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A B S T R A C T

This paper proposes a fast topology identification method to avoid estimation errors caused by network
topology changes. The algorithm applies a deep neural network to determine the switching state of the branches
that are relevant for the execution of a dynamic state estimator. The proposed technique only requires data
from the phasor measurement units (PMUs) that are used by the dynamic state estimator. The proposed
methodology is demonstrated working in conjunction with a frequency divider-based synchronous machine
rotor speed estimator. A centralized and a decentralized approach are proposed using a modified version of the
New England test system and the Institute of Electrical and Electronics Engineers (IEEE) 118-bus test system,
respectively. The numerical results in both test systems show that the method demonstrate the reliability
and the low computational burden of the proposed algorithm. The method achieves a satisfactory speed, the
decentralized approach simplifies the training process and the algorithm proves to be robust in the face of
wrong input data.
1. Introduction

Dynamic state estimation (DSE) plays an increasingly important
role in power system monitoring, control and protection [1,2]. The
deployment of phasor measurement units (PMUs) in transmission net-
works [3,4] has enabled the development of fast DSE methods that
mprove situational awareness, opening new possibilities for power
ystem protection techniques [5]. Particularly, the estimation of syn-
hronous generator rotor angles and speeds can be used to implement
ide-area protection schemes based on out-of-step protections [6,7] or

on direct transient stability methods such as the energy function. The
estimation of rotor speeds can be used also to minimize the amount of
load or generation to be shed after a load imbalance to preserve the
integrity of the system [1].

DSE algorithms such as [8–12] need reliable topology information
to be properly executed. The topology configuration is provided by the
network topology processor, which performs the topology identification
(TI) process. Traditional TI relies on the status of the electrical switch-
ing devices and can be affected by malfunctions, as described in [13].
TI algorithms for fast DSE face the additional problem of having to be
executed in a short time, typically a few tenths of milliseconds if the
result is to be used in a protection scheme.

Several TI methods have been developed in recent years, most of
them implemented in the framework of power system state estimation
in energy management systems. This is the case of the residual analysis
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method and the state vector augmentation method, both described
in [13]. These methods require one or several state estimation steps
to execute topology processing, which is a limiting factor for online
applications. The algorithm described in [14] proposes the usage of
PMUs to estimate the admittance matrix of the network. Although
reported results are accurate, this method requires to monitor each
network bus with a PMU or a modern relay. Currently, not many
electrical grids are equipped with such a great number of monitoring
devices, since its implementation is still rather costly. A methodology
that includes the status of the switching devices in the state estimation
vector is proposed in [15]. This implies the inclusion of three new
variables in the state vector for each switching device, increasing the
computational time of the algorithm. In [16], normalized Lagrange
multipliers are used to detect topology errors along with bad data. The
method presents accurate results, but the reported computational time
is well above one second, making the algorithm inappropriate for fast
DSE applications.

The usage of neural networks in TI applications has been introduced
in pioneering work presented in [17,18]. In [17], a counter propaga-
tion neural network that makes use of the power flow and injection
measurements, along with the switching status of several branches,
is proposed. In case the switching status provided by the network
topology processor is affected by errors, which is not a remote possi-
bility [13], the accuracy of this methodology could be greatly affected.
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The usage of artificial neural networks (ANN) for topology processing,
along with the bad data detection and identification functionality, is
proposed in [18]. The methodology requires the implementation of four
different ANNs for each branch, and a previous state estimation fore-
casting step to distinguish between topological and gross measurement
errors. In case large power systems are considered, this methodology
could lead to a significant number of ANNs to be trained and tested.
On the contrary, with our approach, the topology identification can
be carried out using only one DNN, leading to a more straightforward
approach. Furthermore, no state pre-estimation step is needed, which
translates into a significant reduction of the computational time. A
robust principal component analysis coupled deep belief network for
topology identification has been recently proposed in [19]. Reported
results show high accuracy, good robustness to measurement noise
and missing data, and computational times are of the order of tens
of ms. However, this methodology relies on the relations between bus
voltages to identify the branch status. While in distribution networks
with a typical radial connection between nodes these features can be
a reliable indicator of the branch connections, in meshed transmission
networks this approach might not be reliable. In [20], a hierarchical
framework that makes use of recurrent neural networks to identify
line outages is proposed. Reported results are very accurate, but the
reported computational times are of the order of hundreds of ms, which
can be a limiting factor for DSE applications. In [21], the TI is provided
by a neural network taking measurements of voltages, power injec-
tions and power flows from a wide area. However, since this method
receives the measurements from both traditional instrumentation and
PMUs with different sampling times, it is not applicable with fast DSE
applications. Furthermore, its training process can become cumbersome
if applied to large electric networks. A state and topology estimation for
distribution systems is proposed in [22]. Different DNNs are proposed
to carry out the state estimation and the TI separately. A sequential
forward selection is used to conduct the PMU placement. Subsequently,
their measurements are used to train the DNNs and to conduct the
estimates during the real-time operation. The method shows very high
TI accuracy and it can be applied to unbalanced systems. However, the
methodology has not been tested in transmission systems under strong
perturbations such as three-phase faults and under the presence of bad
data in the measurement set.

Apart from neural network-based algorithms, several other data-
driven techniques have been recently proposed to solve the topology
recovery problem. The methodology proposed in [23] carries out the
TI by employing a fuzzy c-means clustering method. This method is
reliable and accurate if applied to relatively small networks, but suffers
from loss of accuracy when the size of the grid and the number of
topology configurations to be estimated increase. Furthermore, this
method needs the input measurement set used to conduct the state
estimation of network bus voltage phasors, and therefore it is not
well suited for DSE applications. An event-triggered TI based on a
recursive Bayesian approach is proposed in [24]. This method is sen-
sitive to high measurement noise levels and the topology processing
is reliable, although the number of possible topology configurations is
limited. In [25], a two-step method to carry out topology identification
is introduced. Firstly, a data-driven approach is used to carry out
a first approximation of the system admittance matrix. Secondly, a
model-driven formulation is employed to improve the estimation of
the admittance matrix. Although reported results show high accuracy,
the computational times range from few seconds up to 10 s. Whereas
this computational speed might be acceptable for the monitoring and
control of distribution systems, it is not admissible for DSE applications.
A split expectation–maximization data-driven approach for topology
identification has been recently introduced in [26]. In the first stage,
an historical data batch topology identification is carried out to iden-
tify the number of possible topology categories. Subsequently, several
classifiers based on machine learning methods are proposed for real-
2

time implementation. Reported results are accurate, but simulations are
Table 1
Time requirements of DSE for different applications [5].

