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Convolutional neural network 
for automated segmentation 
of the liver and its vessels 
on non‑contrast T1 vibe Dixon 
acquisitions
Lukas Zbinden 1,2, Damiano Catucci 2, Yannick Suter 1, Annalisa Berzigotti 3, Lukas Ebner 2, 
Andreas Christe 2, Verena Carola Obmann 2, Raphael Sznitman 1 & Adrian Thomas Huber  2*

We evaluated the effectiveness of automated segmentation of the liver and its vessels with a 
convolutional neural network on non-contrast T1 vibe Dixon acquisitions. A dataset of non-contrast 
T1 vibe Dixon liver magnetic resonance images was labelled slice-by-slice for the outer liver border, 
portal, and hepatic veins by an expert. A 3D U-Net convolutional neural network was trained with 
different combinations of Dixon in-phase, opposed-phase, water, and fat reconstructions. The neural 
network trained with the single-modal in-phase reconstructions achieved a high performance for 
liver parenchyma (Dice 0.936 ± 0.02), portal veins (0.634 ± 0.09), and hepatic veins (0.532 ± 0.12) 
segmentation. No benefit of using multi-modal input was observed (p = 1.0 for all experiments), 
combining in-phase, opposed-phase, fat, and water reconstruction. Accuracy for differentiation 
between portal and hepatic veins was 99% for portal veins and 97% for hepatic veins in the central 
region and slightly lower in the peripheral region (91% for portal veins, 80% for hepatic veins). In 
conclusion, deep learning-based automated segmentation of the liver and its vessels on non-contrast 
T1 vibe Dixon was highly effective. The single-modal in-phase input achieved the best performance in 
segmentation and differentiation between portal and hepatic veins.

Medical imaging data is rapidly growing and already constitutes an estimated 90 percent of all healthcare data 
today1. Without technical support, such an overwhelming amount of data cannot be handled by medical experts 
to provide fast and accurate clinical information about the patient’s health status. In recent years, deep learning 
(DL) technologies have become the standard for computer vision and imaging tasks2. DL technologies with 
magnetic resonance imaging (MRI) have been used in neuroimaging3, but may be used as well in other organs 
such as the liver, with its complex macro- and microstructure. Besides better image reconstruction algorithms 
and the detection of focal liver lesions, segmentation tasks of 3D volumetric MRI data represent one of the most 
promising applications for DL algorithms, notably in diffuse liver disease.

Liver segmentation is fundamental in numerous downstream applications. Focal liver lesions characteriza-
tion requires exact lesion localization for baseline and follow-up exams. The combination of multiparametric 
MRI sequences with liver parenchymal and vascular morphology and volumes allows to generate numerous 
novel quantitative non-invasive MR-biomarkers4, 5. Such quantitative biomarkers may improve phenotyping of 
macro- and microstructural liver remodeling in chronic liver disease, as well as the planning and follow-up of 
endovascular and surgical liver interventions, including the calculation of the postoperative remnant liver volume 
(RLV)6, 7. However, manual delineation of liver parenchyma, portal, and hepatic veins is time-consuming. An 
automated method would be needed to perform this task routinely in a reliable and efficient way.

As computed tomography (CT) provides millimetric 3D datasets, it is not surprising that many studies that 
use DL in abdominal imaging have predominantly been performed using publicly accessible CT images1, 8. Due 
to superior contrast-to-noise ratio, DL algorithms were mostly trained on contrast-enhanced scans9, 10. However, 
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many liver imaging studies are nowadays performed by MRI, with advantages in characterizing focal and diffuse 
liver diseases. Due to its inherent higher contrast-to-noise ratio, an examination without intravenous contrast 
administration is possible11.

Recent studies showed good results with a U-Net-based learning framework on T1 weighted images for 
automated segmentation of the liver and other abdominal organs 12. However, these segmentations only con-
sidered the outer liver borders and not the liver veins13, 14. For liver vessel segmentation, several results were 
published using non-DL-based multi-step segmentation approaches on CT images15, contrast-enhanced T1 
weighted images16, non-contrast Fast Imaging with Steady-state Precession (FISP)17, and T1 weighted images18. 
The delineation of different veins in the liver and separation of hepatic and portal veins remains a difficult task.

