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ABSTRACT

In this paper we deal with the problem of localizing and tracking
multiple acoustic sources by means of microphones pairs. We as-
sume that the propagation takes place in a reverberating environ-
ment such as an office room. The problem is tackled by combining
two well known techniques. First, for each pair of microphones,
source de-mixing is carried out using the TRINICON algorithm.
TRINICON exploits the fact that the original sources are statisti-
cally independent in order to estimate appropriate de-mixing fil-
ters. The impulse responses of such filters exhibit peaks related
to the TDOA (Time Difference of Arrival) of each microphones
pair. In the second step, such observations are combined using
a particle filter with a dynamic model representing the positions
and the velocities of the sources. Simulations demonstrate that the
proposed system enables to accurately tracking moving acoustic
sources in reverberating environments (±10cm in a 5m× 5m room
with T60 ≤ 0.450s).

1. INTRODUCTION

The problem of tracking wideband acoustic sources in reverberating
environments is relevant in several applications, including seismol-
ogy, sonar and speech. In this paper we specifically address the case
of speech signals. Localizing and tracking multiple speakers talking
in the same room can be used, for example, to automatically steer
camera sensors in video-conferencing applications.

In the literature, several works address the problem of localizing
one acoustic source. In [1] a tutorial review of TDOAs (Time Dif-
ferences of Arrival) estimation algorithms is presented, with partic-
ular emphasis to the case of multi-path propagation typical of rever-
berating environments. Also in [2], localization techniques based on
TDOAs measurements are compared with each other. The LCLS
(Linear Correction Least Squares) [3] algorithm outperforms the
other approaches in simulations consisting in only one still source.
The problem of tracking is further addressed in [4], where TDOA
estimates obtained either with a GCC (Generalized Cross Corre-
lation) or AEDA (Adaptive Eigenvalue Decomposition Algorithm)
are combined with a particle filter [5] in order to account for the
source dynamics.

The proposed solution builds on [4], extending it in order to
take into account multiple moving sources in reverberating envi-
ronments. Unlike [4], a more sophisticated pre-processing stage is
needed in order to (partially) separate the sources. In the proposed
system, we use the TRINICON algorithm [6], that was shown to
perform well in mildly reverberating environments. TRINICON
builds upon the assumption that sources are statistically indepen-
dent and the signals received by the microphones can be modeled
as a convolutive mix of the original sources. In a similar way as
conventional ICA (Independent Component Analysis) algorithms,
TRINICON estimates the de-mixing filters by maximizing the non-
gaussianity of the output. An estimate of the TDOAs can be ob-
tained by analyzing the extrema of the de-mixing filters. In [7], a
preliminar study shows how the TRINICON algorithm can be used
to perform source localization and tracking. Nevertheless, one pair
of microphones is used, therefore estimating only the DOAs (Direc-
tions Of Arrival) of the two sources.

The work presented was developed within VISNET, a Network of Ex-
cellence (http://www.visnet-noe.org), funded by the European Commission
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Figure 1: Linear MIMO model for BSS

In this paper we enhance the localization and tracking capabil-
ity of the algorithm described in [7] by formulating the problem in
the state-space. The state is represented by the positions and ve-
locities of the moving sources. In order to infer information about
the state, we have access to the observed TDOAs estimated using
TRINICON. Since the functional form relating the observation to
the state is non-linear, Kalman filtering is not the suitable solution.
In order to apply Kalman filtering to non-linear problems, one must
recur to linearization about the estimate of the current state. This
technique, known as Extended Kalman Filtering, is effective when
state probability density function is mono-modal. In our case, un-
derlying statistics are generally multi-modal due to the fact that we
are addressing the case of multiple moving sources. Therefore we
apply a particle filter that was shown to perform well for the case of
non-linear observation models and non-Gaussian statistics [5]. The
main idea behind particle filtering is to approximate the posterior
PDF of state given the observations by flooding the state-space with
particles. For the problem at hand, particles represent potential po-
sitions and velocities of the sources and each is characterized by a
weight, which measures the likelihood with respect to the observa-
tions. We will show how particle filtering can be effectively applied
to solve the localization and tracking problem.

