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Abstract
A variety of approaches for hand gesture recognition have been proposed, where most
interest has recently been directed towards different deep learning methods. The
modalities, on which these approaches are based, most commonly range from different
imaging sensors to inertial measurement units (IMU) and electromyography (EMG)
sensors. EMG and IMUs allow detection of gestures without being affected by the line
of sight or lighting conditions. The detection algorithms are fairly well established,
but their application to real world use cases is limited, apart from prostheses and
exoskeletons.

In this thesis, a multimodal interface for human robot interaction (HRI) is
developed for quadruped robots. The interface is based on a combination of two
detection algorithms; one for detecting gestures based on surface electromyography
(sEMG) and IMU signals, and the other for detecting the operator using visible
light and depth cameras. Multiple architectures for gesture detection are compared,
where the best regression performance with offline multi-user data was achieved by
a hybrid of a convolutional neural network (CNN) and a long short-term memory
(LSTM), with a mean squared error (MSE) of 4.7 · 10−3 in the normalised gestures. A
person-following behaviour is implemented for a quadruped robot, which is controlled
using the predefined gestures. The complete interface is evaluated online by one
expert user two days after recording the last samples of the training data. The gesture
detection system achieved an F-score of 0.95 for the gestures alone, and 0.90, when
unrecognised attempts due to other technological aspects, such as disturbances in
Bluetooth data transmission, are included. The system to reached online performance
levels comparable to those reported for offline sessions and online sessions with real-
time visual feedback. While the current interface was successfully deployed to the
robot, further advances should be aimed at improving inter-subject performance and
wireless communication reliability between the devices.
Keywords Human robot interaction, hand gesture recognition, surface

electromyography, deep learning, neural networks
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Tiivistelmä
Käden eleiden tunnistamiseksi on ehdotettu useita vaihtoehtoisia ratkaisuja, mutta
tällä hetkellä tutkimus- ja kehitystyö on pääasiassa keskittynyt erilaisiin syvän oppi-
misen menetelmiin. Hyödynnetyt teknologiat vaihtelevat useimmiten kuvantavista
antureista inertiamittausyksiköihin (inertial measurement unit, IMU) ja lihassäh-
kökäyrää (electromyography, EMG) mittaaviin antureihin. EMG ja IMU:t mahdol-
listavat eleiden tunnistuksen riippumatta näköyhteydestä tai valaistusolosuhteista.
Eleiden tunnistukseen käytettävät menetelmät ovat jo melko vakiintuneita, mutta
niiden käyttökohteet ovat rajoittuneet lähinnä proteeseihin ja ulkoisiin tukirankoihin.

Tässä opinnäytetyössä kehitettiin useaa modaliteettia hyödyntävä käyttöliittymä
ihmisen ja robotin vuorovaikutusta varten. Käyttöliittymä perustuu kahden mene-
telmän yhdistelmään, joista ensimmäinen vastaa eleiden tunnistuksesta pohjautuen
ihon pinnalta mitattavaan EMG:hen ja IMU-signaaleihin, ja toinen käyttäjän tunnis-
tuksesta näkyvän valon- ja syvyyskameroiden perusteella. Työssä vertaillaan useita
eleiden tunnistuksen soveltuvia arkkitehtuureja, joista parhaan tuloksen usean käyt-
täjän opetusaineistolla saavutti konvoluutineuroverkon (convolutional neural network,
CNN) ja pitkäkestoisen lyhytkestomuistin (long short-term memory, LSTM) yhdistel-
mäarkkitehtuuri. Normalisoitujen eleiden regression keskimääräinen neliöllinen virhe
(mean squared error, MSE) oli tällä arkkitehtuurilla 4, 7 · 10−3. Eleitä hyödynnettiin
robotille toteutetun henkilön seuraamistehtävän ohjaamisessa. Lopullinen käyttö-
liittymä arvioitiin yhdellä kokeneella koehenkilöllä kaksi päivää viimeisten eleiden
mittaamisen jälkeen. Tällöin eleiden tunnistusjärjestelmä saavutti F-testiarvon 0,95,
kun vain eleiden tunnistuksen kyvykkyys huomioitiin. Arvioitaessa koko järjestelmän
toimivuutta saavutettiin F-testiarvo 0,90, jossa muun muassa Bluetooth-pohjainen
tiedonsiirto heikensi tuloksia. Suoraan robottiin yhteydessä ollessaan, järjestelmän
saavuttama eleiden tunnistuskyky vastasi laboratorioissa suoritettujen kokeiden
suorituskykyä. Vaikka järjestelmän toiminta vahvistettiin onnistuneesti, tulee tutki-
muksen jatkossa keskittyä etenkin ihmisten välisen yleistymisen parantamiseen, sekä
langattoman tiedonsiirron ongelmien korjaamiseen.
Avainsanat Ihmisen ja robotin vuorovaikutus, käden eleiden tunnistus,

lihassähkökäyrä, syväoppiminen, neuroverkot
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WL waveform length
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1 Introduction
Hand gestures, such as static and dynamic poses of the hands, are a natural way for
people to express themselves, either in addition to spoken language or exclusively when
using sign language. Using hand gestures has been shown to improve communication
regarding topics such as motor actions [1] and in cases where hearing conditions are
challenging [2] when compared to only using spoken language.

Hand gesture detection and classification based on sEMG have been studied exten-
sively. The applied methods include various methods of traditional machine learning
and artificial neural networks, where new methods are still being experimented with
today. The most important unsolved problems with sEMG-based gesture detection
are related to inter-session and inter-subject performance of the algorithms. That is,
the accuracies of the algorithms degrade over time when switching the user or when
donning and doffing the sEMG device without retraining, or at least recalibrating the
system [3]. However, the degradation over time has been shown to be counteractable
by providing real-time feedback to the user [4].

Traditional methods for sEMG signal analysis use predefined features, often called
hand-crafted features, for extracting information from the signals. These features
include mean absolute value (MAV) and root mean square (RMS) at the simplest,
but overall, a multitude of various features and feature combinations have been
suggested. The selected features can then be classified with various methods such as
linear discriminant analysis (LDA) or support vector machines (SVM) [5, 6].

Neural networks, such as multilayer perceptrons (MLP) and LSTM networks, are
additional options for the classification algorithm, which still require hand-crafted
features for optimal performance. The features can be replaced with convolutional
neural networks (CNN), which can use the raw, or slightly preprocessed signal as
an input [7] and learn to extract features from scratch. In [8], however, the use of
hand-crafted features improved the results of a CNN-based network, when compared
to a similar network with raw signal-based input.

Physical devices, such as hand prostheses [9, 10] and orthoses, [11] and exoskele-
tons [12] have been controlled with sEMG-based gestures before. Re-enabling and
improving existing human functionality this way can be seen as a natural application
area for sEMG, as the devices are attached to the body and their activation can be
built to mimic the activation of their biological counterparts.

The controlled devices are not limited to devices attached to human body mimick-
ing the functionality of the body parts. Systems for human machine interaction [13]
and sign language recognition [14] have been implemented with sEMG-based hand
gesture detection. Gesture-based HRI interfaces using sEMG have also been imple-
mented for mobile robots, such as in [15], [16] and [17], where the detected gestures
were used to directly control the movement of the robots. Direct mapping of the
gestures to movement can, however, require continuous input from the user, which
increases the risk of muscle fatigue. In addition to being uncomfortable, muscle
fatigue is known to affect the performance of sEMG-based control systems [18].

Other modalities than sEMG have also been used to implement gesture-based HRI
interfaces for mobile robots. The modalities include camera based arm segmentation
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[19], camera-based pose detection with [20] and without [21] depth information, and
signals from a wearable IMU-device [22].

Mobile robots are usually either controlled with a hand-held remote controller,
which can require constant input and the use of both hands from the person controlling
the robot, or they are completely autonomous with limited interaction with the
surrounding people. The task of a robot following a person has been studied for a long
time with good results. While detecting and following a person are well established,
the proposed solutions often lack the means of controlling or communicating with
the robot. In addition to the hand-held controllers, voice and gesture-based controls
have been proposed. While voice control has been applied with great success, it
might not be viable in all circumstances, especially in loud environments.

The work described in this thesis aims develop a multimodal interface for HRI.
More specifically, extended person-following behaviour for the robot is implemented,
which can be controlled using hand gestures and the position of the user. The
interface is based on an sEMG-armband (gForcePro+, OYMotion), which features an
IMU in addition to sEMG sensors. The interface is used for controlling a quadruped
mobile robot (Spot, Boston Dynamics) with the intention that it could be used in
industrial environments, where the noise levels can be high. The visible light and
depth cameras embedded to the robot are utilised as additional modalities for the
interface.

First, an interface for the armband is developed for integrating it with the Robot
Operating System (ROS), on which the HRI interface is also based on. The operating
modes of the gForcePro+ armband are compared in a simulation based on a dataset
recorded on another device. A dataset is collected of four subjects performing six
types of hand gestures, which will be used to control the robot. The performance of
a selection of neural networks is evaluated on this dataset to assess the feasibility of
the chosen setup.

The interface for the robot is developed based on the gesture detection system. In
addition to gesture detection, the interface features a visual person detection system,
that is based on the YOLOv5 algorithm [23] and is used for detecting and locating
the operator of the robot. The computational cost of the system is intended to be
low enough to ensure deployability of the entire interface on a single-board computer
(Jetson Xavier NX Developer Kit, NVIDIA), that is attached to the robot.

Finally, the gesture detection algorithm is validated with multiple users, as it
is the most user-dependent component in the system. As a proof of concept, the
complete interface is tested by one expert user.
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2 Background

2.1 Measuring neuromuscular signals
Electromyography (EMG) is a technique for measuring the electric activity produced
by muscles, whereas an electromyogram is a recording produced by using this
technique. The electric activity can be measured noninvasively using sEMG, where
surface electrodes are placed on the skin directly on top of the muscles whose signal is
being measured. EMG can also be measured invasively by the means of intramuscular
EMG and indwelling wire or needle electrodes [24,25].