Since pre-contrast T1 weighted acquisitions of the liver are often performed with the Dixon technique, 
the generated in-phase, and opposed-phase images, including fat- and water-reconstructions, may represent 
a promising approach as an input for a DL-algorithm. To the best of our knowledge no DL-algorithm for liver 
parenchyma and vessel segmentation has yet been published on non-contrast T1 weighted Dixon sequences.

The purpose of this study was to evaluate the effectiveness of automated liver parenchyma, portal veins, and 
hepatic veins segmentation on non-contrast T1 vibe Dixon acquisitions with a convolutional neural network.

Methods
The workflow of our study is illustrated in Fig. 1.

Study population.  In this single-institution study, datasets of liver MRIs with a non-contrast 3 mm T1 vibe 
Dixon sequence were included from a pre-existing database of liver MRIs prospectively acquired in patients with 
suspected liver disease between 16/03/2016 and 08/02/2018, as previously published19–21. The following patients 

Figure 1.   Workflow of our study of automated MRI liver and vessels segmentation with a convolutional 
neural network (nnU-Net) on non-contrast T1 vibe Dixon acquisitions. The MRI sequences were extracted 
from a pre-existing picture archiving and communication system (PACS) and manually labelled slice-by-slice. 
Segmentation experiments with single-modal and multi-modal inputs were defined. In-phase (In), water (W), 
and opposed-phase (Opp) constituted single-modal inputs. In-phase, water (In-W); in-phase, opposed-phase 
(In-Opp); in-phase, opposed-phase, water (In-Opp-W); and in-phase, opposed-phase, fat, water (In-Opp-F-W) 
constituted multi-modal inputs. For each experiment, the nnU-Net was trained and evaluated separately. Lastly, 
the segmentation results were analyzed quantitatively and statistically compared.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22059  | https://doi.org/10.1038/s41598-022-26328-2

www.nature.com/scientificreports/

were excluded: those < 18 years of age, those denying consent, and those with prior focal liver lesions > 2 cm, 
prior liver resection or interventions, as well as patients with cholestatic liver disease. Clinical information was 
collected from the patients, including sex, age, body mass index (BMI), and etiology of chronic liver disease 
(CLD). The study was approved by the local ethics committee (Bern cantonal ethics committee, Bern, Swit-
zerland) and was carried out in accordance with the principles of the Declaration of Helsinki. All patients gave 
written informed consent to participate in the study. The authors had full access to and take full responsibility 
for the integrity of the data.

Magnetic resonance imaging.  All MRI datasets were acquired on a Siemens MAGNETOM Prismafit 3T 
scanner (Siemens Healthineers, Erlangen, Germany), using a 6-channel body coil. A standard non-contrast T1 
vibe Dixon sequence was acquired, covering the whole liver by generating in-phase, opposed-phase, water, and 
fat reconstructions (Fig. 2). Images were acquired with a slice thickness of 3 mm, axial dimensions ranging from 
210 × 320 to 270 × 320 pixels with pixel spacings ranging from 1.09375 × 1.09375 mm2 to 1.5625 × 1.5625 mm2 
and 60 to 80 axial slices (Table 1). Cases with severe fat–water swaps (Dixon artifacts) were excluded. Cases with 
slight breathing artifacts were not excluded to obtain results that are comparable with real life clinical routine 
liver MRI acquisitions.

Manual segmentation.  The liver MRI datasets were manually labelled slice-by-slice for the outer liver 
border and the portal and hepatic veins by a trained reader with two years of experience in liver MRI (D.C.). The 
manual segmentation was performed using the medical software ITK-SNAP22 (version 3.8.0) on the in-phase 
images in the axial plane, as shown in Fig. 2. The results were reviewed by a board-certified abdominal radiolo-
gist with > 10 years’ experience with liver MRI (A.T.H.).

Figure 2.   Example of a patient with a standard non-contrast T1 vibe Dixon acquisition of the liver. Please note 
the signal drop between (a) in-phase and (b) opposed-phase in this patient with severe steatosis, which can also 
be seen in (d) the fat and (e) water reconstructions. On the right-hand side, manual segmentation of (c) liver 
parenchyma (red) and (f) portal veins (purple) and hepatic veins (blue) on the in-phase.

Table 1.   Characteristics of MR imaging. MR, magnetic resonance.