The rest of this paper is organized as as follows: in Section
2 we briefly summarize the TRINICON algorithm. In Section 3
we illustrate how the output of the TRINICON algorithm can be
used to estimate TDOAs. In Section 4 the proposed algorithm based
on particle filtering is presented. Finally, Section 5 and Section 6
illustrate the simulation setup and the experimental results.

2. OVERVIEW OF THE TRINICON ALGORITHM

In order to properly model room reverberations, a convolutive mix-
ing model is generally suitable, as it represents the signal received
by each of the P microphones as the sum of delayed and filtered
versions of the sources:

xp(n) =
Q

∑
q=1

M−1

∑
k=0

hqp(k)sq(n− k) , (1)

where Q is the number of active acoustic sources and hqp(k),
k = 0, . . . ,M− 1 denotes the coefficients of the finite impulse re-
sponse (FIR) filter model from the q-th source to the p-th sensor.
In the following, it is assumed that the number of source signals
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Figure 2: Sources configuration and corresponding de-mixing filters.

equals the number of sensors (Q = P). The goal of BSS (Blind
Source Separation) is to find a corresponding de-mixing system, as
illustrated in Figure 1, where the output signals yq(n),q = 1, . . . ,P
are described by:

yq(n) =
P

∑
p=1

L−1

∑
k=0

wpq(k)xp(n− k) . (2)

Recently, the problem of BSS for the case of multiple acoustic
sources has been addressed in [8], where an iterative algorithm is
used to minimize the inter-channel statistical dependency. This al-
gorithm, originally based only on second order statistics, has been
extended by the TRINICON framework [6][8]. Following the same
guidelines as ICA, TRINICON efficiently exploits the nongaussian-
ity of the sources to improve source separation. The fundamental
idea is that the sources are statistically independent and that separa-
tion is achieved when the joint inter-channel PDF of the separated
signals can be factored out in the product of the PDFs of each chan-
nel.

3. SOURCE LOCALIZATION USING TRINICON

The TRINICON algorithm has been successfully used as a prepro-
cessing stage to perform localization of multiple acoustic sources
[7]. For the case of P = Q = 2 (two sources and two microphones),
it is shown that the TDOAs can be estimated from the de-mixing
filters wpq as follows:

τ̂1 = (argmax
n
|w12(n)|− argmax

n
|w22(n)|) f−1

s , (3)

τ̂2 = (argmax
n
|w11(n)|− argmax

n
|w21(n)|) f−1

s , (4)

where fs denotes the sampling frequency. Knowledge of TDOAs
for a single microphones pair allows us to determine a source locus
position consistent with the observed TDOAs. Such a locus posi-
tion is an hyperbola, but it can be confused as a straight line (DOA)
when the distance from the microphones pair is much larger than
the distance between microphones. In Figure 2 a specific source
configuration and the corresponding estimated de-mixing filters are
plotted. The locations of the sources can be estimated by triangu-
lating DOAs obtained by two or more microphones pairs.

When only two microphones pairs are used, we need some a
priori information in order to achieve a correct localization. This
is due to the fact that the TRINICON algorithm suffers from the
permutation problem typical of ICA approaches. In fact, one can-
not assign a TDOA to a specific source. When TRINICON is run
independently on two separate microphones pairs, four TDOAs are
estimated, but we do not know which ones belong to the first or
to the second source. An illustrative example is depicted in Figure
3: correct source locations are represented with a black dot, while
false locations (falling inside the test room) are represented with a
crossed circle. For the case of two microphones pairs two DOAs are
estimated, therefore obtaining four intersection points by triangula-
tion. When three or more microphones pairs are available, sources
can be localized. In this situation, correct and false sources loca-
tions are the intersection of, respectively, three and two DOAs.

Equations (3) and (4) show that the information contained in
the de-mixing filters is only partially exploited to determine the
TDOAs. In other words, only the positions of the global max-
ima/minima of the filters are needed to achieve source localization,
whereas the complete de-mixing filters are used to properly separate
the sources.