EMG measures the electrical potential caused by temporal imbalances of ions
around muscle fibres. This imbalance originates from the nervous system in the form
of action potentials travelling along motor neurons and results in the contraction of
muscle fibres [24].

The axons of a motor neuron divide into small branches allowing the neuron to
innervate multiple muscle fibres, which as a group are called a motor unit (MU).
Motor neurons are connected to muscle fibres of an MU at the innervation zone. At
the innervation zone, the action potential causes a series of chemical reactions which
in turn open ion channels of the muscle fibre membrane. This results in the potential
inside the cell rising from the resting potential of -90 mV to the peak depolarization
value of 30-40 mV. Local transient changes of the potential inside a muscle fibre are
called the muscle fibre action potential (MFAP) [24].

If the MFAP is large enough, there occurs a chain reaction of ion channels opening,
which spreads the MFAP around the muscle fibre. When electrical potential of an
MU, i.e., the individual MFAPs of the muscle fibres within the MU, is measured, the
resulting compound potential is called motor unit action potential (MUAP) [24].

Furthermore, when EMG is used to measure the electrical potential changes in a
muscle, single MUAPs are superimposed over each other and only this seemingly
random signal is detected [24]. While reconstructing the individual MUAPs have been
demonstrated, both using intramuscular EMG and sEMG [25–28], these methods are
rarely used for gesture detection. Instead, the methods can be applied to determining
the origins of neuromuscular diseases [26].

The amplitude of the superimposed MUAPs can be modelled as a random process
that follows a certain probabilistic distribution. The maximum likelihood estimator
of the signal depends on the chosen distribution; for a Gaussian distribution it would
be RMS and for Laplacian distribution it would be MAV. The distribution of EMG
has been shown experimentally to fall between these two distributions but fitting
the Gaussian distribution the best on average. However, for amplitude estimation,
MAV processing had a better signal-to-noise ratio compared to RMS processing [29].

The EMG signal can also be described as coloured noise, where the spectrum is
characteristic to the current state and level of activation of the muscle. An example
of the change seen in the power spectral density (PSD) of an sEMG signal is shown
in Figure 1.

EMG signals can be recorded using devices that at minimum comprise electrodes,
an amplifier, an analog-to-digital converter (ADC) and some applicable filters [30].
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Figure 1: Left: PSD of an sEMG signal while the hand is stationary in a resting pose.
Right: PSD from the same session when the hand is clenched into a fist. The sEMG
signal was averaged over 8 channels recorded using a gForcePro+ sEMG armband
with a sampling rate of 1 kHz and a window size of 4 s.

Usually either monopolar or bipolar configuration is used to measure EMG [24], but
double differential configuration has also been used [31].

In bipolar configuration, two electrodes in addition to a ground electrode are
used to measure the potential difference between the electrodes. An instrumentation
amplifier, which is a type of differential amplifier, is typically used to perform the
subtraction. Bipolar measurement is less susceptible to external noise and crosstalk
from distant muscles when compared to its monopolar equivalent [30]. On the
other hand, the advantage of monopolar measurement is that the actual shape of
the MUAP can better be inferred from the resulting signal. This is because the
bipolar configuration ideally measures the differential of the of the MUAP, which is
furthermore convolved by the shape of the electrode [24].

The number of electrodes in a single device can be increased to form an array
of electrodes, which can be used to measure high-density sEMG (HD sEMG). HD
sEMG enables even better detection of crosstalk over single channel monopolar and
bipolar methods [24]. The electrode count in HD sEMG varies per device, but arrays
with more than 100 electrodes have been used [31].

The frequency content of the measured EMG is influenced by various factors.
One of the most prominent of these factors is changes in MU conduction velocity.
Increase in the velocity leads to higher frequency contents in the measured EMG.
The opposite is typically observed during muscle fatigue; a good indicator of muscle
fatigue is the power spectrum mean frequency shifting towards lower frequencies [24].
However, gesture classification accuracy in [4] did not decrease over time during a
five-minute session when feedback was provided to the subjects. The subjects did
report increased muscle fatigue, which implies that the experienced fatigue did not
negatively affect the classification accuracy. Any changes in the frequency spectrum
were not reported to further quantify the experienced fatigue [4]. Other attempts to
counteract muscle fatigue include switching the model in real-time [18].

Other noticeable factors that change the frequency content of EMG include the
MU recruitment pattern, which is generally believed to be effectively random during
isometric contractions. That is, when the muscles are contracted without the length
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of the muscle fibres changing, the MU activations are not synchronised. This changes
during spontaneous and explosive movements, which leads to synchronised activation
and increased contribution to lower frequency components [24].

The lower frequency components are also affected by movement artefacts, which
are prominent during explosive and impact-like activities, e.g., sports. Physical
activities can also change the placement of electrodes, which can alter the distance to
the measured MUs. A larger distance narrows the spectrum and shifts it towards lower
frequencies due to increased filtering effect of the surrounding tissue. Furthermore,
the placement of the electrodes affects the quality of the measured EMG signal. The
signal is weakened around the innervation zone, which is why the placement of the
electrodes is often chosen specifically for each measured muscle [24].

Cold immersion has been shown to affect EMG signals. The RMS of the signal
decreases when the muscles are cooled in addition to the amplitude of the signal
increasing for sub-maximal exertions. However, the amplitude decreases for maximal
exertions. [32].

Apart from the physiological and mechanical factors discussed previously, a
number of parameters related to recording EMG can influence the quality of the
signal and therefore also any inference that is based on the recorded signals. These
parameters are discussed in Section 2.2 together with examples of the inference
methods.

Higher-order spectra, such as bispectrum and trispectrum, can be used to study
non-linearities in signals. In [33], bispectrum analysis of EMG signals from eight
locations around the body was used to categorise 20 activities as either aggressive or
non-aggressive. The sum of the estimated bispectrum magnitudes was used as an
input for an extreme learning machine with a single hidden state. Regardless of the
simplicity of the network, the algorithm was able to classify the actions with a good
accuracy.

Neuromuscular electrical activity can also be quantified by using intraneural
implants, which measure electroneurographic signals. The implants feature an array
of electrodes, which are surgically placed directly on the nerves. As the subjects
are usually amputees, motor intentions are performed instead of the corresponding
gestures. The feasibility of using these implants to decode multiple motor intentions
from the electroneurographic signals has been shown with temporal implants [34].
Severe challenges still remain before a long-term solution becomes available. The
electrical signal weakens after time due to the foreign body reaction, which causes
formation of fibrous tissue around the implant among other undesired side effects [35].

2.2 Myocontrol
Myocontrol, or myoelectric control, utilises measured EMG signals to control various
devices such as prostheses [9, 10]. In practise, the inference for myocontrol must be
performed in real-time, but both offline and online studies are included here for a
broader overview. In addition to the control schemes, various parameters that can
affect the performance of the system are discussed in this section.

The effect of sampling rate on EMG-based gesture classification was studied
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in [36] by resampling the recorded signals. Here, ten hand and arm movements and
a rest state were classified using 12 bipolar electrodes placed around the arm. The
EMG signals were sampled at 1 kHz and band-pass filtered between 5 and 400 Hz.
Five able-bodied subjects and two transradial amputees participated in the study.
The best classification accuracy was achieved using the full 1 kHz sampling rate,
98.0% for the able-bodied subjects. When the signal was resampled at 500 Hz, the
accuracy decreased only a little, to 97.2%. However, it should be noted that there
is little room for improvement in the accuracy with sampling rates above 800 Hz,
as the low-pass filter was set to 400 Hz. Below the 500 Hz mark, the classification
accuracy decreased faster. At 300 Hz it was reported to be 95.7%, while 200 Hz and
100 Hz resulted in roughly 94% and 90%, respectively. The results of transradial
amputees followed a similar curve from 75.9% at 1 kHz to 71.3% at 300 Hz. [36]

Sampling EMG signals at the Nyquist rate has been suggested to be too slow
when waveform patterns like turns and spike amplitudes are being analysed. Instead,
oversampling at a factor of 1.5 to 5 would be required. However, it was shown
that oversampling is not required when gathering common timing and amplitude
measures, such as onset time, burst duration and peak amplitude, and sampling at 1
kHz would be sufficient for these measures. On the other hand, undersampling at 500
Hz and 250 Hz started to have an impact on the results. The effects of undersampling
were less severe on signals that were smoothed using a moving average filter. [37]
Then again, applying a moving average filter acts as a low-pass filter on its own and
applying it to the original signal reduces the required sampling rate, thus explaining
the seemingly better results. Furthermore, the application of a moving average filter
will result in losses of other important features, especially on the frequency domain.
The act of undersampling and smoothing the signal was discouraged in the study [37].

Wearable sEMG armbands face different constraints than clinical devices, includ-
ing ones related to physical size, cost, and ease of use. These limit the performance
of sEMG armbands, which can be seen in the reduced channel counts, constrained
electrode placement and maximum available sampling frequency. The effect of the
reduced sampling rate on the classification accuracy of hand and finger movements
was studied in [6]. The sampling rates used were 1 kHz, as it is often regarded as the
Nyquist rate of the EMG signal, and 200 Hz, which is the sampling rate available
to the Myo armband. The analysis was performed on multiple datasets available
online. It is confirmed that sampling rate of 200 Hz is not sufficient to capture all
the information available for sEMG measurements. While most of the energy of
sEMG signals is focused on the range between 50 and 150 Hz, the spectrum of sEMG
ranges up to 500 Hz and these higher frequencies should not be ignored [6]. Figure 2
illustrates the effect that reducing the sampling rate has on the zero crossings (ZC)
feature.

