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a b s t r a c t

How to rank participants of a sports tournament is of fundamental importance. While PageRank has
been extensively used for this task, the algorithm’s superiority over simpler ranking methods has
never been clearly demonstrated. We address this knowledge gap by comparing the performance of
multiple ranking methods on synthetic datasets where the true ranking is known and the methods’
performance can be thus quantified by standard information filtering metrics. Using sports results from
18 major leagues, we calibrate a state-of-art model, a variation of the classical Bradley–Terry model,
for synthetic sports results. We identify the relevant range of parameters under which the model
reproduces statistical patterns found in the analyzed empirical datasets. Our evaluation of ranking
methods on the synthetic datasets shows that PageRank outperforms the benchmark ranking by the
number of wins only early in a tournament when a small fraction of all games have been played
yet. Increased randomness in the data due to home team advantage, for example, further reduces
the range of PageRank’s superiority. We propose a new PageRank variant that combines forward and
backward propagation on the directed network representing the input sports results. The new method
outperforms PageRank in all evaluated settings and, when the fraction of games played is sufficiently
small and the sport is not too random, it outperforms also the ranking by the number of wins. Beyond
the presented comparison of ranking methods, our work paves the way for designing optimal ranking
algorithms for sports results data.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Humans are born to compete: We thrive by measuring our-
elves against the others [1,2]. Sport in particular provides ample
pportunities for competition with high significance to the econ-
my [3,4] and the society [5,6]. Once a sport competition is over,
t remains to decide who has won. What is a simple question for
single match between two participants (individuals or teams)
ecomes a difficult one for a structured tournament with mul-
iple games between several participants. The design of sport
ournaments is therefore of crucial importance. Effective tourna-
ent design helps the participants to perform well during the

ournament, produces match-ups that are interesting to the fans
nd, crucially, allows to identify the best-performing participant
ith high probability [7] (see [8] for a survey of results on sport
ournaments and beyond).
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We focus here on sports leagues, such as a soccer league,
for example, where each participating team plays against every
other team once or several times. In such a league, points are
traditionally assigned to teams for every win or tie that they
achieve. The teams are then ranked by their point totals (from
the highest to the lowest; additional criteria can be used to
break ties). This benchmark ranking method is so simple that it
inevitably prompts the question: Can we rank the teams better?
Of particular appeal is the idea to consider the strength of the
opposing team. In particular: Can we improve the ranking if a
win against a strong team counts more than a win against a weak
team? A closely related idea has been previously formalized by
the PageRank algorithm which has been originally designed to
rank web pages and later used in a broad range of systems [9]
and found applications in other domains such as community
detection [10], for example. Unsurprisingly, PageRank and its
various modifications have been also applied to results from var-
ious sports: Tennis [11,12], mixed martial arts [12], international
football [13], cricket [14], wrestling [15], and boxing [16], for
example.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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While PageRank is frequently used on sports results data,
its superiority over simple point-based schemes has not been
established yet. That is not surprising as empirical sports results
lack robust ground truth (i.e., a correct team ranking) against
which different rankings could be compared. We fill this gap
by setting up a model for synthetic sports results. This model
is calibrated using empirical sports results and we show that it
closely matches the empirical winning probabilities. The ground
truth is known for synthetic data which allows us to comprehen-
sively evaluate three distinct rankings methods (points ranking,
PageRank, and a new PageRank variant) on the synthetic datasets.

1.1. Research hypotheses and contributions

Applying PageRank on sports results data has a simple and
understandable motivation: A win against a strong opponent
should intuitively carry more weight than a win against a weak
opponent. This idea, together with a self-consistent definition
of what ‘‘strong’’ and ‘‘weak’’ means, is behind the PageRank
score [17] where a link from a highly-valued node increases the
target node’s reputation more than a link from a little-valued
node. As PageRank is a network algorithm, sports results need
to be first represented with a network where each result is
represented with one link. In particular, the loss of team i against
team j is represented by an edge from i to j. Once PageRank is
applied on the resulting network, this edge causes some part of
i’s score to contribute to the score of team j (see Section 2.3 for
details). If team i has many wins, it has high score and team j
is thus rewarded more for beating it, in line with our opening
motivation.

At the same time, the necessary condition for PageRank to
work well can be formulated in mathematical terms. As shown
in [18], PageRank score of a node is on average proportional to
its indegree when degree–degree correlations are absent in the
network. As a consequence, PageRank then carries no more in-
formation than indegree. Of particular interest are positive inde-
gree correlations (commonly referred to as indegree assortativity)
whose presence is an indication that weak teams tend to win
against weak opponents whilst strong teams tend to win against
weak and strong opponents. In such a situation, to value a win
against a strong opponent more can indeed help to better identify
the best teams. This leads us to the first hypothesis which aims
to verify whether the use of PageRank on sports results data is
justified:

H1: Upon representing sports results with directed links, win
of team i over team j as a directed edge from j to i, node
indegree is assortative, i.e., it is positively correlated among
neighboring nodes in the sports results network.

However, an assortative indegree pattern alone is not a suffi-
cient condition for PageRank to outperform the benchmark rank-
ing by the number of wins. To this end, we set up a model to
generate synthetic sport results and calibrate it on a broad range
of sports results data. This allows to probe our second hypothesis:

H2: PageRank outperforms the benchmark ranking by the
number of wins on synthetic sports results data.

Our main contributions can be summarized as follows. We test
degree assortativity patterns in empirical sports results data. We
set up a state-of-art model for synthetic data, show that it accu-
rately matches empirical sports results, and establish the range
of model parameters that corresponds to the analyzed empirical
datasets. We establish, for the first time, the conditions that have
to be met for PageRank to perform better than the benchmark

ranking by the number of wins. We propose a novel PageRank

2

variant that outperforms PageRank on synthetic data in all evalu-
ated settings. We reproduce our key result on empirical data, thus
showing that our main findings are not model-dependent. Beyond
the presented results, our work establishes a robust framework
for assessing ranking methods for sports results in the future.

