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In the paper, we extend Biasse — van Vredendaal (OBS, 2019, vol. 2) implementa-
tion and experiments of the class group computation from real to imaginary multi-
quadratic fields. The implementation is optimized by introducing an explicit prime
ideal lift operation and by using LLL reduction instead of HNF computation. We
provide examples of class group computation of the imaginary multiquadratic fields
of degree 64 and 128, that has been previously unreachable.
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О ВЫЧИСЛЕНИИ ГРУППЫ КЛАССОВ ИДЕАЛОВ
МНИМЫХ МУЛЬТИКВАДРАТИЧНЫХ ПОЛЕЙ
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Расширены эксперименты Биассе — ван Вредендал (OBS, 2019, vol. 2) по вычис-
лению группы классов идеалов с действительных мультиквадратичных полей на
мнимые мультиквадратичные поля. Представлена адаптированная и оптимизиро-
ванная для работы с мнимыми полями реализация алгоритма Биассе — ван Вре-
дендал. Оптимизации включают в себя введение и использование явных формул
для подъёма простых идеалов и замену вычислений эрмитовой нормальной фор-
мы на LLL-редукцию. Представлены примеры вычисления группы классов для
мнимых мультквадратичных полей степени 64 и 128, недостижимые ранее.

Ключевые слова: мультквадратичное числовое поле, группа классов идеалов.

1. Introduction
A multiquadratic field of degree 2n is defined as

K = Q(
√
d1, . . . ,

√
dn),

where d1, . . . , dn are square-free integers. The field K is called real if all d1, . . . , dn are
positive, otherwise it is called imaginary. The class group ClK of the multiquadratic field is
a factor group of fractional ideals ofK modulo principal ideals. The class group computation
of a number field is a classical hard problem in algebraic number theory. It is an essential tool
in cryptanalysis of the cryptosystems based on arithmetic operations in number fields [1–3]
and ideal lattices [4, 5]. Security of the first ones relies on hardness of the short principal

1The research was funded by the Russian Science Foundation (project No. 22-41-04411, https://rscf.
ru/en/project/22-41-04411/).
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ideal problem (SPIP) and the discrete logarithm problem. For real multiquadratic fields, the
solution to SPIP is provided by the paper [6]. The discrete logarithm problem in number
fields can be solved by factoring target ideal into product of prime ideals, adding these
obtained primes to the factor base, and running the class group computation algorithm.
Cryptosystems based on ideal lattices rely on the hardness of approximate shortest vector
problem. The class group computation is also used in [7, 8] as part of the algorithm for
solving this problem.

The common way to compute the ideal class group of a number field is to use
algorithms [9–11]. These algorithms are subexponential in log ∆K , where ∆K is the
discriminant of the field. Biasse and van Vredendaal proposed [12] an algorithm that reduces
the problem of the ideal class group computation of a multiquadratic fieldK to the quadratic
subfields of K. Therefore, the time complexity was reduced to subexponential time in logD,
where D = d1 · . . . · dn is the largest discriminant of the quadratic subfield. In practice,
this allowed Biasse and van Vredendaal to compute class groups of real multiquadratic
fields of degrees up to 128. However, provided implementation does not support imaginary
multiquadratic fields. In addition, the latter case requires optimizations since the class
groups become much larger.

Our contributions :
1) We extend Biasse — van Vredendaal [12] implementation for the class group

computation of real multiquadratic fields to imaginary multiquadratic fields2.
2) For both imaginary and real multiquadratic fields, we provide an optimized algorithm

for computing the splitting trees of prime ideals over subfields of the field K. These
trees are used in the algorithm to lift solution from subfields to the base field.

3) To reduce memory consumption when computing large class groups, we have
replaced Hermite normal form computations with LLL-reduction [13].

4) Using results above, we computed the ideal class group for previously unreachable
imaginary fields of degrees 64 and 128. For degree 256, partial information is
computed — the result is correct up to factor of size 6 32208.

Organization of the paper. In section 2 we give necessary notations. Section 3.1
briefly describes a general approach from [9, 10] for the class group computation and its
improvement by Biasse and van Vredendaal [12]. In 3.3 we describe the choice of norm
bounds for prime ideals in the factor base. Section 3.4 describes the verification procedure
for the result of the class group computation. Sections 4 and 5 contain main results —
improvements for the Biasse — van Vredendaal implementation and experiments on the
class group computation.