Additionally, a system using the higher sampling rate benefited more from using
additional features, when compared to a system with the lower sampling rate. It was
concluded that features that work best for high sampling rates are not necessarily the
best option for lower sampling rates. Finally, a multi-feature set consisting of L-scale,
mean value of the square root, maximum fractal length, and Willison amplitude was
proposed along with a larger feature set, which were both aimed to be used with the
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Figure 2: Reducing the sampling rate from 1000 Hz to 200 Hz results in less
recognisable EMG patterns. ZC features extracted during thumb and index finger
flexions are grouped closer together when using 200 Hz sampling rate. Adapted
from [6].

lower sampling rate. [6]
When preprocessing sEMG signals, high-pass filters are usually set to relatively

low values, between 10 and 50 Hz, whereas low-pass filters of 500 Hz are often used.
In addition, a notch filter at 50 or 60 Hz is usually required to remove power line
interference. [38] Another option is to use a higher value for the high-pass filter, so
that the notch filter is not required. The use of a 120 Hz high-pass filter was reported
to have statistically non-significant effect on classification accuracy when compared
to a system with a notch filter and a 20 Hz high-pass filter [39].

Using multimodal data has been shown to improve EMG-based gesture recognition.
CNN-based models, which will be further discussed in Section 2.3.1, trained on
Ninapro DB2 and DB5 datasets achieved 83.7% and 90.0% recognition accuracies
when using only sEMG signals as input. When simultaneously recorded IMU signals
were also included in the model input, the recognition accuracies increased to 94.4%
and 91.3%, respectively [40]. The raw accelerometer and gyroscope signals obtained
from an IMU were stacked row-by-row to form an activity image [41], which was
used as an additional input for the CNN-based models [40].

The gestures of the Ninapro datasets are relatively static postures. Even so,
the previously described models were able to benefit from the inclusion of IMU
data. The significance of an IMU in gesture recognition was found to be higher
in [13], where the recognised gestures featured more dynamic hand movements, such
as pull, push and multiple flicks in different directions. The authors used hidden
Markov models and Gaussian mixture models to model the gesture classes and
their observation probability distributions. When the gestures were recognised in
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an inter-session intra-subject manner, the inclusion of IMU, in addition to sEMG,
increased the recognition accuracy from 85.1% to 97.8%, whereas an accuracy of
92.8% was achieved when using only the IMU. The significance of an IMU was even
more pronounced when the gestures were recognised in an inter-subject manner.
Person-independent accuracy was 33.2% for sEMG and 70.2% for IMU only. When
the modalities were combined, the inter-subject recognition accuracy was increased
to 74.3% [13].

Recognising and translating sign languages to spoken languages has been proposed
as one potential application for sEMG devices. A combination of sEMG and IMU
signals was used in [14] to recognise 80 common signs of American Sign Language.
These signs were recognised using hand-crafted features for both sEMG and IMU that
were first selected from a larger set of features. The extracted features were processed
using traditional machine learning methods, which include a naive Bayes classifier,
a decision tree, a nearest neighbour classifier, and an SVM, which performed the
best in this study. The SVM achieved a recognition accuracy of 92.3% when using
only IMU signals in all cross validation, where the sessions and subjects were mixed.
The accuracy increased to 96.2% when sEMG was also used. When both modalities
were used in intra-subject inter-session manner, the accuracy decreased to 85.2%.
This result shows how the system would perform in a scenario, where a classifier is
trained for one person and later used by the same person in a separate session. It
was concluded that the proposed system was not capable of inter-subject recognition,
as the obtained accuracy for SVM was below 40% [14].

When gesture detection is performed in real-time, with a human in the loop, the
input delay of the system should stay within acceptable limits. This limit has been
suggested to be roughly 300 ms [42], which sets an upper boundary for the available
processing time. Often, EMG signals need to be windowed before any further analysis
can be made. While a longer window includes more information, which has been
shown to increase classification accuracy [43] it can also increase the delay before a
gesture is recognised. For these reasons, window lengths between 100 and 500 ms
are usually chosen [38, 40, 43]. In [43], the amount of overlap in the window had
no effect on the classification accuracy, if the window length stayed constant, when
tested with handcrafted features and LDA for classification. Instead, window overlap
affects the update frequency of the system [43].

As can be expected, increasing the number of EMG channels has been shown to
improve the classification accuracy. In addition, the accuracy improvement from using
a longer window depends on the channel count; it is more beneficial to increase the
window length when only a few channels are used. However, increasing the channel
count had adverse effects in a few cases. The chosen locations of the EMG electrodes
were changed at the same time, which could have an effect to the results [43].

One of the key challenges with sEMG-based control schemes is achieving long-term
reliability while maintaining rich functionality. sEMG signals can become unreliable
due to transient changes, such as electromagnetic interference, skin perspiration,
electrode shift and fatigue. [44] To achieve robust long-term control over a robot arm
with seven degrees of freedom (DoF), the authors of [45] used an HD sEMG with
192 channels and 2048 Hz sampling frequency to create a control scheme inspired by
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muscle synergies. The scheme is calibrated using HD sEMG recordings of n = 16
distinct motions of the hand, where a pair of motions correspond to a single DoF,
such as flexion and extension of the index finger. A channel weighting matrix W is
generated from the recordings using a DoF-wise nonnegative matrix factorisation,
as explained in [46]. The matrix W is then used to extract Ŵ, by thresholding the
elements of W, applying a Gaussian blur for each reshaped column, and merging
similar columns based on cosine similarity until k < n columns remain. In this case,
k = 4, which is the number of quasi-independent control inputs F̂(t) = Ŵ

T
Y(t). Y(t)

contains the linear envelopes of the sEMG observations. Extracting the activation
signals this way is claimed to reduce influence of crosstalk between the activations.
The control scheme is shown to be stable over multiple days and the subjects improved
their performance over the course of the three sessions included in the study [45].
However, the 192 signals acquired using three 8 × 8 electrode grids may not always
be available, especially outside of laboratory conditions.

Two-dimensional simultaneous and proportional control was achieved using an
autoencoder (AEN). Here, 16 channel monopolar sEMG was recorded at 2048 Hz
and segmented using 100 ms non-overlapping windows. RMS was calculated for
each channel in a given segment and the RMS values were used as an input to the
AEN. The encoder of the AEN was used to project the values to a two-dimensional
representation, corresponding to the two dimensions of the motion of a human wrist,
namely flexion/extension and radial/ulnar deviation. The results were validated in
an online experiment, where the AEN-based method outperformed a model using
direct sequential control, commonly used in commercial prostheses. The proposed
AEN featured a single layer in each the encoder and the decoder. The authors note
that even though the assumption of linear mapping from RMS to the kinematics
might not be ideal, it can be compensated by the feedback loop introduced with
online control. An advantage of using an AEN is that it supports unsupervised
training, which can save expenses and reduce the active training time for subjects. [9]

2.3 Neural networks
2.3.1 Convolutional Neural Networks

Convolution, or discrete convolution in particular, is a mathematical operation of
applying a certain pattern, a kernel or a filter, over a given data sequence. It results
in a new instance of that data, which has been altered by the operation. This is
similar to windowing and calculating feautures in the resulting samples, which was
discussed in chapter 2.1. When windowing or pure convolution is applied, the applied
kernels are usually handcrafted by the practitioner and significant effort is required
to find the optimal kernels.

CNNs are neural networks that include one or more convolutional layers, but
they usually have other layer types as well, such as fully connected and max-pooling
layers. Convolutional layers apply the convolutional operation over the input data
using kernels that are learned automatically during training, without the need of
handcrafting the kernels. Convolutional layers provide locality and translation
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invariance [47], which is their main difference when compared to fully connected
layers.

CNNs are most commonly applied to data that is inherently two-dimensional, such
as images from various sources. These sources include, among others, photography,
medical imaging, range imaging and spectrograms, that have been calculated from
1D signals. For these kinds of data, 2D CNNs are a natural choice, which use 2D
kernels to process the data.

Even though 1D signals can be transformed to 2D, either by calculating the
spectrogram or by stacking multiple signals or parts of the same signal row by row to
form a 2D grid, or a signal image, it is not always desirable. Applying a 2D CNN to
a 2D grid of stacked signals, enforces local relations to the signals, where there might
be none. In case the CNN learns kernels that only focus on certain signal sources at
a time, i.e., only one row has non-zero elements, it wastes computational resources.
Furthermore, a kernel of specific size fails to capture patterns between signals that
are not stacked close enough for the kernel. To circumvent this, a study in human
activity recognition found that stacking the signals multiple times in different orders
increased the classification accuracy [41], which could imply that a 2D convolution
would otherwise fail to capture the necessary relations.

Nevertheless, signal images have become popular in sEMG-based gesture recog-
nition studies. In [40], multiple feature sets were used to construct corresponding
signal images, which were then used as inputs for a multi-view CNN. Another
model, a hybrid between a CNN and a recurrent neural network (RNN) was proposed
in [8], where feature-based signal images were used to improve classification accuracy.
RNNs are discussed in the next section. It was also suggested that using handcrafted
features instead of raw signals improves the accuracy, even when using CNNs.

In [4], multiple CNN achitectures were proposed with different modalities derived
from sEMG signals, which included raw sEMG signals, spectrograms and continuous
wavelet transforms (CWT). Similar to [8], the different modalities were treated as
an image and 2D CNNs were applied. The proposed models were tested on two
datasets; the Myo dataset, on which CWT performed the best, and the Ninapro
DB5 dataset, on which raw sEMG performed the best. In all cases, the inclusion
of transfer learning improved the results, as did increasing the size of the training
data. However, no upper limit for the sample sizes were seemingly reached. The
authors reported an offline accuracy of 98%, whereas the average online accuracy with
feedback was between 92% and 95%, as approximated from a provided graph. The
lowest accuracy from an individual session was 84%, whereas the lowest individual
accuracy without feedback was as low as 51% [4].

