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AbsTrACT

 The unprecedented ballooning of network traffic flow, specifically the Internet of Things (IoT) network traffic, 
has big stress of congestion on today’s Internet. Non-recurring network traffic flow may be caused by temporary 
disruptions, such as packet drop, poor quality of services, delay, etc. Hence, network traffic flow estimation is 
important in IoT networks to predict congestion. As the data in IoT networks is collected from a large number of 
diversified devices with unlike formats of data and manifest complex correlations, the generated data is heterogeneous 
and nonlinear. Conventional machine learning approaches are unable to deal with nonlinear datasets and suffer from 
the misclassification of real network traffic due to overfitting. Therefore, it also becomes hard for conventional 
machine learning tools like shallow neural networks to predict congestion accurately. The accuracy of congestion 
prediction algorithms plays an important role in controlling congestion by regulating the send rate of the source. 
Various deep learning methods, such as LSTM, CNN, and GRU, are considered in designing network traffic flow 
predictors, which have shown promising results. This work proposes a novel congestion predictor for IoT that uses 
TCN. Furthermore, we use the Taguchi method to optimize the TCN model which reduces the number of experiment 
runs. We compare TCN with the other four deep learning-based models concerning Mean Absolute Error (MAE) and 
Mean Relative Error (MRE). The experimental results show that the TCN-based deep learning framework achieves 
improved performance with 95.52% accuracy in predicting network congestion. Further, we design the Home IoT 
network testbed to capture the real network traffic flows as no standard dataset is available.
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1. INTroduCTIoN 
The use of Internet-connected smart devices, otherwise 

called the Internet of Things (IoT), is increasing rapidly 
in our homes, offices, smart cities, and many other places. 
These IoT devices are resource constrained, and a continuous 
rise in the volume of network traffic may lead to network 
congestion.1 A high traffic volume in IoT networks leads to 
extra communication delay, low network throughput, and 
waste of computing resources and bandwidth.2 These reasons 
ultimately become the cause of congestion. Diagnosing 
network congestion and building a framework that can classify 
and predict it is one of the most important issues3 as it affects 
the decision of the routing path process and optimal bandwidth 
utilization. Therefore, for effective communication in the 
network, it is essential to classify and predict congestion and 
take appropriate preventive measures accordingly. Hence, 
research for the classification and prediction of congestion 
in the network, especially for IoT networks, is extremely 
important.

Typically, state-of-the-art congestion prediction in IoT 
networks relies on conventional techniques4–6 as used in 

Wireless Sensor Networks (WSN). These research works are 
focused only on the computing revolution, including the usage 
of high-end computers and advanced algorithms for managing 
traffic and performing flow prediction. Few efforts have been 
made to forecast short-term traffic flow, including simulation 
techniques,7 mathematical models, statistical approaches, and 
regression techniques.

The data created by IoT networks are heterogeneous since 
it is gathered from numerous diverse devices with different 
data formats and complex correlations. As a result, it also 
becomes very challenging for traditional machine learning 
technologies, such as shallow neural networks, to effectively 
forecast congestion. Machine learning methods attain poor 
performance when dealing with high dimensional state spaces 
in congestion control problems, and their performance does 
not improve with increasing data. In particular, it is expensive 
to measure the traffic volume when there is high traffic on the 
IoT network.

The traditional feature selection techniques of machine 
learning mainly consider the port and payload as features. 
Reusability and unfixed assignment of port numbers make it 
less effective to choose a port as a dominant feature in traffic 
classification. In contrast, payload as a feature fails due 
to encrypted traffic packet inspection. The problem in IoT 
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networks, like congestion prediction, is an adversarial problem 
due to random burst traffic and heterogeneity in devices and 
protocols. In such cases, machine learning techniques that 
learn from historical data can make the wrong prediction. 
Recently, statistical feature-based machine learning techniques 
have received attention, particularly in the field of wired and 
wireless networking.3,8 However, adopting machine learning as 
an invincible approach and using it for real-time IoT network 
traffic is not good. In contrast, deep learning is a centralized 
approach that uses basic information as direct input and 
automatically performs feature extraction.

Deep learning eliminates the need for experts in a specific 
area by utilizing hierarchical feature extraction, which makes 
information distillation efficient, provides more abstract 
correlations in the data, and reduces the pre-processing effort.  
Deep learning algorithms can proficiently comprehend the 
features of a large amount of data. Parallel computation using 
graphics processing units (GPUs) allows deep learning to 
draw inferences in milliseconds. This allows for high-accuracy 
and timely network analysis and control, eliminating the run-
time constraints of conventional mathematical approaches 
(e.g., convex optimization, game theory). The prediction of 
congestion in IoT networks has a temporal dependency. The 
temporal dependency means predicting congestion or a high 
traffic volume at a specific time instance is done based on 
past observations. Real-time prediction of network congestion 
requires continuous feeding and learning. The number of 
time slots may increase rapidly with time, which results in 
high computational complexity and also affects prediction 
accuracy. Recurrent Neural networks (RNN) and Long Short 
Term Memory (LSTM) are the most common deep learning 
methods to analyze time-series data. However, RNN models 
cannot directly calculate the long sequence of time points. 
In contrast, LSTM can process millions of time points, but it 
works sequentially, making it inefficient in generating timely 
responses. On the contrary, Temporal Convolutional Network 
(TCN), a deep learning-based model, has a parallel processing 
capability and training and forecasting time lower than  
LSTM.9 Therefore, in this work, we use the TCN model to 
predict congestion accurately. 

Our proposal also leverages the dropout technique of deep 
learning to cope with the overlearning problem. The proposed 
approach works for the real IoT network traffic for congestion 
prediction. In addition to state-of-the-art congestion control 
techniques in IoT networks, our proposal is a centralized 
approach toward congestion control that reduces the burden of 
end devices on congestion prediction.

In summary, the following are the main contributions of 
our proposed approach. 
• We created a Home IoT network testbed and gathered the 

network traffic flows of various IoT applications because, 
as far as we are aware, there is no such labeled dataset of 
IoT network traffic available. 

