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Abstract. In this paper, we review a retrial queue with MMPP input
and two-way communication. Incoming requests arriving at the server
and finding it busy join the source of retrial calls and try to enter the
server again after some exponentially distributed time. While idle, the
server makes outgoing calls and serves them with another delay parame-
ter. MMPP (Markov Modulated Poisson Process) is an input process in
which control is driven by a continuous Markov chain. Changing its state
entails a change in the intensity of the input process. For this model, we
present an asymptotic approximation of the two-dimensional character-
istic function under the condition of a long delay of requests in the source
of retrial calls. For this approximation, we carried out a numerical experi-
ment, where asymptotic results were compared to computations obtained
via simulation.

Keywords: Output process · Retrial queue · Two-way
communication · Asymptotic analysis method · Simulation · Markov
modulated poisson process

1 Introduction

The specific property of RQ systems [10,16] with two-way communication [16]
is the presence of different request types, which gives rise to many new service
disciplines. For this reason, RQ systems with two-way communication are a pow-
erful tool in design and optimization of real-life systems with multiple random
access to a resource. Despite that these systems are well studied, their output
process is still a complex and insufficiently explored area to research.

In modern telecommunication networks, there are also point processes with
a varying rate of calls incoming. To simulate such jobs within the framework of
queuing theory, the Markov Modulated Poisson Process (MMPP) [2,10] is used.
It has a mechanism for taking into account the temporal inhomogeneity of the
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arrival rate of requests and also gives analytically processable queuing results
[11]. For this reason, MMPP is widely used in Internet research, in particular,
using MMPP in [13], a traffic model that accurately approximates the LRD
(Long Range Dependence) characteristics of Internet traffic traces, was built.
Using the concepts of sessions and streams, the proposed MMPP model simulates
the actual hierarchical behaviour of Internet users generating packets. It allows
traffic simulation with the desired characteristics, that have a clear physical
meaning. The results prove that the queuing traffic behaviour generated by the
MMPP model is consistent with the model created by the actual traces of packets
collected at the edge router under various scenarios and loads.

Earlier, we presented a similar work, where a retrial queue with Poisson input
process is described [3]. In this paper, we take into consideration an improved
model with MMPP, which is more suitable for modelling real optimization prob-
lems. We find the approximation of the characteristic function of the number of
served requests in the considered system using the method of asymptotic anal-
ysis. Subsequently, we determine the applicability of the asymptotic results by
comparing them to calculations provided with simulation software, which was
designed especially for this research.

2 Mathematical Model

MMPP is qualified with two matrices. Matrix of infinitesimal characteristics
Q defines the state. Value qij determines the intensity of the transition of the
process from the state i to the state j, and the value −qii is the intensity of
leaving the state i. The matrix Q has property

∑
j qij = 0. The diagonal matrix

Λ specifies the rate of calls for each of the states of the process.
Let us consider the RQ system with MMPP input. An incoming request takes

the server if it is idle. The server, in turn, starts serving it for some exponentially
distributed time with parameter μ1. When an incoming request cannot access
the server, it travels to the source of retrial calls, where waits for exponentially
distributed time with parameter σ. While free from serving incoming requests,
the server produces requests itself with the intensity α and serves them with
parameter μ2.

We denote the following notations: i(t) is the number of requests in the orbit
at the moment t, k(t) is the state of the server: 0—idle, 1—busy serving an
incoming request, 2—busy serving an outgoing request; m1(t) is the number of
served input process requests at the moment t, m2(t) is the number of served
outgoing requests at the moment t, n(t) is the state of the input process at the
moment t.
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Fig. 1. RQ system with two-way communication

3 Kolmogorov Differential Equations System

We consider the five-dimensional Markov process

{k(t), n(t), i(t),m1(t),m2(t)}
Based on the formulated Markov process, we introduce probabilities

P{k(t) = k, n(t) = n, i(t) = i,m1(t) = m1,m2(t) = m2}
and write down for them the Kolmogorov differential equations system