Instead of forcing 1D signals into a 2D shape in order to process them using
CNNs, the 2D convolutional layers can be replaced using their 1D counterparts. This
was demonstrated in [48], where 1D CNNs were used to detect particular heartbeats
from an electrocardiogram. As noted earlier, convolutions resemble window-based
feature calculation, that has been a common practice in signal processing for a long
time, but the kernels of CNNs are automatically learned. This way, feature extraction
and classification are unified into a single process.
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2.3.2 Recurrent Neural Networks

A review of popular RNN cell structures and architectures was presented in [49],
which is recommended for more details. The recurrent cell, used in standard RNNs,
is the simplest of the presented cell structures, which consists of only the input and
output connections, and the connections for the previous hidden state ht−1 and the
output of the current hidden state ht. The hidden state, which also serves as the
output of the cell at time t, can be updated as follows:

ht = σ(Whht−1 + Wxxt + b), (1)

where Wh and Wx denote the weights for the previous state ht−1 and the input xt, b
is the bias and σ stands for the sigmoid function.

A common problem with many ANNs is the problem of vanishing gradients and
RNNs are no different in this sense. This is especially true when trying to learn
long-term dependencies. LSTMs improve the performance of RNNs by introducing
gate-like structures and cell state, which together enable a better flow of information
between time steps. The gates consist of a fully connected layer wrapped into a
sigmoid function, outputting a value between 0 and 1. This multiplied with the
gated signal allows a better control over the flow of information.

Many modifications have been proposed to the LSTM and its cell structure, one
of the most important ones being the forget gate. The original LSTM contained only
input and output gates, but the addition of the forget gate allows the network to
selectively discard some of the previous information in the cell state. The forget gate
has been proven to improve results, and it is usually considered to be part of the
standard LSTM cell.

The LSTM cell can be used alone, but they can also be combined in various
ways for more demanding applications. The most straightforward way is to stack
LSTM cells together in layers to form a deeper network. The outputs of a given
layer then act as inputs for the next, while the output and the cell state of layer L
at time t are also forwarded to the next iteration of the same layer at time t + 1.
Gated-feedback LSTMs on the other hand have connections between all layers across
the time dimension, not only between layers of the same depth.

The recurrent property of LSTMs (and other RNNs alike) makes them a good
choice for online time series analysis. That is, the input data of the time series can
be processed one sample or a small batch of samples at a time. Given a sufficiently
powerful computer, this can be done at the same rate as the samples are acquired.
Increasing the batch size can reduce the inference time required. It needs to be noted
that other types of ANNs, such as MLPs and CNNs, can be used for online time
series analysis as well, but this usually requires larger batches to compensate the lack
of memory in the models. The increased batch size can result in some redundant
computation if the input batches are overlapping.

Online classification of hand gestures using LSTMs based on sEMG signals was
studied in [30]. Here, the classification was based on a single feature, standard
deviation, that was calculated for each channel separately using a moving window
with a size of 100 samples (0.5 seconds with a sample rate of 200 Hz). The LSTM
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implementation were compared against a MLP, a basic RNN and a GRU. The
recurrent networks received the extracted feature one time step at a time, while the
MLP received batches of 200 or 300 samples, with a step of one. As a consequence,
the training and inference times of the MLP are substantially longer than those
of the GRU and LSTM. Nevertheless, the authors reported a high single frame
classification accuracy (≥ 95%) and gesture detection accuracy (≥ 98%) for all of
the tested models when trained on UC2018 DualMyo Hand Gesture Dataset, which
contains 7 gestures and a resting state. However, no online experiments with humans
in the loop were conducted [30].

One study [8] used a hybrid CNN-RNN architecture with attention mechanism
to recognise hand gestures from sEMG-signals alone. The authors used already
available datasets, such as DB1 and DB2 from the Ninapro database [50], which
are recorded using 10 separate electrodes. Here, the effect of image representation
methods was studied between seven different methods. These include simply stacking
the channels and frames to form an image, rearranging the channels into multiple
concurrent configurations, and performing a two-dimensional FFT on the result of
the previous method. However, the authors concluded that the best approach is to
use the classical Phinyomark feature set [5] and rearrange the components of the
feature set instead of the original signal as in the other methods. The resulting
image representations were used as an input to the neural network. The use of a
feature-based image improved the classification accuracy by several percent, whereas
the addition of the attention mechanism improved the results by a few tenths of a
percent. The authors report a classification accuracy of 87.0% and 82.2% for DB1
and DB2, respectively [8].

A hybrid model consisting of CNN backbone and a Bidirectional LSTM (Bi-
LSTM) was used in [7] to classify hand gestures from sEMG signals. The CNN
layers were responsible for learning to extract low-level features from the signal. As
CNNs are better at extracting spatial features rather than temporal structures, the
CNN block was followed by a Bi-LSTM before the final fully connected layers. With
Bi-LSTMs, the input sequence is processed both in the natural direction, the same
as with a regular LSTM, and in a reversed direction. This is done using two separate
models whose outputs are later fused together to give the combined results. In this
work, two stacked Bi-LSTM layers achieved the overall best result. The hybrid model
was tested using various datasets, including Ninapro DB2, which the model was able
to classify with 95.9% accuracy using a window size of 200 ms. [7] One advantage of
regular LSTMs is their ability of analysing the input signal one window at a time as
soon as the windows become available. Using a Bi-LSTM loses this advantage as the
final window needs to be known when starting the process, which introduces delay
in the output. Alternatively, all the windows could be processed every time a new
window becomes available, which instead increases the computational cost.

2.3.3 Transformers

Transformers are a relatively new group of architectures designed to utilise self-
attention, a way to control the amount of influence each component of the input
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has on the inference, replacing operations such as convolutions or recurrent patterns
seen in other types of models. The original Transformer [51] was introduced in 2017
for machine translation, but it has since been adapted for various other tasks. They
have been reported to outperform LSTM networks in natural language processing
(NLP) tasks, such as speech translation and text-to-speech. [52] Outside the realm of
NLP, transformers have been applied to tasks such as image classification [53,54],
object detection [55], heartbeat classification for arrhythmia detection [56], and hand
gesture classification from depth images [57] and from sEMG signals [58] as well.

One study used a transformer-based architecture to recognise hand gestures from
multimodal data, featuring depth, visible light and IR sensors. The data from the
depth camera was used to estimate the surface normals, which were used as an
additional modality. The data was made compatible for the architecture by using a
CNN to extract features from the images before feeding the output to the transformer.
The final classification was performed using a fully connected layer. The network
was evaluated against two datasets with 25 and 12 different gestures and 12 and
40 subjects, respectively. The authors report classification accuracies of 87.6% and
97.2% for these datasets. [57]

The attention function is based on transformations of the input called queries,
keys and values, which are inspired by search engines and recommender systems.
Conceptually, a query is compared to the keys and the resulting scores are used to
scale the values, thus giving a different result for each query. [59] The particular
attention function of the Transformer, called scaled dot-product attention, is given
in equation 2, where the dot-product between queries and keys is further scaled by
the square root of the keys dimension to allow a better flow of gradients.

Z = softmax
(︄

QKT

√
dk

)︄
V, (2)

where Z equals the resulting attention matrix, Q, K and V denote the query, key
and value matricies and dk is the dimension of the keys. In addition to dot-product
attention, different forms of attention such as additive attention has also been
used. [51]

Instead of applying the attention only once for each query, the Transformer
uses multiple attention heads to attend to information from different representation
subspaces. That is, learned linear projections are used to project the keys, queries
and values to be used as input for the attention heads. The final multi-head attention
is acquired by concatenating the output of the individual heads and projecting the
result once more. [51]

Traditional RNNs do not feature an attention mechanism, although attempts at
including attention to RNNs have been proposed, such as [8]. As mentioned in section
2.3.2, RNNs can only use the current input and the stored state, which represents
the memory of the model, to determine the corresponding output. However, this
can conceptually be seen as a form of attention, which is predetermined by the
architecture. Such predetermination is called the inductive bias of the model, which
is the set of choices made to help the model learn the underlying patterns of the
data. RNNs are hard coded to look only into present and the past with a decaying
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memory.
Unlike RNNs, Transformers take the input as a whole. With the help of self-

attention, they are able to focus on specific elements of the input. These elements can
both precede and succeed the current input element, with arbitrary distances within
the input dimension. This ability to choose where to pay attention to is learned from
the training data and thus the model is less restricted; it has a smaller inductive
bias. The disadvantage of the smaller inductive bias and a larger representational
power is that Transformers generally require more training data to achieve superior
results to RNNs. [60]

Large datasets required to train a Transformer in a supervised manner can be hard,
expensive and time consuming to acquire, as it would require manually labelling all
the samples. Instead, Transformers can be pre-trained on a large unlabelled dataset
using methods of self-supervision, such as predicting masked parts of an input sample
based on the rest of the sample or predicting whether a given sample is a successor to
another sample. After pre-training, the models need to be fine-tuned for the specific
task. Fine-tuning is a form of transfer learning, where the model is transferred to
a down-stream task. This is done by replacing the output layers of the model and
training all the parameters end-to-end. [61]

As transformers were aimed specifically for NLP tasks, retargeting them for image
processing is not trivial. The rest of this subsection present two different approaches
for dealing with this problem and try to answer why this would be desirable in the
first place.

When dealing with image-like data, the convolution operation used in CNNs has
proven to be successful and before transformers, convolutions had no clear competition
or noteworthy alternatives. This is due to the inherent idea of convolution, that the
involved operations should be applied equally to all the parts of an image. Thus, the
weights of the convolution layers need to be learned only once and the structures and
the shapes present in an image will be treated the same, regardless of their location.
The convolutional layers are especially good when extracting low-level features, such
as corners and edges, but when convolutional layers are used for detecting higher-level
features, they can turn out to be redundant when most of the learned high-level
features are not present in every image. [54] It has been shown that self-attention
heads are capable of expressing any convolutional layers, potentially replacing them
in the future. [62]

Visual Transformers (VT) were introduced to overcome the redundancy of convo-
lutional layers when detecting high-level features. Furthermore, VTs are argued to
improve on two other aspects of convolutional layers. First, convolutional layers treat
every pixel similarly, regardless of their importance. Second, convolutional layers
operate on small regions, making the networks struggle to relate spatially distant
concepts. The attention mechanism of transformers addresses both of these problems
by choosing the weights depending on the importance of the areas [54].

