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Background. Decision curve analysis can be used to determine whether a personalized model for treatment benefit
would lead to better clinical decisions. Decision curve analysis methods have been described to estimate treatment
benefit using data from a single randomized controlled trial. Objectives. Our main objective is to extend the decision
curve analysis methodology to the scenario in which several treatment options exist and evidence about their effects
comes from a set of trials, synthesized using network meta-analysis (NMA). Methods. We describe the steps needed
to estimate the net benefit of a prediction model using evidence from studies synthesized in an NMA. We show how
to compare personalized versus one-size-fit-all treatment decision-making strategies, such as ‘‘treat none’’ or ‘‘treat
all patients with a specific treatment’’ strategies. First, threshold values for each included treatment need to be
defined (i.e., the minimum risk difference compared with control that renders a treatment worth taking). The net
benefit per strategy can then be plotted for a plausible range of threshold values to reveal the most clinically useful
strategy. We applied our methodology to an NMA prediction model for relapsing-remitting multiple sclerosis, which
can be used to choose between natalizumab, dimethyl fumarate, glatiramer acetate, and placebo. Results. We illu-
strated the extended decision curve analysis methodology using several threshold value combinations for each avail-
able treatment. For the examined threshold values, the ‘‘treat patients according to the prediction model’’ strategy
performs either better than or close to the one-size-fit-all treatment strategies. However, even small differences may
be important in clinical decision making. As the advantage of the personalized model was not consistent across all
thresholds, improving the existing model (by including, for example, predictors that will increase discrimination) is
needed before advocating its clinical usefulness. Conclusions. This novel extension of decision curve analysis can be
applied to NMA-based prediction models to evaluate their use to aid treatment decision making.

Highlights

� Decision curve analysis is extended into a (network) meta-analysis framework.
� Personalized models predicting treatment benefit are evaluated when several treatment options are available

and evidence about their effects comes from a set of trials.
� Detailed steps to compare personalized versus one-size-fit-all treatment decision-making strategies are

outlined.
� This extension of decision curve analysis can be applied to (network) meta-analysis–based prediction models

to evaluate their use to aid treatment decision making.
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Randomized controlled trials (RCTs) and their meta-
analyses have traditionally focused on inferences about
treatment effects for the average patient.1 Yet, what
clinicians want to know is the treatment effect for the
patient in front of them, and the effects of treatment may
differ between individuals. To identify the best treatment
option for an individual, researchers can use prediction
models to evaluate the treatment effects on health
outcomes as a function of patient-level characteristics.2–5

Personalized prediction models could be used to iden-
tify groups of patients for which the benefits of treatment
outweigh the harms. Doing so would require extensive
validation, and such validation should include an evalua-
tion of clinical utility. The latter refers to the ability of
the model to guide treatment decisions at the point of
care. While methods to evaluate a model’s performance
have been well studied and are described in the literature
(e.g., calibration measures, the area under the curve,
etc.),6,7 evaluation of the clinical utility of a model is a
relatively new concept.

Decision curve analysis (DCA) has been proposed to
evaluate the clinical utility of personalized prediction
models.8,9 DCA can be applied to models that predict an
absolute risk (such as a model to predict the risk of

cancer to guide decisions about biopsy) and those pre-
dicting treatment benefit (such as a model to predict the
change in outcome associated with drug therapy).8,10,11

The data used to calculate the net benefit (NB) for a
treatment strategy typically come from an RCT that
compares 2 treatments: a reference treatment (such as no
treatment or placebo) and an active treatment of interest.
Papers, software, tutorials, and data sets on DCA meth-
odology can be found at www.decisioncurveanalysis.org.

There are often several treatment options for a given
condition. Unfortunately, there is often uncertainty
about their relative benefits due to a lack of a direct
head-to-head comparison in a single RCT. Evidence
synthesis in the form of pairwise meta-analysis (PMA)
and its extension, network meta-analysis (NMA), can be
used both to structure the evidence base (summarizing
direct and indirect comparisons) and to produce an
estimate of the effects of any treatment against other
available options. It has been found that prediction
models based on (network) meta-regression of multiple
individual patient data (IPD) can be used to identify the
best treatment option for an individual patient.10,12–14