DSE application Time requirements (s) Measurement

Transient stability ≈ 10−2 PMU
Frequency stability ≈ 10−1 PMU
Long-term voltage stability ≈ 10−1 PMU
Short-term voltage stability ≈ 10−2 PMU
Control of converter-based resources ≈ 10−4 SV
Out-of-step protection 10−2–10−1 PMU
Fault location ≈ 10−3 SV

conducted only under normal operating conditions. Therefore, it is not
possible to determine whether the method is reliable or not under dy-
namic conditions. Furthermore, reported results exhibit CPU times on
the order of tens of milliseconds, whereas the method proposed in this
work is significantly faster. In [27], a two-stage topology identification
algorithm is proposed. In the first stage, a mixed-integer programming
model is used to carry out a preliminary TI. In the second stage, a
spanning tree generation algorithm is used to search for the topology
configuration that best matches the obtained estimations with power-
flow results. Reported computational times are ranged between some
seconds to some minutes, and this clearly poses a limitation for DSE
applications.

Generally, the aforementioned methods show computational times
ranging between hundreds of milliseconds and some seconds. Table 1
summarizes the time requirements for different DSE applications and
the technology used to collect the input measurement, e.g., PMU or
synchronized sampled value (SV) measurements. It can be seen that
most of the TI methods previously described do not meet the real-
time requirements for DSE applications. The interested reader can refer
to [5] and the references within for further details.

In order to obtain the necessary speed and robustness, TI methods
must be adapted to the DSEs they are intended to serve. Many DSEs
based on different Kalman filter types have been recently proposed,
e.g., [28–32]. All these methods require, at least to some extent,
knowledge of the synchronous machine parameters, which can be a
limiting factor. Recent years have seen the introduction of the concept
of the frequency divider (FD) formula [33], which allows calculating
the frequency of the center of inertia [8], the synchronous genera-
tor rotor speeds [9], the rate of change of power (RoCoP) [10,11],
and to carry out an online inertia estimation of synchronous and
non-synchronous devices [12]. FD-based methods make use of the
frequency measurements provided by PMUs and are characterized by
being model-independent. In fact, modeling of generators and loads is
not required because their interactions with the rest of the system are
reflected in the bus frequency variations captured by the PMUs. These
algorithms are characterized by having a very small computational
burden [34]. However, incorrect topology identification can heavily
affect their estimations because these algorithms rely on several local
measurements and the correct status of some relevant branches, as
explained in Section 2.4.

This work proposes a fast TI method to avoid estimation errors un-
der changes in the network topology. The main challenge is achieving a
reliable estimation of the topology sufficiently fast to be used together
with online state estimators. An additional goal is improving the speed
and robustness of the estimator by avoiding communications with a
central control room. The proposed method is based on a deep neural
network (DNN) that takes voltage and current measurements provided
by PMUs as input data.

The main advantages of the proposed method compared to other
methods in the literature are:

• It can be coupled with fast dynamic state estimators in online
applications since its computational burden is very small. To the
best of the authors’ knowledge, no other TI method presents lower
CPU times.
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• It provides accurate TI even under the occurrence of strong
perturbations in the electric system.

• It does not require the installation of any additional measurement
devices, since it uses the same PMU measurements needed to
conduct the DSE. In this regard, it is worth remarking that the
presence of a PMU at the point of connection of a power plant
is recommended by NERC standards for better power system
operation and control [35] and device model validation [36].

• It is suitable for large power networks since it can be applied
following a decentralized approach, avoiding the cumbersome
training process that limits the applicability of a centralized im-
plementation to large electric networks.

• It can be coupled with fast bad data detection, identification, and
substitution methods that allow the proposed TI to be robust to
gross measurement errors.

he proposed TI method is demonstrated together with a bad data
etection, identification, and substitution (BDDIS) algorithm and a FD-
ased rotor speed estimator, both of which use the same input data and
imilarly short execution times. The simulations are run on a modified
ersion of the New England test system and on a portion of the The
nstitute of Electrical and Electronics Engineers (IEEE) 118-Bus system.
owever, the output of the proposed TI method can be used to feed
ther DSEs that rely on the correct network topology.

The rest of the paper is organized as follows. Section 2 describes
the algorithms used in this work. Sections 3 and 4 demonstrate the
roposed method using a centralized and a decentralized approach,
espectively. Finally, Section 5 concludes the paper.

. Method description

The proposed method uses a DNN to execute the topology identifica-
ion, solving a classification problem. The final aim of this formulation
s to avoid a biased error of the model-independent linear generator
otor speed estimator. The general methodology is illustrated in Fig. 1.
y operating on voltage and current data received from PMUs, which
an be refreshed every few milliseconds, it is possible to take full
dvantage of the speed of the proposed method. A separate BDDIS
odule is responsible for the detection of bad data, liberating the TI

rom this task and simplifying the training process of the DNN.
The proposed approach is based on DNNs because of their high

ccuracy and small computational cost. Other machine and deep learn-
ng methods such as the Naïve Bayes method, the decision trees, and
inear and logistic regression algorithms have comparable computa-
ional times, but they are outperformed by DNNs in terms of estimation
ccuracy [37]. On the other hand, algorithms such as decision forests
nd support vector machines provide similar estimation accuracy to
NNs, but are significantly slower [37] and therefore cannot be used

or fast DSE applications.