To adapt transformers for visual tasks, low-level features are extracted using
convolutional layers. Next, visual tokens are extracted from the feature set using a
recurrent tokeniser, which incrementally refines the set of visual tokens. The tokens
of the previous layer are utilised when extracting the tokens of the next layer. This
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can be formulated as

WR = TinWT →R,

T = softmaxHW (XWR)T X,
(3)

where Tin and T denote the tokens of the previous and the current layer, X denotes
the input consisting of the feature maps, and WR and WT →R denote the weights of
the tokeniser. As the weights WR depend on the previous tokens, the first set of
tokens are calculated without the recurrent tokeniser, using a fixed set of learned
weights WA instead of WR. The resulting visual tokens are then used as an input for
a transformer [54].

The authors evaluate the model in a classification task with the ImageNet dataset
but also in a semantic segmentation task with two datasets. The VTs used for
classification are based on different versions of the ResNet architecture, where the
last stage of convolutions is replaced with VT modules. This improved the Top-1
accuracy by 2.2 and 1.7 points when using ResNet18 and ResNet34 as the base model,
respectively, while decreasing the required floating-point operations. Furthermore,
when the training procedure is fine-tuned using stronger data augmentation, stronger
regularisation, knowledge distillation and other strategies, the improvement in Top-1
accuracy increased to 3.0 and 2.2 points when compared to similarly trained base
model [54].

Vision Transformer (ViT) is another approach at adopting Transformer archi-
tecture for visual tasks. ViT stands out from previous attempts by replacing con-
volutional layers completely with a Transformer encoder, but they also experiment
with hybrid models between CNNs and ViTs, similar to VTs. In order to process
image data as sequences, the images are split into patches of given size, such as
16 × 16 pixels. These patches are linearly projected and a position embedding is
added before using them as a linear sequence of tokens for the encoder. The position
embeddings are added to incorporate some information about the spatial structure,
which would otherwise be lost [53].

As with other Transformers, ViT also requires significant amount of pre-training to
be competitive against other architectures. Similar to training transformers for NLP
tasks, self-supervision can also be utilised for ViTs. Here, masked patch prediction
was studied in a preliminary manner, where the model learns to predict the contents
of a masked area, based on the rest of the image. While this approach improved
the results when compared to training from a scratch, the authors focused more on
supervised pre-training, as it yielded better results [53].

Both pure and hybrid ViTs were compared to other models, such as slightly
modified ResNets using datasets with varying sizes. When pre-trained with Google’s
internal JFT-300M dataset with 300 million labelled images, the model achieves
88.6% in ImageNet classification task. The model was pre-trained for 6.85 TPUv3-
core-years, meaning it would take 10.3 months to train the network on a single tensor
processing unit with 4x2 cores [53].

On smaller datasets, the hybrid models outperformed the pure ViTs. It was
proposed that the inductive bias, the set of assumption embedded into the model
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structure, originating from the convolutional operations are the key for better learning
when the data is more limited. With huge datasets, such as JFT-300M, the ViTs
were able to learn the necessary structure from a scratch to overtake the hybrid and
purely convolutional models. Further experiments showed that the attention of pure
ViTs in the first layers is focused on smaller areas than that of the hybrid model, as
it needs to concentrate on local features too [53].

ViT has been successfully applied to detecting hand poses from sEMG data.
In [58], a ViT was trained on NinaPro DB2 dataset, which includes 12 channel sEMG
signals sampled at 2 kHz of 40 subjects performing 49 different hand movements.
However, only 17 of these movements were included in this study. To be able to feed
continuous signals to the Transformer encoder, the input signals were segmented
to fixed-size patches with no overlap. A couple of model variants were compared
in the study, where the base model featured one layer, a model dimension of 32,
and MLP size of 128. These models were evaluated for window sizes of 200 and 300
ms. The best variant of the tested models featured one layer, a model dimension of
64 and MLP size of 256. This applied to both window sizes, while 300 ms window
resulted in a slightly better classification accuracy of 82.9%. [58] In comparison, a
CNN-RNN model with attention resulted in 82.2% classification accuracy in the
same dataset, while classifying all 49 gestures included in the dataset. [8] The similar
results could imply that either the training data is not sufficient to fully harness
the representational power of Transformers, or that the data acquired by the sEMG
sensors does not contain sufficient information to distinguish between all the 49
gestures included in the dataset. As the dataset is fully annotated and no other
datasets were used, pre-training and fine-tuning were not used either, which could
be used to improve the results further. [53,61]

The robustness and accuracy of a machine learning solution can be pushed further
by ensembling, i.e., combining multiple models for the same task. The combined
models should be sufficiently different from each other, to bring enough diversity
to the ensemble, trained separately, and they should all be well-performing. The
importance of the last criterion can be reduced by weighting the models differently
based on the validation data. [59]

Model ensembles have been popular in machine learning competitions [59], but
combining multiple models is not always practical, especially in real-time applica-
tions. This is because running an ensemble can be computationally expensive, while
increasing the size of the ensemble yields diminishing returns. Furthermore, the
GPU-time required for training the ensemble might become too large. [63]

Knowledge distillation, also known as model distillation, is the act of training
a smaller model based on the outputs of a larger one. In a classification task, the
models typically produce a probability distribution of the target classes by using a
softmax activation as follows

qi = exp(zi/T )∑︁
j exp(zj/T ) , (4)

where qi and zi are the probability and the logit of the class i, respectively, and T
is the temperature, which is usually set to 1. Increasing the value of T produces
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softer probability distribution for the classes, i.e., the differences between the correct
and incorrect classes are smaller. This is the key for model distillation, as these
probabilities can be used as soft set of targets when training the distilled model.
These soft targets convey more information about the relationships between the
classes than the usual hard targets. Model distillation has been proven to improve
the results of the smaller model, when comparing to a similar model trained only on
the raw data. Additional benefit of using model distillation is that a smaller dataset
may also be used to speed up the training of the distilled model. [63]

Model distillation was used to improve the results of a VT, as mentioned previously.
Here, an automatically designed neural network was used as a teacher to demonstrate
the improved learning capacity of the proposed model. [54]

2.3.4 Data augmentation

Data augmentation is an essential technique in deep learning, where the already
existing training data is artificially inflated using various methods. The premise with
data augmentation is that the information relevant to the task, that is included in
the training data, can be better extracted when using these methods while avoiding
learning patterns that are only specific to the used data set, i.e., overfitting. Data
augmentation has proven to be effective in reducing overfitting and it is often used
in tasks that use image data as input. The applied methods include geometric
transformations, such as rotating and scaling the data, addition of noise, such as
Gaussian noise and irrelevant features, and using Generative Adversarial Networks
(GANs) to generate new samples similar to the existing ones. [64]

All the data augmentation methods used for image data are not directly applicable
to biosignals, such as EMG and electroencephalogram (EEG), even though a time-
series of these signals can be structured like an image. Especially the notion of
geometric transformations is not sensible in the context of an array of 1D signals.
The location of a biosignal source has a heightened importance when compared
to a location of a given feature in an image. For example, it matters more from
which muscle an EMG signal originates from when classifying hand gestures, than
it matters where exactly an eye is located in an image when classifying images of
animals. Thus, reordering the signals is not always feasible, but great care must
also be taken when applying other transformations. A human can easily tell if a
transformed image still resembles the original, but it is not as easy to tell whether a
transformed biosignal still possesses the characteristics relevant to the classification
of that signal. [64]

Data augmentation in biosignals has been gaining attention since 2015, although
many of the techniques used for augmenting biosignals have been in use for much
longer. A review [64] of data augmentation methods published in 2020, lists seven
different types of data augmentation methods that have been applied to augmenting
EEG signals. From the listed augmentation methods, sliding windows (SW), GANs,
sampling, and noise addition were the most popular among the referenced studies.
Here, sliding windows refers to slicing the signal in multiple possibly overlapping
segments. Sampling refers to over- and subsampling the items in the training
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set, which is usually used to address imbalanced datasets, a problem where some
classes in a dataset are severely underrepresented. Oversampling was used in [65] to
prevent the class imbalance problem when classifying sleep stages based on EEG.
More specifically, a Synthetic Minority Oversampling Technique was used, which
interpolates between two nearby datapoints to create new similar instances. This
is only applied to values extracted using hand-crafted features, such as PSD and
spectral entropy. To augment the raw signals, different temporal offsets and noise
addition were used.

Signal shifting and scaling was applied to EEG signals in [66] in order to augment
the data used to train an MLP with two hidden layers to classify the intrinsic motiva-
tion of the subjects when pressing a button. Additionally, the authors experimented
with restricting the scaling and shifting to only a certain segment around the peak of
the signal. This was argued to be effective as it would emulate differences in mental
states, rather than shifting and scaling the signal as a whole. The authors report a
8.3 % improvement for a dataset containing 20 signal samples of 10 participants each.
Increasing the number of training samples per participant to 40 and 60 diminished
the effect of data augmentation. The authors note that the applied methods improve
training accuracy especially for smaller datasets. [66] However, larger networks that
would benefit more from larger data sets and data augmentation were not considered
in this study. Furthermore, the scaling and shifting was limited to specific integer
values, such as ±5 % and ±5 ms, rather than ranging between these values, which
reduces the amount of possible variation in the augmented data.

For sEMG signals (datasets from NinaPro-DB1 [50] and putEMG [67]), various
data augmentation methods were experimented with in [68], including the most
common ones: Gaussian noise and sliding windows. Instead of adding Gaussian noise
uniformly across the signals, the variance of the noise was made relative to the signal
amplitude, i.e., the noise was added with a constant signal-to-noise ratio. Other, less
common, methods include magnitude warping, in which the amplitude of the signal
is warped using an elementwise product with a randomly generated cubic spline with
a mean of 1, and wavelet decomposition, in which a signal is transformed using the
Discrete Wavelet Transform (DWT), the extracted detail coefficients are modified
and the augmented signal is obtained through the Inverse DWT. Simulation of sEMG
signals was also experimented with, but neither of the simulation methods tried
yielded results comparable to the other methods. Both of the presented simulation
methods were based on an idea of first estimating the overall shape of the original
signal and then augmenting it with artificial features [68].