Consider a patient diagnosed with relapsing-remitting
multiple sclerosis (RRMS) who is contemplating starting
a disease-modifying drug. The individual and her or his
clinician may have access to the results of an NMA of
aggregated data to inform their decision, but this evi-
dence gives insight into only the expected health out-
comes and the efficacy of the treatments being considered
for the ‘‘average patient’’ in the model.15–17 Personalized
treatment recommendations can be obtained if patient
characteristics are taken into account when predicting the
outcome under different treatment options. This can be
achieved using network meta-regression with IPD data,12

with the model indicating the optimal drug (in the case of
RRMS treatment decision, this may be the one that mini-
mizes the predicted risk to relapse over the time horizon
of 2 y) for any given patient profile. Extending this idea
to several outcomes and accounting for the tradeoff
between safety and efficacy will result in a hierarchy of
treatment options that is tailored to a participant’s
characteristics.18,19

In this article, we extend the DCA methodology, as
proposed by Vickers et al.,9 to evaluate the clinical
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usefulness of a personalized prediction model that aims
at recommending a treatment among many possible
options according to individual characteristics, such as
the one described above. The focus of the article is meth-
odological, and we use an example with RRMS only to
outline the developed methodology. This work is sup-
ported and funded by the HTx. The HTx is a Horizon
2020 project supported by the European Union lasting
for 5 y from January 2019. The main aim of HTx is to
create a framework for the next-generation health tech-
nology assessment to support patient-centered, societally
oriented, real-time decision making on access to and
reimbursement for health technologies throughout Eur-
ope. We describe the network meta-regression prediction
model in the next section. In the ‘‘Methods’’ section, we
describe ways to select the threshold values for each
treatment option and how treatment recommendations
can be made based on the results of a network meta-
regression prediction model, and we describe the estima-
tion of quantities in DCA methodology from PMA and
NMA data sets. We show the results from the case study
in the ‘‘Results’’ section, and we conclude with a discus-
sion of the advantages and limitations of the proposed
approach.

Case Study: Personalized Treatment

Recommendation for Patients with RRMS

Multiple sclerosis (MS) is an immune-mediated disease
of the central nervous system with several subtypes. The
most common subtype is RRMS.20 Patients with RRMS

present with acute or subacute symptoms (relapses)
followed by periods of complete or incomplete recovery
(remissions).21 Effective treatment of patients with
RRMS can prevent disease progression and associated
severe consequences, such as spasticity, fatigue, cognitive
dysfunction, depression, bladder dysfunction, bowel dys-
function, sexual dysfunction, pain, and death.22 There
are several available treatment options for RRMS, and
their efficacy and safety profiles vary. For instance, nata-
lizumab is more effective (on average) than dimethyl
fumarate but associated with important side effects and
increased risk of progressive multifocal leukoencephalo-
pathy, which can cause death.23,24

Recently, a 2-stage model was presented to predict the
personalized probability of relapse within 2 y in patients
diagnosed with RRMS.12 Three phase III RCTs were
used: AFFIRM, DEFINE, and CONFIRM.25–27 Patients
were randomized into 3 active drugs (natalizumab, glati-
ramer acetate, dimethyl fumarate) and placebo, as shown
in Figure 1.

In a first stage, the baseline risk score for relapse was
developed, which is a score that summarizes the patient-
level characteristics and indicates the severity of the base-
line health condition. In a second stage, the baseline risk
score was used as the only effect modifier, which has an
impact on relative treatment effects, in a network meta-
regression model to predict the risk to relapse within the
next 2 y under the 3 drugs or placebo. The results are
presented in Figure 2 as well as in an interactive R-Shiny
application available at https://cinema.ispm.unibe.ch/shi-
nies/koms/. A detailed description of the development of
the RRMS personalized prediction model, which we use
as an example here, has been previously given.12

Such models can be used to guide clinical decisions,
assuming heuristically that relapse is the only health out-
come of interest. For example, this prediction model
would recommend dimethyl fumarate to patients whose
baseline risk is lower than 25% and natalizumab to
patients whose baseline risk is higher than 25%. How-
ever, even when a patient has baseline risk score equal to
30%, where natalizumab minimizes the predicted risk to
relapse, the absolute predicted difference in relapse prob-
ability is only 5% compared with dimethyl fumarate. In
addition, natalizumab is a drug with more serious side
effects compared with dimethyl fumarate; hence, the
doctor in discussion with the patient might decide to
administer dimethyl fumarate.

