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Abstract - In digital radio transmission over frequency
selective channels, the Minimum Mean-Square Error Decision
Feedback Equalizer (MMSE-DFE) is widely recognized as
an efficient equalization scheme. In order to compute the
coefficients of the feedforward and feedback filters of the
MMSE-DFE, both the channel impulse response (CIR) and the
variance of the noise have to be estimated. The estimate of the
CIR is usually performed by the standard least-square method,
where a known training sequence is employed. Then, the
estimated CIR is used to evaluate the variance of the noise. In
this paper the use of the two above estimates for MMSE-DFE
is studied. In particular, an unbiased estimate of the variance
of the noise is described.

Keywords - Decision-feedback equalizer, time-varying
channel, channel estimation.

I. INTRODUCTION

In digital radio transmission over frequency selective channels
equalization of the received signal is required. The Decision
Feedback Equalizer (DFE) is known to be an efficient equaliza-
tion scheme for channels corrupted by severe InterSymbol In-
terference (ISI) and additive Gaussian noise. In the Minimum
Mean-Square Error DFE (MMSE-DFE) the coefficients of the
FeedForward Filter (FFF) and of the FeedBack Filter (FBF) are
obtained from a spectral factorization where both the Channel
Impulse Response (CIR) and the variance of the noise are as-
sumed to be known.
When the MMSE-DFE is employed on a time varying chan-
nel, adaptation of the equalizer to the channel has to be per-
formed. In conventional implementations, gradient or least-
square methods are used to adapt the equalizer coefficients, us-
ing either the detected data or the symbols of the training se-
quence [1]. In [2] it is shown that in some circumstances, such
as moderately rapid fading channels, direct calculation of the
equalizer coefficients from the estimated CIR can be more ap-
propriate than adaptive algorithms.
In this paper joint CIR and noise variance estimate is performed
at the receiver by using a training sequence. The CIR is ob-
tained by the classical Least Square (LS) method [1]. The prob-
lem we are mainly concerned is the estimation of the noise vari-
ance from the given CIR estimate. In fact, by assuming perfect
channel knowledge, in [3] it is shown that the performance of
the MMSE-DFE is sensitive to the quality of the estimate of the
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Fig. 1: Discrete-time model of the transmission system with
DFE in the receiver.

noise variance.
The estimation of the noise variance could be treated as a prob-
lem of single parameter estimation if the CIR were known. In
this case, the estimate can be obtained by averaging the square
of the difference between the samples of the received signal and
the training sequence filtered by the known CIR. The number
of elements which are averaged coincides with the length of the
observation [1]. The situation is somewhat different when the
CIR is not known. We observe that, in order to obtain an un-
biased estimate, the scalar that divides the sum of the squared
differences has to be chosen equal to the length of the observa-
tion diminished by the length of the channel.
The paper is organized as follows. The model of the transmis-
sion system is described in section II. Section III presents the
equations of the coefficients of the MMSE-DFE. In section IV
the estimation method is described. The quality of the estimate
is demonstrated in section V by computer simulations. Finally,
conclusions are drawn.

II. SYSTEM MODEL

Figure 1 reports the discrete-time model of a data transmission
system over a baseband ISI channel with an DFE at the receive
side. The transmission of independent, identically distributed
binary data ak ∈ {−1,+1} is assumed. Let ν + 1 be the dura-
tion of the CIR and let h(z) =

∑ν

i=0
hiz

−i be its z-transform
(z−1 represents the unit delay). The autocorrelation of the CIR
is r(z) = h(z)h(z−1). The discrete-time noise wk is modelled
as zero mean white Gaussian noise with variance σ2. The z-
transform of the observed sequence is

y(z) = a(z)h(z) + w(z).

In the MMSE-DFE the computation of the taps of the FBF is
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based on what is called in [4] the key equation:

S0d(z)d(z−1) = r(z) + σ2, (1)

where d(z) is chosen as the impulse response that is causal,
monic, and minimum phase. The scalar S0 is called the system
average energy and is given by

S0 = σ2exp{
1

2π

∫ π

−π

log

(

1 +
r(ejω)

σ2

)

dω}.