1.2. Related work

Modeling sports results. Results in a sport where players or teams
play against each other can be seen as outcomes of paired com-
parisons between the participants. The Bradley–Terry model [19]
is one of the first efforts to model outcomes of such paired
comparisons (the authors themselves do not mention applying
their model on sport specifically). The model is based on assigning
a non-negative winning propensity, π , to each participant and
postulating that the probability of i winning against j in the form
πi/(πi + πj). A model generalization to include ties (which is
mportant for sports such as soccer) has been introduced in [20].
he Bradley–Terry model was used in a broad range of problems.
n [21], for example, the authors used the model to show that
ports data have a high degree of randomness. In [22], the win-
ing propensities π of tennis players were shown to be directly
roportional to players’ ranks in official tennis rankings. The rank
f individuals instead of a continuous-valued winning propensity
as used also in [23].
In [24], the authors propose a simpler model based on a fixed

pset probability parameter that directly specifies the probability
hat a weaker team beats a stronger team. The model’s simplicity
akes it possible to derive analytical results for the probability

hat the weakest teamwins an elimination tournament, for exam-
le. O’Malley [25] goes in the opposite direction by proposing a
odel for tennis match outcomes based on the detailed structure
f the game. See [26] for detailed reviews of models for paired
omparison data.

anking algorithms for sports results data. The most elementary
ethod to aggregate results of multiple sports games is to com-
ute each team’s winning percentage, nw/(nw + nl), where nw

nd nl are the team’s numbers of wins and losses, respectively.
In this way, each team is assigned a quantity in the range [0, 1].
aking into account a starting uniform prior in the same range, a
odified estimate has the form (1 + nw)/(nw + nl + 2). In [27],

this estimate was used as a basis for a ranking scheme which
is particularly useful when many teams have not played against
each other (early in a season or in a more complicated setup
where teams are divided in multiple divisions or conferences).
The information provided by respective wins and losses is limited
in low-scoring sports such as football where a single lucky shot
can greatly influence the outcome of a match. In [28], the authors
propose to limit this randomness by estimating the number of
expected goals.

Indirect comparisons (comparing teams A and C based on
team A beating team B and team B beating team C) have been
considered in [29]. Indirect wins and indirect losses have been
quantified in [30] where they have been ultimately combined in
a score which is, in fact, a generalization of the well-known Katz
centrality metric.

A popular line of research considers the use of eigenvector-
based methods for sports rankings [31]. In particular PageRank,
a seminal ranking algorithm/centrality metric for nodes in a di-
rected network [17], has been widely applied to sports data such
as tennis [11] or cricket [14,32]. PageRank-like algorithms seem
well-suited for a sports ranking as they value a win against a
strong opponent more than a win against a weak opponent.
How to transform input sports results in a directed network on
which PageRank is computed is open. The simplest approach is
to represent a win of i over j with a directed link from j to i.
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n [33], the authors proposed to assign link weights based on
he score difference in the corresponding games. A comparison
f various edge-weighting methods for the football World Cup
ata is presented in [13]. Time-aware PageRank variants [12,
4] take the time of each game into account to capture the
layer/team capability that varies in time. In [35], PageRank score
f teams was used together with other features in a machine-
earning framework for predicting football results. See [36] for a
ecent work where several distinct ranking approaches are used
o assess the performance of track athletes.

. Materials and methods

.1. Network theory methods

To create the directed network on which PageRank is applied,
esults of available games are represented with directed links.
n particular, when team/player i wins against team/player j, a
irected link from j to i is formed and its weight is set to one.
or each additional win of i over j, the link weight increases by
ne. The weight of link from j to i, eji, is thus the number of
ins of i over j. The in-strength of node i, sini =

∑
j eji, is a

eneralization of node indegree for weighed networks [37]; in our
ase it corresponds to the total number of wins of team/player
. Analogously, the out-strength of node i, souti =

∑
j eij, is a

eneralization of node outdegree and corresponds to the total
umber of losses of team/player i. Note that souti +sini = ki where ki

is the number of games of team/player i and
∑

i s
in
i =

∑
i s

out
i = G

where G is the number of games that are used to construct the
network. The number of nodes in the network, N , is given by the
number of teams/players in the used games.

To assess the strength of degree correlations, we adopt the
methodology of Ren et al. [38] which is based on assortativity
plots where the average in-strength of neighbors of a node is
plotted as a function of the node’s in-degree. We use upstream
neighbors (nodes that point to a given node) in particular; results
are quantitatively similar when downstream neighbors are con-
sidered. For a given node i, we measure the average in-strength
of its upstream neighbors,

sin,upi =

∑
j

ejisinj /
∑

j

eji. (1)

The level of indegree assortativity can be quantified using least-
squares linear regression of sin,upi against sini in the assortativity
lot. The sign of the slope then determines if indegree correlation
s assortative (positive slope) or disassortative (negative slope).
he p-value of the regression decides if the identified pattern is
ignificant or not. As in [38] we compare the result with the result
btained on a randomized network where links are randomized
hilst preserving node out- and in-degree values [this is referred
o as the configuration network model in the literature [37]].

The assortativity plot for one season of a sports league com-
rises N data points corresponding to N teams/players partic-
pating in the season. To increase the statistical power of our
ssortativity analysis, we combine all seasons of one league in
ne assortativity plot. When N varies between the seasons, the in-
trength values are not directly comparable between the seasons.
e amend this by normalizing the in-strength by the number
f games played by the team, thus obtaining the normalized in-
trength, wi := sini /ki. As sini is the number of games won by
eam/player i, wi is the win ratio of team/player i. In a direct
nalogy with Eq. (1),

w
up
i =

∑
ejiwj/

∑
eji (2)
j j

3

is the average win ratio of upstream neighbors of node i, which
we use to construct the assortativity plot.