We want to evaluate whether this personalized predic-
tion model could guide the decision-making process. We
will compare the treatment decisions that this model
entails (‘‘treat patients according to the prediction
model’’) to those from ‘‘one-size-fit-all’’ strategies: ‘‘treat

Figure 1 Net-graph: treatments compared in each one of the
available randomized controlled trials: AFFIRM, DEFINE,
and CONFIRM.26–28
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none,’’ ‘‘treat all patients with natalizumab,’’ ‘‘treat all
patients with dimethyl fumarate,’’ and ‘‘treat all patients
with glatiramer acetate.’’

Methods

In the next section, we describe how treatment recom-
mendations via a prediction model are reached when we
have multiple treatment options. In the subsequent sec-
tion, we introduce the proposed extension of the DCA
methodology when considering several competing treat-
ment strategies. In the ‘‘Comparing Different Treatment
Strategies via DCA’’ section, we describe the implemen-
tation and software used to evaluate the model on
predicting the optimal treatment to prevent relapsing
within the next 2 y in RRMS.

Threshold Values

Let us consider that there are several treatment options
available for a health condition. Each available treat-
ment option is denoted with j, where j= 1, 2, . . . , J .
Each treatment is associated with different side effects,
cost, and inconvenience. For a dichotomous outcome,
the threshold value Tj for treatment j is defined as the
minimum risk difference compared with control treat-
ment that renders treatment j worth taking. Tj sums into
a single value—the harms, costs, and inconvenience of
treatment j—and expresses how much benefit would be
expected to outweigh the harm that treatment j might
cause. At a population level, setting Tj = 20% means

that we would be willing to treat up 5 patients with j to
prevent 1 patient relapsing; 4 patients will be unnecessa-
rily taking the drug (and hence subjected to its toxicity)
and are traded against 1 patient with prevented relapse.
In the RRMS example, it would be reasonable to set a
lower threshold for dimethyl fumarate and glatiramer
acetate compared with natalizumab (TDF ¼ TGA ¼ 10%
and TN ¼ 20%) because of their different side effect
profiles.

Note that specifying Tj is not a novel feature of our
proposed methodology but rather a routine and neces-
sary aspect of traditional clinical trial methodology. It is
required both to determine sample size and to evaluate
the clinical relevance of the findings: if the difference in
event rates between treatment j and control is statistical
significant but less than Tj, we infer that while better than
control, j should not be used in practice. As different
patients might weight differently the risk of an event and
risks associated with each treatment, a clinically relevant
range of threshold values for all treatment options may
be indicated.28 In the RRMS example, we used a range
of threshold values based on discussions with 2 experi-
enced MS neurologists (see the acknowledgments) on the
drugs’ side effects and toxicity to illustrate how the sug-
gested methodology could be applied.

Reaching Treatment Recommendations when
We Have Multiple Options via a Model

Let us consider a personalized prediction model for the
probability of an event, Ri, j, for each patient i, where

Figure 2 Estimated probability to relapse within the next 2 y as a function of the baseline risk score. The x-axis shows the
baseline risk score of relapsing within the next 2 y, and the y-axis shows the estimated probability of relapsing within the next 2 y
under each of the treatments. Between the 2 dashed vertical lines are the baseline risk values observed in the data used.
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i = 1, 2, ., N, under each available treatment option j,
where j= 1, 2, . . . , J . Then, the risk difference, RDi, j, for
patient i between treatment j and the control treatment
(or placebo) is the difference between the patient’s pre-
dicted probabilities under these 2 options: RDi, j=
Ri, control � Ri, j: Whether patient i will be prescribed treat-
ment j depends on several factors. First, treatment j

needs to be effective ,RDi, j.0; that is, it must decrease
the predicted probability of a harmful outcome com-
pared with the control treatment. Second, the benefits of
treatment need to outweigh its harms. For example,
natalizumab is a drug with important side effects and is
associated with increased mortality.23,24 Now, imagine
an RRMS patient, whose predicted risk to relapse within
2 y is decreased by RDi,N = 3% under natalizumab
compared with placebo. It is possible that, given the side
effects of treatment, this patient will not choose natalizu-
mab for such a small reduction in the predicted probabil-
ity of relapse.

We define the threshold value Tj as the minimum risk
difference compared with control that renders treatment
j worth taking. Tj depends on the risks, harms, costs, and
inconvenience of treatment j. For a patient i, the recom-
mended treatment j under the prediction model is the one
that satisfies max RDi, j � Tj

� �
, between those treatments

with RDi, j � Tj. When all active treatments lead to
RDi, j\Tj, then the control treatment is recommended for
patient i. In Table 1, we present a fictional example
showing how treatment recommendation is made via a
prognostic model, with assumed threshold values
TDF=TGA=10% for dimethyl fumarate and TN=20%
for natalizumab.