Characteristic

Scanner model Siemens Magnetom Prismafit

Field strength (T) 3

Pixel spacing (mm2) 1.09375 × 1.09375 to 1.5625 × 1.5625

Slice thickness (mm) 3

Axial dimensions (pixel) 210 × 320—270 × 320

Axial slices, n 60–80
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Deep learning‑based segmentation.  The automated delineation of the liver and veins was implemented 
as a 3D voxel-wise multi-label classification task. Specifically, the nnU-Net23 framework was used as it offers 
a fully automated machine learning pipeline including data preprocessing, data augmentation, U-Net12-based 
neural network architecture optimization and data post-processing. To comply with the network input file for-
mat, all T1 vibe Dixon sequences in Digital Imaging and Communications in Medicine (DICOM) protocol 
were converted to the Neuroimaging Informatics Technology Initiative (NIfTI) format. The nnU-Net framework 
expects one or more 3D images as input and outputs a 3D segmentation mask of the same dimension (Fig. 3).

Figure 3.   Processing of single-modal (top row) and multi-modal (bottom row) MRI sequence data at the input 
level of the 3D U-Net in use (nnU-Net23). The implementation uses 2D kernels at the first convolutional layer #1 
since it treats the MRI sequences as anisotropic data.
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Training and evaluation.  The four T1 vibe Dixon in-phase, opposed-phase, water, and fat reconstruction 
imaging were used as isolated single-modal, as well as multi-modal inputs. A single-modal input referred to the 
case when only one reconstruction was used as an input to the neural network, whereas a multi-modal input 
referred to the case when two or more reconstructions were stacked together as an input to the neural network. 
We evaluated the impact of each type of input on the performance of the network model for the liver and vessel 
segmentation task. As for the neural network technique of processing multi-modal input, we used input-level 
fusion as in the work of Zhou et al.24. Figure 3 illustrates how the nnU-Net processed single-modal and multi-
modal input at the first convolutional layer of the network.

The nnU-Net network was trained with the default setup as published by Isensee, Jager, et al.23. This included 
as loss function the combination of Dice loss and cross-entropy loss, the Adam optimizer with an initial learn-
ing rate of 3 × 10–4, and a learning rate scheduler that reduced the learning rate to at least 10–6 depending on the 
moving average of the training loss and the validation loss. For data augmentation, the following techniques were 
applied during training: random rotations, random scaling, random elastic deformations, gamma correction 
augmentation and mirroring. We did not make any changes to the architecture of the nnU-Net.

Nested cross-validation (NCV) was used to obtain a robust performance estimate on unseen test data. For 
each experiment, nnU-Net was trained 10 times on the liver MRI dataset with a leave-out test set of three differ-
ent patients in every iteration (NCV outer loop). Performances on the test liver MRI datasets were averaged. For 
each training, the network was optimized on a NVIDIA GeForce RTX 3090 GPU for 150 epochs with a batch 
size of two using fivefold cross validation (NCV inner loop) following the approach by Isensee, Jaeger, et al.23.

Quantitative analysis.  The performance of the neural network to segment liver parenchyma, portal, and 
hepatic veins was compared between single- and multi-modal inputs. Dice similarity coefficient (DSC) was 
used to quantify the segmentation performance of the model. In addition, the average precision (AP) metric 
was calculated, as it ignores true negatives (negative background outside of the liver in the MRI field-of-view) 
and focuses on precision and recall. Kruskal–Wallis test with Dunn’s multiple comparison post hoc test was 
used to compare DSC between single- and multi-modal inputs. Significance level was chosen to be α = 0.05. All 
statistical analysis was performed with the Python ecosystem (Python 3.6.12, SciPy 1.5.4, scikit-learn 0.24.2, 
SimpleITK 2.0.2, Matplotlib 3.3.3). For the analysis of the segmentation performance in the central region versus 
the peripheral region of the liver, two points at the portal vein bifurcation and the hepatic vein confluence were 
manually set by a board-certified abdominal radiologist (A.T.H.). A sphere was defined with the center point 
being the midpoint of the two points and a radius of 75% of their distance. The region inside the sphere was 
considered as central region, the region outside the sphere was considered as peripheral region. The accuracy 
of the segmentation of portal veins, hepatic veins, and liver parenchyma was compared between the central and 
peripheral region.