Note that for σ > 0 the power density spectrum r(ejω) + σ2 is
nonnull everywhere. As a consequence, the existence of d(z) is
guaranteed and all its roots are strictly inside the unit circle.
The MSE is given by

MSE = E{u2
k}, (2)

where E{·} denotes the expected value, and

uk = xk −
ν

∑

i=0

diak−i, (3)

is the distortion sequence at the input of the slicer where

x(z) = p(z)h(z−1)y(z)

is the output of the FFF. In (3) it has been assumed that ak is
the k-th element of the transmitted sequence. Minimization of
(2) yields

p(z) =
d(z)

r(z) + σ2
= d−1(z−1). (4)

The MMSE is

MSEMMSE-DFE =
σ2

S0

.

III. ESTIMATE OF THE POWER DENSITY SPECTRUM

A pseudorandom sequence of length N is employed to con-
struct the training sequence. In order to avoid the presence
of unknown data symbols that influence the samples of the re-
ceived sequence, the last ν+1 symbols of the pseudorandom se-
quence are appended at the beginning of the training sequence,
and only N observations are used to work out the estimate.
In the context of estimation problems it is worth adopting vector
and matrix notation. By writing the N samples of the observed
sequence in the column vector y = [y1, y2, . . . , yN ]′ (′ denote
transposition), one has

y = Ah + w, (5)

where A is the N × (ν + 1) convolution matrix of the training
sequence, h = [h0, h1, . . . , hν ]′ is the column vector of the
channel coefficients and w = [w1, w2, . . . , wN ]′ is the column
vector of the noise samples.

The estimate of the channel coefficients is obtained by applying
the LS method [1]

ĥ = (A′A)−1A′y

= h + (A′A)−1A′w, (6)

where equation (5) has been substituted for y in the last line
of (6). Given ĥ from (6), one can get the estimate of the noise
variance as

σ̂2 =
1

β

∥

∥

∥
y − Aĥ

∥

∥

∥

2

, (7)

where ‖ · ‖2 represents the squared Euclidean norm in the N
dimensional space and β is a scalar factor that is hereafter dis-
cussed. If the channel were known the estimate of the noise
variance would become a classical problem of a single param-
eter estimation, hence β = N . It is proved in [5] that using
β = N in (15) one gets the ML estimate, which turns out to
be biased downward. We prove in the appendix that, in order
to obtain an unbiased estimate, one has to set β = N − ν − 1.
This result can be explained by observing that we are estimat-
ing certain parameters of the Gaussian random vector defined
in the RHS of (5). Specifically, we estimate the ν + 1 parame-
ters {h0, h1, . . . , hν} that determine the mean vector Ah, and
the parameter σ2 that determines the covariance matrix σ2IN ,
where IN denotes the N × N identity matrix. From this per-
spective we see that the coefficient (N−ν−1)−1 resembles the
coefficient (N − 1)−1 which appears in the classical estimate
of the variance of a scalar random variable based on the sample
mean:

µ̂ =
1

N

N
∑

i=1

vi, σ̂2 =
1

N − 1

N
∑

i=1

(vi − µ̂)2.

Once the estimate of the channel is available, we compute the
estimate of the autocorrelation of the CIR as

r̂(z) = ĥ(z)ĥ(z−1). (8)

Note that r̂(z) is a biased estimate of r(z). We observe that

cov(ĥ) = E{(ĥ − h)′(ĥ − h)} = E{η′
η} = σ2(A′A)−1,

(9)
which, for a pseudorandom training sequence, gives the result
[6]

E{η′
η} =

σ2

N + 1

(

Iν+1 +
Uν+1

N − ν + 1

)

, (10)

where Uν+1 is a (ν + 1) × (ν + 1) all ones matrix. The k-th
coefficient of r̂(z) is obtained as

r̂k =
ν

∑

i=0

(hi + ηi)(hi+k + ηi+k),

hence, using (10) and E{η} = 0, one concludes that

E{r̂k} = rk + bk,
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Fig. 2: AMSE versus ζ for N = 15 at SNR= 25 dB.