.1. Deep neural networks

DNNs are characterized by having several hidden layers between
he input and output neurons. Generally, they can accomplish more
omplex tasks as their dimension increases.

Before the DNN can be used to execute a prediction, it must be
roperly trained. During the training process, the input signal is prop-
gated forward through the synaptic connections of the DNN until an
utput signal is generated at the output end of the structure. Then the
utput signal is compared with a desired output, and an error signal
s calculated based on the error signal function. This error signal is
ack-propagated through the DNN to adjust the synaptic weights and
he neuron bias and, consequently, to minimize the cost function of
he error signal. The iterative process is repeated until an acceptable
ccuracy on the training set is obtained. The conceptual steps of the
raining process are briefly reported hereafter, but the interested reader
an refer to [38,39] for a comprehensive explanation of DNNs and their
3

ptimization heuristics. t
eed-forward propagation
In the feed-forward step, the input signal is propagated from one

euron to the next layer neurons through the synaptic connections:

𝑖 = 𝑾 𝑖,𝑖−1𝒚𝑖−1 + 𝒃𝑖, (1)

here 𝒙𝑖 represents the input vector entering the 𝑖𝑡ℎ layer, the matrix of
𝑛, 𝑚) dimensions 𝑾 𝑖,𝑖−1 represents the synaptic weights (where 𝑛 and

are the number of neurons of the 𝑖𝑡ℎ and 𝑖− 1𝑡ℎ layers, respectively),
ector 𝒚𝑖−1 represents the output signal coming out of the 𝑖− 1𝑡ℎ layer,
nd vector 𝒃𝑖 represents the neuron bias values to be applied to the
eurons in the 𝑖𝑡ℎ layer.

Afterwards, the computation of the active function is performed,
hich is usually a nonlinear function of the input pattern:

𝑖 = 𝒂𝑖(𝒙𝑖), (2)

ith 𝒂𝑖 being the neuron activation function, which generates the 𝑖𝑡ℎ
ayer output vector 𝒚𝑖.

The activation function strongly modifies how the output signal is
omputed and the accuracy of the DNN on both the training and test
hases; therefore, its formulation must be carefully evaluated [39].
inally, when the input vector is propagated through all the hidden
nd output layers, the error signal can be calculated as follows:

𝑗 = 𝜻(𝒐𝑗 , 𝒐̂𝑗 ), (3)

here 𝒆𝑗 is the error vector, 𝑗 represents the output layer index,
nd 𝜻 is a generic function that computes the output error based on
he difference between the estimated output vector 𝒐 and the desired
utput vector 𝒐̂.

As in the case of the activation functions, the error function formu-
ations also have an important impact on the DNN performance. The
nterested reader is directed to [39] for a detailed discussion on this
opic.

ackpropagation
During the backpropagation step, the partial derivative of the er-

or signal with respect to the synaptic weights and bias are deter-
ined. In this way, it is possible to compute the adjustments in the
eights and bias hyperspace that minimize the error signal. The general

ormulation, applied to the hidden layers, is the following:

𝜕𝝃𝑖
𝜕𝑾 𝑖,𝑖−1

=
𝜕𝝃𝑖
𝜕𝒆𝑖

𝜕𝒆𝑖
𝜕𝒚𝑖

𝜕𝒚𝑖
𝜕𝒙𝑖

𝜕𝒙𝑖
𝜕𝑾 𝑖,𝑖−1

, (4)

where 𝜉 is the error signal backpropagated up to the 𝑖𝑡ℎ hidden layer. In
the case of the output layer, since there is a direct relationship between
the error signal and the neurons, the formulation is simpler:

𝜕𝒆𝑗
𝜕𝑾 𝑗,𝑗−1

=
𝜕𝒆𝑗
𝜕𝒐𝑗

𝜕𝒐𝑗
𝜕𝒙𝑗

𝜕𝒙𝑗
𝜕𝑾 𝑗,𝑗−1

, (5)

with 𝑗 being the output layer index. Once the partial derivatives are
computed, the weights can be updated:

𝑾 𝑖,𝑖−1 = 𝑾 𝑖,𝑖−1 − 𝑙𝑟
𝜕𝝃𝑖

𝜕𝑾 𝑖,𝑖−1
, (6)

here 𝑙𝑟 is the learning rate, which allows us to tune the trajectory rate
f change in the weight and bias hyperspace. To update the neuron bias,
n analogous procedure is executed.

Once the DNN achieves the desired accuracy over the training set,
ts performance must be tested. If the training process has been carried
ut preventing overfitting and underfitting phenomena, the DNN is able
o correctly execute the predictions outside the training set.
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Fig. 1. Flowchart of the proposed methodology.
.2. Proposed TI method

The input vector is composed of the bus voltages and the branch
urrents provided by the same PMUs used to carry out the dynamic
tate estimation. Before the measurements are used by the TI, they are
ormalized as follows:

𝑖𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
, (7)

where 𝑥𝑖 is the 𝑖𝑡ℎ measurement of the input vector, and 𝑥𝑚𝑎𝑥 and
𝑚𝑖𝑛 are the maximum and the minimum values of the training set,
espectively, to be applied separately for each type of measurement.
s explained in [21], this procedure avoids generalization problems
nd typically accelerates the training process. Once the input signal
as propagated through the DNN, the output signal is obtained at
he output end of the structure. Depending on the number of possible
opology configurations, a different number of output neurons must be
sed. For example, if the number of topology configurations is between
and 16, then a 4-digit binary number must be used. The topology

onfigurations considered for the centralized and decentralized case
tudies in the following sections can be found in [40]. In this work,
ll the hidden and output layer neurons employ the sigmoid activation
unction:

𝑖 =
1

1 + 𝑒−𝑥𝑖
. (8)

Several other activation functions are commonly used in DNN ap-
lications, e.g., the rectified linear activation (ReLU) function, the
yperbolic tangent function, and the softmax function. As described in
ection 2.1, the choice of the activation function plays an important
ole in the performance of DNNs, and it must be selected following
eep learning heuristics and trial and error procedures [39]. In this
ork the ReLU and the hyperbolic tangent functions were also tested on
4

hidden layer neurons. However, the ReLU activation function was ruled
out because it experienced the so-called ‘‘dying ReLU problem’’. This
phenomenon occurs when a significant number of internal signals in a
DNN are negative and the neuron outputs are null, thus preventing the
DNN from learning. The hyperbolic tangent function was also discarded
because it provided a lower accuracy in the test phase compared to the
sigmoid function. Finally, the sigmoid activation function is selected
for output layer neurons because this function is equivalent to a 2-
class softmax function [39] and therefore best suited for the binary
classification problem formulated to identify the electric grid topology.