∂P0(n, i,m1,m2, t)
∂t

= −(λn + iσ + α)P0(n, i,m1,m2, t)

+ P1(n, i,m1 − 1,m2, t)μ1 + P2(n, i,m1,m2 − 1, t)μ2

+
N∑

v=1

P0(v, i,m1,m2, t)qvn,

∂P1(n, i,m1,m2, t)
∂t

= −(λn + μ1)P1(n, i,m1,m2, t)

+ (i + 1)σP0(n, i + 1,m1,m2, t) + λnP0(i,m1,m2, t)

+
N∑

v=1

P1(v, i,m1,m2, t)qvn,

∂P2(n, i,m1,m2, t)
∂t

= −(λn + μ2)P2(n, i,m1,m2, t)

+ λnP2(n, i − 1,m1,m2, t) + αP0(n, i,m1,m2, t)

+
N∑

v=1

P2(v, i,m1,m2, t)qvn.

(1)

Since the obtained system is infinite, we introduce the partial characteristic
functions, denoting j2 = −1. Such wise we passed to the system, having only
three equations.

Hk(n, u, u1, u2, t) =
∞∑

i=0

∞∑

m1=0

∞∑

m2=0

ejuieju1m1eju2m2Pk(n, i,m1,m2, t).
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We rewrite system (1) considering introduced partial characteristic functions

∂H0(n, u, u1, u2, t)
∂t

= −(λn + α)H0(n, u, u1, u2, t)

+ jσ
∂H0(n, u, u1, u2, t)

∂u

+ μ1e
ju1H1(n, u, u1, u2, t) + μ2e

ju2H2(n, u, u1, u2, t)

+
N∑

v=1

H0(v, u, u1, u2, t)qvn,

∂H1(n, u, u1, u2, t)
∂t

= −(λn + μ1)H1(n, u, u1, u2, t)

− jσe−ju ∂H0(n, u, u1, u2, t)
∂u

+ λnH0(n, u, u1, u2, t) + λnejuH1(n, u, u1, u2, t)

+
N∑

v=1

H1(v, u, u1, u2, t)qvn,

∂H2(n, u, u1, u2, t)
∂t

= −(λn + μ2)H2(n, u, u1, u2, t)

+ λnejuH2(n, u, u1, u2, t)

+ αH0(n, u, u1, u2, t) +
N∑

v=1

H2(v, u, u1, u2, t)qvn.

(2)

For further analysis let us denote

Hk(u, u1, u2, t) = {Hk(1, u, u1, u2, t),Hk(2, u, u1, u2, t), . . . , Hk(N,u, u1, u2, t)},

diagonal unit matrix I with size N . Then (2) will be rewritten in the following
form

∂H0(u, u1, u2, t)
∂t

= (Q − Λ − αI)H0(u, u1, u2, t)

+ μ1e
ju1H1(n, u, u1, u2, t)

+ μ2e
ju2H2(u, u1, u2, t) + jσ

∂H0(u, u1, u2, t)
∂u

,

∂H1(u, u1, u2, t)
∂t

= ΛH0(u, u1, u2, t)

+ (Q + (eju − 1)Λ − Iμ1)H1(u, u1, u2, t)

− jσe−ju ∂H0(u, u1, u2, t)
∂u

,

∂H2(u, u1, u2, t)
∂t

= αH0(u, u1, u2, t)

+ (Q + (eju − 1)Λ − Iμ2)H2(u, u1, u2, t).

(3)
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4 Asymptotic Analysis Method

We solve the obtained system with the asymptotic analysis method with the
limit condition of a long delay of requests in the orbit (σ −→ 0).