2. Notation
We use the following notations:

— K = Q(
√
d1, . . . ,

√
dn) is a n-quadratic field where all di are pairwise coprime and

square-free, OK is its ring of integers;
— ClK = IK /PrincK — the class group of K, i.e., the factor group of fractional ideals IK

of K modulo principal ideals of OK ;
— h is the order of ClK ;
— GK = Gal(K/Q) is the absolute Galois group of K;
— Kσ is a subfield, that is invariant under the action of an automorphism σ ∈ GK ;
— ∆K is the discriminant of K;

2Available here: https://github.com/novoselov-sa/multiclass-im.
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— N(I), N(a) is the absolute norm of an ideal I or a ∈ K, respectively;
— NL/K(α) is the relative norm of α ∈ L;
— Cm is a cyclic group of order m.

3. Preliminaries
3.1. G e n e r a l a l g o r i t h m f o r c l a s s g r o u p c o m p u t a t i o n

Assume that we have a factor base S = {p1, . . . , pd}— a set of all prime ideals of OK
that generate the class group ClK . To build this factor base, we can take all prime ideals of
norm 6 12 log2 ∆K , see [14]. In practice, this general bound is very pessimistic and a better
heuristic bound can be computed instead using Grenié —Molteni algorithm [15].

The computation of the ideal class group of a number field K can be done by collecting
enough relations (α, e) ∈ K × Zd of the form

αOK =
d∏
i=1

peii .

One relation is computed by taking a random element α ∈ K that splits over the factor
base S. After collecting enough relations, we form a matrix of relations A, the rows of
which are vectors e. The Smith Normal Form A = UBV of this matrix gives us the group
structure and the generators of the class group. In particular, we have B = diag(b1, . . . , bk)
and the ideal class group is the following product of cyclic groups:

ClK ' Cb1 × . . .× Cbk ' 〈g1〉 × . . .× 〈gk〉 ,

where gi =
d∏
j=1

p
v′i,j
j for V −1 = (v′i,j). In addition, we have pi =

k∏
j=1

g
vi,j
j . It is well known

that the whole process of computing the ideal class group takes subexponential time [9]
in log ∆K .

3.2. A l g o r i t h m o f B i a s s e a n d v a n V r e d e n d a a l
For an arbitrary number field, the complexity of the class group computation is

subexponential in log ∆K . However, as it was shown by Biasse and van Vredendaal [12], for
multiquadratic fields the problem of the class group computation can be efficiently reduced
to finding relations in certain quadratic subfields of K, which is a much simpler task, and
then lifting them to K. It results in an algorithm of complexity subexponential in logD,
where D = d1 · . . . · dn is the largest discriminant of quadratic subfields, which is always
smaller than ∆K .

3.3. C h o i c e o f n o r m b o u n d
Choosing the correct bound for the norms of the prime ideals that constitute the

factor base is also a non-trivial task. Taking all primes satisfying Bach’s bound [14] or
the bound computed using the Grenié —Molteni script [15] appears to be impractical due
to high memory consumption (the factor base turns out to be too large for both real and
imaginary cases). Instead, in our experiments, we used the following idea. Since Biasse —
van Vredendaal algorithm lifts the relations from quadratic subfields of K back to the
base field K, choosing primes with norms greater than the corresponding bounds for these
quadratic subfields does not give us new relations to be lifted. So we first compute the
bounds for all quadratic subfields with Grenié —Molteni script [15]. We take the maximum
of these bounds plus a small constant suggested by the experiments (these are of orders 200
for n 6 5).
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3.4. V e r i f i c a t i o n
To verify class group computation, we checked the obtained class number following

the approach from [10, Step D]. Assuming Generalized Riemann Hypothesis (GRH), one
can verify the result of class group computation for the field K in polynomial time
(in log ∆K and degK) by computing the product hRK with enough precision, where RK is
a regulator [16, Def. 4.9.8] of K. This product can be computed using the following class
number formula [16, Th. 4.9.12]:

lim
s→1

(s− 1)ζK(s) = 2r1(2π)r2
hRK

wK
√
|∆K |

.

Here ζK(s) =
∏
p

1

1− (N(p))−s
is the Dedekind zeta function of K, wK is a number of roots

of unity, r1 is a number of real embeddings of K, and r2 is such that 2r2 is a number of
complex embeddings of K. The left side of this formula (Euler product) can be computed
in polynomial time (assuming GRH) following [17, 18]. The other parts of the class number
formula (with exception of h and RK) can be efficiently computed for multiquadratic
fields. This gives us the (approximated) product εhRK . The term ε represents error in
the computation of Euler product.