The formulation of the error signal used to train the DNN is the
following:

𝑒𝑗 = (𝑜𝑗 − 𝑜̂𝑗 )2. (9)

The calculation of the admittance matrix requires several seconds
and has to be done only once for each topology configuration, unless
there are major changes such as the substitution of a transformer or
a line. Consequently, the admittance matrix corresponding to each
topology configuration is calculated offline.

The proposed algorithm is applicable using a centralized or a de-
centralized implementation. Since it can significantly affect the prac-
tical application of the proposed method, its main advantages and
disadvantages are described hereunder and illustrated in Fig. 2.

Centralized TI approach. The centralized TI approach allows the al-
gorithm to determine the relevant topology configurations for the
generator rotor speed estimations using only one DNN. It is a straight-
forward implementation, but it may not be applicable in large power
systems since the number of possible topology configurations grows
exponentially. This fact significantly increases the training times and

the possibility that the DNN experiences overfitting or underfitting
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Fig. 2. Centralized and decentralized implementation of the proposed TI method.

phenomena. In the experience of the authors of this work, the cen-
tralized approach is advisable up to a few tens of possible topology
configurations. After that, a decentralized implementation is preferable.

Decentralized TI approach. For large power systems, the training pro-
cess of the DNN can be time consuming since the number of relevant
topology configurations increases drastically. As previously described,
this fact can lead to a cumbersome training process. Fortunately, since
the estimation algorithm [9] allows a decentralized estimation of the
rotor speed, topology processing can also be employed in a decen-
tralized way, i.e., it can be applied individually to each synchronous
generator. Since only the branches that connect the generation bus with
its neighboring buses must be taken into account, this implementation
minimizes the number of possible topology configurations. Thus, the
training set is smaller, and the training process is significantly easier.
In fact, as described in [39], the training process of classification DNNs
depends, among other parameters, on the size of the training set and
the number of possible outputs of the DNN. By dividing the topology
processing into several minor TI tasks, we reduce both the training set
of each DNN and the number of possible topology configurations to be
estimated. As a result the training time is remarkably reduced, as shown
later in Section 4. For its practical relevance, it is worth mentioning
that also other FD-based algorithms allow decoupled estimations and
can therefore benefit from the decentralized implementation of the pro-
posed TI. For instance, both RoCoP [10,11] and inertia [12] estimations
could be coupled with the proposed decentralized approach.

2.3. Bad data detection, identification, and substitution algorithm

In case the input signal of the proposed TI method is affected by
5

gross errors, the topology processing might be biased. Since DNNs need
a fixed number of input values, it is not possible to simply identify
and remove the measurement. Instead, a BDDIS algorithm should be
used. In this article, due to its low computational cost, a modified
version of the approach proposed in [41] is applied. In this way, the
BDDIS is carried out using a neural network pre-estimation filter. With
this methodology, the BDDIS receives the input measurement set and
provides their estimated values. The output and input training sets are
exactly the same, and both sets consist of correct measurements of
the considered system operating condition. During the DNN training
process, the features between input and output signals are extrapolated
by computing the synaptic weight and neuron bias values. In this
manner, the presence of bad data in the input set is identified and the
DNN provides the closest match to these inputs to generate an educated
guess.

To identify the bad data, the following identification rule is used:

(𝑧𝑖 − 𝜙𝑖)2 > 𝛾𝑖
2, (10)

here 𝑧𝑖 and 𝜙𝑖 are the 𝑖𝑡ℎ measurement and its estimated value
rovided by the DNN, respectively, and 𝛾𝑖 is the threshold that flags
he presence of bad data in the measurement set.

In case the 𝑖𝑡ℎ measurement is flagged, the input value 𝑧𝑖 is replaced
with its estimation 𝜙𝑖 provided by the DNN. As the estimated value is
generally similar to the true input value, it can be used to conduct the
TI.

It is worth mentioning that in order to conduct the BDDIS process,
other algorithms can be used. An extensive survey of possible data-
driven algorithms that can be used in power system applications is
presented in [42]. For instance, a convolutional neural network is
presented in [43], which shows high detection accuracy against false
data injection attacks. A nonlinear autoregressive exogenous neural
network is presented in [44], which presents small running times and
high bad data detection accuracy. Other algorithms that can be used
for the BDDIS process are [45,46], since they are both highly accurate
and present CPU times that are compatible with the time requirements
of fast DSE algorithms.

2.4. FD-based rotor speed estimator

In order to demonstrate the proposed TI method, it is coupled with
a rotor speed estimator based on the model-agnostic linear algorithm
introduced in [9]. The rotor speed estimator is based on the frequency
variations measured by the PMUs, and applies a weighted least square
(WLS) formulation that results in the following equation:

𝛥𝝎𝐺 = (𝑫𝑇𝑫)−1𝑫𝑇 𝛥𝝎𝐵 = 𝑫+𝛥𝝎𝐵 , (11)

where 𝑫 is the frequency divider matrix [33] and 𝑫+ is its left inverse,
vector 𝛥𝝎𝐺 represents the sought generator rotor speed deviations, and
vector 𝛥𝝎𝐵 represents the bus frequency deviations measured by the
PMUs.