2.2. Sports results model

We assume a competition setting where N teams play against
ach other once or multiple times. In the model, we assume that
he outcome of a match between teams i (home team) and j (away
eam) is stochastic. The probability that the home team wins,
≻ j, is assumed in the form of the logistic function

(i ≻ j) = 1/
[
1 + e−(fi−fj+H)/δ] (3)

here fi and fj are the intrinsic fitness values of the two com-
eting teams, H is an additive term which represents the typical
ome team advantage and δ is a fitness ‘‘weighting’’ parame-
er which helps to translate a difference in team fitness in the
inning probability of the home team. The model assumes that
here are only two possible outcomes: Team i wins or team j
ins. This choice is motivated by the absence of ties in three of
he four analyzed sports (baseball, ice hockey, and basketball; in
he football data, ties account for roughly 25% of all results). The
ppendix shows that when ties are introduced in the synthetic
ata, our main conclusions still hold.
We assume for simplicity that team fitness remains the same

hroughout the whole competition; allowing for fitness variations
s yet another interesting direction for future research. Home ad-
antage has been documented for a wide variety of sports [39,40].
hile it may seem as an auxiliary issue that has been ignored

n [22], for example, we find H to be significantly positive in a vast
ajority of the sports results sets that we analyze in this paper.
e also find that home advantage strongly affects the ranking

bility of respective algorithms.
It is helpful to study closer the implications Eq. (3) before

roceeding. When (fj − fi)/δ ≫ 1 (that is, the away team is
uch stronger than the home team), we get P(i ≻ j) ≪ 1 as
xpected. If δ increases, the same fitness difference affects the
inning probability P(i ≻ j) less and the match outcomes thus
ecome more random (in the limit δ → ∞, P(i ≻ j) = 1/2 for any
i, fj, and H). We thus refer δ as the sport randomness parameter:
hen δ is large in comparison with fitness differences among the

eams, P(i ≻ j) ≈ 1/2 for all i and j. That δ alone is not a measure
f sport randomness can be seen from the invariance of Eq. (3) to
imultaneously multiplying fi,H, δ with λ; the value of δ is indeed
mportant only in relation to the fitness values. The effective sport
andomness can be thus measured by δ/σ (f ) where σ (f ) is the
tandard deviation of the fitness values. Similarly, while home
eam advantage increases with H , outcomes are random in the
arge δ limit and no home team advantage ensues. The effective
trength of home team advantage is thus determined by the ratio
/δ.

.3. Algorithm to generate synthetic sports results

The algorithm has the following parameters: The number of
eams N , fitness sensitivity δ, home advantage H , and the fraction
f games that have been played P . P = 1 corresponds to N(N −

)/2 games played—all teams playing once against each other. It
s also possible to consider P > 1: That would correspond to a
eague where the teams play more than once against each other.

Synthetic data are then created in three main steps:

1. Fitness of team i is set to fi = (i − 0.5)/N where i =

1, . . . ,N . In this way, the fitness values range from 0.5/N
to 1−0.5/N and they are regularly distributed in the range
[0, 1] (we investigate other fitness distributions later).
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2. Each team is assigned to play P(N − 1) games against op-
ponents chosen at random without any two teams playing
against each other more than once (in practice, we used the
random_degree_sequence_graph function from the pack-
age NetworkX in Python). If P(N − 1) is not an integer,
teams are assigned to play either ⌊P(N − 1)⌋ or ⌈P(N − 1)⌉
games in such a way that the total number of played games
is PN(N−1)/2. The home team is chosen at random for each
game.

3. Determine the outcome of each game by Eq. (3).

By varying the model parameters, we can create synthetic results
corresponding to a broad range of sports. Note that the algorithm
can be easily modified to encompass more complicated settings
such as the regular season followed by playoffs, for example.

2.4. Ranking algorithms

In sports leagues, teams are typically ranked by the number of
points that they obtain (such as two points for a win, one point
for a draw, zero points for a loss). Since we focus here on sports
where draws are not possible, we directly count the number of
wins by each team and rank the teams by their win ratio (a team’s
number of wins divided by its number of games played). Due to
its simplicity, WinRatio is our benchmark method.

To apply the PageRank algorithm, we create a directed net-
work of participating teams where all games are represented
with directed links. In particular, when player/team i wins against
player/team j, a directed link from j to i is formed along which
‘‘sports prestige’’ flows: A win against a highly-valued team con-
tributes highly to the winner’s own evaluation. The process can
be mathematically represented by the formula [11]

Pi = (1 − α)
∑

j: soutj >0

Pj
eji
soutj

+
α

N
+

1 − α

N

∑
j: soutj =0

Pj (4)

where Pi is the prestige score of team/player/node i, N is the
umber of nodes in the network, eji is weight of the link from j
o i which is equal to the number of wins of i over j, soutj =

∑
i eji

s the out-strength of node j (the number of losses of j) and α
s the algorithm parameter (often referred to as the teleportation
robability). The last term in Eq. (4) makes the algorithm robust
gainst the nodes with soutj = 0 (‘‘dangling nodes’’) that would
therwise act as score sinks. In line with [11] and other PageRank
iterature, we use α = 0.15.