Denoting ε = σ, u = εw,F k(w, u1, u2, t, ε) = Hk(u, u1, u2, t) we (3) as

∂F 0(w, u1, u2, t, ε)
∂t

= (Q − Λ − αI)F 0(w, u1, u2, t, ε)

+ μ1e
ju1F 1(w, u1, u2, t, ε) + μ2e

ju2F 2(w, u1, u2, t, ε)

+ j
∂F 0(w, u1, u2, t, ε)

∂w
,

∂F 1(w, u1, u2, t, ε)
∂t

= ΛF 0(w, u1, u2, t, ε)

+ (Q + (ejεw − 1)Λ − Iμ1)F 1(w, u1, u2, t, ε)

− je−jεw ∂F 0(w, u1, u2, t, ε)
∂w

,

∂F 2(w, u1, u2, t, ε)
∂t

= αF 0(w, u1, u2, t, ε)

+ (Q + (ejεw − 1)Λ − Iμ2)F 2(w, u1, u2, t, ε).

(4)

The solution for system (4) is formulated in Theorems 1 and 2.

Theorem 1. Let i(t) is the number of requests in the orbit at the moment t,
then in the stationary regime we obtain

lim
ε→0

{
2∑

k=0

F k(w, 0, 0, t, ε)} = lim
σ→0

Mejwσi(t) = ejwκ,

where κ is a positive root of the equation

κR0(κ)e = [R1(κ) + R2(κ)]Λe.

Vectors Rk are defined as
⎧
⎪⎨

⎪⎩

R0(κ) = r{I + [Λ + κI](μ1I − Q)−1 + α(μ2I − Q)−1}−1,

R1(κ) = R0(κ)[Λ + κI](μ1I − Q)−1,

R2(κ) = αR0(κ)(μ2I − Q)−1.

The row vector r is the stationary probability distribution of the background
process n(t), which is obtained as the unique solution for the system rQ =
0, re = 1.

Proof. In (4), we denoted u1 = u2 = 0, which allows us to remove processes
m1(t) and m2(t) from consideration. Thus we get a system of equations yet for
the three-dimensional process {n(t), k(t), i(t)} and consider it in the stationary
regime, which spares us from the time derivative t.
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Let us denote
F k(w, ε) = lim

t→∞ F k(w, 0, 0, t, ε).

Then we obtain

(Q − Λ − αI)F 0(w, ε) + μ1F 1(w, ε) + μ2F 2(w, ε) + jF ′
0(w, ε) = 0,

ΛF 0(w, ε) + (Q + (ejεw − 1)Λ − Iμ1)F 1(w, ε) − je−jεwF ′
0(w, ε) = 0,

αF 0(w, ε) + (Q + (ejεw − 1)Λ − Iμ2)F 2(w, ε) = 0.

(5)

Making the passage to the limit ε −→ 0 in (5) results in

(Q − Λ − αI)F 0(w) + μ1F 1(w) + μ2F 2(w) + jF ′
0(w) = 0,

ΛF 0(w) + (Q − Iμ1)F 1(w) − jF ′
0(w) = 0,

αF 0(w) + (Q − Iμ2)F 2(w) = 0.
(6)

Solution for the system will be found as

F k(w) = Φ(w)Rk, (7)

where Rn is the server’s state stationary probability distribution, and Φ(w) is
the asymptotic approximation of the characteristic function of the number of
requests in the orbit under the condition of their long delay. Substituting (7) in
(6) and dividing it by Φ(w), we get

(Q − Λ − αI)R0 + μ1R1 + μ2R2 + j
Φ′(w)
Φ(w)

R0 = 0,

ΛR0 + (Q − Iμ1)R1 − j
Φ′(w)
Φ(w)

R0 = 0,

αR0 + (Q − Iμ2)R2 = 0.

(8)

Since w only appears in Φ′(w)
Φ(w) , other equation terms do not depend on w. It

means that Φ(w) is exponential. Taking into account that Φ(w) has the meaning
of an asymptotic approximation of the characteristic function of the number of
requests in the source of retrial calls, we can clarify the form of this function

Φ′(w)
Φ(w)

=
ejκwjκ

ejκw
, (9)

which follows to j Φ(w)′

Φ(w) = −κ. Let us substitute this expression into (8). Then
we obtain

(Q − Λ − αI)R0 + μ1R1 + μ2R2 − κR0 = 0,

ΛR0 + (Q − Iμ1)R1 + κR0 = 0,

αR0 + (Q − Iμ2)R2 = 0.