Results
Patients.  Liver MRI datasets from twenty female and ten male patients without fat–water swaps (Dixon arti-
facts) were included. Fifteen datasets were used from patients with chronic liver disease (50%) and fifteen from 
patients with no chronic liver disease (Table 2). Median patient age was 58.5 years (range 34–80 years) with a 
median weight of 80 kg (range 40–114) and a median BMI of 26.6 kg/m2 (range 15–45). Etiology of chronic liver 
disease was non-alcoholic fatty liver disease in eight patients, alcohol-related liver disease in three patients, and 
viral hepatitis in four patients. From the 15 patients with chronic liver disease, 9 patients had a liver cirrhosis. 
Median liver proton density fat fraction was 8%, ranging from 1.5–33.7%. Three datasets (10%) presented ghost-
ing artifacts, in line with a realistic setting of routine abdominal MRI scans in a radiology department.

Training runtime.  The training of the network took roughly 4 h per dataset and fold, repeated in 10 itera-
tions in 7 different single- and multi-modal experiments. Each iteration included 5 training folds following the 
fivefold cross validation training approach by nnU-Net. This resulted in a total of 70 different training datasets 

Table 2.   Characteristics of patients. BMI, body mass index; PDFF, proton density fat fraction; CLD, chronic 
liver disease; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; ARLD, alcohol-
related liver disease.

Characteristic

Sex 20 female / 10 male

Median age (range) 58.5 (34–80)

Median weight kg (range) 80 (40–114)

Median BMI kg/m2 (range) 26.6 (15.2–45.2)

Median PDFF % (range) 8.0 (1.5–33.7)

Chronic liver disease, n (CLD) 15

Etiology of CLD, n 8 NAFLD/NASH

3 ARLD

4 viral hepatitis

Liver cirrhosis, n 9
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with a total training duration of 1400 h. Once a model was trained, liver parenchyma and vessel segmentation 
inference in one test liver MRI dataset was performed in 50 s using a NVIDIA GeForce RTX 3090 GPU, an AMD 
EPYC 7302 16-Core Processor CPU, and an IBM Spectrum Scale-based file system.

Quantitative evaluation.  Quantitative segmentation results from manual segmentation and neural net-
work segmentation are illustrated in a representative case in Fig. 4, showing an excellent performance of liver 
parenchymal segmentation and a good delineation and differentiation between the portal and hepatic veins. 
The neural network trained with the single-modal in-phase reconstruction achieved the highest overall perfor-
mance with an average DSC of 0.936 ± 0.02 for liver parenchyma, 0.634 ± 0.09 for portal veins, and 0.532 ± 0.12 
for hepatic veins, as shown in Table 3. All single- and multi-modal inputs yielded comparable liver parenchyma 
segmentations without statistically significant differences (p = 0.09). In contrast, performance of the portal and 
hepatic veins segmentation was significantly lower when using the opposed-phase, as compared to the in-phase 
single-modal input (p < 0.001), while there was no significant difference between the in-phase and water-recon-
struction input for portal (p = 0.331) and hepatic veins (p = 1.0) in the post hoc comparison (Table 4). There 
was no significant difference for liver, portal, and hepatic vessel segmentation between the in-phase single-
modal input and the multi-modal input combining in-phase with opposed phase, fat, and water reconstruc-
tions (Fig. 5). Similar results were obtained by using the average precision metric, ignoring the true negative 
background outside of the liver in the MRI field of view, as demonstrated by the precision-recall curves in Fig. 6.

Figure 4.   Example of an expert (first column) and automated (second column) segmentation of liver 
parenchyma (red), portal veins (purple), and hepatic veins (blue). The third column shows a visualization of the 
correct segmentation, as well as under-segmentation (cyan), and over-segmentation (yellow), as performed by 
the model with an in-phase sequence.

Table 3.   Automated liver parenchyma, portal veins, and hepatic veins segmentation on single-modal and 
multi-modal T1 vibe Dixon acquisitions. Results are measured by Dice similarity coefficient (DSC) and average 
precision (AP) and presented as mean ± SD. P-values were calculated using the Kruskal–Wallis test with Dunn’s 
multiple comparison post-hoc test. The single-modal neural network inputs are In, in-phase; W, water; Opp, 
opposed phase. The multi-modal neural network inputs are In-W, in-phase, water; In-Opp-W, in-phase, 
opposed-phase, water; In-Opp, in-phase, opposed-phase; In-Opp-F-W, in-phase, opposed-phase, fat, water. 
Best results are shown in bold.