In addition to standard PageRank, we consider here a new
ethod closely based on PageRank which we refer to as bi-
irectional PageRank (BiPageRank). The bi-directional PageRank
core, Si, is defined as

i = Pi − Qi (5)

here Pi is the previously introduced PageRank score (computed
n the original directed network) and Qi is given by

i = (1 − α)
∑

j: sinj >0

Qj
eij
sinj

+
α

N
+

1 − α

N

∑
j: sinj =0

Qj (6)

In agreement with the previous definition of eji, eij is the number
of losses of i against j and sinj =

∑
i eij is the in-strength of j (the

number of wins of j). In this way, both the winner of a match
is assigned a part of the losing team’s score (through Pi) as well
as the team that loses is assigned a part of the winning team’s
negative score (through Qi). Bi-directional PageRank is then a
simple combination of the two scores. The motivation for this
modification is straightforward: While Pi allows us to award team
i ‘‘positive’’ score based on which teams it won against, Qi allows
us to award team i ‘‘negative’’ score based on which teams it lost
4

against. As a practical illustration, take teams i and j that lost all
their matches so far, hence their PageRank scores are the same. If
team i lost against good teams (teams that lose rarely) and team
j lost against bad teams (teams that lose often), then Si > Sj.
he new algorithm thus allows us to distinguish the two teams.
ote that separate win and loss scores have been considered also
n [30].

.5. Evaluation metrics

On synthetic data, the resulting ranking of teams produced by
ranking algorithm can be directly compared with their fitness
alues which are thus used as the ground truth. The computed
anking of teams that is closest to the ranking of teams by their
ntrinsic fitness, on average, is then considered to be the best one.
ntrinsic fitness is a natural choice of the ground truth as it is a
idden variable that affects the game results. Of course, a team
ith low fitness can be lucky and beat a team with high fitness.

n the long run, however, the lucky and unlucky outcomes tend
o compensate each other, so it is indeed the fitness that we are
nterested in.

Denote the computed and ground-truth ranking of team i as
i and gi, respectively. We use the following distinct metrics to
uantify the ranking performance of an algorithm:

1. The Kendall correlation coefficient, τ , is defined as

τ (x, g) =
|{(i, j) : (xi − xj)(gi − gj) > 0}| − |{(i, j) : (xi − xj)(gi − gj) < 0}|

1
2n(n − 1)

(7)

where x and g are vectors of the computed rankings and
the ground-truth rankings, respectively. Kendall’s τ ranges
from +1 when rankings x and g are identical to −1 when
one ranking is the reverse of the other. Note that tied
ranking positions in the computed ranking (the ground-
truth ranking has no ties by construction) do not contribute
to τ . A degenerate ranking that would assign the same rank
to all teams would thus achieve τ = 0.

2. While Kendall’s τ takes all teams into account, the other
two metrics explicitly focus on how well the top teams are
ranked. The first metric is the average computed ranking
of the top 5 ground-truth teams. The smaller the value, the
better the computed ranking. The best value, (1+2+3+4+

5)/5 = 3, is achieved when the top 5 ground-truth teams
are in the top five positions of the computed ranking (not
necessarily in the right order).

3. The second metric is the area under the ROC-curve, com-
monly referred to as AUC in the statistics literature. We
again use the top 5 ground-truth teams as our target set;
the other teams constitute the ordinary set. To compute
AUC , we use the probabilistic approach [41] where we pick
n pairs of teams, one from the target set and the other from
the ordinary set. If the target team is ranked higher than
the ordinary team n′ times and tied n′′ times, the AUC value
can be computed as AUC = (n′

+ n′′/2)/n.

2.6. Empirical sports results data

We analyze here sports results data obtained from websites
http://www.win007.com/ and https://www.sports-reference.com
/. Except for soccer, all games have only two possible outcomes:
The home team wins or the away team wins. As we consider
an outcome model without draws, all draws (20%–25% of games
in one season for all six considered leagues) are ignored. In one
season, the participating teams play against each other two or

http://www.win007.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.sports-reference.com/
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Table 1
Basic description of the analyzed sports results sets. The league size is the number of competing teams (a range is provided if the number varies in
the considered period).
Sport Country League Name Label Size Years

Baseball

USA Major League Baseball – American League AL 14–18 1997–2016
USA Major League Baseball – National League NL 15–30 1997–2016
Japan Nippon Professional Baseball NPB 12–14 2009–2018
Mexico Ligue Mexicaine de Baseball LMB 14–18 2007–2019

Ice hockey
USA National Hockey League NHL 28–31 2000–2019
Swizerland Ligue Nationale A LNA 12–25 2009–2020
Germany Deutsche Eishockey Liga DEL 14–16 2007–2020

Soccer

Germany Deutsche Futball Liga Bundesliga 18 2000–2019
Italy Lega Serie A Serie A 20 2005–2019
Spain Primera division de Liga La Liga 20 1998–2017
England England Premier League EPL 20 1999–2018
USA Major League Soccer MLS 10–24 2000–2019
France Championnat de France de football Ligue 1 Ligue 1 18–20 2000–2019
China Chinese Football Association CSL 12–16 2004–2019

Basketball

Italy Lega Basket Serie A LBSA 15–18 2008–2019
China Chinese Basketball Association CBA 16–20 2007–2017
Spain Asociacion de Clubes de Baloncesto ACB 17–18 2007–2019
USA National Basketball Association NBA 29–30 2001–2020
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more times. We analyze only results from regular seasons, playoff
matches are ignored. See Table 1 for an overview of the analyzed
datasets and their basic statistical properties.

3. Results

3.1. Analysis of empirical datasets

Before assessing performance of respective ranking methods,
e calibrate the synthetic model in the following section and
ddress the degree assortativity hypothesis H1 in the next one.

odel calibration on sports results data. To determine realistic
alues of all N +2 model parameters (team fitness values, H , and
), we use maximum likelihood estimation for sets of results from
arious sports. For a given set of games with outcomes, G, and a
ingle game g ∈ G, we denote the home team as hg , the away
eam as ag , and the game result as Rg where Rg = 1 means that
he home team won game g and Rg = 0 means that the home
eam lost. The data likelihood given the model then has the form

(G|f1, . . . , fN ,H, δ) =

∏
g∈G

{
RgP(hg , ag )+ (1−Rg )

[
1−P(hg , ag )

]}
.