(10)

Let us write down the normality condition for the stationary distribution of the
number of served requests

R0 + R1 + R2 = r.
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Based on this equation, as well as on the last two equations of (10), we write
the system as ⎧

⎪⎨

⎪⎩

R1 = R0[Λ + κI](μ1I − Q)−1,

R2 = αR0(μ2I − Q)−1,

R0 + R1 + R2 = r.

(11)

Let us sum up the equations of system (5)

[F 0(w, ε) + F 1(w, ε) + F 2(w, ε)]Q + F 1(w, ε)(ejwε − 1)Λ

+ F 2(w, ε)(ejwε − 1)Λ + je−jwε(ejwε − 1)F ′
0(w, ε) = 0.

Multiplying the resulting equations by the unit column vector e, we obtain

{F 1(w, ε) + F 2(w, ε)}Λe + je−jwεF ′
0(w, ε)e = 0.

Then we substitute product (7) into the resulting equation

[R1 + R2]Λe + j
Φ′(w)
Φ(w)

R0e = 0

and make the replacement

[R1 + R2]Λe − κR0e = 0. (12)

From (12) we can express κ with R0,R1 and R2. In addition, we can rewrite
system (11) as follows

⎧
⎪⎨

⎪⎩

R0(κ) = r{I + [Λ + κI](μ1I − Q)−1 + α(μ2I − Q)−1}−1,

R1(κ) = R0(κ)[Λ + κI](μ1I − Q)−1,

R2(κ) = αR0(κ)(μ2I − Q)−1

Theorem 1 is auxiliary since the general solution for the system is stated in
Theorem 2 and needs the results obtained at this stage, namely, the normalized
average amount of requests in the source of retrial calls κ and the stationary
probability distribution of the server’s state Rk.

Theorem 2. The asymptotic approximation of the two-dimensional character-
istic function of the number of served requests of the MMPP input process and
the number of served outgoing requests for some time t has the form

lim
σ→0

M{exp(ju1m1(t)) exp(ju2m2(t))}

= lim
ε→0

{
2∑

k=0

F k(0, u1, u2, t, ε)}e = R · exp{G(u1, u2)t}ee,
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where matrix G(u1, u2) can be written as

G(u1, u2) =

⎡

⎣
Q − Λ − (α + κ)I μ1e

ju1I μ2e
ju2I

Λ + κI Q − μ1I 0
αI 0 Q − μ2I

⎤

⎦

T

,

row vector R = {R0,R1,R2} is the two-dimensional stationary probability dis-
tribution of the process {k(t), n(t)}, where Rk has dimension N , κ is the nor-
malized average number of requests in the orbit, and e and ee are unit vector
columns of dimensions N and N · K, where K is the number of server’s states.

Proof. After making the passage to the limit limε→0 F k(w, u1, u2, t, ε) =
F k(w, u1, u2, t) in resulting system (4), it will be written as follows

∂F 0(w, u1, u2, t)
∂t

= (Q − Λ − αI)F 0(w, u1, u2, t)

+ μ1e
ju1F 1(w, u1, u2, t)

+ μ2e
ju2F 2(w, u1, u2, t) + j

∂F 0(w, u1, u2, t)
∂w

,

∂F 1(w, u1, u2, t)
∂t

= ΛF 0(w, u1, u2, t) + (Q − Iμ1)F 1(w, u1, u2, t)

− j
∂F 0(w, u1, u2, t)

∂w
,

∂F 2(w, u1, u2, t)
∂t

= αF 0(w, u1, u2, t) + (Q − Iμ2)F 2(w, u1, u2, t).