• The traditional approaches use the brute force method to 
tune the hyperparameters and structure of deep learning 
models. Brute force approaches take a long time to train 
the model and are inefficient for achieving high prediction 

accuracy. The proposed approach uses a design of the 
experiment (DoE) based Taguchi method as a novel way 
to achieve the optimal structure of TCN to resolve this 
issue for IoT network traffic prediction. Compared with 
brute force approaches to tune and train the models, the 
Taguchi method decreases the number of trials required 
to tune hyperparameters and models, which results in the 
accuracy of forecasting results.

• IoT networks have heterogeneous devices and irregular 
traffic flow. In such cases, when we train the model, it may 
be overfitted, and we do not have an accurate prediction as 
desired. We use the concept of regularization by applying 
the dropout layer to avoid overfitting. 

• We use a deep learning-based imputation technique to 
deal with missing values generated during data collection. 
This improves overall accuracy by converting incomplete 
data to complete data.

• To the best of our knowledge, TCN has not previously 
been applied to congestion prediction and detection 
problems. Consequently, the work discussed in this paper 
is original by its very nature.

The contour of the paper is as follows. Section 2 presents 
state-of-the-art work in the field of IoT network traffic 
classification and prediction. Section 3 formulates IoT network 
traffic problems and emphasizes the necessity of deep networks 
for IoT network traffic classification and prediction along with 
the proposed methodology. Section 4 represents the structure 
of TCN and hyper-parameter tuning by the Taguchi Method. 
In Section 5, empirical results of deep learning models about 
the accuracy of prediction and the role of activation functions 
in enhancing real-time prediction accuracy are presented. The 
conclusion and future scope of this work are presented in 
Section 6.

2. rELATEd WorK
Most of state-of-the-art in the area of IoT networks is 

related to IoT congestion control,7,10 classification of network 
attacks based on the traffic,11 IoT device classification,12 and 
traffic classification13 incorporating machine learning and deep 
learning. In this section, we introduce and analyze state-of-the-
art. 

Heterogeneous vehicular networks may experience 
congestion due to increased resource demands for data 
transmission as a result of the rise in intelligent vehicle adoption 
and the popularity of various safety and comfort applications. 
Safety applications, including emergency braking systems, 
traffic danger alerts, and collision avoidance signals, require 
low latency and high bandwidth. Unfortunately, congestion 
often reduces network performance and customer pleasure 
(QoS) by reducing the quality of service. Reduced QoS is 
also a result of inadequate mobility models, routing protocols, 
and communication mediums. Falahatraftar, et al.14 proposed 
a congestion prediction and avoidance approach named 
Intelligent Congestion Avoidance Mechanism (ICAM) based 
on the Generalized Regression Neural Network (GRNN). The 
authors compared the proposed GRNN congestion prediction 
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model with other widely used models, including Multiple 
Linear Regression (MLR), Support Vector Machine (SVM) for 
Regression, Decision Tree Regression (DTR), and Multi-layer 
Perceptron for Regression (MLPR). The proposed GRNN 
congestion prediction model performs than other models in 
terms of accuracy, dependability, and stability, according to 
numerical data. In addition, simulation findings demonstrate 
a significant network performance gain in terms of packet 
delivery ratio, average latency, and packet loss ratio when 
compared to conventional congestion control strategies.

Demir, et.al15 proposed mlCoCoA, a machine learning-
based enhancement in CoCoA [16], the advanced variant of the 
Constrained Application Protocol (CoAP). CoCoA is used to 
control congestion by estimating the Re-transmission Timeout 
(RTO) values, as shown in equation 1. RTT is the round trip 
time, and RTTVAR gives the difference between the successive 
RTT and current RTT measurements.  Here, x is a variable that 
denotes the strong and weak RTT. Strong RTT is calculated when 
an acknowledgment is received without any retransmission. 
Weak RTT is calculated when an acknowledgment is received 
after the number of retransmission. Here α, β, λ, and K are the 
constants, and their values are defined statically. 

x x x x new|RTTVAR (1 )*RTTVAR * | RTT RTT −= −β +β −                                                                

        x x x new|RTT (1 )*RTT *RTT −= −α +α                                                             

x x x xRTO SRTT k *RTTVAR= +

overall x overallRTO *RTO (1 )*RTO= λ + −λ                     (1)

The approach mlCoCoA claims that the dynamic prediction 
of the values of these constants using machine learning can 
increase the network throughput of the IoT network. The 
authors performed the set of experiments by creating the 
CoCoA network for collecting the ground truthα, β, λ, and k. 
The SVM predicts the values of these constants. The precise 
estimation of RTO provided by the accurate prediction of these 
values reduces unnecessary retransmission.

Sander,10 et al. proposed DeePCCI to identify congestion 
based on packet arrival time (passive entity) in traffic flow. 
Being based on the usage of passive knowledge, it works on 
encrypted transport headers also. DeePCCI architecture is the 
combination of CNN and LSTM, which are parts of a Deep 
Neural Network (DNN). The only feature taken is packet arrival 
time, whose histogram bins of size 1 ms are generated and then 
fed into the DNN and extracted through 2D VGGNet-13.18 
The authors used the single host, multiple hosts, and mininet-
based network testbeds by using the standard Linux 4.18 
kernel to generate the network traffic. The authors evaluated 
the performance on various vantage points after and before the 
bottleneck giving the final accuracy of the chosen network in 
BBR, CUBIC, RENO, CUBIC-p, and RENO-p. The authors19 
analyzed the performance of DeepCCI and showed that it has 
limited performance because the training is done using testbed-
generated data that lacks the Internet’s inherent noise. Further, 
they observe that DeepCCI needs to be re-trained for different 
kernels to capture behavioral differences appropriately.

Xiao,7 et al.proposed TCP-Drinc for smartly controlling 
congestion for the TCP variants. The authors use Deep 

Reinforcement Learning20 which learns from experience. 
Congestion is controlled by adjusting the window size. The 
authors used the deep convolutions neural network and extracted 
stable features from abundant but noisy data measurements. 
TCP-Drinc is compared with the various versions of TCP, i.e., 
TCP-New Reno,21 TCPCubic,22 TCP-Hybla,23 TCP-Vegas,24 
and TCP-Illinois.25 TCP-Drinc yields maximum throughput 
and the second lowest Round Trip Time for the entire period 
of propagation delay. TCP-Drinc has a higher round trip time 
than TCP-Vegas.