where

bk = σ2(ν + 1 − k)

(

1

(N − ν + 1)(N + 1)
+

δk

N + 1

)

,

where δk is the Kronecker delta function. Therefore, an unbi-
ased estimate of r(z) is

r̂(z) = ĥ(z)ĥ(z−1) − b(z). (11)

IV. EXPERIMENTAL RESULTS

In the experiments we compute the FBF by the spectral factor-
ization S0d(z)d(z−1) = r̂(z) + ζσ̂2 and compare the results
obtained by using r̂(z) given in (8) and (11). The factor ζ is
adopted in view of the results obtained in [3, 7]. The estimate
σ̂2 is computed from (7) with β = N − ν − 1. As far as the
computation of the coefficients of the FFF is concerned, note
that formula (4) holds when the FFF has an infinite number
of coefficients. When the FFF has a finite number of coeffi-
cients, equation (4) is no longer valid and minimization of (2)
is performed as reported in [8]. In the results that follows, an
FIR FFF with 91 taps has been considered. The estimated CIR
given in (6) is used as the discrete-time matched filter.
We adopt as a benchmark the time discrete additive white Gaus-
sian noise channel with ν = 6 studied in [9]. The impulse re-
sponse of the channel is h(z) = 0.176+0.316z−1+0.476z−2+
0.532z−3 + 0.476z−4 + 0.316z−5 + 0.176z−6. Note that the
channel is characterized by three zeros on the unit circle. We
consider transmission of data packets whose length is 200 bits.
By performing Monte Carlo simulations we measured the MSE
at SNR=25 dB (SNR=r0/σ

2). The Average MSE (AMSE) is
obtained by averaging the measured MSE over 105 data pack-
ets.
Figures 2 and 3 report the AMSE versus ζ at SNR= 25 dB
respectively for N = 15 and N = 31. From the figures one
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Fig. 3: AMSE versus ζ for N = 31 at SNR= 25 dB.

observes that for both the estimates of r(z) the minimum of
the AMSE is not achieved in correspondence of ζ = 1, but for
ζ > 1. For this reason, once the unbiased estimate of the noise
variance is available, it could be appropriate to slightly ficti-
tiously increase its value in order to improve the performance.
We observe that the AMSE of the two estimates is mainly in-
fluenced by the bias introduced in the estimated signal power
(the zero lag coefficient r̂0 + ζσ̂2), which can be controlled by
the parameter ζ. From these results it also appears that can-
celling the bias from the tails of the autocorrelation does not
improve the performance. Therefore, in the following results
the estimate (8), which does not require any corrective term, is
adopted. Figure 4 shows the first error event rate (FEER), which
measures the probability of error given correct detection of the
previous bits. Figure 4 gives the bit error rate (BER), where
the effect of error propagation is included. From the figures we
observe that the minimum of the error probability occurs for a
value of ζ which is greater than the value of ζ for which the
minimum AMSE occurs. From the presented results, it appears
that it is worth biasing upward the estimate of the signal power.

V. CONCLUSIONS

Direct computation of the coefficients of the MMSE-DFE re-
quires the knowledge of the CIR and of the noise variance.
When these parameters are not known a priori, they have to be
estimated. While the problem of the CIR estimation is hugely
treated in the literature [1, 8], it does not seem to be the same for
the noise variance. The main contribution of this paper is the
derivation of the sample estimate of the noise variance, from the
received sequence and the estimated CIR. The results show that
the AMSE is slightly improved when the estimated noise vari-
ance is slightly biased upward. As far as the error probability
is concerned, our results confirm what was already observed in
[3, 7] in the context of known parameters. Specifically, the er-
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Fig. 4: Simulated FEER versus ζ at SNR= 25dB.

ror probability is substantially improved by adding a substantial
upward bias to the estimated signal power.