The WLS formulation allows a fully decoupled estimation of the
rotor speed of each generator. In fact, matrix 𝑫+ presents interesting
topology properties, since the non-null elements of each row of 𝑫+

correspond to the bus frequency measurements required to estimate
the generator rotor speed associated with the analyzed row. More
specifically the relevant frequency measurements refer to the bus of
the generator to be monitored and its neighboring buses. This is an
important consideration, because by using this property the topology
processing can also be applied in a decentralized way, i.e., considering
only the branches that are relevant for the estimation of the rotor speed
of each generator. This consideration is valid also for other FD-based
estimation algorithms, such as [8,10–12].
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Fig. 3. Single-line diagram with the PMUs used for TI and the relevant branches of the modified New England test system.
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. Study case 1: Centralized application on the New England test
ystem

.1. Description

The proposed TI method is firstly demonstrated on a modified
ersion of the New England test system, shown in Fig. 3. This is
well known benchmark system that has been selected because it

s sufficiently small to demonstrate the centralize application of the
roposed TI method. The computational load of the training process
ncreases rapidly with the size of the network; in the case of large
nterconnected networks it is recommended to follow the distributed
pproach described in Section 4.

The relevant branches whose status needs to be estimated to cor-
ectly execute the FD-based algorithm are painted in blue. All syn-
hronous generator connection points are equipped with PMUs that
easure the bus voltage and the branch current; altogether, a set of
3 PMU measurements is used to feed the DNN. A detailed account
f the power system model and the set of measurements can be found
n [40].

Generators in the New England test system are connected in an-
enna. In these cases, according to the properties of the WLS estimator
e only need the current through the branch connecting the generator

o the rest of the system to estimate the rotor speed. If the branch
pens the generator remains isolated from the grid and it simply
rips. More interesting cases occur when the generator is connected
ith two transformers working in parallel and when the generator is

onnected to two different buses. To represent these last situations, the
ew England test bus system has been sightly modified: the branch
onnecting buses 20 and 34 has been split in two parallel transformers,
nd a new bus 40 has been added. This new bus 40 is connected to
us 30 through a transformer and to bus 25 through a line. Since the
elevant branches for the considered DSE are the ones connecting the
eneration buses with their neighboring nodes, one may come up with
he idea to estimate the connection status by relying solely on the PMU
6

urrent measurements. This method would probably lead to incorrect p
Table 2
Training and test accuracy of the DNN centralized approach.

Centralized approach
DNN with 3 hidden layers
23-30-20-10-4

Training accuracy 99.81%
Training time 1375 s
Testing accuracy 99.43%
Testing time 5.1 ⋅ 10−5 s

TI estimations in case bad data was present in the measurement set
since the TI is based on a single measurement value. Since DNNs are
able to extract the features between the input values and do not rely
on a single measurement value, they are intrinsically more robust to
the presence of outliers in the data set. However, as mentioned in
Section 2.3, the presence of a BDDIS remains recommended to further
increase the robustness against outliers.

Because the test system is relatively small, a centralized approach
can be implemented by applying a unique DNN that is able to recognize
the relevant topology configurations. The DNN implemented for this
case is able to detect significant topological changes for each generator.
In total, it is trained to recognize 16 possible configurations, which are
reported in [40]. Table 2 summarizes the parameters used to build,
train and test the DNN, which have been determined heuristically. The
DNN, in the centralized case, has 23 input neurons, 3 hidden layers
with 30, 20 and 10 neurons, and 4 output neurons. The learning rate
is 𝑙𝑟 = 5 ⋅ 10−5. It is worth mentioning that the structure of the DNN
as been determined empirically after several attempts. In accordance
ith [38-39], we noticed that smaller structures with a smaller number
f hidden layers and neurons could not reach a good training accuracy
ven after large training times, since they were not capable of extract-
ng the relevant feature from the data set. On the contrary, bigger
tructures showed high training accuracy but experienced overfitting
roblems and performed poorly outside the training set during the test
hase.
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3.2. Training process and test results

The training process of the DNN is executed considering generation
and load events. These events produce fluctuations in the electric
network so that the bus voltage varies from 0.8 p.u. to 1.20 p.u.,
and the branch current flows from approximately 0 to 120%. These
variations allow the DNN to be properly trained and to extract the
relevant features that enable correct input–output mapping. The DNN
of the centralized approach is trained considering 145 generation and
load events, and its training set is composed of 5648 samples. In case
the DNN does not perform acceptably well during the test phase with
different DNN structures, it is necessary to modify the training data set
by considering new load and generation events so that the DNN can
extract the relevant features from the data and correctly carry out the
TI.

The DNN testing phase is executed considering a topology change
following a short-circuit clearance. All the simulations last 10 s, with
the short-circuit occurring at t=1 s, and the fault being cleared 100 ms
later. The simulation time step used is 10 ms, therefore the DNN
executes 1000 topology processing for each simulation. This scenario
is repeated considering every relevant topology configuration. The set
of voltage and current measurements used for the DNN training and
test phases are imported from the software PowerFactory [47].

To test the sensitivity of the proposed TI method to the presence
of noise, a Gaussian distributed error with zero mean and 𝜎 standard
deviation is added to all the measurements used to execute the topology
processing. The accuracy of the measurement devices corresponds to
3𝜎, and the value for this work is taken from [48]: 3𝜎 = 0.7% of the
reading value for both the bus voltage magnitude and line current mag-
nitude measurements. It is worth mentioning that a recent study [49]
proved that PMU measurements present a non-Gaussian distributed
noise. However, the methodology presented in this work remains valid
since DNNs are able to perform accurately with measurements affected
by a generally distributed noise if that noise distribution is taken into
account during the training phase [50]. This has already been proven
also in [22], where a non-Gaussian noise is considered and the proposed
DNN is able to correctly carry out the TI classification.