Najm,17 et al.proposed a novel machine learning-based 
model built upon a decision tree algorithm for predicting 
congestion in 5G IoT networks. The authors determine the 
optimal congestion window using specific network conditions, 
including high throughput, high congestion window, large 
queue size, and low loss. The authors applied C4.5, RepTree, 
and Random Tree-based decision tree approaches along with 
clustering and stacking approaches. The results show that the 
C4.5 decision tree algorithm has the best performance compared 
to other machine learning algorithms; The authors present a 
tree-based graph that suggests the optimal path through which 
congestion can be controlled. The authors compared their 
model with the original Stream Control Transmission Protocol 
(SCTP) and claimed a 14.5 % improvement in performance.

Doshi,11 et al.worked on detecting distributed denial of 
service (DDoS) attacks using well-known machine learning 
algorithms in the IoT network. A large number of Botnets like 
Mirai leveraged vulnerable IoT devices for performing DDoS 
attacks in IoT networks. The network includes IoT devices 
such as home gateway routers and other middleboxes for 
keeping track of traffic flow between IoT devices on the local 
network and the rest of the Internet. Binary classification is 
applied to separate the data for both DDoS attacks as 0 and 
1. Data is collected from the devices, such as home cameras 
and Bluetooth devices connected to blood pressure monitors, 
all connected to the router via Raspberry Pi. Non-IoT traffic is 
filtered out from the pcap files.

Sivanathan,12 et al. proposed a robust approach for 
classifying IoT devices using traffic characteristics that are 
acquired at the network level. A setup with 28 IoT devices and 
a few non-IoT devices was created to validate the proposed 
approach. OpenWrt was used to monitor the traffic flow for 26 
weeks.26 Each of the devices showed some pattern for different 
network characteristics. Among all the features, nine features 
were selected to perform the classification: a bag of a port 
number, a bag of domain names, a bag of cipher suites, flow 
volume, DNS interval, flow duration, sleep time, flow rate, 
and NTP interval. All the data with these features were fed 
into a two-stage machine learning model, which predicted the 
confidence for a particular type of IoT device. The first stage, 
called Stage 0, implements the Naive Bayes Multinomial 
Classifier independently for features, viz., a bag of the port 
number, bag of domain names, and bag of cipher suites. Each 
of these features returned moderate accuracy for different 
devices. Then the output of all these three classifiers is fed into 
the second stage, i.e., Stage 1. In Stage 1, the outputs from 
the Naive Bayes Multinomial Classifier and the remaining 
six features were fed into the Random Forest Classifier, 
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which provided the required confidence for each input. This 
confidence is then mapped to the IoT device’s classes, and the 
authors obtain the desired classification of IoT devices.

Lopez, et al.13 proposed a network traffic classifier (NTC) 
to predict the network services among different communication 
protocols. The proposed network traffic classifier considers 
the flow-based features, e.g., source and destination ports and 
bytes transmitted per packet. The authors used the different 
deep learning models and their combinations (RNN, CNN, 
and CNN+RNN) to infer the network services. NTC uses the 
RedIRIS dataset consisting of 266,160 network flows from 
108 services to validate the approach. The results show that the 
combination of CNN+RNN has the best accuracy in terms of 
F1 score, precision, and recall. 

Table 1 summarises each of the papers discussed in this 
section considering category, classification methods used, 
selected features, traffic (simulated or real), and year.

Paper Category dL Method Features   Traffic Year

Falahatraftar[14] Congestion Control Regression Neural 
Network

No. of vehicles, data rate, transmission      
power, and bandwidth

OMNeT++ 2022

Demir [15] Congestion Control SVM RTT, RTO Cooja Network 2020

Sander[10] Congestion Control RNN+LSTM Packet arrival Mininet 2019

Xiao[7] Congestion Control Deep Reinforcement 
 Learning

Size of  congestion window, RTT, 
inter-arrival time of ACk

NS-3 2019

Najm[17] Congestion Control Decision tree CWND, Throughput, Queue Size, 
Packet Loss

NS-3 2019

Doshi[11]  DDoS attacks kNN,LSVM,DT,RF Packet header fields, flow information
over very short time  windows

Consumer IoT 
device  network

2018

Sivanathan[12] IoT device 
classification

Multi-stage machine          
learning

Activity cycles, port numbers,  
signaling patterns, and cipher suites

Real network 
Traffic

2018

Lopez [13] Protocol-wise 
traffic Classification

CNN+RNN Source port, destination port, payload 
size, TCP window size, inter-arrival 
time, and flow direction

Real data from 
RedIRIS

2017

Table 1. state-of-the-art comparison

3. ProbLEM sTATEMENT ANd METHodoLoGY
Real-time traffic volume prediction plays a vital role 

in proactive network traffic management. Many forecasting 
models have been proposed to address this issue.26-27 However, 
most of them suffer from the inability to fully utilize the rich 
information in traffic data to generate efficient and accurate traffic 
predictions from longer-term data (e.g., seven-day predictions 
at a five-minute interval). The accuracy of prediction of traffic 
flow depends on the availability of historical data along with a 
reliable technique that can filter the intrinsic properties from the 
dataset to precisely forecast future flows. Let, the IoT network 
has the N number of IoT devices. R is a volume of real network 
traffic at a time t at the gateway node represented by (R, t). R 
at (t + n) is the volume of real network traffic for the next time 
point t + n and is represented by (R, t + n). The traffic volume 
prediction problem at time t is defined to find the predictor of 
(R, t) via a sequence of historical or training traffic datasets 
(Rt−1, Rt−2, Rt−3..., Rt−T). The key problem here is to develop or 
apply a model that defines the inherent relationships between 

the historical or training dataset and prediction of network 
traffic so that the network system can be able to accurately 
predict the traffic volume to control congestion.