(8)

ikelihood maximization for the empirical datasets described in
ection 2.6 reveals that maximum likelihood estimates (MLE)
f team fitness values, f̂i, are close to the fraction of wins, wi,
f each respective team in the analyzed dataset. In particular,
he difference between the likelihood maximized over all N + 2
odel parameters and the likelihood maximized only over δ and
(with fi replaced by wi) is not sufficient to justify the higher

umber of parameters in the former model as judged by the
kaike information criterion for model selection [42]. This allows
s to write the simplified winning probability of the home team
s

(i ≻ j) = 1/
[
1 + e−(∆wi,j+H)/δ] (9)

here ∆wi,j := wi − wj is the difference between the win ratios
f the home and away teams.
When home advantage is absent (H = 0), denoting exp[fi/δ] :=

pi and exp[fj/δ] := pj transforms Eq. (3) to P(i ≻ j) =

i/(pi + pj) which is precisely the form assumed by the classical
Bradley–Terry model [19]. We see now that the model formu-
lation presented by Eq. (3) is still advantageous as: (1) Unlike
5

the ‘‘winning propensities’’ pi in the Bradley–Terry model, the
team fitness values fi in Eq. (3) directly correspond to the team
win ratios, (2) H introduces home advantage in a scale that
can be directly compared with the teams’ win ratios and their
differences (H = 0.1 is as important as a 0.1 difference in win
ratios between the teams).

Using four sample results sets, Fig. 1 shows a comparison
between Eq. (9) with maximum likelihood estimates for H and
δ and the empirical winning probability plotted as a function
of the win ratio difference between the competing teams. The
good agreement that can be observed in the whole range of win
ratio difference confirms that Eq. (3), on which Eq. (9) is based,
can model the empirical data well. The sigmoid curve’s steepness
in the figure is in a direct relation with the fitness sensitivity
parameter δ (smaller δ yields higher steepness). Note also that
(i ≻ j) > 0.5 when ∆wi,j = 0 which is a direct consequence of

a positive home advantage in all four results sets.
The maximum likelihood estimates for δ and H can be used

to compute the effective randomness of results, δ/σ (f ), and the
ffective home advantage, H/δ. As we found that win ratios w

pproximate well fitness values f , we measure sport random-
ess directly with δ/σ (w). Fig. 2 summarizes the results with
ne panel for each sport. We see that the sports substantially
iffer in their level of randomness as characterized by δ/σ (w)
baseball and basketball are the most and the least random sport,
espectively). Different leagues in the same sport have mostly
imilar δ/σ (w) values except for the CBA basketball league which
s significantly less random than NBA and LBSA (in fact, CBA is the
east random league on average among the analyzed 18 leagues).
he home advantage value is distributed between 0 and 0.25, and
he home advantage effect of basketball and football is more sig-
ificant than baseball and hockey. In agreement with Eq. (3), the
ffective strength of the home advantage is characterized by H/δ

hich is shown in Fig. 2 on the vertical axes. The values of H/δ

iffer significantly between the sports with soccer and basketball
howing considerably higher effective home advantage than ice
ockey and baseball. CBA is again outstanding by having the
ighest average effective home advantage. By contrast, baseball
eagues have average effective home advantage 5.4-times smaller
han CBA.

ndegree assortativity in sports results data. We now turn to inde-
ree assortativity. Following the methodology described in Sec-
ion 2.1, we obtain one data point (wi, w

up
i ) for each season and

each team. Data points from all teams in all studied seasons
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Fig. 1. Relationship between the win ratio difference and the home team winning probability for four distinct leagues. Symbols show empirical winning probabilities
for a given end of season win ratio difference (data points based on less than four games have been omitted), error bars show double of the standard error of the
mean, and lines show the model probability of winning given by Eq. (9) for the maximum likelihood estimates of δ and H (shown in each panel). The horizontal
nd vertical dashed lines show the zero win ratio difference and the baseline win probability of 1/2, respectively.
Fig. 2. Effective sport randomness, δ/σ (w), and effective home advantage, H/δ for the sports results sets from Table 1 (each panel shows a different sport). Each
symbol is based on estimates of δ and H in a single season. The underlying maximum likelihood estimates of δ range from 0.13 to 0.31.
(we always use a complete season) of a league are then used as
input for the linear regression between wi and w

up
i . Using the

-value threshold of 0.01, 7 leagues show significant indegree
ssortativity, 6 leagues show significant indegree disassortativity,
nd the remaining 5 leagues do not exhibit a significant indegree
ssortativity pattern. The leagues with an assortative pattern are:
PL, Bundesliga, Serie A, and Liga 1 (all four soccer) and CBA, NBA,
nd ACB (all three basketball). The strongest assortative pattern,
s measured by the slope of linear regression between wi and

w
up, is found for the CBA league which we previously found to be
i

6

the least random. A similar relation can be found between high
randomness of results and disassortativity: From ice hockey and
baseball leagues, which show high effective randomness in Fig. 2,
only NHL does not have a statistically significant disassortative
pattern. We can thus conclude that our hypothesis H1 is con-
firmed for less random sports leagues where the average indegree
of a node’s neighbors indeed grows, on average, with the node
indegree. However, indegree assortativity itself is no guarantee
that PageRank will perform well. A direct assessment of ranking
methods, which is the focus of the following section, is necessary
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Fig. 3. Performance of the studied ranking algorithms on synthetic data without home advantage for 30 teams. Panels (a)–(c) use three different evaluation metrics
and plot the results as a function of the fitness sensitivity parameter, δ, for various fractions of played matches, P . The lines represent mean results and the shaded
egions indicate the standard error of the mean, all determined from 100 independently created synthetic datasets. Mean performance differs significantly between
he algorithms (as judged by the Kolmogorov–Smirnov test) everywhere except for the regions where the shaded regions substantially overlap. Panel (d) shows the
endall’s τ difference between Bi-directional PageRank and the win ratio as a function of both δ and P .
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o establish the conditions under which PageRank outperforms
he benchmark ranking by the win ratio.