Domain adaptation was used for correcting domain shift related to inter-session
and inter-subject changes when classifying hand gestures from sEMG signals. The
proposed architecture consists of a single fully connected layer responsible for applying
the domain adaptation to the sEMG signal before feeding it to an LSTM. This
approach was evaluated using both sparse and HD sEMG, and while the approach
did not reach the state of the art in intra-session scenarios of the time, the results
did exceed the state of the art in inter-session and inter-subject scenarios, proving
the benefit of domain adaptation when the conditions are changing. [69]



26

2.4 Hand gesture detection and interpretation
In this work, hand gestures are categorised into discrete and continuous gestures,
where discrete gestures are further categorised into static gestures (or postures) and
dynamic gestures. Examples of static gestures include the gestures from the game
Rock Paper Scissors, or the alphabet of the American Sign Language (ASL). Swipes,
flicks and waves, and various words in ASL or other sign languages include movement
of one or both hands and are thus categorised as dynamic gestures. Continuous
gestures, such as indicating the size of an object with two hands or showing an angle
by bending a wrist or an elbow are static in a sense that a single snapshot of the
gesture would be enough to convey the expressed information at that time. On the
other hand, these gestures can be maintained for longer durations, and they can
become more dynamic if the encoded information within the gesture is varied with
time.

It has been debated whether gestures convey meaningful information to other
people when accompanied with the related spoken language. While some speaking
situations and topics of discussion do not usually require hand gestures to convey
the message, including gestures have been shown to be beneficial when the gestures
depict motor actions or when speaking to children [1]. Furthermore, it has been
shown that when the hearing conditions are challenging, regardless of whether
the challenge originates internally from a hearing impairment or externally from
the environment, included gestures influence the perceived message [2]. That is,
under noisy circumstances, gestures can be used to improve the understandability of
conveyed messages. Finally, communicating abstract shapes is improved when hand
gestures are allowed in addition to spoken language. There are cultural differences,
however, as it was found that native Italian speakers benefit more from using gestures
than native English speakers [70].

Hand gestures are generally recognised using either remote sensing devices, such
as cameras and depth sensors, or wearables, such as data gloves and IMU and sEMG
armbands, both the modalities are often combined with sensor fusion techniques to
improve the performance of the system.

One of the first viable solutions for image-based hand gesture classification is
presented in [71], where a CNN was used to classify the number of fingers shown. The
system achieved the highest classification accuracy of the time, but when compared
to modern solutions it has several disadvantages. The system is based on colour
segmentation, which is dependent on the current lighting conditions. To facilitate the
segmentation, the user is required to wear a coloured glove. Finally, the images are
cropped in advance to include only the hand in question. These limitations inhibit
the use of the system in most of the real-world scenarios, but the work acts as a first
step towards systems capable of working in such scenarios.

Using gloves as an aid is a conceptually straightforward way to implement a
solution for hand gesture recognition. Coloured gloves have been used with RGB
cameras to help separating hands from the background. In [72], a glove with coloured
fingers and palm was used, to directly extract finger locations using colour-based
segmentation. Using the distances from finger centroids to the palm centroid and
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the angles between the fingers as the features, a learning vector quantisation model
was trained to classify 13 static gestures. The gestures were performed towards a
webcam, at an unspecified distance. The best model achieved a 97.8% classification
accuracy. [72]

The coloured glove and the camera were replaced with a data glove in [73]. The
output of 15 sensors of the data glove, that measure the bending angles of fingers,
were used as an input for a small MLP, which classified the hand shapes. Here, the
task was considerably harder than that of the previous one: to recognise 50 words of
American Sign Language. In addition to hand shapes, the system incorporated other
metrics from the data glove as well, that describe hand movement and orientation
relative to the user. The hand shape classifier reached an accuracy of 98% and when
it was combined with the other metrics to form a recognition model for ASL words,
the recognition accuracy was about 90%. [73]

RGB images can contain great amount of information, with varying levels of
relevance when it comes to hand gesture recognition. That is, every detail included
in an image does not necessarily convey information about a particular gesture being
performed. Excessive background clutter is a common problem for vision-based
algorithms, such as ANNs. This is why different preprocessing steps and additional
modalities have been experimented in an attempt to improve accuracy and robustness
of the models. In [74], RGB images are supplemented with semantic segmentation
masks of the hands in the images. A lightweight segmentation method is shown to
be faster than also used optical flow, while the resulting model achieves comparable
or even better accuracies. The used dataset included 13 classes performed by 50
subjects, with a 74.8% average accuracy. It is worth noting that when double tap
gestures were removed from the dataset, the average accuracy increased to 85.1%, as
the repetitive gestures were not confused with single tap gestures. [74]

Traditional computer (von Neumann architecture / GPU) and neuromorphic
computing-based approaches to hand gesture recognition with ANNs were compared
in [75]. In a similar manner to ANNs, neuromorphic computing is also inspired by
biological neurons. Where ANNs are mainly based on matrices and matrix operations
defined in software, neuromorphic computing features hardware-level network of
spiking neurons, which enables event-based design and fine-grained parallelism similar
to their biological counterparts. Low power consumption and low latency are some of
the key features of neuromorphic computing, which make the technology a potential
enabler of future prosthesis control and autonomous systems. [76]

The five hand-gestures in [75] were observed using the Myo sEMG armband and
an event-based camera. MLPs and CNNs were trained for both modalities separately
and when fused together, with a GPU and neuromorphic chips as computational
devices. Even though the models were kept similar between the devices, the GPU
achieved better results in terms of accuracy when the stimulus durations were small
(< 100 ms) and neuromorphic chips reached only a similar level with longer durations.
When using just EMG as the input, the GPU model was consistently better across all
stimulus durations, although the accuracy was lower for both devices when compared
to models with camera-data and sensor fusion inputs. Two features (MAV and RMS)
were calculated from the EMG and used as the input. The accuracies with only
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event-based camera as input were slightly lower than with both modalities, but still
higher than EMG alone. Even though GPU-based models generally reached better
accuracies with smaller inference times, their energy consumption was considerably
higher. [75]

Leap Motion Controller [77], which is an embedded device for hand tracking, has
extensively been used for recognising the signs of a sign language [78–80] and other
gesture detection tasks, such as the choices in the game rock-paper-scissors in [81].
The results for sign language recognition, as listed in [80], range from below 80%
to over 97%. The described tasks involve recognition of various mixtures of the 26
letters in the alphabet of the American Sign Language, the ten digits, and some
sample of the vocabulary. Overall, the recognition accuracy depends heavily on the
number of classes involved. In [81], three gestures were recognised with an accuracy
of 98% by using a three-layered MLP, whereas in [79], a deep LSTM was used to
achieve an accuracy of 97.6% for 14 gestures and 91.4% for 28 gestures. Similarly, an
accuracy of of 86.1% was achieved in [80], where a hidden Markov model was used
to classify 24 gestures.

It was noted that the version of the controller used in the studies would have
required significant updates to be a viable choice for sign recognition. In [78], the
device was deemed to be unsuitable for complex signs that require significant face
or body contact. Similar problems were reported in [80], where finger tracking was
affected by the limited field of view of the device.

A sensor fusion-based system, where the Leap Motion Controller and Kinect were
used together for classifying 10 gestures from the American Sign Language, was
proposed in [82]. Both devices were used to locate a hand in their view separately,
and different spatial features were extracted from the located hand. In accordance
with data level sensor fusion, the extracted features were combined and used as an
input for a classifier. The classifier used in this system was a multi-class SVM, for
which an accuracy of 91.3% was achieved. When the features of only one of the
devices were used as the input for a SVM, the achieved results were lower: 80.9% for
Leap Motion Controller and 89.7% for Kinect. The authors also note the tracking
problems with the device. [82]

Dynamic hand gestures were recognised using a Kinect v2, a hand pose estimation
algorithm, and a combination of a 3DCNN and ConvLSTM neural networks. Data
fusion between the RGB, depth and hand pose modalities were performed by a
weighted sum between the three modalities, where the different modalities are
combined into a single RBG image. The resulting image was used as an input for
the fusion network. The proposed fusion method was justified by a smaller network
size, but the fused image was only compared to each of the modalities alone. The
authors report a 92.4 % recognition accuracy when using a dataset with 20 subjects
performing 10 gestures repeated for 10 times [83].

2.5 Human robot interaction
HRI is a study of robotic systems that are used by or with humans. In addition to
improving understanding, the goal of HRI is to shape the way humans and robots
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interact with each other [84]. While keyboard and mouse-based interfaces can be
suitable in some use cases, a large part of the work is focused on finding alternative
approaches, that are more intuitive and easier to use, on which the interface can
be based. In [84], HRI is divided in two general categories: remote and proximate
interaction. This section focuses specifically on the latter category, where the humans
and robots are located in the same space at the same time. A selection of applications
from the field is presented here.

A gesture-based interface for controlling a mobile robot was presented in [19]. The
interface was based on detection and tracking of colour-based segments corresponding
to the face and shirt of a person. Similarly, the gestures of a person were detected
using the segmentation mask to calculate the angles of the arm segments. Both static
and dynamic gestures were detected, which were used to command the robot to, e.g.,
follow the person or stop moving. The authors reported a speed of 0.25 m/s for the
robot to be preferable over a faster speed of 0.45 m/s. The higher speed decreased the
perceived accuracy when trying to position the robot, while the navigation worked
as intended [19].

When moving in places shared with people, the speed and the behaviour of the
robot should be configured so that the robot does not cause discomfort to the people.
In a study conducted in Japan, a robotic wheelchair was perceived by pedestrians
to be most comfortable when moving slower (0.8 m/s) than the average walking
speed (1.0 m/s - 1.2 m/s) and when taking a socially preferred route, i.e., moving on
the left-hand side of a corridor as it is generally taken by local pedestrians of the
country [85]. Many aspects affect the walking speed of pedestrians, such as the local
culture, the time of the day, the season, and the environment type [86], which the
robot should adapt to.