3.1 METHodoLoGY
This section describes a proposed methodology for 

predicting congestion in the IoT network as shown in Fig. 1. 
The big issue in our work was the lack of a publicly available 
labeled dataset of congestion scenarios for IoT networks. To 
the best of our search, we could not find any such dataset to 
solve the problem statement.

Therefore, as the first step, we set up our own IoT home 
testbed, as shown in Fig. 2. There are two main reasons to 
design a home IoT testbed (i) to capture network traces from 
real-world IoT devices and (b) to develop a realistic smart 
environment for evaluating the proposed approach. Figure 2 
describes the proposed IoT testbed environment. In our IoT 

network setup, we use the computer (Ubuntu installed) having 
two network interface cards (NIC1, NIC2). NIC 1 serves as a 
gateway and connects to the Internet, while NIC 2 uses an L2 
(S.No 13) switch to connect to the rest of the network. We use a 
4G TP-Link MR6400 (S.No 14) router running CoAP, DHCP, 
NAT, and DNS forwarding. The public Internet is accessible 
through this TP-Link. An Unifi Access Point (S.No 12) is 
connected to the L2 switch. The devices that are connected 
with Ubiquiti Access Points are as follows.
• General-purpose hubs (3, 7) 
• Several consumer electronics (4, 5, 6), 
• Two smart plugs (9) can accommodate extra offline 

devices 
• Environmental devices (1, 8, 2).

With the L2 switch, the device-specific hubs (10 and 11) 
are linked. These hubs control the devices that are plugged 
into them. L2 switch routes all incoming and outgoing traffic, 
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which mirrors all testbed traffic on the switch port attached to 
the Ubuntu PC. On the Ubuntu PC, we set up the following 
packages: Wireshark (for traffic capture), block-mount package 
kmod-USB-core (for mounting external USB base memory), 
and package kmod-USB-storage (for storing the network 
traffic traces on USB storage). A bash script is run to automate 
the data collecting and storage. This execution of script records 
pcap files on an external USB storage device that is connected 
to the PC.

We collected the network traffic traces after the testbed 
has been set up. We introduced a burst into the network to 
generate congestion because the goal is to predict network 
congestion. We collect the network traces in the form of pcap 
files using Wireshark. This network data contains traffic traces 
and session logs of different devices at network layers as per the 
requirement of applications. For example, congestion detection 
problem in IoT network often needs datasets of packet-level 
traces labeled along with corresponding classes. Wireshark’s 
filters are used to segregate congestion states from the normal 
traffic states. We filtered congestion traffic with the help of Bad 
TCP, ICMP errors, Retransmission, and Duplicate ACk filters 
and stored this traffic in the pcap file named “congestion.” The 
rest of the traces of normal traffic are stored in another pcap file 
named “normal.”

Figure 1. Methodology.

Figure 2. IoT home testbed for data collection.

We use CICFlowmeter to convert these two pcap files 
to comma-separated values (CSV) files. CICFlowMeter is a 
network traffic flow generator and analyzer that produce 83 
network traffic features from the pcap files. Hence, there are 83 
columns in the CSV file. CICFlowMeter provides bidirectional 
flows from source to destination and destination to a source 
with duration, number of packets, number of bytes, length of 
packets, etc. These features are calculable separately in both 
directions. These columns contain low-level features (Flow 
ID, Source IP, Destination IP, Source port, Destination port, 
and protocol) and other high-level features. We added class 
labels (Congestion, No Congestion) in the last column of both 
CSVs.

We perform the Exploratory Data Analysis (EDA)29 for data 
pre-processing. EDA helps to find various information about the 
data, such as missing values, normalization, mean categorical 
data, median, distribution of data, and correlations. We carry 
out the EDA using the Profiling tool. After removing all the 
noise, inconsistency, and missing values, we obtain a complete 
and accurate dataset. Now, we start looking for relations among 
various features of the data. The feature selection process can 
be done manually or using some mathematical or algorithmic 
techniques. In the case of manual feature selection, one must 
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have a thorough understanding of the features, the relationship 
between them, and how one feature group would perform better 
than the other feature groups. On the contrary, algorithmic 
feature selection lowers the role of manual efforts. In addition, 
compared to manual feature selection, it avoids errors in feature 
selection and takes less time to identify the most trustworthy 
features. Therefore, algorithmic feature selection is preferred 
over manual selection. 

In this study, we employ a correlation matrix and Principal 
Component Analysis (PCA), a popular feature selection 
algorithm, to analyse the relationship between various features 
in the dataset.30 The correlation matrix is a symmetric matrix that 
defines the relationship between various fields. In mathematical 
terms, a correlation matrix is a matrix of correlation coefficients 
between a set of variables. The diagonal of the correlation 
matrix is filled with 1s because the correlation between the 
same variables is 1. The coefficient is between -1 and 1, where 
1 shows a 100 % positive linear correlation, while -1 depicts 
a 100 % negative linear correlation. The correlation matrix 
is a symmetric matrix that defines the relationship between 
various features. In mathematical terms, a correlation matrix 
is a matrix of correlation coefficients between a set of features. 
The coefficient is between -1 and 1, where 1 shows a 100 % 
positive linear correlation, while -1 depicts a 100 % negative 
linear correlation. The diagonal of the correlation matrix is 
filled with 1s because the correlation between the identical 
features is 1. Furthermore, 0 means the two features are not 
correlated. The Pearson correlation coefficient31 metric is used 
to evaluate the correlation between the features. It measures 
the linear correlation between the two features using Eqn. 2. 
We are using pandas profiling to find the highly correlated 
features.

                    
( ) ( )

( ) ( )
Cov X,Y

X,Y =
Var X Var Y

ρ

             
     (2)                                                                                

In our work, the correlation is considered high if the 
Pearson correlation coefficient is larger than 0.9 or less than 
-0.9. We started with the dataset consisting of 83 features. We 
dropped 30 highly correlated features, along with the features 
with constant values such as 0 simultaneously. After this, there 
were still 53 features and one field for the label. All 53 of these 
features were useless for our prediction, thus, we eliminated 

all irrelevant information and retained only those necessary for 
the system to learn. The following columns, as indicated in 
Table 2, are removed during the learning process based on the 
results of pandas profiling.