.2. Ranking performance on synthetic datasets

Our goal now is to address our hypothesis H2 by evaluating
he performance of different ranking algorithms on synthetic
ports results generated by the algorithm described in Section 2.3.
n simulations, we assume that there are 30 teams (N = 30);
he results are robust with respect to this choice. We begin by
tudying the case of no home advantage (H = 0) and explore a
ange of δ values which corresponds to the maximum likelihood
stimates of δ used in Fig. 2.
Fig. 3 shows the results of numeric simulations comparing the

hree considered ranking algorithms as a function of fitness sen-
itivity, δ, and the fraction of matches played, P . Panels a–c show
hat the comparison results are remarkably similar for the three
valuation metrics (Kendall’s tau, AUC and average ranking). In
articular, the results show that: (1) As P grows, the ranking
erformance improves as expected. (2) PageRank outperforms
he win ratio only when δ is sufficiently small and the range of
ageRank’s superiority shrinks as P grows. The threshold δ below
hich PageRank outperforms the win ratio is considerably stable
ith respect to the number of teams, N (results not shown).
3) The newly-proposed Bi-directional PageRank is always an
mprovement (or a tie) over standard PageRank (according to
he Kolmogorov–Smirnov, the improvements are statistically sig-
ificant). (4) Fig. 2 shows that a vast majority of the analyzed
atasets have δ > 0.15 which together with Fig. 3 implies that
he use PageRank brings no improvement in sport tournament
ankings. Even more, PageRank is significantly inferior for sports
ith high randomness (high δ) later in a season. Finally, the heat
ap in Fig. 3(d) compares bi-directional PageRank and the win

atio using Kendall’s τ for a broad range of the key parameters δ

nd P . We can see here well that a tie between the two ranking
lgorithms occurs at δ which progressively decreases as P grows.
ith respect to the estimates of δ presented in Fig. 2, we see
7

hat BiPageRank can outperform WinRatio for less random sports
hen P ≲ 0.2.
Based on Fig. 3, we can conclude that PageRank and bi-

irectional PageRank are both more sensitive than the win ratio
o increasing randomness of outcomes (represented by increasing
). This increased sensitivity can be explained by the algorithms’
etwork nature: While a ‘‘surprise’’ outcome of a single match
as only a local impact on the win ratio (only the two competing
eams are affected), PageRank propagates its scores further over
he whole network of teams. When δ is sufficiently large, the
urprising outcomes are numerous and their network propaga-
ion and accumulation are ultimately detrimental to the ranking
bility of PageRank and Bi-directional PageRank. We can thus
onclude that as hypothesis H1, hypothesis H2 is also confirmed
nly partially for sports that are sufficiently little random.
The top row of Fig. 4 evaluates the ranking performance of

lgorithms when the home advantage parameter, H , is positive.
e see that as H grows, the performance of all three ranking

lgorithms deteriorates. At the same time, the win ratio is more
obust to increasing H than the other two ranking methods,
hich is in line with its higher robustness to increasing δ. In
articular, the number of unexpected results (a weaker team wins
gainst a stronger team) increases as H grows and these unex-
ected results negatively affect the ranking results of PageRank
nd Bi-directional PageRank. The home advantage thus further
educes the limited range of applicability of PageRank (the range
n which PageRank outperforms the win ratio).

In synthetic data so far, we assumed the team fitness values
o be uniformly assumed. That this is not the case in empirical
ata can be easily illustrated as we have already shown that
he win ratio is a good approximation for team fitness. Fig. 4d
hows the win ratio in four different datasets and shows distinct
on-linearity for two of them. This motivates us to consider a
on-linear assignment of fitness in the form

i = β

(
i − 0.5

)α

+ γ (10)

N
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Fig. 4. Performance of the studied ranking algorithms on synthetic data with home advantage (top row) and with a non-uniform distribution of team fitness (bottom
ow). Panels (a)–(c) show the ranking performance vs. the home advantage parameter, H , for fixed δ = 0.1 (all other parameters as in Fig. 3). (d) The relation
etween the fraction of wins and the team rank (from the worst to the best) for four chosen result sets (NHL, 2011; ACB, 2011; LMB, 2012; Bundesliga, 2010).
anel (e) Fits of Eq. (10) for all seasons of seven different leagues. (f) The difference τ (BiPageRank) − τ (WinRatio) for synthetic data with various values of α and β

δ = 0.1, H = 0, and P = 0.1, results are averaged over 100 realizations).
hich fits well most of the considered datasets (see least-squares
its in Fig. 4d). Note that a power-law fitness distribution has been
onsidered before in [43]. In Eq. (10), α controls the heterogeneity
f the fitness distribution and β determines the difference be-
ween the worst and the best team. Once α and β are chosen, γ
s fixed by the relation

∑
i fi/N = 1/2 (the average win ratio must

e one half as someone’s win is always someone else’s loss). At
he same time, the absolute term γ does not influence the fitness
ifference fi−fj that determines the winning probability in Eq. (3);
his difference depends only on α, β , i, and j.