Person tracking and identification are core functionalities of robots that are
designed to follow people as a part of their support tasks. In [87], a monocular
camera-based tracking and identification system was presented, which uses OpenPose,
a publicly available pose estimation algorithm, to first detect the people in the robot’s
view. The location of these people is transformed to the coordinate system of the
robot, in which they are tracked using unscented Kalman filter. The transformation
uses a predefined ground plane to help with estimating the heights of the people.
After the tracking step, the initialised target is identified using methods called
Convolutional Channel Features and online boosting. The online boosting-based
approach is argued to be crucial for identifying the target in changing lighting
conditions. Depending on the used camera, the resulting method can track people
up to 10 or 20 m. In an evaluation session, the resulting localisation error was less
than 0.5m within this range [87].

A similar setup for following people was described in [88], with an application
in building construction and maintenance. The main contribution was focused on
utilising building information models for robot navigation in the construction site,
but a second application scenario included following a person within the site. Here,
the person detection was performed using YOLO v3 architecture together with
LiDAR-based depth estimates [88]. Similar approach for person identification was
used as in [87]. Small computing platforms with integrated GPUs have become
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popular in mobile robotics. In [88], NVIDIA Jetson Xavier AGX was used to perform
computer vision related computation, whereas NVIDIA Jetson TX2 was used in [87].

A person-following controller for mobile robots with a simple hand gesture-based
initialisation interface was presented in [21]. By detecting hands of a person in the
camera view of the robot, the robot was able to initiate the follow command when
the person closed either of their hands. The person detection was based on OpenPose,
but no identification, apart from Kalman filter-based tracking, was included. Instead,
the robot had to be reinitialised to continue the following task [21].

Pointing by a hand or a finger is a natural way for humans to indicate a target or
a direction of interest when communicating with other humans. It has been argued
that pointing would also be an important tool for HRI, especially as it does not
require any external devices. In [20], Kinect depth camera and a third-party library
for joint detection was used to construct a system to interpret pointed directions as
destinations for a robot. The destination is calculated as an intersection of a half-line,
defined by the position and the pointing direction of the hand, and the ground plane.
When a destination command is given, the user is also required to lift their left arm
as a confirmation. This reduces the number of false positives when interpreting a
direction as a command. The variance of the reported results grow as the user moves
further away from the robot. This is said to be due to smaller amount of valid pixel
data available in the depth image. However, and more interestingly, the variation
increases more on the direction parallel to the pointed direction projected to the
ground plane. This could be due to the angle α between the pointed direction and
the ground normal approaching an angle of 90◦. The distance parallel to the ground
plane is related to α by x = y tan(α), where y is the height of the hand from the
ground plane. The distance approaches infinity when α approaches 90◦, as does the
derivative d

dα
y tan(α) = y sec2(α). This means that the effect of small perturbations

in α to the measured distance x̂ increases with x. The study only varied the distance
of the user to both the robot and the target point simultaneously, which makes it
hard to separate the sources of error. Furthermore, a single target point was used
throughout the study, giving only a partial understanding of the performance of the
system. [20]

A different approach for human localisation was taken in [22]. The authors of the
study used a wearable IMU sensor on the wrist to determine the pointing directions
rH

i in the local coordinate system of the user. The localisation is based on the user
pointing at a moving robot, whose odometry is known in its own frame of reference.
N of the robot positions P R

i can then be collected with rH
i to form a set of pairs C:

C = {rH
i , P R

i }N
i=1

With an estimated transformation matrix T between the robot and the human
coordinate systems, the robot locations P R

i can be transformed into locations P H
i in

the human coordinate system as P H
i = TP R

i . Now half-lines qH
i can be defined as

originating from the corresponding positions of the hand and pointing towards the
robot. The angles between qH

i and rH
i can then be calculated and an error function
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can be defined as:
θ (T, C) = 1

N

N∑︂
i=1

∠(rH
i , qH

i ),

where ∠(...) represents the unsigned angle between the directions of the half-lines. By
minimising this error function for a given set C, an estimated transformation matrix
can be obtained. Furthermore, a robot can be selected from a group of multiple
robots, by choosing the one with the smallest error. This, however, requires that
each of the robots is moving on a unique trajectory. When trying to identify the
robot the user is pointing at from a group of two robots, the authors report that a
duration of 5 s is sufficient for successful identification in most of the cases. The
speed of the robot should influence the required time, but it was not discussed in the
study. [22]

A subsequent study [89] then built upon this localisation approach, where it was
used as a base for triggering the interaction and for giving commands to the robot.
The interaction was initiated by pointing at the selected robot from the group of
robots present in the scene. A robot for which the error function yields a value below
a given threshold is then selected for interaction. Once the robot is selected, the
system can use the estimated T to map destinations to the robot’s coordinate system,
towards which the robot can then move. The destinations are acquired in the same
way as before, i.e., by calculating the intersection of the half-line and the ground
plane.

The authors experimented with two types of closed-loop feedback. The first
version used a sufficiently fast robot, whose position itself acted as the feedback to
the pointed direction. The second version used a laser pointer attached to a turret
to give the feedback of the position. To evaluate the effect of the feedback, the
authors measured the pointing accuracy from a distance of around 2 m. Without
any feedback, the error in the reconstructed pointing location was roughly 0.5 m on
average. With the laser pointer enabled, the error reduced to below 0.1 m, but it
took the users longer to reach this.

In another experiment, the subjects were told to fly a drone between predefined
landmarks using the proposed and a joystick interface. The authors report comparable
results between the interfaces, but using the joystick was still found to be faster.
However, the subjects were used to the joystick interface but had no previous
experience with the pointing interface. This speaks for the intuitiveness of the
interface. [89]

One disadvantage of this approach is that the user is required to stay still after the
interaction has been initiated. The system is not aware whether the user has moved
after T has been calculated and it is not straightforward to extend it to constantly
update T . On the other hand, the system does not require constant line of sight like
camera-based systems do.
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3 Methods

3.1 System description
To successfully implement the gesture-based HRI interface described in this work, a
significant amount of working time had to be allocated for setting up the underlying
system. This first subsection introduces the chosen components for the system:
the robot and its payload, the sEMG armband, and the software and hardware
required for computation and communication between the components. The rest of
this section walks through the developed modules and the evaluation performed to
validate the interface.

Spot (Boston Dynamics) is a quadruped robot aimed for automated sensing and
inspection and it is able to traverse rough terrain and climb stairs. By default,
Spot features 5 pairs of monochrome stereo cameras around its body, which are
used for localisation, path planning, and obstacle avoidance. In addition, Spot
features a customisable platform, allowing separate modules, called payloads, to be
attached to the robot. These include a gripper arm, a more powerful computer for
computationally intensive tasks, and additional sensing solutions, such as LiDARs
and thermal cameras. [90]

To enable automated navigation, Spot uses a system, which includes mapping of
the surroundings, localisation of the robot within the mapping, and an autonomous
traverse system. The system differs from other common simultaneous localisation and
mapping (SLAM) solutions by that the created mapping is a graph of waypoints, and
the robot’s position is determined relative to one of these waypoints at a time. [91]

EMG measurements are usually done using either separate electrodes, with
systems like Delsys Trigno Research+, which integrates EMG electrodes with IMUs,
or HD sEMG systems. These systems generally provide high resolution signals with a
large sampling rate, that is, at least 1 kHz. These, however, can be quite inconvenient
to use outside of laboratory conditions and require extensive preparation.

Another option is to use an sEMG armband that usually features eight evenly
spaced electrodes around it. Only a few commercially available sEMG armbands are
available at the time of writing. The first, and most commonly used in the scientific
community, is the Myo armband (Thalmic Labs). Signals from the eight bipolar dry
electrodes can be acquired at a sampling rate of 200 Hz with a resolution of 8 bits.
In addition, the armband features an IMU [92].

A similar armband called gForcePro+, shown in Figure 3 is produced by OYMotion.
The armband has an improved sampling rate of up to 1 kHz when the signal is
sampled with an 8-bit resolution. The resolution can be increased to 12 bits, but this
reduces the maximum sampling rate to 500 Hz [93]. It has been shown that reducing
the sampling rate from 1 kHz to 500 Hz reduces gesture classification accuracy only a
little [36], leaving both sampling modes as potential options for gesture classification.
Similar to the Myo armband, gForcePro+ uses Bluetooth Low Energy (BLE) to
enable communication with devices receiving the EMG data. Because of the better
availability and improved features over Myo, and better portability over clinical
devices, the gForcePro+ armband was chosen for this thesis.
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Figure 3: The gForcePro+ sEMG armband used in this thesis. The numbers indicate
how the eight sets of dry electrodes are mapped to the eight channels of the device.

An interface for gForcePro+ was developed for transmitting the measured EMG
signals and to synchronize the signals with any output from Spot, such as images
from its cameras. The interface was built on Python using ROS Noetic Ninjemys.
The ROS interface allows the images and EMG signals to be easily recorded in a
single rosbag file, which can later be replayed as if the signals were being generated at
that time. The interface connects to gForcePro+ via BLE and publishes the received
data to a ROS node.

ROS was used as a backbone for all the other software modules of the interface as
well. The most important modules will be described in detail in the following sections,
but several smaller modules were used throughout development, such as interfaces
for selecting a point to focus on in the view of the robot and giving commands to the
robot using the keyboard. These smaller modules were indispensable when testing
and debugging other modules.

All the modules for the HRI interface were deployed to a NVIDIA Jetson Xavier
NX Development Kit, running Ubuntu 20.04 included in JetPack 5.0.2. The Jetson
Xavier was attached to the robot with a 3D-printed casing, on top of any already
existing equipment. The Jetson Xavier was connected to a Spot CORE; another
computer responsible for computation that does not require a GPU, via a network
switch. The setup enabled wired communication between Jetson Xavier and Spot
CORE, while allowing a laptop to be connected to either of the computers for
debugging and real-time visualisations. This way, Spot was able to carry all the
hardware required for running the interface. The attached devices are shown in
Figure 4.