Table 2 shows the accuracy achieved during the test phase, which
is higher than 99%. The only situations in which the proposed TI
method does not recognize the topology occur throughout the short-
circuit event. In fact, during the training process these events were not
considered, and it is therefore predictable that the DNN cannot properly
interpret them. As can be noticed, the topology processing time is in the
order of 10−5 s per iteration.

Table 3 shows the most important performance indicators from the
point of view of the final user in comparison with the TI methods
described in Section 1. Comparing Tables 1 and 3, it can be seen that
most of the TI algorithms available in literature are not suitable for DSE
applications, since they do not meet the execution time requirements.
Only Refs. [19,21,23], and [26] exhibit CPU times that are compatible
with some execution times in Table 1; however, as described in Sec-
tion 1, these methods are not suited for DSE applications. In this regard,
the proposed TI method is promising because its low computational
burden makes it compatible with fast DSE applications.

3.3. Simulation results

The proposed TI method is integrated with the WLS estimator
described in Section 2 to demonstrate how the latter can benefit from
a correct TI. The input frequency measurements and the actual rotor
speeds (taken as reference output values) are imported from the soft-
ware PowerFactory [47]. The model used by PowerFactory to compute
the bus frequency values, used as input values of the simulations, is a
classical phase-locked loop (PLL).

No noise for the bus frequency measurement is supposed, since the
7

WLS rotor speed estimator used in this work is quite sensitive to these b
Table 3
Performance comparison of different TI algorithms.

Method Training Execution Topology identification
time time (s) accuracy (%)

[16] Not applicable ≈ 100 100
[17] 3–5 h 10−1–100 100
[19] 30 min ≈ 10−2 ≈ 99.9
[20] Not reported 10−1–100 98–100
[21] 10–90 h ≈ 10−4 99.6–99.9
[23] Not applicable ≈ 10−2 100
[24] Not applicable 100–101 62.5–100
[25] Not applicable 100–101 100
[26] Few minutes ≈ 10−2 ≈ 99.4
[27] Not applicable ≈ 101 90–100
This work 1–30 min ≈ 10−5 ≈ 99.4

types of turbulence and the results may be significantly affected by this
factor. The effect of the noise on the speed estimator can be decreased
through appropriate filtering [9] and is beyond the scope of this paper.

To quantitatively compare the results obtained using the proposed
TI method with the case in which no TI is considered, the root mean
square (RMS) of the residuals is calculated as:

𝛹𝜔𝐺𝑖
=

√

√

√

√
1
𝑇

𝑇
∑

𝑡=1
[ ̂𝜔𝐺𝑖,𝑡 − 𝜔𝐺𝑖,𝑡]2, (12)

where ̂𝜔𝐺𝑖 is the estimation of the 𝑖𝑡ℎ generator rotor speed, 𝑡 repre-
ents the considered time step, 𝑇 is the number of time steps of the

simulation, and 𝜔𝐺𝑖 is the actual generator rotor speed value.
In all the simulations reported in Sections 3 and 4, the time step

is 10 ms, and random Gaussian noise, as described in Section 3.2, is
applied to the measurements used to feed the DNN. The algorithms are
coded in MATLAB and run on a computer with an Intel Core i7-3770,
3.40 GHz processor and 6 GB of RAM.

3.3.1. Short-circuit at bus 34 followed by disconnection of transformer
20-34

The simulated case consists of a three-phase short-circuit with zero
fault impedance at t=1 s located at the low voltage side of one of the
two parallel transformers between buses 34 and 20. The fault is cleared
by the disconnection of the affected transformer 100 ms later. This
event leads to a topology change that affects the elements (5,20) and
(5,34) of 𝐷+ [40] and therefore affects the rotor speed estimation of
he generator at bus 34.

In Fig. 4 the results of the topology processing at each iteration are
eported. As previously discussed, the proposed TI method employs a
inary classification, and the results are reported in this format [40].
s can be noticed, the proposed method provides accurate TI along the
imulation, correctly detecting that the topology is not changing during
he first part of the simulation (output ‘‘0000’’) and detecting the open-
ng of one of the two parallel transformers between buses 20 and 34
output ‘‘1010’’). Only during the fault, there are few misclassifications,
ince the algorithm provides the output ‘‘1000’’ (transformers 2-30 and
0-30 are both open). It is worth mentioning that the proposed TI
ethod is very accurate under the severe electromechanical oscillations

aused by a nearby three-phase short-circuit and its clearance.
Fig. 5 shows the actual rotor speed of the considered synchronous

achine and the estimated rotor speed with and without the proposed
I. It can be seen that the proposed method provides more accurate
stimates of the generator rotor speed due to prompt detection of the
ew topology configuration. It is worth mentioning that the spikes
bserved during the fault occurrence and its clearance are due to the
requency calculation technique of the PMUs. In this work, as already
entioned, they are provided by the software PowerFactory and are

ased on a PLL model [47].
Observing the last instants of the simulation, it can be noticed how

oth rotor speed estimations converge to the actual rotor speed values.
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Fig. 5. Case 1-1 — Rotor speed estimation of synchronous machine 34.
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Table 4
Case study 1-1.

Comparison Rotor speed estimation Rotor speed estimation
index with TI without TI

𝛹𝜔𝐺34
(p.u.) 2.106 ⋅ 10−3 4.321 ⋅ 10−3

CPU time (s) 2.71 2.67

The benefit of using correct topology information manifests only during
the first seconds after the fault. In fact, it is only during this time lapse
that the bus frequencies vary, and the weight given by the non-null
elements of 𝐷+ affects the estimation of the rotor speed estimations.