While the model makes personalized predictions under
each treatment j, the threshold values Tj are not based on
individual preferences.28 To evaluate the clinical useful-
ness of the model, we first need to understand the typical
range of preferences of patients, with respect to the

possible tradeoff between the harms and benefits of each
treatment. Then, these preferences will determine the
range of thresholds over which the clinical utility of the
model comparing the various competing strategies
should be assessed.28

Comparing Different Treatment Strategies via DCA

In the case of medical treatments, there are several deci-
sion strategies that can be evaluated and compared. Con-
sider a treatment strategy s that refers to the choice
between j= 0, 1, . . . J treatments, with 0 denoting the
control. That strategy recommends a treatment for each
patient and can be ‘‘treat all with drug j’’ (s= j), ‘‘treat
none’’ (s= 0), or a more nuanced strategy suggested by
a prediction model. A strategy associated with a predic-
tion model was discussed in detail in the previous sec-
tion; now assume that the recommended treatment for a
patient is well defined in each of the s competing strate-
gies. Control could be any treatment or combination of
treatments used as reference (e.g., standards of care, pla-
cebo, or no treatment at all). From now on, we will
assume placebo as control and strategy s= 0 as the
‘‘treat none’’ strategy.

The measure of performance of each strategy is the
NB. The NB is the benefit that a decision entails minus
the relevant harms weighted by a tradeoff preference
value. In the case of medical treatments, benefit could be
measured as the reduction in a harmful health outcome
(e.g., relapses) with the treatment. Harms include all dis-
benefits of treatment, including side effects, risks, finan-
cial cost, and inconvenience. Vickers et al. described in
detail the DCA methodology and defined the net treat-
ment benefit for a single treatment.9 The NB estimation
involves counterfactuals, the unobserved outcome if a
particular strategy is employed. Consequently, the
estimation of NB for a model predicting treatment
benefit is best estimated using RCT data.9

Table 1 Reaching the Recommended Treatment, via a Prognostic Model, between 4 Options: Placebo, Glatiramer Acetate,
Dimethyl Fumarate, and Natalizumab (Hypothetical Example in Relapsing-Remitting Multiple Sclerosis)

Treatment Placebo Glatiramer Acetate Dimethyl Fumarate Natalizumab

Predicted risk to relapse within 2 y (Ri, j) 75% 66% 52% 44%
Predicted risk difference versus placebo (RDi, j) - 9% 23% 31%
Threshold value for treatment j (Tj) 10% 10% 20%
RDi, j � Tj 21% 12% 11%
Recommended treatment via the prediction model Dimethyl fumarate

The bold font indicates the maximum difference between the risk difference of treatment j, RDi, j, and its threshold value Tj, based on which

the optimal treatment via the prediction model is recommended.

Chalkou et al. 5



We generalize the idea to the NB of a strategy s, NBs,
for 2 or more treatment options, and we show how to
estimate it in a PMA and NMA of RCTs. We define NBs

as the benefit (decrease in event rate using strategy s)
minus the treatment rates multiplied by a set of
treatment-specific threshold values Tj. The threshold val-
ues Tj are measured on a risk scale (from 0 to 1), which
identifies which reduction in risk will justify the use of
each treatment. Notice that the value of Tj may vary
from patient to patient depending on personal prefer-
ences and other medical considerations (such as comor-
bidities). The strategy s with the highest NB, for specific
threshold values Tj, is chosen as leading to better clinical
decisions.9

More specifically, we define the NB of each strategy s

compared with strategy s= 0 (‘‘treat none’’) as

NBs = e0 � es �
X

j

ps, j 3 Tj,

where e0 denotes the event rate under no treatment, es

the event rate under strategy s, and ps, j the proportion
of patients treated with treatment j under strategy s.