To verify the class group computation, we compare the computed product εhRK with the
tentative product h∗R∗, where h∗ is the tentative class number — result of our class number
computation, and R∗ is the approximation of regulator computed using [6]. If |ε| <

√
2, then

it remains to check that h∗R∗K <
√

2εhRK , since h∗R∗K is an integral multiple of hR. In our
experiments we computed Euler products using the method zeta_log_residue from Hecke
package [19] for Julia [20]. This method implements the approximation of Euler products
from [18].

4. Optimizations and improvements for the Biasse — van Vredendaal
algorithm

4.1. T h e c a s e o f i m a g i n a r y m u l t i q u a d r a t i c f i e l d s
The algorithm of Biasse — van Vredendaal and its implementation [12] is given for real

multiquadratic fields. However, as claimed in the paper [12, p. 104], the algorithm works
for any fields, where we can choose two different automorphisms of order 2. Indeed, after
cumbersome, but rather technical fixes in the Biasse — van Vredendaal implementation,
we were able to run the class group computation algorithm for imaginary multiquadratic
fields. To be more precise, in our implementation we take into account a different rank
of the unit group as in imaginary multiquadratic field it is half of a real multiquadratic
field of the same degree. Additionally, we augment the implementation with a procedure
that generates trees describing the splitting of a prime ideal over the subfields — a missing
piece of the implementation from [12]. This is the subject of the next section. After running
algorithm for imaginary fields, we were unable to compute the class groups for high degree
fields due to high memory consumption. This was caused by HNF computations. So we
replaced HNF computation with LLL [13] reduction.

4.2. G e n e r a t i o n o f s p l i t t i n g t r e e s
The main drawback of the Biasse — van Vredendaal implementation [12] is the lack of

code that computes trees, describing splitting of prime ideals over subfields. These trees
contain for each prime ideal P of a subfield Kγ of the field K the exponent vector x =

= (x1, . . . , xd) such that POK =
d∏
i=1

pxii . This information allows us efficiently lift prime
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ideals and thus prime ideal products from Kγ to K. The prime ideals in these trees are also
used as a factor base for computations in the subfields. Our implementation produces the
splitting picture for prime ideals using a certain representation of these ideals, as well as
the operation for lifting ideal from the subfields to the base field. We give the details in the
next section.

4.3. R e p r e s e n t a t i o n o f p r i m e i d e a l s
Let θ =

√
d1 + . . . +

√
dn and f =

∏
γ∈GK

(x − γ(θ)). Let K = Q(
√
d1, . . . ,

√
dn) =

= Q(x)/fQ(x). If we consider only primes p such that p - [OK : Z[θ]], then every prime
ideal p | pOK may be written in one of the two following forms:

1) (p, θ + γ(θ)) for some γ ∈ GK if all d1, . . . , dn are quadratic residues modulo p;
2) (p, (θ − γ(θ′))2 − γ(θ′′)2) for γ ∈ GK , θ′ =

∑
√
di∈Fp

√
di, and θ′′ =

∑
√
di 6∈Fp

√
di.

Here z denotes the reduction of z modulo p. This representation of primes is unique
and there is one-to-one correspondence between primes and automorphisms GK for the
case 1 and for the automorphisms in GK/±1 for the case 2. The representation follows
from the standard prime decomposition theorem [16, Th. 4.8.13] and from the fact that the
multiquadratic fields are Galois extensions of Q.

4.4. F a s t i d e a l a b o v e o p e r a t i o n
For K = Q(

√
d1, . . . ,

√
dn), the class group computation algorithm of Biasse —

van Vredendaal [12] uses only three subfields Kσ = Q(
√
d1, . . . ,

√
dn−1), Kτ = Q(

√
d1,

. . . ,
√
dn−2,

√
dn), and Kστ = Q(

√
d1, . . . ,

√
dn−2,

√
dn−1

√
dn) fixed by the automorphisms:

1) σ :
√
dn 7→ −

√
dn;

2) τ :
√
dn−1 7→ −

√
dn−1;

3) στ :
√
dn +

√
dn−1 7→ −

√
dn −

√
dn−1.

For fast generation of the trees describing splitting of prime ideals over the subfields,
we used an explicit ideal above (Lift) operation for prime ideals presented in Table 1. It is
defined for prime ideals that are given in the form as described in Section 4.3. For the
field Kτσ we omitted the cases

√
dn ∈ Fp,

√
dn−1 6∈ Fp or

√
dn 6∈ Fp,

√
dn−1 ∈ Fp. They

can be given in analogous way and differ from the presented case by signs only. Table 1
was derived using the fact that for an unramified ideal p of OKγ and the ideal P = (p, β)
of OK such that P | pOK we have [21, Alg. 2.5.3] that p = (p,NK/Kγ (β)). Notations in the
Table 1: p | (p), p = (p, α) is a prime ideal of OKγ for some prime number p; pOK = P1P2,
in the case P2 = (1) we omit P2; P1 = (p, β1), P2 = (p, β2).