With the proposed TI method, the enhanced performance of the
otor speed estimations is also reflected in the RMS of the residuals,
hich are reported in Table 4. It can be observed that the computa-

ional time of the entire ten-second simulation for the two estimators
s quite similar. Therefore, the usage of the proposed TI method does
ot imply a significant computational increase. In fact, the average
PU time of the proposed approach to conduct topology processing is
pproximately 4⋅10−5 s. Since the CPU time of the rotor speed estimator

is on the order of milliseconds per time step, it is clear that the proposed
methodology is compatible from a computational point of view with the
rotor speed estimator. In this respect, it is worth remarking that the
topology processing algorithms described in Section 1 are not suitable
for DSE implementations since they have high computational burdens
and cannot be coupled with fast estimators.
8

A

3.3.2. Short-circuit at bus 30 followed by the disconnection of transformer
2-30

The simulated event is a three-phase short-circuit with zero fault
impedance that occurs at𝑡 = 1 s at the low voltage terminals of
transformer 2-30. Subsequently, the transformer protection opens af-
ter 100 ms, provoking a topology change that affects the rotor speed
estimation of generator 30. Due to the inclusion of the new bus 40, once
the fault is cleared the generator remains connected to the network
through transformer 30–40 and line 25–40.

The results of the online TI are reported in Fig. 6. It can be observed
that the proposed method accurately tracks the topology configuration,
misclassifying the TI only during the duration of the short-circuit.
Immediately after the fault, the method recovers the correct topology
configuration providing the output ‘‘0110’’ (branch of the transformer
2-30 open).

As in the previous study case, the topology change affects the rotor
speed estimation. Before the clearing of the fault, the elements of the
𝐷+ matrix that affect the rotor speed estimation of generator 30 are
1,2), (1,30) and (1,40) [40], i.e., the relevant frequency measurements
o conduct the estimation are those of buses 2, 30 and 40. However,
nce branch 2-30 is disconnected, the frequency measurements from
us 2 must no longer be taken into account. If the topology config-
ration is not properly detected and the frequency of bus 2 remains
onsidered for the estimation, the rotor speed estimate will be biased.

These considerations can be used to interpret Fig. 7, which shows
he simulated and the estimated rotor speed of the generator at bus 30.
gain, the TI allows a correct estimation of the generator rotor speed as
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Fig. 6. Case 1-2 — Topology identification.
Fig. 7. Case 1-2 — Rotor speed estimation of synchronous machine 30.
Table 5
Case study 1-2.

Comparison Rotor speed estimation Rotor speed estimation
index with TI without TI

𝛹𝜔𝐺30
(p.u.) 8.613 ⋅ 10−4 1.764 ⋅ 10−3

CPU time (s) 2.64 2.60

soon as the fault is cleared. Table 5 shows similar results to the previous
case: the TI improves the accuracy in the speed estimation which results
in a significant decrease of the RMS of the residuals, while the CPU time
remains practically unchanged.

3.3.3. Additional remarks on the simulation results
The results reported in this section show that the proposed TI

method is computationally compatible with the model-independent
linear generator rotor speed estimator since the former has CPU times
two orders of magnitude lower than those of the latter.

It is possible to observe that the higher the topology errors are,
the greater the rotor speed estimation benefits from the TI. In fact, in
the first case, the generator remains connected to the network through
one of the two transformers connected in parallel. Hence, adjacent bus
frequency measurements remain useful for estimating the generator
rotor speed. Thus, the estimation bias is attributable to the wrong
weights, i.e., the relative elements of 𝐷+, given to the frequency mea-
surements. In the second case, the complete disconnection of branch
2-30 implies that the bus 30 frequency measurements must not be
taken into account once the switching device opens. Otherwise, the
9

estimations are strongly biased. This justifies the significant difference
between the estimation with and without the TI.

Finally, it is worth reminding also in this section that the proposed
TI method can be coupled with any DSE algorithm that needs accurate
and fast topology processing.

4. Study case 2: Decentralized application on the IEEE 118-bus test
system

4.1. Training process and test results

The set of possible topology configurations increases rapidly with
the size of the network, as more relevant branches are added to the
system. Eventually, if the network is too large it is not possible to
apply the proposed TI method to the whole system because the training
process would be too time-consuming. However, the FD-based WLS es-
timator allows a decentralized estimation of the generator rotor speeds
using only local PMU measurements. The proposed TI method can also
be applied separately to each generator, using the same local PMU
measurements and providing valuable information about the switching
status of the branches connected to the generator bus.

This section demonstrates this decentralized approach by applying
the proposed TI method and the FD-based WLS rotor speed estimator
to generator 31 in the IEEE 118-bus test system. The application of
the centralized method to the whole IEEE-118 Bus system would be
difficult because of its relatively large size. Fig. 8 shows the portion of
the system considered for this demonstration.

To train the DNN, a set of 4 PMU measurements is used, namely

the voltage at bus 31 and the current at each branch connected to
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Fig. 8. Single-line diagram with the PMU used for TI and the relevant branches of the analyzed portion of the IEEE 118-bus test system.
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Table 6
Training and test accuracy of the DNN decentralized approach.

Decentralized approach
DNN with 2 hidden layers
4-7-5-3

Training accuracy 99.98%
Training time 60 s
Testing accuracy 99.39%
Testing time 3.9 ⋅ 10−5 s

bus 31. As in the previous case, the simulation time step is 10 ms
and random Gaussian noise is added to the input measurements. Since
the connection status of 3 branches must be considered, the number
of relevant topology configurations for the rotor speed estimations of
this generator is 23 = 8. The set of topology configurations and their
associated binary outputs, along with the input measurements, can be
found in [40]. The learning rate used in this case is 𝑙𝑟 = 10−4. As can
be observed in Table 6, the DNN has 4 input neurons, 2 hidden layers
of 7 and 5 neurons, and 3 output neurons. A total of 33 events are
considered, and the training set has 2424 training samples.

4.2. Simulation results

4.2.1. Short-circuit at bus 31 followed by disconnection of lines 29–31 and
31–32

The simulation consists of a short-circuit at t=1 s located at bus 31,
followed by the disconnection of lines 29–31 and 31-32 100 ms later.
The disconnection of these two lines leads to a topological change that
affects the estimation of the rotor speed of generator 31. For a proper
estimation of the rotor speed, the frequency measurements from buses
29 and 32 should not be taken into account once the corresponding
branches are opened.