In In-W In-Opp-W In-Opp In-Opp-F-W W Opp p-value

Liver paren-
chyma DSC 0.936 ± 0.02 0.935 ± 0.02 0.935 ± 0.02 0.934 ± 0.02 0.934 ± 0.02 0.931 ± 0.02 0.921 ± 0.03 0.090

AP 0.981 ± 0.01 0.981 ± 0.01 0.981 ± 0.01 0.979 ± 0.01 0.980 ± 0.01 0.976 ± 0.02 0.970 ± 0.02

Portal veins DSC 0.634 ± 0.09 0.634 ± 0.08 0.631 ± 0.08 0.626 ± 0.08 0.632 ± 0.08 0.571 ± 0.14 0.505 ± 0.12  < 0.001

AP 0.680 ± 0.12 0.678 ± 0.12 0.672 ± 0.12 0.667 ± 0.12 0.672 ± 0.12 0.590 ± 0.15 0.526 ± 0.13

Hepatic veins DSC 0.532 ± 0.12 0.523 ± 0.11 0.523 ± 0.11 0.525 ± 0.11 0.519 ± 0.11 0.475 ± 0.16 0.395 ± 0.12  < 0.001

AP 0.553 ± 0.12 0.535 ± 0.12 0.537 ± 0.11 0.540 ± 0.12 0.531 ± 0.12 0.479 ± 0.16 0.399 ± 0.13
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Table 4.   Post-hoc analysis of the performance of single-modal and multi-modal T1 vibe Dixon network 
inputs for automated liver parenchyma, portal veins, and hepatic veins segmentation. The p-values were 
calculated with the Kruskal–Wallis test with Dunn’s multiple comparison post-hoc test using the Dice 
similarity coefficients reported in Table 3. Any values below the significance level α = 0.05 are highlighted in 
bold. The single-modal neural network inputs are in-phase; water; and opposed phase. The multi-modal neural 
network inputs are in-phase, water; in-phase, opposed-phase; in-phase, opposed-phase, water; and in-phase, 
opposed-phase, fat, water.

Liver parenchyma Portal veins Hepatic veins

In-phase vs Opposed-phase 0.129  < 0.001  < 0.001

In-phase vs Water 1 0.331 1

In-phase vs In-phase, water 1 1 1

In-phase vs In-phase, opposed-phase 1 1 1

In-phase vs In-phase, opposed-phase, water 1 1 1

In-phase vs In-phase, opposed-phase, water, fat 1 1 1

Opposed-phase vs Water 1 0.365 0.112

Opposed-phase vs In-phase, water 0.310  < 0.001 0.002

Opposed-phase vs In-phase, opposed-phase 1 0.001 0.002

Opposed-phase vs In-phase, opposed-phase, water 0.256  < 0.001 0.003

Opposed-phase vs In-phase, opposed-phase, water, fat 0.302  < 0.001 0.004

Water vs In-phase, water 1 0.403 1

Water vs In-phase, opposed-phase 1 0.921 1

Water vs In-phase, opposed-phase, water 1 0.641 1

Water vs In-phase, opposed-phase, water, fat 1 0.629 1

In-phase, water vs In-phase, opposed-phase 1 1 1

In-phase, water vs In-phase, opposed-phase, water 1 1 1

In-phase, water vs In-phase, opposed-phase, water, fat 1 1 1

In-phase, opposed-phase vs In-phase, opposed-phase, water 0.444 1 1

In-phase, opposed-phase vs In-phase, opposed-phase, water, fat 1 1 1

In-phase, opposed-phase, water vs In-phase, opposed-phase, water, fat 1 1 1

Figure 5.   Comparison of liver segmentation performance with different model inputs: (1) single-modal 
in-phase (In) in the first column, (2) multimodal in-phase and water reconstruction in the second column 
(In-W), (3) multi-modal in-phase, opposed-phase, fat, and water reconstructions in the third column (In-Opp-
F-W) and (4) single-modal opposed-phase (Opp) in the last column. The correct segmentation is shown in 
red for the liver parenchyma, purple for the portal veins, and blue for the hepatic veins. Under-segmentation is 
shown in cyan and over-segmentation in yellow, as performed by the model with an in-phase sequence.
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The accuracy of parenchymal segmentation with the single-modal in-phase reconstruction was 93% in the 
central region and 94% in the peripheral region. The accuracy of portal veins segmentation was 64% in the 
central region and 55% in the peripheral region. The accuracy of hepatic veins segmentation was 52% in the 
central region and 43% in the peripheral region, as shown in Fig. 7. If only the vascular voxels were analyzed, 
without the liver parenchyma, accuracy for differentiation between portal and hepatic veins was 99% for portal 
veins and 97% for hepatic veins in the central region and slightly lower in the peripheral region (91% for portal 
veins and 80% for the hepatic veins).