Fig. 4e further shows the fitted values α and β for seven repre-
entative leagues and helps us identify α ∈ (0, 3.5) and β ∈ (0, 1)
s the relevant ranges for these two parameters. Fig. 4f shows the
ifference between the win ratio and bi-directional PageRank for
ynthetic data generated with α and β in the identified range.
e choose here by purpose parameters that favor bi-directional
ageRank: Small randomness (δ = 0.1), no home advantage
H = 0) and few games played (P = 0.1). In agreement with
he results presented in Fig. 3, BiPageRank outperforms WinRatio
hen α = 1 and β = 1 (fitness values are then uniformly
istributed in the range [0, 1]). We see now that this is essentially
he ideal setup for BiPageRank as its advantage decreases when
substantially differs from 1 as well as when β is lower than

. This is because the average fitness difference between the
eams then decreases which, in agreement with Eq. (3), increases
he probability of unexpected outcomes. Thus-introduced ran-
omness is detrimental to the performance of PageRank and
i-directional PageRank which is well visible in Fig. 4e. When δ,
, or P increase, the behavior is similar, only the region where
iPageRank outperforms WinRatio shrinks.
In summary, we identified the sensitivity of PageRank and bi-

directional PageRank to unexpected results as the main factor
limiting their performance. Unexpected results are due to intrin-
sic randomness of sport, home advantage, and similarity of team
fitness values (in reality, many other factors contribute—weather,
immediate form of individual players, injuries, and others). As
our initial empirical analysis shows, all these factors are common
to sports results data. If substantial randomness of results is
inevitable, one can ask if we can at least suppress the unex-
pected results to help PageRank/BiPageRank perform better and
8

possibly outperform the win ratio. To explore the feasibility of
this idea, we benefit from the use of synthetic data where team
fitness values are known. We can thus identify the unexpected
results (wins of weaker teams against stronger teams) and either
remove them from the dataset (see Fig. 5a) or reverse them
(see Fig. 5b). In Fig. 5, we remove or correct a gradually in-
creasing fraction of unexpected outcomes (η = 1 means that
all unexpected outcomes have been treated) which naturally
benefits all three evaluated algorithms. However, PageRank and
bi-directional PageRank require large η for their performance to
improve substantially whereas the win ratio improves uniformly
in the whole range of η. As a result, there is no η for which
PageRank or bi-directional PageRank perform better than the
win ratio. In empirical data where team fitness values are not
directly known, one would first have to identify the unexpected
results, which would further lower the efficiency of this approach.
We can thus conclude that the removal or correction of unex-
pected results cannot help PageRank and bi-directional PageRank
outperform the win ratio.

3.3. Ranking performance on empirical datasets

After comparing the ranking performance on synthetic datasets
in the previous section, we now present a similar comparison
on empirical datasets. Since team fitness values are not known
in empirical data, we use the ranking of all teams at the end
of the season as the ground truth against rankings produced
by respective ranking algorithms in earlier parts of the season.
This choice is motivated by the earlier observation that the team
win ratio is a good proxy for team fitness [see the discussion
before Eq. (9)]. Denoting the number of games in season s as
NS , we then use first PNS games as input for algorithm A and
quantify the algorithm’s performance using Kendall’s τ between
the computed ranking and the end of season number of wins,
thus obtaining τS(P, A). This is then averaged over seasons to
produce τ (P, A). In this way, we compare the performance of
the win ratio with that of bi-directional PageRank by evaluating
τ (P,BiPageRank) − τ (P,WinRatio).

The results are shown in Fig. 6a where each horizontal bar rep-
resents one league with left and right sides representing the start
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Fig. 5. Ranking performance of the evaluated algorithms when fraction η of unexpected outcomes (i wins over j when fi < fj) are: (a) removed, (b) reverted.
imulation parameters: N = 30, δ = 0.25, H = 0.08, P = 1.0, α = 1.5, β = 0.5. The results are averaged over 100 independent realizations of the model, shaded
nd the shaded regions indicate double of the standard error of the mean.
Fig. 6. The performance difference τ (P,BiPageRank) − τ (P,WinRatio) in empir-
ical sports data where the final win ratio in each season is used as the ground
truth (the results are averaged over the last 10 available seasons). Individual
rows represent different leagues from the beginning (P = 0, left) until the end
P = 1, right). Vertical markers highlight the highest P value where BiPageRank
utperforms WinRatio. Panels (a) and (b) are obtained using the game outcomes

and scores data, respectively.

and the end of the season, respectively, and the computed dif-
ferences between BiPageRank and WinRatio are color-coded. We
see that despite using the final fraction of wins in a season as the
ground truth (which obviously favors WinRatio), PageRank is still
ble to outperform WinRatio when P is small. In a direct parallel
ith previously presented results on synthetic data, the win ratio
utperforms bi-directional PageRank almost always except for
he very beginning of the season (small P). To highlight the transi-
ion between the early part of the league when BiPageRank is best
nd the later part when the win ratio is best, we mark the largest
at which τ (P,BiPageRank)− τ (P,WinRatio) > 0 with a vertical

line for each league. These threshold P values are around 0.1 or
lower except for two leagues (ACB and DEL) for which narrow
ranges with weakly positive τ (P,BiPageRank) − τ (P,WinRatio)
appear also for large P . The overall behavior is best visible in the
last row where the difference between BiPageRank and WinRatio
is averaged over all considered leagues. The threshold P value
here is 0.035 and WinRatio never outperforms BiPageRank by
more than 0.03 (as measured by Kendall’s τ ). This confirms in
a model-free way that PageRank and BiPageRank are beneficial
or sports results data only when the information is scarce (P is
low). When sufficiently many teams have already played against
each other, the win ratio generally ranks the teams better.

To conclude, we test if replacing binary match outcomes with
the corresponding scores alters the presented results. To this end,
we weigh the link representing a match between teams i and
j with the score difference. This reflects the hypothesis that a
match won by a narrow margin discerns the competing teams’
9

abilities less than a match where the score difference is large.
Results obtained by repeating the above-described experiments
for three basketball leagues (Fig. 6b) agree well with the results
obtained using binary match outcomes (Fig. 6a). This suggests
that our results are robust for different representations of the
input sports results data.

4. Conclusions

In this paper, we have focused on sports results data from
regular leagues where a fixed number of teams play against each
other. Results of the games can be represented as a directed
network where a directed link from i to j is formed when team
j has won over i. We have found that results from less random
sports, in our case soccer and basketball, result in networks with
indegree assortativity which is the necessary condition for PageR-
ank to perform well. We have calibrated a model for synthetic
sports results, a variant of the classical Bradley–Terry model [19].
The model uses only two parameters, home advantage H and
sport randomness δ, yet it produces excellent agreement with
empirical sports results.