Estimation of e0. When data from 1 RCT with placebo
are available, e0 is directly quantifiable from the data as
the observed proportion of participants with an event in
the placebo arm ê0 = eData

0 , where Data is the data set of
all available RCTs.9 However, when we have several
RCTs instead of one, the estimation needs to account for
the fact that patients are randomized within trials but
not across them. Hence, when estimating event rates, we
cannot simply pool treatment arms together or results
will be biased (Simpson’s paradox).29,30 In this case, we
first need to perform a meta-analysis of all placebo event
rates in Data across trials to obtain an estimate of the
pooled event rate in the placebo ê0

Estimation of ps, j and es. The interest now lies in the esti-
mation of es and ps, j with strategy s when several RCTs

are available that compare different subsets of the treat-
ments. This is accomplished by considering the congru-
ent data set for strategy s, Datas. A congruent data set
for s is the subset of Data including those patients for
whom the recommended treatment coincides with the
actual given treatment. Using Datas, we estimate all ps, j

as the observed proportion of participants under each

treatment j in strategy s, p̂s;j ¼ p
Datas

s;j .

To derive es we need the following steps. First, we
need to estimate the event rate es, j for each treatment as

recommended by strategy s. Then, the weighted average
event rate under strategy s can be estimated as

ês ¼
XJ

j¼0

p
Datas

s;j 3 ês;j:

The quantity ês;j depends on the strategy and the avail-
able data.

1. When we have only 1 RCT, then ês;j ¼ e
Datas

j ; that is,
es, j is estimated as the observed proportion of events
under arm j in Datas.

2. When we have several RCTs, we first need to perform
a meta-analysis of all placebo arms in Datas to obtain
an estimate of the pooled placebo event rate ês;0.
Then, we perform a synthesis of all studies in Datas to
estimate the pooled risk ratio of each treatment versus
the control, RR

Datas

j . Then, the treatment-specific event
rates are ês;j ¼ ês;0 3 RR

Datas

j .
a. In case Datas does not include placebo arms

(e.g., when the treatments are highly effective or
when the threshold values set are very low, it is
more likely for the model to recommend an
active treatment rather than placebo, and there-
fore, the congruent data set will include only
active treatment arms), we could estimate the
pooled event rate ês;k for another treatment k

(instead of ês;0), designated as the reference treat-
ment, included in the congruent data set. Then,
we again perform a synthesis of all studies in
Datas to estimate the pooled risk ratio of each
treatment versus k treatment, RR

Datas

j . Then, the
treatment-specific event rates are ês;j ¼ ês;k 3

RR
Datas

j

b. When Datas includes only 1 treatment arm, we
could estimate the event rate ês;j as a meta-
analysis of all j arms in Datas:

3. When the strategy s is treat all with treatment j = x,
with x 6¼ 0, the event rate ês;x can be estimated from

the entire data set Data as ês;x ¼ êx ¼ ê0 3 RRData
x .

The observed proportion pDatas
s, x is equal to 1, whereas

the observed proportion p
Datas

s, j 6¼x is equal to 0.

4. When the strategy s is ‘‘treat none,’’ then the NB is 0

as ês;0 ¼ ê0, and the p̂s;j ¼ p
Datas

s;j is 0 for all the avail-
able treatments j.

Hence, considering the nature of the strategies, the
congruent data set, Datas, is mainly used when the NB
of a personalized model needs to be estimated. For the
NB estimation of all other ‘‘fit all’’ strategies, the entire

6 Medical Decision Making 00(0)



data set, Data, is used. Considering also the nature of the
available data, when several RCTs comparing several
treatments are available, NMA and/or meta-analysis
must be performed for the NB estimation; however,
when only 1 RCT is available, the observed proportion
of the event can be directly estimated.

NB and comparisons of strategies. We define the NB,
which can be applied to all strategies and settings (i.e., 1
RCT, several RCTs, single treatment comparison, and
several treatment comparisons) as

NBs = e0 �
XJ

j= 0

ps, j 3 es, j �
XJ

j= 0

ps, j 3 Tj:

The NBs ranges between �maxfTjg and 1: It is �maxfTjg
when there is no decrease in event rate compared with
‘‘treat none,’’ and at the same time, all patients take the
drug with the highest threshold value Tj. NB has a theo-
retical maximum of 1 for the impossible case in which the
decrease in event rate is 100% and none of the patients
takes any treatment.