APPENDIX

By substituting equation (6) in (7) one has

σ̂2 =
1

β

∥

∥w − A(A′A)−1A′w
∥

∥

2

=
1

β

∥

∥

(

IN − A(A′A)−1A′
)

w
∥

∥

2
. (12)

The key of the proof is to observe that

P = A(A′A)−1A′

is a projection matrix [10]. P satisfies the two properties P2 =
P, P′ = P, and its rank coincides with that of A, that is ν + 1.
In fact, the space spanned by P is defined by the ν +1 columns
of the matrix A. It is easy to show that P⊥ = IN − P is the
projection matrix in the space orthogonal to that spanned by P.
The rank of P⊥ is N − ν − 1. Hence, equation (12) can be
rewritten as

σ̂2 =
1

β
w′P⊥w. (13)

From this equation one observes that σ̂2 is completely esti-
mated in the (N − ν − 1)-th dimensional space which is or-
thogonal to that defined by the columns of the matrix A. A
property of a projection matrix is that its eigenvalues are 1 or
0. Since the number of eigenvalues different from 0 defines the
rank of a matrix, it follows that P⊥ has N − ν − 1 eigenvalues
equal to 1. Hence, P⊥ can be expressed as

P⊥ = Q′ΛQ, (14)

where Q is the N × N eigenvectors matrix, and

Λ =

[

IN−ν−1 0N−ν−1,ν+1

0ν+1,N−ν−1 0ν+1,ν+1

]

,
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Fig. 5: Simulated BER versus ζ at SNR= 25dB.

where 0l,m denotes a l × m matrix with zero entries. By sub-
stituting equation (14) in equation (13) we obtain

σ̂2 =
1

β
n′Λn, (15)

where n = Qw. Since the columns of Q define an orthonor-
mal basis, n is statistically equivalent to w. The mean value
of the estimate of the noise variance is obtained by taking the
expectation of (15) as

E{σ̂2} =
1

β
E{n′Λn}

=
1

β

N−ν−1
∑

i=1

E{n2
i } =

N − ν − 1

β
σ2.

From this equation it follows that one has to set β = N − ν − 1
in order to obtain an unbiased estimate. Note that with β = N
one has the ML estimate of the noise variance [5], and that the
condition A′A = NIν+1 required in [5] is not necessary both
for our unbiased estimate and for the ML estimate.

REFERENCES

[1] S. Haykin, Adaptive Filter Theory, Prentice-Hall, New
Jersey, 1996.

[2] S. Fechtel and H. Meyer, “An investigation of channel es-
timation and equalization techniques for moderately rapid
HF channels,” in Proceedings of International Conference
on Communications, Denver, CO, vol. 2, pp. 768-772,
June 1991.

[3] M. Magarini, A. Spalvieri and G. Tartara, “Sensitivity of
the mean-square DDFSD to a noisy estimate of the noise



variance,” in Proceedings of Vehicular Technology Con-
ference (VTC ’01-Fall), Atlantic City, NJ, vol. 2, pp. 892-
896, October 2001.

[4] J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, and G.
D. Forney Jr., “MMSE decision-feedback equalizers and
coding-part I: equalization results,” IEEE Trans. Com-
mun., vol. 43, pp. 2582-2594, October 1995.

[5] C. H. Aldana and J. M. Cioffi, “Channel tracking for mul-
tiple input, single output systems using EM algorithm,” in
Proceedings of International Conference on Communica-
tions, Helsinki, Finland, vol. 2, pp. 586-590, June 2001.

[6] S. N. Crozier, D. D. Falconer, S. A. Mahmoud, “Least sum
of squared errors (LSSE) channel estimation,” IEE Proc.,
vol. 38, pp. 371-378, August 1991.

[7] P. S. Bednarz and J. M. Cioffi, “Decision feedback equal-
ization for channels with error correcting capabilities,”
in Proc. IEEE International Conference on Communica-
tions, Montreal, Canada, 1997, pp. 1607 -1612.

[8] J. G. Proakis, Digital Communications, McGraw-Hill,
New York, 1995.

[9] R. R. Anderson and G. J. Foschini, “The minimum dis-
tance for MLSE digital data systems of limited complex-
ity,” IEEE Trans. Inform. Theory, vol. 21, pp. 544-551,
September 1975.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations,
John Hopkins University Press, Baltimore, 1996.