Flows ID, Destination IP, Source IP, and Timestamp are 
categorical and sparse features that increase the space and time 
complexity of the models. The historical time series data, which 
contains a timestamp, is used to predict the future. As a result, 
we retain only the timestamp and drop the Flow ID, Destination 
IP, and Source IP. We use one-hot encoding32 to transform this 
categorical feature into a numerical attribute. Now, we have 
50 features in our dataset. For feature selection, we used PCA. 
On applying PCA to our dataset, we got useful features such 
as Flow Duration, Fwd Pkt Len Mean, Flow Pkts/s, Bwd IAT 
minimum, Fwd Pkts/s, and Bwd Pkts/s. Initially, we decided 
to go with these seven features along with a timestamp for 
prediction and classification. However, since deep learning 
approaches are capable of recognizing features automatically 
from data, we are not overly concerned with selecting more 
features. 

We also study IoT traffic flow characteristics, including 
flow size, flow duration, flow rate, and inter-arrival time (∆T) 
in forward and backward directions. These characteristics 
will also help advance prediction of congestion on the nth 
timestamp. We also use inter-arrival time (∆T) and flow rate 
as the target variable for advance prediction. We provide 
definitions for some terms related to network traffic flow.
•	 Flow size is the number of bytes sent with the payload, 

including retransmissions. 
•	 We can measure flow duration as the difference between 

the timestamp of the first packet and the last packet in a 
flow.

•	 Flow rate is the ratio of flow size to flow duration and is 
represented with flow packets/second

Flow size is a valuable statistic that is used to optimize 
routing algorithms, load balancing, and scheduling in IoT 
networks. Predicting flow size is especially difficult because 
flow patterns change constantly, and calculations must be 
made in real-time (milliseconds) to prevent delays. This 
is because the size of flows varies greatly (from small mice 
flows of a few kilobytes to large flows of several gigabytes), as 

Active Max Subflow Bwd Packets bwd IAT Max
Active Min Idle Min Fwd Bulk Rate Avg
Bwd PSH Flags Packet Length Min Bwd URG Flags
Idle Max Fwd IAT Total Bwd Bytes/Bulk Avg
Bwd Segment Size Avg Fwd Packet/Bulk Avg Fwd URG Flag
URG Flag Count Active Mean ECE Flag Count
Fwd Bytes/Bulk Avg ACk Flag Count Fwd Packets/s
Bwd Packet Length Std Subflow Bwd Bytes Fwd IAT Std
Bwd IAT Std Fwd IAT Mean Active Std
Packet Length Mean Fwd IAT Max Fwd Segment Size Avg

Table 2. Features to be dropped
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well as the length of time they inhabit a route (milliseconds to 
hours). Since large flows hold the route for a longer time (flow 
duration) than small flows, there’s a chance that the number of 
active flows will become unbalanced due to a concentration of 
large flows in the routing path.

The quantity of available data determines the selection of 
a deep learning model. The data patterns may or may not be 
consistent due to the irregular traffic flow. The chances of the 
overfitting of the model may be high when we collect the data 
from these networks. The selection of the model in these types 
of cases is crucial. For example, accurate congestion prediction 
can suggest how much the sending rate of a node in the IoT 
network should be controlled. The deep learning algorithms 
may reduce the chances of overfitting.

Motivated by the excellent performance of deep learning 
techniques in images and natural language processing, we select 
TCN, LSTM, Gated recurrent unit (GRU), Stacked autoencoder 
(SAE), and CNN-LSTM models for the solution of proposed 
IoT network traffic classification and prediction approach.33 
These techniques have the capability of automatically 
learning the features. The model validation verifies the overall 
accuracy of the model in terms of overfitting and underfitting. 
This verification of accuracy helps to optimize the model by 
increasing the volume of data and reducing the complexity of 
the model when data overfits. Analysis of wrongly classified 
samples helps to find the reasons for errors and check the 
suitability of the model and features. The processed dataset is 
divided into three parts, i.e., training (60 %), validation (20 
%), and testing (20 %). We train different models with training 
data using various combinations and different values of hyper-
parameters. Further, re-training is done on the different training 
and validation dataset combinations using the same set of 
hyper-parameters, and the accuracy is calculated for testing the 
dataset. We observe overfitting initially, as the training score 
is high, but the validation score is low. This score shows that 
the model has adapted well to the specific training dataset. 
However, the trial-and-run process to train a model is time-
consuming. Therefore, we have used the Taguchi method to 
optimize the hyper-parameter and train the model. This method 
reduces the number of trials to optimize hyper-parameters.

4. ModEL CoNsTruCTIoN ANd PArAMETEr 
TuNING
In this section, we represent the basic architecture for 

convolution sequence forecasting and hyper-parameter tuning 
which is an integral part of the neural network. The series of 
IoT network traffic flow of length T with the input sequence  
{p1,p2,.....pT} is utilized for predicting the output sequence of 
traffic flow {q1,q2,.....qT}. Here, observed data {p1,p2,.....pt}   is 
the input to the model for the forecast of the output tq  at the 
time t. Equation 3 defines the function 

t tf:P Q→  prediction 
of the traffic flow.

  { } ( ){ }1 2 T 1 2 Tq ,q , q = f p ,p , p…… ……    (3)
 

Here, the function f must hold the condition that the tq  

depends only on historical data { }1 2 t 1p , p ,......p −  rather than

{ }t+11 t+2 Tp , p ,......p . Equation 4 defines the function to forecast 

network traffic flow tq  at time t as follows.

               ( ){ }t 1 2 Tq = f p ,p , p……                            (4)                                               

4.1 Temporal Convolutional Network
TCN34 is the variation of CNN for sequence modeling tasks. 

TCN is designed by combining the features of the RNN and 
CNN. TCN uses casual convolutions and dilated convolutions. 
The casual convolution is used for temporal data and ensures 
that the model will not violate the sequence in which the data 
is modeled. The prediction relies only on the historical data, 
not on future observations. TCN model inherits the property 
of 1-D fully convolution of generating the same length output 
as the input, and subsequent layers maintain the same length 
by adding zero padding to avoid information leakage. The 
accurate prediction of the traffic flow requires a large history 
and a very deep network. This makes the network structure 
of the model complicated and computationally intensive. The 
integration of dilated convolutions and residual layers with 
TCN solves this issue. Dilated convolutions, in particular, 
allow for an exponentially large receptive field to cover large 
history. Equation 534 shows the dilated convolution operation F 
on elements of the sequence s for the given 1-D sequence input 

np R∈ and a filter { }f: 0.k 1 R− → .

