inst4 = ['23-Nov-2013 18:00:00';'24-Nov-2013 18:00:00']; 
Inst5 = ['24-Nov-2013 18:00:00';'25-Nov-2013 18:00:00'];
Inst6 = ['25-Nov-2013 18:00:00';'26-Nov-2013 18:00:00'];
Inst7 = ['26-Nov-2013 18:00:00';'27-Nov-2013 18:00:00'];
Inst8 = ['27-Nov-2013 18:00:00';'28-Nov-2013 18:00:00'];
Inst9 = ['28-Nov-2013 18:00:00';'29-Nov-2013 18:00:00'];
Inst10 = ['30-Nov-2013 00:00:00';'30-Nov-2013 23:59:00'];
Inst11 = ['01-Dec-2013 20:00:00';'02-Dec-2013 20:00:00'];
Inst12 = ['02-Dec-2013 20:00:00';'03-Dec-2013 20:00:00'];
Inst13 = ['19-Dec-2013 19:00:00';'20-Dec-2013 19:00:00'];
Inst14 = ['24-Dec-2013 9:00:00';'25-Dec-2013 9:00:00'];
Inst15 = ['26-Dec-2013 00:00:00';'26-Dec-2013 23:59:00'];
Inst16 = ['27-Dec-2013 20:00:00';'28-Dec-2013 20:00:00'];
Inst17 = ['29-Dec-2013 17:00:00';'30-Dec-2013 17:00:00'];
Inst18 = ['30-Dec-2013 17:00:00';'31-Dec-2013 17:00:00'];

Instance 1

21

22
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23

24
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Instance 3

25

26
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27

28
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29

30
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31

32
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33

34
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35

36
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37

38
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39

40
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41

42
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43

44
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45

46
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47

48
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49
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51
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Average Values

53

54
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New energy prices from 
April 2022

Current energy price

New energy prices from 
April 2022

Current energy price

55

56
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NCH Analysis
Time Response 

House 11,2,16,5

House       New No.      Old No.            Window Status
House A        11                32              HIP and Window Open

House B         2                15               HI and WC

House C       16                22               LI and WO

House D       5                  21               LI and WC

Time Response Instances - Winter 1

• TRInst1 = ['18-Feb-2013 04:40:00' ;'18-Feb-2013 13:00:00'];
• TRInst2 = ['20-Feb-2013 05:00:00' ;'20-Feb-2013 12:00:00'];
• TRInst3 = ['22-Feb-2013 16:00:00' ;'23-Feb-2013 01:50:00'];
• TRInst4 = ['02-Mar-2013 14:00:00' ;'03-Mar-2013 01:59:00'];
• TRInst5 = ['03-Mar-2013 05:00:00' ;'03-Mar-2013 11:59:00'];
• TRInst6 = ['05-Mar-2013 04:00:00' ;'05-Mar-2013 11:59:00'];
• TRInst7 = ['09-Mar-2013 04:30:00' ;'09-Mar-2013 14:59:00'];
•

1

2
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TRINstance 1

3

4
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TR Instance 2

9
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TR Instance 3

15

16
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18



21/03/2022

10

19

20



21/03/2022

11

TR Instance 4

21

22
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23
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TR Instance 5

27

28
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TR Instance 6

33
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TR Instance 7
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Appendix E
Grpahs from trials and training of ANN Model 

Training - 5 days dataTraining - 1 day data

1

2
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Training - 15 days dataTraining - 10 days data

3

4
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5

6
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ANN pattern recognition_for
thesis

7

8
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Training data

• Training is done separate for winter 1 and winter 2.

• Winter 1:

• Training data 1 is 

• House 2 Winter 1, day 1 data + House 11  Winter 1, day 7 data (day 7 is full 

open)

• Training data 2 is

• Training data 1 + House 2 Winter 1, day 2 data + House 11 Winter 1 day 10 

data (day 10 is the next full open day)

9

10
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Training data winter 2

Winter 2

• Training data 1 is 

• House 2 Winter 2, day 1 data + House 11  Winter 2, day 11 data (day 11 is 

100% open)

• Training data 2 is

• Training data 1 + House 2 Winter 1, day 2 data + House 11 Winter 1 day 28 

data (day 28 is the 100%)

Training data 1 is 

House 2 Winter 2, day 1 data + House 11  Winter 2, day 11 

data (day 11 is 100% open)

Training data 2 is

Training data 1 + House 2 Winter 1, day 2 data + House 11 

Winter 1 day 28 data (day 28 is the 100%)

Training data 1 is 

House 2 Winter 2, day 1 data + House 11  Winter 2, day 1 

data (day 1 is 87% open)

Training data 2 is

Training data 1 + House 2 Winter 1, day 2 data + House 11 

Winter 1 day 3 data (day 28 is the 92%)

11

12