(13)

Solution for (13) will be found as

F k(w, u1, u2, t) = Φ(w)F k(u1, u2, t). (14)

Substituting (14) into (13) and dividing both parts of equations by Φ(w) we
obtain

∂F 0(u1, u2, t)
∂t

= (Q − Λ − αI)F 0(u1, u2, t) + μ1e
ju1F 1(u1, u2, t)

+ μ2e
ju2F 2(u1, u2, t) + j

Φ′(w)
Φ(w)

F 0(u1, u2, t),

∂F 1(u1, u2, t)
∂t

= ΛF 0(u1, u2, t) + (Q − Iμ1)F 1(u1, u2, t)

− j
Φ′(w)
Φ(w)

F 0(u1, u2, t),

∂F 2(u1, u2, t)
∂t

= αF 0(u1, u2, t) + (Q − Iμ2)F 2(u1, u2, t).

(15)
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Function Φ(w) has form (9). After substituting it, (15) will have the form

∂F 0(u1, u2, t)
∂t

= (Q − Λ − (α + κ)I)F 0(u1, u2, t)

+ μ1e
ju1F 1(u1, u2, t)

+ μ2e
ju2F 2(u1, u2, t),

∂F 1(u1, u2, t)
∂t

= (Λ + κI)F 0(u1, u2, t) + (Q − Iμ1)F 1(u1, u2, t)

+ 0F 2(u1, u2, t),
∂F 2(u1, u2, t)

∂t
= αF 0(u1, u2, t) + 0F 1(u1, u2, t)

+ (Q − Iμ2)F 2(u1, u2, t).

(16)

Let us denote

FF (u1, u2, t) = {F 0(u1, u2, t),F 1(u1, u2, t),F 2(u1, u2, t)},

G(u1, u2) =

⎡

⎣
Q − Λ − (α + κ)I μ1e

ju1I μ2e
ju2I

Λ + κI Q − μ1I 0
αI 0 Q − μ2I

⎤

⎦

T

,

G(u1, u2) is the transposed matrix of system coefficients (16). Then we obtain
the following matrix equation

∂FF (u1, u2, t)
∂t

= FF (u1, u2, t)G(u1, u2),

the general solution of which is

FF (u1, u2, t) = CeG(u1,u2)t. (17)

Finding a unique solution corresponding to the functioning of the system
under consideration requires us to set the initial condition

FF (u1, u2, 0) = R, (18)

where row vector R is the two-dimensional stationary probability distribution
of server’s state k(t), which was found in Theorem 1. With (18) described, we
solve can solve the Cauchy problem (17)

FF (u1, u2, t) = ReG(u1,u2).

Since we are focusing on the probability distribution of requests in output pro-
cesses the marginal distribution is needed. For this, we multiply row vector
FF (u1, u2, t) by unit vector-column e of size N and the right part of the equa-
tion by unit vector-column ee of size K · N . We obtain

FF (u1, u2, t)e = ReG(u1,u2)tee. (19)

(19) is the solution for the considered system.
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5 Explicit Probability Distribution

Characteristic function (19) allows us to move to an explicit formula for calcu-
lating probabilities of the number of served requests in output processes m1(t)
and m2(t). (19) contains the matrix exponent, for which we apply the similarity
transformation [4]

G(u1, u2) = T (u1, u2)GJ(u1, u2)T (u1, u2)−1,

where T (u1, u2) is an eigenvector matrix of G(u1, u2), and GJ(u1, u2) is a diag-
onal eigenvalue matrix of G(u1, u2). This conversion is objective for any power
m of some matrix Am, which follows it is also valid for the matrix exponent

eG(u1,u2)t = T (u1, u2) ·
⎡

⎣
etΛ1(u1,u2) 0 0

0 etΛ2(u1,u2) 0
0 0 etΛ3(u1,u2)

⎤

⎦ · T (u1, u2)−1,

where Λn is an eigenvalue of G(u1, u2). Then the distribution is written as follows

F (u1, u2, t)E = R·T (u1, u2)·
⎡

⎣
etΛ1(u1,u2) 0 0

0 etΛ2(u1,u2) 0
0 0 etΛ3(u1,u2)

⎤

⎦·T (u1, u2)−1 ·E.