The advantage of any strategy s=w compared with a
strategy s=m, for specific threshold values Tw and Tm,
can be calculated as the difference between the NBw and
the NBm, and can be interpreted in terms of the decrease
in event rate as follows: the use of strategy w compared
with strategy m leads to NBw � NBm fewer events for a
constant treatment rate in each treatment j:

All of the required steps to calculate the NB for sev-
eral strategies into an NMA of the RRMS example are
presented in detail in Table 2. Following these steps, the
NB for each strategy s is estimated for each combination
of threshold values. If the personalized model has the
highest NB across the entire range of threshold values,
then its clinical relevance compared with the default stra-
tegies can be argued. If the optimal approach depends on
the threshold values, then the typical conclusion would
be that the personalized model is of unproven benefit.28

Application in Comparison of Treatment
Strategies in RRMS

We used NB to evaluate the clinical usefulness of the
2-stage personalized prediction model (described briefly in
the ‘‘Case Study’’ section). As natalizumab is a treatment
with serious side effects and is less safe than the other 2
options, patients would be prescribed natalizumab only
when their benefit (here the predicted risk difference) is
high. Dimethyl fumarate and glatiramer acetate, on the

other hand, are similar in terms of side effects and consid-
ered safer than natalizumab. In line with 2 consulting MS
neurologists (see the acknowledgments), the threshold for
natalizumab was set higher than those for dimethyl fuma-
rate and glatiramer acetate.

We first assume a threshold value TN = 20% for nata-
lizumab and an equal (and lower) threshold value for the
other 2 treatments, TGA = TDF = 10%. These threshold
values reflect the drugs’ profiles. Different patients might
weight in differently the risk to relapse and the risks asso-
ciated with each treatment. Therefore, we consider a
range of threshold values for natalizumab (19%–40%) in
combination with a range of common threshold values
for dimethyl fumarate and glatiramer acetate (4%–25%).
These ranges were selected based on safety concerns for
each drug and on the congruent data set’s limitations;
for lower threshold values, the NB could not be calcu-
lated because the congruent data set had only single-arm
studies; hence, NMA could not be conducted. Then we
plot NBs as a function of threshold values Tj, to identify
which treatment strategy leads to better clinical decision
under different preferences on threshold values.

All of our analyses were done in R,31 using version
3.6.2. We made the code available in the following
GitHub library: https://github.com/htx-r/Reproduce-
results-from-papers/tree/master/DCA_NMA. The analy-
sis code uses the metaprop command to estimate the
event rate in control arm and the netmeta command to
estimate the relative risk for each active treatment versus
placebo.

Results

The results from comparing the 5 competing strategies
with treatment thresholds TN ¼ 20%, TDF ¼ TGA ¼ 10%
are presented in Table 3, following all the steps presented
in Table 2. A more detailed description of these estima-
tions is presented in the appendix. Using these thresholds,
the strategy based on the prediction model will recom-
mend dimethyl fumarate to 1251 patients, natalizumab to
740 patients, and placebo to 9 patients. No patient is
recommended to take glatiramer acetate. For the example
threshold values (TN ¼ 20%, TDF ¼ TGA ¼ 10%), the
congruent data set with the model strategy includes 652
patients: 4 patients in placebo, 418 in dimethyl fumarate,
and 230 in natalizumab. The NBs values are presented in
Table 2 and show that treating RRMS patients using the
strategy ‘‘treat patients according to the prediction
model’’ results in higher NBs compared with the default
‘‘one-size-fits-all’’ strategies. The NBs for the ‘‘treat
patients according to the prediction model’’ strategy is
equal to 0.17.
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ê 1
¼
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ê s
;3
¼
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ê 3
�
T
N

N
B

m
o
d
el
¼
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In Figure 3, we present the NBs for each strategy when
19%� TN � 40% and TGA = TDF = 10%. This is an
introductory plot that connects the traditional way of
presenting the DCA results with its suggested extension
and shows that the strategy ‘‘treat patients according to
the prediction model’’ has the highest NBs compared with
the other strategies, almost in the whole range of natali-
zumab threshold values. We were restricted to using as
the minimum threshold a natalizumab value of 19%, as
lower threshold values result in a congruent data set con-
sisting of only single-arm studies, and hence, NMA can-
not be conducted. For threshold values higher than 40%,
the results remain the same, and the strategy ‘‘treat based
on the model’’ outperforms the others.