                  
( ) ( )( ) ( )

k 1

f s d.i
i=0

F s = p d s = f i .p
−

−∗ ∑               (5)                                     
  
Here, d represents the dilation factor; i stand for past 

direction, k denotes the size of filter f, and ids .−  maintain 
the history. The value of dilation factor d = 1  for dilated 
convolution in equation 5 works as the standard convolution. 
The exponential adjustment to d increases the receptive field 
size that covers the large history with the depth of the deep 
learning network. This represents the large range of inputs 
by leading the output at the top level. Filter size k is used to 
increase the receptive field of TCN. However, this approach 
increases parameter count and execution time, resulting in 
slow and overfitting of the model. 

The residual connection is the next important part of TCN 
that includes a branch towards a series of transformations F, 
whose outputs q are connected to the input p of the block.  
Figure 3 shows the diagram of the residual block. This block 
contains two weight layers along with the Rectified Linear 
Unit (ReLU) activation function. Moreover, regularization 
is achieved by connecting a spatial dropout layer after the 
last weight layer. Here, Eqn. (6) defines the residual block 
mathematically.

                          
( )iq = F p, W + p                                   (6)

Here, q is the output layer. The function F(p,Wi) shows the 
residual mapping to be learned, where Wi denotes the weights 
of ith  layer. The function for two layers of TCN is represented 

as 2 1F W (W p) e,= σ +  in which σ and e  represent ReLU and 
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bias, respectively. To predict and detect network congestion in a 
home IoT network, we use TCN architecture. TCN architecture 
is made up of a collection of blocks; each block contains a set 
of N number of convolutional layers. Layers are made up of 
dilated convolutions with a dilation factor d and a nonlinear 
activation function f(.) associated with it. The convolution 
outcome is integrated with the layer’s input by using a residual 
relation in each dilated convolution.

               
           

( )( )
t 2

i
i=0

1L = q F i
t

−∑ 

                         
(11)                                                  

Here, Fig. 4 shows TCN model architecture that uses 19 
convolutional layers and a fully connected layer. Convolutional 
layers are shown in a rectangular area with a grey background. 
In Figure 4, the grey rectangles in the shaded rectangle show 
that the result of convolutional layer 1 is applied as the input of 
convolution layer 3 by using the residual structure directly. The 
kernel size 10 and filter size 24 are used for all the convolutional 
layers. TCN model is trained with the processed training data. 
The final TCN with the enhanced configuration is transmitted 
to the central server depending on the feedback of the historical 
traffic flow data sequence and is used for forecasting packet 
flows/sec in the next 30 minutes in the network given the past 
traffic flow in the dataset.   

Figure 3. TCN residual block.

 Equation (7) describes the activation function for the ith 
layer and jth block  

                            
( ) Fi.j w TS R ×∈                                     (7)                                                                          

Here, we can note that every layer has the same number of 
filter Fw. We define the output of the dilated convolution at time 
t as j,l

tS
  and the convolution result after the residual connection 

lj,S  as shown in Eqn (8).

            ( )j,l 1 j,l 1 2 j,l 1
t t d tS = f W S + W S + b− −

−



                                   
            

j,l j,l
j,l t tS = S + VS + e                                            (8)

Here, 1W and 2W denote the weight parameters. 
F Fw wV R ×∈  is the set of weights and Fwe R∈  represents the 

biases for the residual, respectively. The output of each block 
is summed by a group of skip connections with T F0 w

tZ R ×∈   
satisfying Eqn. (9)

                      

B
0 j,L
t t

j=1
Z = ReLU S∑

                                 
 (9)                                                                      

The latent result 1
tZ  is ( )0

r t rReLU V Z + e  for the weight 
matrix Vr and the bias er. We can represent the forecasting 
through Eqn. (10)                                              

                       
( )( )1

t tq = softmax UZ + c                       (10)                                                       

Here, U is the weight matrix C FwU R ×∈  and bias Cc R .∈
Equation 11 shows the objective function of the model. We 
aim to minimize the value of L by keeping the training of the 
data. At time t,  qt gives the forecasting result. The initial traffic 
flow at time t is represented by F(t). Parameters are configured 
as follows at the time of training of the TCN model; batch size 
128, number of epochs 30, dropout as 0.5, and initial learning 
rate as 0.002. We use the stochastic gradient descent technique 
to decrease the learning rate at the time of training.

Figure 4 TCN architecture.

4.2 Hyper-parameter Tuning
Building a deep learning model for network traffic flow 

prediction requires the best combination of neural network 
parameters such as kernel size, number of filters, dilations 
list, count of residual block stacks, etc. Traditionally, a trial-
and-error approach is used to find out the best combinations of 
these hyper parameters. However, it is inefficient in yielding 
high precision and time-consuming because it requires a huge 
number of trials. This prompted us to look for more coherent 
alternatives to the traditional trial-and-error approach. Instead, 
Zhao, et al.34 used the Taguchi approach to predict short-term 
traffic movement accurately or identify congestion sites for 
intelligent transportation systems (ITS) in smart cities. We 
believe that the problem of road traffic congestion is similar 
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to the problem of network congestion, so we also incorporate 
the Taguchi method to determine the optimized values of the 
hyper-parameters of the deep learning model for IoT network 
congestion prediction. We have executed a small series of 
experiments to see if we could improve the structure of deep 
learning models that were trained by the training dataset. The 
trial run results show the disparity between the expected and real 
performance. The findings of the trial run help determine the 
most suitable hyper-parameter values for efficient performance 
metrics. The topology of the deep learning-based TCN model 
is then determined. The Taguchi approach is divided into 
three parts: (i) Design factors identification, (ii) Trial design 
and performance metrics, and (iii) Optimization of the model 
structure and performance analysis.