Observing Fig. 9, it is possible to see how correct topology process-
ing allows accurate rotor speed estimation. The RMS of the residuals
and the CPU times of this case are reported in Table 7. As in the
previous cases, it can be seen the TI improves significantly the accuracy
of the estimation without practically affecting the computation time.

With respect to the previous study cases, the differences with the
estimator that does not employ the TI are larger. This is because when
no TI is employed, the estimator uses two frequency measurements,
those of buses 29 and 32, that are no longer mathematically related to
the generator 31 rotor speed in the WLS formulation.

4.2.2. Gross error in the measurement set
This subsection simulates the presence of a gross error in the mea-

surement set. The events are the same as in Section 4.2.1: a short-circuit
10

at bus 31 occurs at t=1 s and it is cleared by opening lines 29–31 s
Table 7
Case study 2-1.

Comparison Rotor speed estimation Rotor speed estimation
index with TI without TI

𝛹𝜔𝐺31
(p.u.) 3.565 ⋅ 10−4 1.566 ⋅ 10−3

CPU time (s) 1.84 1.81

and 31–32 100 ms later. In this case, a malfunction in a PMU input
channel during the fault is considered; i.e., the current measurement
𝐼31−29 remains frozen at the short-circuit value of t=1.03 s for the entire
simulation. The presence of this bad data in the TI input signals implies
a wrong topology processing, which in turn translates into strongly
biased rotor speed estimations.

As described in Section 2.3, to avoid this error a DNN-based BDDIS
lgorithm is implemented. The training set is created considering gen-
ration, load, and short-circuit events under all the relevant topology
onfigurations of this case [40]. After different attempts, the DNN
onfiguration that provides the best test results has 4 input and output
eurons (number of measurements used in this case), and 2 hidden
ayers of 12 and 8 neurons, respectively. Due to similar reasons to
he ones explained in Section 2.2, all the BDDIS DNN neurons employ
he sigmoid activation function. The bad data identification threshold
pplied in this work is 𝛾𝑖 = 10 ⋅ 𝜎𝑖, where 𝜎𝑖 is the 𝑖𝑡ℎ measurement
tandard deviation. The learning rate used in this case is 𝑙𝑟 = 4 ⋅ 10−4,
nd the training time is approximately 25 min. As shown in Fig. 10, the
resence of the BDDIS algorithm allows estimating a value of 𝐼31−29
hat is similar to the true value of 0 p.u. (after the fault clearance),
nstead of the wrong value of 5.83 p.u. It is worth mentioning that the
PU time of the DNN-based BDDIS algorithm is 2.1 ⋅ 10−5 s, which is of
he same order of magnitude as the proposed TI method. Therefore,
he BDDIS and the proposed TI methods are both suitable for DSE
pplications. In Fig. 11, it is possible to observe how the replacement
f the wrong measurement allows the proposed TI to correctly estimate
he right binary topology configuration ‘‘110’’ (lines 29–31 and 31–
2 open) instead of output ‘‘101’’ (lines 17–31 and 31–32 open) that
he TI provides in case no BDDIS is considered. The correct topology
rocessing, in turn, implies a better estimation of the generator 31 rotor
peed, as shown in Fig. 12.

. Conclusion

The proposed TI method is able to detect topology changes in the
nalyzed cases, even immediately after a severe fault. The method
hows a remarkably low computational load, taking approximately
0 μs to complete on the modified version of the New England test
ystem using an average personal computer (PC). This makes the
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Fig. 9. Case 2-1 — Rotor speed estimation of synchronous machine 31.
Fig. 10. Case 2-2 — I 31-29 estimation with and without BDDIS.
Fig. 11. Case 2-2 — Topology identification with and without BDDIS.
TI method suitable for fast online applications, as demonstrated by
coupling it with a FD-based rotor speed estimator. However, the ap-
plicability of the proposed TI is not limited to this specific rotor speed
estimator, and can also be applied to other DSE algorithms that rely on
correct topology information.

A centralized implementation on a modified New England test
system is proposed. This approach is straightforward since only one
DNN needs to be tuned and trained, but it cannot be easily implemented
on large electric networks. When applied to sizable systems, the main
difficulty of the proposed algorithm lies on the training process. In the
case of the centralized approach, with 10 generators and a set of 16
11
possible topology configurations, the proposed neural network takes
23 min to train on an average PC. An additional limitation of the
centralized approach is that the optimization of the number of nodes
in the DNN requires a previous evaluation by trial-an-error; too few
nodes may cause inaccuracies while too many may not improve the
performance. The decentralized approach solves these difficulties by
splitting the topology identification into several smaller problems.

The decentralized application is demonstrated on a single generator
of the IEEE 118-bus test system. This approach allows to avoid complex
DNN training processes, although it requires the creation of one DNN
per each device to be monitored. The number of PMU measurements
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Fig. 12. Case 2-2 — Rotor speed estimation of synchronous machine 31 with and without BDDIS.
and possible topology configurations decrease, and the training process
is simplified and reduced to 1 min. After testing all possible topology
configurations, problems of local converge were not found neither
in the centralized nor in the decentralized approach. In this study,
the decentralized approach is coupled with a FD-based rotor speed
estimator. However, it is worth reminding that other dynamic state
estimators can benefit from this implementation.

The fact that neural networks act as black boxes that cannot be
interpreted can be a limiting factor for their application to power
systems, because under certain circumstances system operators may
need to explain their actions to market regulators. For this reason,
future research on the proposed method should be directed towards
online applications in which other methods are not available because
speed is crucial, for example wide-area protection schemes to improve
transient and frequency stability. Future work is also needed to better
understand the effect of measurement noise on the accuracy of the TI,
specially when the noise follows a non-Gaussian distribution.
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