To restore the distribution, we use the inverse Fourier transform for discrete
values

P (m1,m2, t) =
1

(2π)2

∫ π

−π

∫ π

−π

e−i·u1·m1e−i·u2·m2FF (u1, u2, t)e du1du2. (20)

The resulting formula characterizes the probability of servicing m1 input
process requests and m2 outgoing requests at the moment t in the system under
consideration.

6 Numerical Examples

Let us compare simulation output with the calculations based on the obtained
asymptotic results. σ affects accuracy, since the solution of the system was
obtained under the asymptotic condition of a long delay of requests in the orbit.

We measure the accuracy of the results with the Kolmogorov-Smirnov dis-
tance, which is calculated as

Δ = max
0≤i≤∞

∣
∣
∣
∣

i∑

v=0

(P0(v) − P1(v))
∣
∣
∣
∣,

where P0(v) and P1(v) are comparable probability distributions.
Let us set the following parameters

α = 0.6, μ1 = 2, μ2 = 1.5, t = 15,
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Q =

⎡

⎣
−0.5 0.2 0.3
0.15 −0.2 0.05
0.3 0.4 −0.7

⎤

⎦ ,Λ =

⎡

⎣
1 0 0
0 0.6 0
0 0 0.7

⎤

⎦ .

The input process intensity can be written in form r · Λ · e, after calculation of
which, we get the value 0.72. For the parameters set, we obtained the following
results.

Let us denote: ΔS is the KS distance values for the summary distribution,
which implies, that served incoming and outgoing requests are homogeneous,
and ΔTD is the KS distance values for the two-dimensional distribution of served
requests, which are, in the two-dimensional case, of different types.

Table 1. KS distance values for various σ

σ 10 1 0.6 0.4 0.2 0.1 0.05 0.01

ΔS 0.053 0.045 0.04 0.036 0.028 0.023 0.018 0.016

ΔTD 0.059 0.049 0.042 0.035 0.024 0.015 0.01 0.003

In Table 1, we can notice that for lower values of σ asymptotic results of
the two-dimensional distribution are more accurate. Let us raise system load by
setting up the new intensity matrix with greater values of diagonal elements

Λ =

⎡

⎣
1.2 0 0
0 0.9 0
0 0 1.5

⎤

⎦ .

For these parameters, the overall input process intensity is 1.07. Calculations for
the new set of parameters are

Table 2. KS distance values for various σ with high system load

σ 10 1 0.6 0.4 0.2 0.1 0.05 0.01

ΔS 0.037 0.029 0.024 0.02 0.015 0.01 0.008 0.008

ΔTD 0.066 0.048 0.039 0.031 0.019 0.01 0.006 0.002

Based on the performed experiments, we can conclude that a tendency
towards an accuracy increase of asymptotic results is always observed when
decreasing σ. For a value of σ exceeding the intensity of the input process, the
accuracy does not exceed 0.066 (the longest KS distance, which is observed in
the case of a two-dimensional probability distribution), which indicates a high
degree of accuracy of the obtained approximation. Raising system load with
input process requests, as can be seen in Table 2, has a positive effect on the
accuracy of the asymptotic results. It is because more events occur within a fixed
time interval during simulation.
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7 Conclusion

In this paper, we have described the process of finding the asymptotic approxi-
mation of the two-dimensional characteristic function of the number of incoming
and outgoing requests that have finished serving in retrial queue with two-way
communication under the condition of a long delay in the source of retrial calls.
This allows retrieving different performance characteristics, including the corre-
lation of the processes in the system output. Moreover, we used it to calculate
probability values for further experiments.

Carried out numerical experiments show that obtained approximation gives
high accuracy results, and for this reason, it can be used for further research of
this type of system.
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