Discussion
To the best of our knowledge, this is the first study that uses a 3D neural network (nnU-Net23) for automated 
liver parenchyma, portal veins, and hepatic veins segmentation on non-contrast T1 vibe Dixon liver MRIs. The 
performance of liver parenchyma segmentation was excellent, when compared with a manual slice-by-slice 

Figure 6.   Precision-recall curves and average precision (AP) of automated liver parenchyma, portal veins, and 
hepatic veins segmentation on single- and multi-modal inputs. In-phase (In), water (W), and opposed-phase 
(Opp) constituted single-modal inputs. In-phase, water (In-W); in-phase, opposed-phase, water (In-Opp-W); 
in-phase, opposed-phase (In-Opp); and in-phase, opposed-phase, fat, water (In-Opp-F-W) constituted multi-
modal inputs. Best viewed in screen.

Figure 7.   Model segmentation accuracy and misclassification rate for liver parenchyma segmentation (left), 
portal veins segmentation (middle), and hepatic veins segmentation (right). The results are shown for the central 
region of the liver (upper row) and the peripheral region of the liver (bottom row). In-phase (In), water (W), 
and opposed-phase (Opp) constituted single-modal inputs. In-phase, water (In-W); in-phase, opposed-phase, 
water (In-Opp-W); in-phase, opposed-phase (In-Opp); and in-phase, opposed-phase, fat, water (In-Opp-F-W) 
constituted multi-modal inputs. Liver parenchyma segmentation is shown in red, portal veins segmentation in 
purple, hepatic veins segmentation in blue, and background segmentation in black. The colors are identical to 
Figs. 4 and 5. Best viewed in screen.
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segmentation as the gold standard. The delineation of hepatic and portal veins was highly accurate, and voxels 
were rarely classified to the incorrect venous system. Based on this convolutional neural network, segmentation 
of liver parenchyma, portal, and hepatic veins was possible on a standard non-contrast T1 vibe Dixon sequence 
in less than one minute.

Our liver parenchyma results are comparable with existing literature, as shown in Table 5. Kavur et al.14 
presented an nnU-Net-based evaluation for liver parenchyma segmentation with a DSC of 0.95, which is very 
similar to our DSC of 0.94 for the single-modal in-phase input. However, Kavur et al. did not separate the liver 
veins from the parenchyma, so their algorithm only segmented the outer liver by ignoring the hepatic and 
portal veins. Kart et al.13 achieved even slightly higher DSCs of 0.97–0.98 on non-contrast T1 weighted images 
but analyzed in healthy volunteers and not in patients with chronic liver disease and by ignoring the liver veins 
as well. Ivashchenko et al.25 proposed a liver segmentation workflow based on contrast-enhanced multi-phase 
MRIs, resulting in a DSC of 0.95 for liver parenchyma. Ivashchenko et al.26 also studied the feasibility of liver 
vessel segmentation on contrast enhanced MRIs using a DL-based method, resulting in a median DSC of 0.60 
for portal veins and 0.65 for hepatic veins. While our result for portal veins is slightly better (0.66), the results 
for the hepatic veins was slightly lower (0.55), which may be explained by the fact that we used non-contrast 
T1 vibe Dixon sequences and our manual segmentation labelled even the small peripheral hepatic veins, which 
were difficult to detect for the neural network. Other groups tried to segment liver veins on T1 weighted images 
with a non-DL-based approach using thresholding and filtering, but without separating between portal and liver 
veins18. Other non-DL-based approaches were published for liver vessel segmentation on CT and MRI images15, 
contrast-enhanced T1 weighted images16, and Fast Imaging with Steady-state Precession (FISP) sequences17, 
some without differentiation between portal and liver veins.