In Figure 4, we also present a heat plot showing the
strategy with the highest NBs when TN is between 19%
and 40% in combination with TGA = TDF ranging
between 4% and 25%. The empty gray cells in Figure 4
correspond to TGA = TDF.TN , which is deemed clinically
irrational. The numbers in the cells are differences in NB
between the 2 strategies (multiplied by 100). As our focus
is the clinical utility of the personalized prediction model,
Figure 4 presents the NB from the model versus the
highest NB from the default strategies. For instance,
when TGA = TDF = 20% and TN 25%, the ‘‘treat all with
dimethyl fumarate’’ strategy outperforms all other strate-
gies with an NB difference (multiplied by 100) versus
‘‘treat patients according to the prediction model’’ strat-
egy of 0.2. This means that treating everyone with
dimethyl fumarate would lead to 0.2% fewer relapse

events compared to choosing the treatment based on the
model. The strategy ‘‘treat patients according to the pre-
diction model’’ performs either better than or close to
the one-size-fit-all treatment strategies (based on the NB
differences). However, even small differences may be
important in clinical decision making. The strategy ‘‘treat
patients according to the prediction model’’ leads to bet-
ter clinical decisions, when the thresholds for dimethyl
fumarate and glatiramer acetate are low (\ ; 10%) or
when the threshold value for natalizumab is low
(\ ; 22%). The ‘‘treat none’’ strategy seems to outper-
form the others when all threshold values are high (i.e.,
for natalizumab .25%, for dimethyl fumarate and gla-
tiramer acetate .20%). The ‘‘treat all with dimethyl
fumarate’’ strategy seems to lead to better clinical deci-
sions when the thresholds for dimethyl fumarate and gla-
tiramer acetate are intermediate (between 10% and
20%) and at the same time the threshold for natalizumab
is high (.25%). The strategy ‘‘treat all patients with gla-
tiramer acetate’’ does not lead to the largest NB for any
of the examined threshold combinations. Our methodol-
ogy raises some questions about the universal applicabil-
ity of the current personalized model and indicates that a
better personalized model may be needed to be univer-
sally applicable for decision making.

Discussion

We extended the DCA methodology to an NMA frame-
work to evaluate the clinical usefulness of a prediction

Figure 3 Decision curve analysis plot for a range of threshold values for natalizumab (19%–40%) and equal constant threshold
values for dimethyl fumarate and glatiramer acetate (10%). The x-axis represents the range of threshold values for natalizumab,
and the y-axis represents the net benefit for each of the 5 strategies: ‘‘treat none,’’ ‘‘treat based on the model,’’ ‘‘treat all with
natalizumab,’’ ‘‘treat all with dimethyl fumarate,’’ and ‘‘treat all with glatiramer acetate.’’ The dashed black line represents the
highest net benefit.

Chalkou et al. 9



model that aims at recommending a treatment among
many possible options according to individual character-
istics.9,32 The personalized prediction models are used to
inform patients and decision makers about the most
appropriate treatment for each patient and hence con-
tribute to personalized medicine.12,13,33 Such models need
to be evaluated for their ability to guide treatment deci-
sions at the point of care. For this purpose, Vickers et al.
proposed DCA, which is the tool to evaluate such predic-
tion models by comparing the benefit–risk tradeoffs they
entail to those of other default treatment strategies or
other available personalized prediction models.9 The data
used to evaluate such prediction models typically come
from an RCT that compares 2 treatments: a reference
treatment and the treatment of interest. As the treatment
options for each condition are numerous and their effects
are evaluated in multiple RCTs, the extended proposed
DCA approach could contribute to evaluating the ability
of the widely used personalized prediction models to
guide treatment decisions. We applied our methodology
for RRMS to evaluate the strategy of choosing between
3 disease-modifying drugs (natalizumab, dimethyl fuma-
rate, glatiramer acetate) and placebo using a personalized
prediction model.12

The methods and their application in the data set of
treatments for RRMS have several limitations. The per-
sonalized prediction model compares only 3 active drugs

among all available options (more than 15 available).
The same approach can be applied to personalized pre-
diction models that compare all relevant competing
drugs, assuming that studies that compare them are
available. The main limitation of our application is the
inefficient data set’s sample size; the estimation of the
parameters needed to estimate the NB in our approach
needs a large amount of data to ensure that the sample
size of the congruent data set will be large enough to
conduct NMA. Confidence intervals around the esti-
mated NB could be shown to present uncertainty due to
the limited sample size34; however, they are not typically
used within a classical decision-making approach.28

Another technical issue is that it is possible that the
congruent data set for some thresholds includes many
single-arm studies. In our application, we omitted the
single-arm studies from the NMA in the congruent data
set to establish causal effects of the treatments, but this
resulted in discarding potentially relevant information.
When the congruent data set consists of single arms,
(network) meta-analysis cannot be conducted at all.
Consequently, NBs cannot be estimated for some thresh-
old combinations, and researchers have to calculate the
lower and upper bounds for the thresholds examined to
ensure that they would lead to enough data to estimate
NB. In our application, the lower bounds were outside
the range of thresholds indicated by the expert