The first step of the Taguchi method is identifying the 
design factors and their corresponding levels. These design 
factors greatly influence the topology determination of the 
deep learning models. The number of filters used in deep 
learning models is considered the first design factor. The state-
of-the-art shows that the most frequent number of filters used 
is 6, 12, and 24. We follow the same practice and use the 6, 12, 
and 24 filters at Levels 1, 2, and 3, respectively. The size of the 
kernel is the second design factor. We use the 10, 15, and 20 
kernel sizes at each layer of the deep learning model for Levels 
1, 2, and 3, respectively. The list of dilation is the third design 
factor. The list of the dilation gives the size of the deep learning 
model. We set the list A {20 , 21 , 22 , 23 , 24 }, list B {20 , 21, 
22,  23 , ..., 29 }, and list C as {1, 2, 3, ..., 9} for Levels 1, 2, and 
3, respectively. The number of stacks of residual blocks is the 
fourth design factor. The state-of-the-art suggests the use of 2 
to 9 stacks of residual blocks. We set the numbers 2, 6, and 9 
stacks of residual blocks for Levels 1, 2, and 3, respectively.

We assess the performance of deep learning models for 
congestion prediction using Mean Absolute Error (MAE) in 

Eqn. (12) and Mean Relative Error (MRE) in Eqn. (13). These 
performance metrics show the absolute and mean difference 
between the actual network flow and the one predicted by the 
model, respectively.

                   ( )
n n

i i
i=0 i=0

1MAE = f f
n

−∑∑


                      (12) 
                                                       

                   
( )n i i

i=o i

f f1MRE =
n f

−
∑



                      (13) 
                                                  

Here, if


 and if  are actual and predicted traffic flow 
duration respectively. Here, n shows the number of forecast 
points. Lower MAE and MRE are the indicators of less 
difference between the actual flow and predicted flow, which 
shows better accuracy of prediction.

As we have three levels and four design factors, the full 
factorial design requires a total of  81 trials. As prediction 
problem requires a large amount of historical data, full factorial 
design may be time-consuming. Therefore, we use fractional 
factorial designs. As with the consideration of four design 
factors along with three levels for each, we build an orthogonal 
array A16 (3

4) for the trial design. We have optimized the structure 
of the deep learning model by executing the combination of 
design factors along with their levels in 16 trials. Every row of 
the orthogonal array A16 (3

4) related to the main trial develops 
a deep learning model using a training dataset of the home IoT 
testbed. Table 3 shows the results of the 16 main trials for the 
seven days (March 1-7, 2021), along with the average result 
of the testing dataset. The accuracy of deep learning models is 
evaluated by the collected data of the Home IoT testbed over 
seven days with 16 main trials. The results in Table 3 depict 

Main Trials
Level day MAE MrE Average result of 5 days

i ii iii iv MAE rank MrE rank

1 1 1 1 1 1st 65.783 0.899 59.532 16 0.447 16
3rd 17.12 0.335
5th 44.082 0.125

2 1 2 2 2 1st 20.991 0.255 21.732 7 0.1 5
3rd 0.128 0.004
5th 3.682 0.048

3 1 3 3 3 1st 23.323 0.286 24.258 10 0.11 8
3rd 1.387 0.029
5th 1.485 0.02

4 1 1 2 3 1st 293501 0.348 29.729 15 0.165 14
3rd 5.987 0.144
5th 8.229 0.108

5 1 1 3 1 1st 33.211 0.396 28.502 14 0.164 13
3rd 7.532 0.168
5th 2.621 0.033

Table 3. orthogonal array A16 (3
4) and experimental outcomes
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that the smallest MAE and MRE were obtained within the 16th 
trial with 24 numbers of filters, 2 numbers of stacks, a 15 kernel 
size, and the dilation with list A. In Table 3 top three trials are 
the 7th, 11th, and main trial 16th with list A setting of dilation. 
This concludes that the dilation with list A gives better accuracy 
than the other two lists. The main trials 1st, 4th, and 5th with the 
6 filters and small kernel size perform poorly concerning MAE 
and MRE. This concludes that the performance of the deep 
learning models varies with the change in the combinations of 
the parameters.

Every trial under the Taguchi method has orthogonal 
combinations. Hence, we can separately analyze the effect of 
individual design factors. The effect of every design factor at a 
specific level is determined by averaging the respective values 
in Table 3. In particular, the design factor i with Level 2 is in 
6th, 7th, 8th, 9th, and 10th main trials, and we can find its average 
effects 23.9428 (MAE) and .121 (MRE). 

Table 3 shows the effects of all four design factors at all 
their corresponding three levels. The sensitivity (identification 
of true positive) of design factors is also determined using 
range analysis, which is defined as the difference between the 
highest and lowest performance values for each design factor. 
Table 4 displays the sensitivity data. We can find the order of 
the sensitivity by sorting the sensitivity values of four design 
factors from high to low, as i>ii>iv>iii in terms of MAE. The 
same concept applies to finding the order of the sensitivity in 
terms of MRE, and the order is as i>ii>iv>iii. These orders 
depict that the design factor i has the lower effect value of 
MAE and MRE; hence, it is considered the primary factor 
for the TCN forecasting model for better performance. Here, 
Tables 3 and 4 help to determine the optimized parameters of 
the TCN model for the IoT network traffic flow forecasting in 
the Home IoT testbed. These parameters are the design factors  
and i, ii, iii, and iv with values that exist at Level 2. TCN model 