4. SOURCE TRACKING USING PARTICLE FILTERING

In this section we describe the proposed algorithm that combines the
observations obtained with TRINICON with a state-space model
capturing the source dynamics. We consider the case of two sources
and M ≥ 3 microphones pairs. According to the notation in [4], we
introduce a localization function f m

p (τ) (p = 1,2 is the source index
and m = 1, . . .M is the index of a microphones pair). Exploiting
the de-mixing filters wm

pq(n) estimated using TRINICON at the m-
th microphones pair, we define the following localization functions,
one for each source:

f m
1 (τ) = (|wm

12(n−argmax
n

(|wm
22(n)|)|) f−1

s , (5)

f m
2 (τ) = (|wm

21(n−argmax
n

(|wm
11(n)|)|) f−1

s . (6)

The locations of the peaks of the localization functions in (5) and
(6) give us an estimation of the TDOAs. Due to reverberations,
localization functions may present spurious peaks, thus generating
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Figure 3: Sources configurations and estimated DOAs. a) Two mi-
crophones pairs. b) Three microphones pairs.

outliers. We employ a particle filtering approach in order to filter out
spurious peaks by exploiting source dynamics. The underlying idea
is that peaks corresponding to the sources, differently from spurious
peaks, follow a dynamic model through time.

In our formulation, the state information associated with each
particle at time t is described by the α(t) vector, describing the
source position and velocity:

α(t) = [X(t),Y (t), Ẋ(t),Ẏ (t)] . (7)

We notice that at this stage, we do not distinguish between the two
sources, i.e. we do not assign to the particles a label indicating the
source it belongs to. This will be done in a later stage. The update
equation of the dynamic system is

α(t) = T (α(t−1),n1(t)) , (8)

where n1(t) is a noise term. At time t, a new measurement τ(t)
becomes available. It is related to the unobserved state α(t) through
the equation

τ(t) = S(α(t),n2(t)) , (9)

where τ(t) = [τ1
1 ,τ1

2 , . . . ,τM
1 ,τM

2 ]T and n2(t) is the measurement
noise term. For the problem at hand, τm

p is related to the state-space
model by

τ
m
p (t) =(

√
|X(t)−Xm

1 |2 + |Y (t)−Y m
1 |2+

−
√
|X(t)−Xm

2 |2 + |Y (t)−Y m
2 |2)c+nm

p (t) , (10)

where (Xm
1 ,Y m

1 ) and (Xm
2 ,Y m

2 ) are the Cartesian coordinates of the
m-th microphones pair. We can collect all measurements up to time
t in the vector τ1:t = [τ(1), ...,τ(t)]. We want to estimate the poste-
rior probability density function p(α(t)|τ1:t). No closed-form solu-
tion exists for it except for the case where S(·,n2(t)) and T (·,n1(t))

are linear and the noise terms n1(t) and n2(t) are Gaussian. For the
latter case, Kalman filtering provides the optimal solution. Equa-
tion (10) shows that the function S(·,n2(t)) is strongly non-linear.
This problem can be solved through a linearization of equation (10)
around the current estimate of the state-space variables. This tech-
nique is normally referred to as Extended Kalman Filter (EKF).
EKF linearization is suitable only when p(α(t)|τ1:t) is unimodal.
In the case of multi-modal posterior PDF a non-trivial initialization
phase is needed. Particle filtering solves this problem in a differ-
ent way, representing the posterior PDF p(αt |y1:t) through samples
(particles). Particle filtering assigns to each particle a weight that is
proportional to the likelihood of the observed measurements.

In the following paragraphs we summarize the main steps of
proposed algorithm based on particle filtering.
1. Initialization: The state space is flooded with uniformly dis-

tributed Ns particles α i(0), i = 1, . . . ,Ns. Every particle is as-
signed a weight wi(0) equal to 1

Ns

2. Dynamic model evolution: Each particle is shifted according to
the following dynamic model (for details see [4]:

Ẋ(t) = axẊ(t−1)+bxFx(t), (11)

X(t) = X(t−1)+∆T Ẋ(t), (12)
ax = exp(−βx∆T ), (13)

bx = vx
√

1−a2
x , (14)

where Fx(t) is an i.i.d sequence characterized by a Gaussian
distribution. The dynamic model described by equations (11)-
(14) is extensively used in literature under the name of Langevin
model. One problem related to the use of the Langevin dynamic
model is the fact that particles can move beyond the perimeter
of the room in which the system is installed. In our implementa-
tion out of boundaries particles are removed and replaced with
new particles in a random location inside the room.