The described Lift operation allows us to do the fast generation of the splitting trees
for primes p | (p), where p - [OK : Z[θ]] and p - [OKγ : Z[θγ]] for each subfield Kγ of K.
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Ta b l e 1
Explicit lift of prime ideals from subfields Kγ of K

Subfield α Conditions β1, β2
Kσ θσ + µ(θσ)

√
dn ∈ Fp θ + µ(θσ) +

√
dn,

θ + µ(θσ)−
√
dn

Kσ θσ + µ(θσ)
√
dn 6∈ Fp (θ + µ(θσ))2 − dn

Kσ (θσ − µ(θ′σ))2 − µ(θ′′σ)2
√
dn ∈ Fp (θσ − µ(θ′σ) +

√
dn)2 − µ(θ′′σ)2,

(θσ − µ(θ′σ)−
√
dn)2 − µ(θ′′σ)2

Kσ (θσ − µ(θ′σ))2 − µ(θ′′σ)2
√
dn 6∈ Fp (θσ − µ(θ′σ))2 − (µ(θ′′σ) +

√
dn)2,

(θσ − µ(θ′σ))2 − (µ(θ′′σ)−
√
dn)2

Kτ θτ + µ(θτ )
√
dn−1 ∈ Fp θ + µ(θτ ) +

√
dn−1,

θ + µ(θτ )−
√
dn−1

Kτ θτ + µ(θτ )
√
dn−1 6∈ Fp (θ + µ(θτ ))2 − dn−1

Kτ (θτ − µ(θ′τ ))2 − µ(θ′′τ )2
√
dn−1 ∈ Fp (θσ − µ(θ′τ ) +

√
dn−1)2 − µ(θ′′τ )2,

(θτ − µ(θ′τ )−
√
dn−1)2 − µ(θ′′τ )2

Kτ (θτ − µ(θ′τ ))2 − µ(θ′′τ )2
√
dn−1 6∈ Fp (θτ − µ(θ′τ ))2 − (µ(θ′′τ ) +

√
dn−1)2,

(θτ − µ(θ′τ ))2 − (µ(θ′′τ )−
√
dn−1)2

Kστ θστ + µ(θστ )
√
dn,

√
dn−1 ∈ Fp, θ + µ(θστ )− µ(

√
dn−1dn) +

√
dn−1 −

√
dn

µ(
√
dn−1dn) =

√
dn−1dn θ + µ(θστ )− µ(

√
dn−1dn)−

√
dn−1 +

√
dn

Kστ θστ + µ(θστ )
√
dn,

√
dn−1 ∈ Fp, θ + µ(θστ )− µ(

√
dn−1dn) +

√
dn−1 +

√
dn

µ(
√
dn−1dn) = −

√
dn−1dn θ + µ(θστ )− µ(

√
dn−1dn)−

√
dn−1 −

√
dn

Kστ θστ + µ(θστ )
√
dn,
√
dn−1 6∈ Fp, (θ + µ(θστ )−

√
dn−1dn)2 − (dn−1 + dn)2

µ(
√
dn−1dn) =

√
dn−1dn

Kστ θστ + µ(θστ )
√
dn−1,

√
dn 6∈ Fp, (θ + µ(θστ ) +

√
dn−1dn)2 − (dn−1 + dn)2

µ(
√
dn−1dn) = −

√
dn−1dn

Kστ (θστ − µ(θ′στ ))2 − µ(θ′′στ )2
√
dn,

√
dn−1 ∈ Fp (θ − µ(θ′στ )−

√
dn−1dn +

√
dn +

√
dn−1)2 − µ(θ′′στ )2

µ(
√
dn−1dn) =

√
dn−1dn (θ − µ(θ′στ )−

√
dn−1dn −

√
dn −

√
dn−1)2 − µ(θ′′στ )2

Kστ (θστ − µ(θ′στ ))2 − µ(θ′′στ )2
√
dn,

√
dn−1 ∈ Fp (θ − µ(θ′στ ) +

√
dn−1dn +

√
dn −

√
dn−1)2 − µ(θ′′στ )2

µ(
√
dn−1dn) = −

√
dn−1dn (θ − µ(θ′στ ) +

√
dn−1dn −

√
dn +

√
dn−1)2 − µ(θ′′στ )2

Kστ (θστ − µ(θστ ))2 − µ(θ′′στ )2
√
dn,

√
dn−1 6∈ Fp (θ − µ(θ′στ )−

√
dn−1dn)2 − (µ(θ′′στ ) +

√
dn +

√
dn−1)2

µ(
√
dn−1dn) =

√
dn−1dn (θ − µ(θ′στ )−

√
dn−1dn)2 − (µ(θ′′στ )−

√
dn −

√
dn−1)2

Kστ (θστ − µ(θστ ))2 − µ(θ′′στ )2
√
dn,

√
dn−1 6∈ Fp (θ − µ(θ′στ ) +

√
dn−1dn)2 − (µ(θ′′στ ) +

√
dn −

√
dn−1)2

µ(
√
dn−1dn) = −

√
dn−1dn (θ − µ(θ′στ ) +

√
dn−1dn)2 − (µ(θ′′στ )−

√
dn +

√
dn−1)2

5. Experiments
For experiments, we used implementation of [12], which we adapted and optimized for

imaginary multiquadratic fields as described above. In our experiments we used the fields
of the form

K = Q(
√
−3,
√
−7,
√
−11,

√
−19,

√
−23, . . .),

where d1, . . . , dn are primes such that di ≡ 1 (mod 4) for all i. Results of computations
are presented in Table 2. Computations were done on one core of Xeon Silver 4210R
processor clocked at 2.4 GHz on computer with 629 GB RAM. The experiments were
run on Sage 9.4 [22].