We have assessed the ranking performance of three distinct
methods to rank the competing teams: Their win ratio, their
PageRank score, and their newly proposed bi-directional PageR-
ank score. Bi-directional PageRank combines two different scores:
One positive which accumulates mainly through winning over
good opponents (as in PageRank), the other negative which ac-
cumulates mainly through losing against bad opponents. The
ranking algorithms have been first evaluated on synthetic data.
The main finding is that PageRank only outperforms the win ratio
when a small fraction of all games have been played and random-
ness of results are sufficiently small. In particular, PageRank yields
for the levels of randomness found in empirical sports data (we
considered baseball, ice hockey, soccer and basketball). Note that
while [44] reports that incompleteness of the network is harmful
to PageRank’s performance, which is natural, we find that incom-
pleteness of the network is actually favorable to PageRank when
its performance is judged relatively to the win ratio benchmark.

The newly proposed BiPageRank outperforms PageRank for all
parameter settings, yet it outperforms WinRatio only for sports
with the lowest randomness when a small fraction of all games
(20%) have been played. The added value of introducing
BiPageRank thus lies in demonstrating that PageRank alone, de-
spite its wide use, is not necessarily the best algorithm for sports
results data. The reason why BiPageRank outperforms PageRank
is simple: It uses more information by taking into account against
whom the teams have lost (by comparison, PageRank considers
only against whom the teams have won). As a result, two teams
that lost all their games so far can be distinguished by who were

their opposing teams, for example.
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Fig. A.7. Parameter estimation results with and without ties for two soccer leagues, MLS and EPL. The dashed lines show the average parameter value for the two
espective models over the analyzed seasons.
Fig. A.8. Performance of the studied ranking algorithms on synthetic data for 30 teams with ties (φ = 0.6) and without home advantage (H = 0). As in Fig. 3, results
re shown for three different fractions of played matches, P .
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Both PageRank and BiPageRank further suffer when other
ources of randomness—in our case home advantage and non-
niform distribution of team abilities—are considered. The sen-
itivity of PageRank, and closely related BiPageRank, to changes
n the data has been already discussed in, for example, [45]. We
emonstrate here, for the first time, that this sensitivity combined
ith the natural randomness of sport renders PageRank of little
se on results from a sport tournament. By contrast, the ranking
f teams by their win ratio turns out to be comparatively robust
o various sources of randomness in results. Nevertheless, our
ramework for generating synthetic data can be used to continue
he search for an algorithm that would outperform the simple
anking of teams by the number of wins.

To keep the model for synthetic sports results simple, we
eglected further factors that can be addressed in future research.
he assumption of fixed team fitness can be relaxed to allow
or modeling a variable sport level or temporary adverse effects
f injuries, for example. The simple tournament setup can be
eneralized to irregular games between the teams as is the case
or national teams in soccer or players in tennis, for example. In
ennis, in particular, each player has recently played only a small
raction of other players. Using the terminology of our model, the
ffective P is small, which suggests that PageRank might have
 u

10
ome merit for tennis data. To set up a model for tennis-like
ynthetic results, and evaluate ranking algorithms on such data,
s another exciting open direction.

Besides providing specific results on the use of PageRank on
ports results data, our work highlights the need to carefully
ssess the actual performance and limitations of network met-
ics. This need is exacerbated by the complexity of systems that
roduce the data, which makes it difficult to judge ex-ante if
n algorithm is a good match for the data. In citation data, for
xample, PageRank has been frequently used yet [46] shows
hat the natural growth of the citation network makes PageRank
cores difficult to interpret. If a ground truth set is available, a
omparative assessment on empirical data is possible. This can be
ade more robust by considering multiple empirical datasets and
ultiple ground truth sets as done recently in [47] to compare

anking metrics for citation data. If a ground truth set is not
vailable but a credible model for a given system exists, an
ssessment using synthetic data (as we have used here) is a prac-
ical alternative. Using a network metric without understanding
ts scope and limitations directly induces the risk of obtaining
nreliable or inferior results.
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ppendix. Ranking performance on synthetic datasets with
ies

Similarly as proposed by Rao and Kupper [20], our data-
enerating model can be modified to produce ties by writing the
robabilities of home team i winning and losing against away
eam j, respectively, as

(i ≻ j) = 1/
[
1+e(fj−fi−H)/δ+φ

]
, P(j ≻ i) = 1/

[
1+e(fi−fj+H)/δ+φ

]
.

(A.1)

he tie probability is then P(i ∼ j) = 1 − P(i ≻ j) − P(j ≻ i). The
new parameter φ ≥ 0 determines the fraction of tied matches;
when φ = 0, our original model is recovered as P0(i ∼ j) = 0.

We first estimate the model parameters, δ, H , and φ using
MLE as before. We find that taking ties into account has little
effect on the estimated values of δ and H (Fig. A.7). With ties,
the estimated home advantage is systematically lower by 0.04,
on average. The estimated values of the ties-related parameter φ

mostly lie between 0.5 and 0.7 for both leagues.
Except for ties introduced through Eq. (A.1), the algorithm to

generate synthetic data is the same as before. In the network
representation, every tied result is represented by a pair of edges
of opposing directions with weights 0.5 each. Using φ = 0.6
motivated by the parameter estimation above, approximately 25%
of all results in the synthetic data are ties (the exact fraction
varies with δ). We find that the ranking performance of different
algorithms on data with ties (Fig. A.8) is qualitatively consistent
with the results presented before for data without ties (Fig. 3).
As a result of improved performance of WinRatio, especially for
larger δ, the range of δ where PageRank and BiPageRank are su-
perior to WinRatio is reduced by introducing ties in the data. This
can be due to half-points awarded for ties making the WinRatio
ranking less degenerate, and thus improving its ranking ability. In
summary, our main finding holds also when ties are introduced
in the data.
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