3. Weight assignment: At each time instant t, a new weight wi(t)
is assigned to each particle α i(t)depending on the likelihood of
the particle given the observed measurements. The weighting
operation starts from TDOA estimation provided by the M sep-
arators which form our localization system. Every pair of mi-
crophones provides K TDOA candidates τ̂m,k , corresponding to
the positions of the K/2 maximum values of each localization
function. The likelihood function can be written as

Fm(α(t)) =
K

∑
k=1

qkN (τα(t); τ̂
m,k,σ2)+q0 , (15)

where N (x; µ,σ2) is the probability of extracting x from a
Gaussian distribution having mean µ and variance σ2. τα(t) de-
notes the TDOA value corresponding to the particle α(t). The
likelihood function is the sum of K Gaussian PDFs weighted by
qk = (1−q0)K−1.
Equation (15) gives the likelihood of each particle α i(t) with
respect to the observations obtained from the m-th microphones
pair. The overall particle weight can be evaluated by combining
likelihood values of each of the M pairs as follows

wi(t) = F(α i(t)) =
M

∏
m=1

Fm(α i(t)) . (16)

Finally, particle weights are normalized in order to respect the
following condition:

Ns

∑
i=1

wi(t) = 1 . (17)

4. Source label assignment: The iterative application of steps 2.
and 3. causes the particles to cluster around the positions occu-
pied by the two sources. This allows us to perform a clustering
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algorithm in the state-space in order to assign to each particle a
label corresponding to the source it belongs to. In our system,
we perform a k-means clustering algorithm.

5. Source localization: The estimated source locations and veloci-
ties correspond to the centroids of the clusters as defined by

cp =
∑

Np
i=1 wi

p(t)α
i
p(t)

∑
Nl
i=1 wi

p(t)
, (18)

where Np denotes the number of particles contained in every
cluster p and α i

p is the i-th particle belonging to the p-th cluster.
We have shown in Section 3 that triangulation of DOA is ef-

fective only when more than two pairs of microphones are used.
The same is true using a particle filtering approach. In fact, we no-
tice that equation (15) combines together observed TDOAs of both
sources, since it is not possible to assign a TDOA to a specific one.
For this reason, when two microphones pairs are used (M = 2) the
likelihood function F(·) is multi-modal and it is characterized by
four peaks in the same positions as the intersections of the DOAs.
As before, increasing the number of microphones pairs solves this
ambiguity problem and only two peaks survive in the likelihood
function.

5. SIMULATION SETUP

In this section we illustrate the simulation setup used in our tests.
First, we describe how we simulate the movement of the sources.
Then, we illustrate the room geometry, the positions of the micro-
phones and the reflection coefficients used in our experiments.

5.1 Source Movement Simulation
The original source signals are male speech segments sampled at
fs = 16kHz. Such signals are convolved with the impulse responses
that characterize the propagation from the sources to the micro-
phones in the reverberating environments. Impulse responses are
synthesized using a room simulation tool based on a fast beam trac-
ing algorithm (for details see [9]) every 1 s. In order to obtain a finer
time granularity (0.125 s), at intermediate time instants impulse re-
sponses are estimated using an interpolation technique. With this
framework, we can efficiently simulate source trajectories in com-
plex environments.

5.2 Room geometry
We conduct our simulations in a 5m×5m×2.7m test room. The re-
flection coefficient is varied in the range 0.2-0.9. Table 5.2 reports
the relationship between the reflection coefficient and the reverber-
ation time T60.

Simulations are carried out on a specific trajectory roughly at
the center of the test room as illustrated in Figure 4. The same
figure also shows microphones located in the proximity of the side
walls of the room. They are organized in four independent pairs.
Adjacent microphones are 40cm apart. In order to cope with the
ambiguity introduced by sources permutation, in our experiments
we used M = 4 microphones pairs.