Figure 4 Heat plot for the decision curve analysis, in a range of threshold values. The same threshold is assumed for dimethyl
fumarate (DF) and glatiramer acetate (GA) (4%–25%). The threshold values for natalizumab range between 19% and 40%. The
plot shows which approach has the highest net benefit between all possible approaches: (a) treat all patients with placebo, (b)
treat all patients with natalizumab (N), (c) treat all patients with dimethyl fumarate, (d) treat all patients with glatiramer acetate,
and (e) treat patients based on the prediction model. The empty gray cells present the threshold value combinations that are not
clinically possible. The numbers in the cells are differences in net benefit (NB) between the 2 strategies. When the ‘‘treat patients
based on the prediction model’’ strategy is the best, the number in the cell (i.e., red cells) is the difference between its NB and the
NB of the second-best strategy. Otherwise, we present the difference between the NB of the best strategy and the NB of the
‘‘treat patients based on the prediction model’’ strategy. The presented NB estimations are multiplied by 100.
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neurologists as relevant. In practice, however, the lack of
suitable data to estimate NB for relevant thresholds can
limit the applicability of DCA. The issue of single-arm
studies in the congruent data set should be the subject of
further research. Models that include single-arm studies
in the meta-analysis could be considered, although the
risk of bias in the estimates they provide is not to be
underestimated.35–39 Finally, the strategies need to be
evaluated for a relevant range of threshold values for all
treatment options, as different patients might weight dif-
ferently the risk of an event and risks associated with
each treatment.28 In our application, we defined equal
threshold values for dimethyl fumarate and glatiramer
acetate and higher threshold values for natalizumab
according to the expert opinion of 2 MS neurologists
based on the drugs’ safety profiles. In practical applica-
tion, the integration of utilities across a distribution of
patients’ preferences might be used to justify the range of
relevant threshold values.28

To our knowledge, this is the first attempt to use
DCA to evaluate a prediction model that refers to multi-
ple treatments and, consequently, uses evidence from
several studies that compare subsets of the competing
treatments, relying on the assumptions underlying NMA
and prediction models (transitivity, consistency, correct
model specification, etc.).40–43 The proposed approach
can be used to compare several treatment strategies, and
we show how to estimate the NB of a treatment strategy
using causal treatment effects. If the strategy based on
the personalized model is shown to be clinically useful
compared with the default ‘‘treat all patients with X’’
strategy, this does not necessarily mean that it should be
implemented in practice. In many clinical areas, the
treating physician evaluates the patient and determines
the treatment strategy without using a guiding tool. This
state-of-the-art strategy needs to be compared with the
strategy based on the model in a randomized clinical
trial, to inform about the health benefits, patient experi-
ences, and costs associated with clinical implementation
of the decision tool.32,44,45 The original formulations of
DCA were intended to supplement, rather than replace,
other decision analytic techniques. For instance, a diag-
nostic test might be evaluated using a decision curve,
with utilities determined (implicitly) by a range of thresh-
old probabilities, or by a decision tree, in which utilities
are assessed more formally, such as by using data from
the literature. A cost-effectiveness analysis would incor-
porate economic costs obtained by additional research.
The advantage of DCA is that it can be implemented
without the need for specifying a large number of para-
meters that must be obtained from sources other than
the current data set; the disadvantage is that it depends

on the assumption that clinicians are using threshold
probabilities that are rational. Comparably, our pro-
posed method aims to supplement, not replace, other
decision-analytic methods for evaluating treatments and
shares the similar advantage of practicability and disad-
vantage of the assumption of rational thresholds.

Personalized prediction models for treatment recom-
mendation have recently gained ground, and their popu-
larity will increase with the availability of more data. It
is therefore important that such models are evaluated for
their performance before they are ready to be used by
decision makers. The traditional biostatistical metrics of
calibration and discrimination can be useful for analysts
to determine how to build and evaluate a model but can-
not determine its clinical value.8,9,28 We have contributed
to the existing methodological arsenal by providing a
method to infer about a prediction model’s clinical utility
in a (network) meta-analysis framework. With the pro-
posed approach, and assuming that enough data from
several randomized trials would be available, the evalua-
tion of clinical relevance will now be possible for several
prediction models comparing many treatment options.
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