6 2 1 2 3 1st 23.334 0.275 20.936 4 0.104 7
3rd 1.876 0.044
5th 1.997 0.025

7 2 2 1 3 1st 16.305 0.201 20.326 3 0.093 3
3rd 1.249 0.027
5th 4.948 0.066

8 2 3 3 1 1st 34.147 0.397 28.396 11 0.146 11
3rd 1.771 0.038
5th 5.597 0.071

9 2 1 3 3 1st 29.527 0.342 28.5 12 0.162 12
3rd 4.212 0.095
5th 11.494 0.149

10 2 3 1 3 1st 19.635 0.229 21.556 5 0.1 5
3rd 1.916 0.044
5th 3.414 0.043

11 3 3 1 2 1st 13.916 0.165 20.029 2 0.092 2
3rd 2.838 0.064
5th 4.823 0.062

12 3 3 2 1 1st 39.97 0.466 28.755 13 0.197 15
3rd 9.729 0.218
5th 9.857 0.128

13 3 1 1 1 1st 1.488 0.018 21.785 6 0.094 4
3rd 5.184 0.116
5th 9.103 0.117

14 3 1 2 1 1st 22.765 0.255 24.963 9 0.115 9
3rd 0.436 0.015
5th 5.314 0.067

15 3 2 2 2 1st 33.132 0.387 24.834 8 0.143 10
3rd 4.307 0.094
5th 2.675 0.033

16 3 2 1 1 1st 20.191 0.234 16.156 1 0.081 1
3rd 0.306 0.008
5th 1.817 0.025
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with filter counts as 12, size of the kernel as 15, dilation list B, 
and 6 residual blocks gives the highest accuracy in forecasting 
among all the Taguchi experimental trials.

design Factor
MAE MrE

i ii iii iv i ii iii iv

Level 1 32.6 30.5638 26.564 29.727 0.1972 0.1787 0.1511 0.1777

Level 2 22.3428 20.762 25.1581 22.1983 0.121 0.1042 0.1373 0.1116

Level 3 22.7536 24.5988 27.4135 24.2175 0.120 0.129 0.1455 0.1223

Sensitivity 10.2572 9.8018 2.2554 7.5287 0.0772 0.0745 0.0138 0.0661

Table 4. sensitivity values for design factors

5. rEsuLTs
On the basis of the prepared traffic dataset, we preformed 

several experiments. This work compares TCN with four other 
deep-learning methods commonly used as traffic flow predictors, 
including the LSTM, GRU, SAE, and CNN-LSTM, concerning 
two performance metrics, MAE and MRE, to show the TCN 
model’s prediction accuracy. All experiments are implemented 
in Tensorflow, and performance matrices are calculated using 
scikit-learn package 6. We use i7-9700, a desktop computer 
with 16 GB of RAM, in all experiments. Here, IoT traffic 
includes two types of traffic: first, traffic that flows through the 
devices autonomously independent of user activity; second, 
traffic that flows due to user communication with the devices, 
e.g., Airveda Smart Air Quality Monitor responding to Android 
user, Amazon Alexa Echo, Neato vacuum cleaner, so on. 

Flow rate and inter-arrival time are the attributes used 
for prediction of congestion in our approach. We analyze 
the estimation of congestion in live network traffic further 
to test the success of the deep learning methods. The TCN-
based approaches effectively anticipate congestion condition 
in contrasting situations and ground-truth information. As 
the nature of our IoT network traffic is unbalanced at some 
points, the error increases slightly during peak traffic hours. 
However, adding the dropout layer in the model to perform 
regularization results in a decreased gap between actual and 
predicted values during peak traffic hours. Hereby, we have 
a closer look at prediction when network traffic flow is high. 
Figure 5 shows that at 1:30 pm and 3:45 pm, there is low and 
high network traffic, respectively, and error increases in these 
fluctuations; however, in these situations TCN model follows 
the traffic trend.

The interarrival packet time is an important feature as 
it shows that packets are received in regular intervals in the 
case of normal traffic, whereas in the case of congestion, the 
reception of packets has almost zero interarrival time. The 

first derivative, d T
dt
∆ , and second the derivative 

2

2

d T
dt
∆ ,  of 

the ( )T∆ , capitalize the difference between normal traffic and 
congestion. We have also predicted the interarrival time of 
the packets at the gateway.  Figure 6 shows prediction of the 
average interarrival time of the packets on 15th March 2021. 
The MAE, MRE, and forecasting accuracy in (%) of the Packet 

Flow/Sec with the different models (TCN, GRU, LSTM, SAE, 
and CNN-LSTM) are shown in Table 5. The results show 
that TCN has a better forecasting accuracy than other deep 

Figure 5. Observation of traffic flow using TCN.

learning-based models for predicting IoT network traffic. It’s 
worth mentioning that the TCN model, when combined with 
Taguchi hyper-parameter optimization, achieves a forecasting 
precision of approximately 95 %, which is 15 % higher than 
the LSTM deep learning model and 10 % to 12 % higher than 
CNN-LSTM, SAE, and GRU.

Furthermore, we claim that the MAE and MRE values 
for the TCN model are lower than other deep learning models, 
implying that the TCN model’s forecasting accuracy is superior 
to that of other models. The MAE value of the TCN model is 
7.4237, which is much less in comparison to LSTM’s MAE 
value of 28.6085 and CNN-LSTM’s MAE value of 26.5688. In 
the case of MRE, the TCN model outperforms and has a lower 
value of 0.0457, which is one-fourth of the LSTM and GRU 
models, as shown in Table 5.

Algorithm MAE MrE Forecasting 
accuracy

TCN 7.4237 0.0457 95.52%
LSTM 28.6085 0.1901 80.46%
GRU 35.0772 0.1821 82.98%
SAE 34.4004 0.1680 83.29%
CNN-LSTM 26.5688 0.1401 84.98%

Table 5. Performance evaluation of TCN with other deep 
learning models
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We show the output of the various deep learning models, 
including LSTM, SAE, GRU, and CNN-LSTM, along with the 
TCN model shown in Fig. 7. These models show the traffic 
forecasting for the nth day. The blue and red lines show the 
actual and predicted traffic flow. 

to enhance the structure of TCN which improves traffic flow 
forecasting. The other possibilities offered by deep learning 
models to detect and predict congestion in IoT network is 
thoroughly examined in this chapter. With the real network 
traffic, we evaluated TCN with LSTM, GRU, SAE, and CNN-
LSTM and observed that TCN achieves better forecasting 
results. It demonstrates that TCN can efficiently predict and 
detect congestion in IoT networks. In the future, efforts will be 
made to improve the accuracy of the TCN model by focusing 
on inevitable conditions such as random bursts.
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