Table 1: Relationship between reflection coefficient (ρ) and rever-
beration time (T60) in the test 5m×5m×2.7m room

ρ T60
0.2 0.11 s
0.3 0.13 s
0.4 0.19 s
0.5 0.24 s
0.6 0.32 s
0.7 0.45 s
0.8 0.57 s
0.9 0.61 s

5 m2.6m

2.6 m

4 m

3.7m

1

5m

1.9m

2.2 m

0.8m

1.3 m 2

Figure 4: Environment, microphone locations and sources trajecto-
ries used in our tests.

In order to quantitatively assess the localization efficiency, we
measure the localization error as the Euclidean distance between
the estimated position [X̂p(t,T60),Ŷp(t,T60)] of the p-th source at
time t for a given reverberation time T60 and the ground truth
[Xp(t),Yp(t)]. The overall performance index is the average of the
localization errors of the two sources.

6. EXPERIMENTAL RESULTS

We have carried out simulations in order to test the localization and
tracking efficiency of the proposed algorithm based on particle fil-
tering, both for static and moving sources. In the following, we
also compare the performance obtained using particle filtering with
respect to using simple triangulation of DOAs.

6.1 Sources localization experiments
First, we analyze the efficiency of the proposed algorithm for the
case of static sources. In this test sources are in fixed locations
([X1 = 1.0m,Y1 = 1.5m,X2 = 3.25m,Y2 = 3.5m]). Figure 5 shows
the localization error as a function of reverberation time. We notice
that the localization efficiency tends to decrease as the the rever-
beration time increases. This is due to the fact that spurious peaks
might be present in the de-mixing filters estimated by TRINICON.
Figure 5 shows a significant performance improvement provided by
the proposed algorithm based on particle filtering with respect to
DOAs triangulation. The enhanced performance can be justified by
the fact that the proposed algorithm takes into account K peaks in
the localization function, thus achieving a sort of fractional sample
TDOA resolution. Moreover, the particle filtering approach is less
sensitive to outliers. This latter fact explains why the gap becomes
larger for mildly reverberating environments (0.3s < T60 < 0.6s),
where peaks in the de-mixing filters tend to be less pronounced.

6.2 Sources tracking experiments
In the case of moving sources, localization accuracy still experi-
ences a noticeable improvement using particle filtering. Figure 6
plots the ground truth and estimated trajectories, respectively with
a continuous line and circles. Small localization problems are ex-
perienced when sources change directions, due to the memory em-
bedded in state-space equation (particles tend to preserve their mo-
mentum), but a few observations are sufficient to recover a good
estimation.

Figure 7 depicts the overall localization error as a function of
the reverberation time. As for the static case, we can notice that
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Figure 5: Localization performances with static sources using par-
ticle filtering (triangles) and DOAs triangulation (squares).
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Figure 6: An example of source tracking using particle filtering.
Correct and estimated trajecories are drawn, respectively, with con-
tinous line and circles

particle filtering sensibly increases localization capabilities with re-
spect to DOAs triangulation.

As a final remark, we have to point out that the information
provided as output by the particle filtering algorithm is much richer
than the cluster centroids used as source position estimates in our
tests. In fact, particle filtering estimates the full posterior PDF given
the TDOAs observations, which is only partially described by the
cluster centroids.

7. CONCLUSIONS

In this paper we present an algorithm to perform localization and
tracking of multiple acoustic sources in reverberating environments.
Our approach uses TRINICON as a preprocessing step, in order to
determine the TDOAs for each pair of microphones. We show that
at least three microphones pairs are needed when TDOAs are sep-
arately estimated for each pair. Our current research activities are
focused on improving the tracking efficiency especially at high re-
verberation time by adaptively tuning the parameters of the likeli-
hood function. Moreover, we are extending the work for the case of
P > 2 and Q > 2.
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Figure 7: Localization performances with dynamic sources using
particle filtering (triangles) and using triangulation (squares)
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