A multi-modal input from combined T1, T2, and FA sequences27 or the combination of FLAIR, T1, T1c, and 
T228 increased the performance of neural network models for neuro-imaging segmentations. However, the use of 
different MRI sequences needs spatial co-registration24, 27, which is easier to perform on neuro-imaging studies, 
whereas liver MRIs commonly contain more motion artefacts. The T1 vibe Dixon sequence used for this study 
has an optimal fat–water separation29 without the need for spatial co-registration and provides a high level of 
contrast between veins and liver parenchyma. However, the combination of in-phase, opposed-phase, fat, and 
water inputs did not increase the performance of the liver and veins segmentation. While the best performance 
was achieved with a single-modal in-phase input, the lowest performance was achieved with a single-modal 
opposed-phase input. A possible explanation for this observation is the occurrence of chemical shift artifacts 
(India ink artifacts) on opposed-phase images, occurring at fat–water boundaries, such as the outer liver border 
or the vessel-parenchyma interfaces. Combination of in- and opposed-phase images as a multi-modal input 
therefore showed a lower performance than the isolated single-modal in-phase input. As fat and water recon-
structions are calculated based on the in- an opposed-phase images, it is no surprise that the addition of those 
reconstructions did not increase the model performance. In patients with significant liver steatosis, the contrast 
between the liver parenchyma and liver veins will be inverted, as compared to the in-phase acquisition. The 
median proton density fat fraction of the MRI liver datasets in this study was 8.0% and ranged from 1.5% to 
33.7%. A training on a dataset including more patients with liver steatosis should be performed to test whether 
the convolutional neural network would profit of a multi-modal in- and opposed-phase input in those patients.

This study has several limitations. The used dataset was relatively small, and a larger dataset may result in bet-
ter portal and hepatic veins segmentation. However, the performance of the hepatic parenchyma segmentation 
was comparable to the performance of DL-algorithms trained on larger datasets13. Another inherent limitation 
is the slice thickness of 3 mm of the used standard T1 vibe Dixon MRI sequences. The performance of the DL-
algorithm may improve when using 3D T1 sequences with a smaller slice thickness. However, the T1 vibe Dixon 

Table 5.   Quantitative performance comparison between MRI-based liver parenchyma and liver veins 
segmentation methods. Summary of papers on MRI liver and vessels segmentation. Our study is the first to 
evaluate a 3D convolutional neural network (nnU-Net23) for automated segmentation on non-contrast T1 vibe 
Dixon liver MRIs with lesions. All scores are in Dice metric. Liver parenchyma results are shown as mean ± SD. 
The portal veins and hepatic veins segmentation results are compared using median and interquartile range 
(IQR). The MRI dataset used by each method is summarized. MRI, magnetic resonance imaging; CHAOS, 
combined healthy abdominal organ segmentation challenge; UKBB, UK Biobank; GNC, German National 
Cohort.

Model Liver parenchyma Portal veins Hepatic veins Dataset

Mean ± SD Median (IQR) Median (IQR) Contrast enhanced MRI characteristrics Subjects Name Test size, n

Kavur et al.14 nnU-Net 0.954 ± 0.01 - - No T1-DUAL in-phase, 
opposed-phase healthy CHAOS 20

Kart et al.13 nnU-Net 0.972 ± 0.02 - - No T1 Dixon water healthy UKBB 200

Kart et al.13 nnU-Net 0.984 ± 0.01 - - No T1 Dixon in-phase, 
opposed-phase, water, fat healthy GNC 200

Ivashchenko et al.25 workflow 0.950 ± 0.01 - - Yes multiphase T1 mDixon 
water lesions private 15

Ivashchenko et al.26 DVNet - 0.603 (0.08) 0.647 (0.05) Yes T1 mDixon tumors private 20

Ours nnU-Net 0.936 ± 0.02 0.659 (0.11) 0.548 (0.16) No T1 Dixon in-phase, 
opposed-phase, water, fat lesions private 30
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sequences are very robust, fast, and widely available. Finally, another limitation is that MRI acquisitions were all 
performed on 3T MRI scanners from a single manufacturer. This resulted in a relatively homogeneous data set 
and the study should be extended and validated on different scanners with different field strengths.

In conclusion, neural network segmentation of liver veins and parenchyma on non-contrast T1 vibe Dixon 
is highly effective. The best performance was achieved with a single-modal in-phase input for automated liver 
parenchyma segmentation and good differentiation between portal and hepatic veins.

Data availability
Data generated or analyzed during the study are available from the corresponding author by request.
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