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Ta b l e 2
Class group computation experiments

[K : Q] Multiclass-im Sage ClK

8 25 0.188 C3
16 175 0.378 C8 × C48
32 2.67 · 103 30 C2 × C34 × C24 × C248 × C3360

64 4.484 · 104 > 5.898 · 104
C22 × C94 × C38 × C16 × C48 × C296 × C2192×

×C26720 × C927360

128 6.279 · 104

C62 × C114 × C158 × C916 × C32 × C496 × C2192×
×C960 × C1920 × C513440 × C443520×
×C20401920 × C554955114954240

256 3.428 · 105

C152 × C334 × C198 × C1516 × C1048 × C1996 × C480×
×C7960 × C6720 × C413440 × C40320 × C280640×

×C311531520 × C219098880 × C438197760 × C514005972480×
×C16648653448627200 × C278847137648344453514726400

Timings for Sage in Table 2 are given for the class_group(proof = False) method. Similar
to the case of real multiquadratic fields [12, Table 1], we have slower computations for small
degrees. But algorithm of Biasse — van Vredendaal allows us to compute class groups for
fields of degrees > 64, while Sage does not.

Computation for degK = 64

In this case, we were not able to compute class group using built-in Sage methods.
For the factor base, we took prime ideals above the rational primes 3, . . . , 173. The result
was verified using the class number formula by the method from Section 3.4 as follows.
The tentative class number is h∗ = 5866281825408383486089249161216000. The logarithm
of Euler product (from class number formula) computed using Hecke [19] is equal to

11.2 ± 0.0136. We have
∣∣∣∣log

h∗R∗

εhR

∣∣∣∣ ≈ 0.00347,
h∗R∗

εhR
∈ [0.996, 1.003], so

h∗R∗

εhR
<
√

2 as

desired for verification of the class number.
Computation for degK = 128

To form the factor base, we took only prime ideals above rational primes p such that p -
[OM : Z[θM ]] for subfieldsM of K that were used in the class group computation algorithm.
Note that the algorithm does not use all subfields of the field M , but a subset of subfields.
Namely, we used prime ideals that are above the following rational primes:

p ∈ {197, 223, 239, 257, 263, 271, 277, 331, 347, 353, 359, 367, 373, 379, 409}.
Since the factor base is relatively small, we did not expect to obtain h∗ = h. Nevertheless,
the verification test was successfully passed. The logarithm of Euler product obtained using

Hecke [19] is 24±0.261,
∣∣∣∣log

h∗R∗

εhR

∣∣∣∣ ≈ 0.16,
h∗R∗

εhR
∈ [0.85, 1.17] <

√
2. Thus, our computation

returned the correct class number.
Computation for degK = 256

Here, we used prime ideals above the following rational primes

p ∈ {233, 263, 347, 353, 359, 373, 421, 443, 467, 503, 509}
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in the factor base. At this point the verification fails and we report in the Table 2 only a
multiple of the class number. Euler product computed using Hecke [19] is equal to 51±0.116.

This leads to
∣∣∣∣log

h∗R∗

εhR

∣∣∣∣ ≈ 10.38 and so h∗ contains an extra factor of size 6 32208.
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