3.2 Operator detection
To interact with the robot using the proposed interface, a person must wear the sEMG
armband so that any performed gestures can be detected. Using this constraint, we
can identify the correct person, i.e., the operator, from the view of the robot. Using
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Figure 4: The devices attached to Spot. Left: From top to bottom: NVIDIA
Jetson Xavier NX Development Kit in a 3D-printed casing, Ouster OS0-128 LiDAR,
Velodyne Puck LiDAR, and Spot CORE. The network switch is in the bottom right
of the image below the Spot Arm. While the Velodyne Puck was used by Spot
for sensing the environment and the Ouster OS0-128 could be used for performing
additional scans of the environment, the two LiDARs are not directly related to this
work. Right: Flir thermal camera attached to the arm.

neural networks, we can detect both people and gForcePro+ armbands in an image
and try to use their spatial relationships to identify the correct operator.

In order to identify the operator from the other people possibly in the view at the
same time, we can assume that at some moderately short time interval the armband
should be visible and thus, any person who has not been seen to wear an armband
is not a candidate to be the operator. The reverse is not as straightforward. It is
possible that there are multiple items present in the scene that are either gForcePro+
armbands or resemble the armband enough to confuse a neural network. That is why
it does not necessarily mean that if a person is detected to be wearing an armband,
that they actually are the operator.

The neural network used for detecting people and gForcePro+ armbands is based
on the s-variant of YOLOv5 [23]. The architecture of YOLOv5 is shown in Figure 5.

The training data consists of a mixture of images, where the first part is a subset
of the COCO dataset [95], where at least one person is labelled, whose bounding
box was sufficiently large. The second part is a collection of images featuring a
person wearing the gForcePro+ in various poses and environments as shown in
Figure 6. The dataset was heavily unbalanced; there were 47997 images extracted
from the COCO dataset containing only people, whereas there were only 379 images
containing the armband in limited number of environments and people wearing it.
Most of the pictures containing the armband were taken for this dataset while some
were found using image search from Google and Baidu. To address the issue of
unbalanced datasets, the images were sampled using the inverse of their mean average
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Figure 5: The architecture of YOLOv5. Adopted from [94]

precision (mAP) score, resulting in images with low-mAP objects being sampled
more frequently. The images were augmented using the inbuilt augmentation method
of YOLOv5, which builds a mosaic out of a original image and 3 randomly sampled
images and apply lightness and saturation changes to the final image along with
spatial transformations [23].

The neural network was trained using transfer learning with the pretrained weights
of YOLOv5s. The first 10 layers, i.e., the backbone seen in Figure 5, were frozen so
that retraining would not affect the weights of these layers. They are responsible
for low-level feature extraction and are assumed to be optimally trained. The new
model was trained using the Adam optimizer for 30 epochs with a batch size of 16.

In this work, the operator is identified using the detected people and the detected
armbands, and calculating a score for each person using the Equations 5.

dij = ∥pi − gj∥2

sij = 1 − min
{︄

0, max
{︄

dij

pix

, 1
}︄}︄

wi =
n∑︂

j=1
sijqj,

(5)

where dij is the Euclidian distance between vectors pi and gj ∈ R2, the centers of
the bounding boxes of a detected person i and a detected gForcePro+ armband j,
sij is an intermediate score calculated for a pair i and j. wi is the weighted score for
person i, and qj is the confidence score of armband j estimated by a neural network.
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Figure 6: A sample of the dataset used for training the object detection neural
network. In addition to a subset of the COCO dataset [95], which contains only
images where people are present, a set of pictures where people are wearing the
sEMG armband was collected.

pix is the x-component, i.e., the first element of vector pi, which is used to limit the
maximum distance a detected armband can be from a detected person to have an
impact to the person’s score. qj is used to reduce the impact of uncertain armband
detections.

The detected person i with the highest score wi is classified as the operator. The
score is updated each frame, where at least one armband is visible. However, to be
able to update the score of each detected person, detected people of a previous frame
need to be associated to the new instances of detected people in the new frame.

The data association is solved using global nearest neighbour method, which
associates detections by minimising the global cost. The cost function used is
Euclidian distance. Individual tracks are maintained by a Kalman Filter-based
tracker with a (nearly) constant velocity state-space model, where the state x, the
state transition model F, and the observation model H are:

x =

⎡⎢⎢⎢⎣
px

vx

py

vy

⎤⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎣
1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

⎤⎥⎥⎥⎦ and H =
[︄
1 0 0 0
0 0 1 0

]︄
,

where pi and vi are the position and velocity of a detection along the i-axis, and ∆t is
the time passed between two consecutive frames. The detected people are associated
to already existing tracks and if no matching track is found a new track is created.

There are some restrictions when it comes to the lifespan of a track. A new
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track cannot be initialised within a searching radius rs to limit the impact caused by
duplicate detections that sometimes occur when using neural networks to create the
initial detections. A track can be lost if no detections are associated when processing
a frame, and if too many frames pass without an associated detection, the track is
deleted. To minimise the recovery time when a track representing the operator is
lost, the number of frames before a track is deleted should be set to a small value;
here a value of 3 frames is used.

The score calculated by equation 5 is attached to the corresponding track and
the score is updated by linear interpolation each time a new frame with at least one
armband visible is received. In addition to requiring the chosen track to have the
highest score of all tracks active at the given time, a constant threshold of 0.2 was
also used to make the system more tolerant to false associations.

The images used for operator detection are captured using the cameras in the
Spot Arm payload, which also features a depth camera. The visual images are
compressed using Theora video compression and the depth images are compressed to
JPEG images to improve the frame rate. The depth images are projected to match
the visual frame.

When the operator is detected in a received visual frame, the matching depth
frame can be used to estimate the distance to the operator. The bounding box of
the operator in the visual frame can be applied to the projected depth frame, from
which the content within the bounding box can be extracted. The final estimate
for the distance is calculated as the median of the depth information withing the
bounding box, as shown in Figure 7.

To get the complete estimation of the operator position in the camera coordinates,
the location of the operator is transformed using the pinhole camera model. The
centre of the bounding box is selected as the location in pixel coordinates. The trans-
formation is done by backprojection using the intrinsics matrix of the camera. First,
the 3D point describing the operator location in camera coordinates is transformed
to the hand coordinate system of the Spot Arm, then to the coordinate system
of the Spot body and finally to the world coordinate system, which is maintained
by robot’s navigation system. The position in world coordinates is used to define
different commands for Spot to execute.

The depth camera located in the arm of the robot is the primary modality used
for estimating the distance to the operator. The quality of the estimate, however,
depends on the distance and at some point, as the distance increases, the estimates are
no longer received. To better understand this relationship, the robot was teleoperated
in an office environment to first walk away from a person in reverse and then walk
forwards toward the person. A dataset containing the depth camera data was
collected in this process, where the ground truth distance was obtained from the
odometry of the robot. The initial offset was obtained using the depth camera, which
faced the person for the entire time. The dataset was used for calibrating a distance
estimator based on the height of the detected bounding box.

The capabilities of the operator detection system were evaluated at three locations
as a function of distance. The robot was teleoperated in a similar manner to walk
back and forth away from a person, while keeping the person in the view. The
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Figure 7: Top row: Visual frames captured using the RGB camera in the Spot
Arm, where the bounding boxes of a detected person are overlayed. Middle row:
False-colour images of depth frames projected to match the visual frames. Bottom
row: Histograms of the depth information within the bounding box. The median,
which was used as the distance estimate, is marked with a vertical line. Pixels
with value NaN are mapped to zero in this visualisation and ignored for the depth
estimate.

locations of these evaluations are shown in Figure 8. From these measurements, the
relationship between the performance of the depth cameras for operator distance
estimation was evaluated in these different environments, as well as the range of the
BLE connection between the gForcePro+ armband and the Jetson Xavier attached
to the robot.

Figure 8: Distance related measurements with Spot at different locations. Left:
Indoors location at an office. Middle: Outdoors location in direct sunshine. Right:
Outdoors location in the shade.
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3.3 Gesture detection
3.3.1 Parameters for the sEMG armband

The gForcePro+ sEMG armband supports different sampling rates up to 1 kHz, and
two ADC resolutions: 8 and 12 bits. When using 12-bit resolution, however, the 1
kHz rate is not supported, and a lower rate of 500 Hz is used instead [93]. This limit
is caused by using a single BLE chip for wireless communication of all eight sEMG
channels. The sampling rate is higher than that of Thalmic Labs Myo armband,
which was limited to 200 Hz with 8 bits ADC resolution, but lower than wireless
medical grade sensors, such as Delsys Trigno [96].

Delsys Trigno is a wireless sEMG device that records one channel per device. Mul-
tiple of these devices can be used together to record multiple channels simultaneously.
It can provide a sampling rate up to 4.3 kHz with a 16-bit resolution even though it
uses the same BLE 4.2 standard that is used in gForcePro+ [96]. This is likely made
possible by transmitting only one channel per BLE connection as opposed to the
eight channels of gForcePro+. At 4.3 kHz, Trigno would be transmitting 68.8 kb/s,
which is close to the rate of 64 kb/s transmitted by gForcePro+ when sampling with
the 1 kHz, 8-bit mode. The calculated bit rate of gForcePro+ is decreased to 48
kb/s when using the mode with 500 Hz rate and 12-bit resolution. Empirical tests
allowed 650 Hz rate to be used with 12-bit resolution, which corresponds to 62.4
kb/s, but to follow the guidelines of the manufacturer, this mode was not used in
this thesis. The Myo armband transmits at a bit rate of 12.8 kbit/s.

To evaluate the gesture detection potential of the two modes of gForecPro+ (8 bit
at 1 kHz and 12 bit at 500 Hz), the data from Ninapro DB2 was used to approximate
these operating modes. DB2 consists of 40 subjects performing 49 gestures repeated
6 times each. The sEMG signals are recorded using Delsys Trigno system with 2 kHz
sampling rate and 16-bit resolution [50]. All combinations of 6-, 8-, 12- and 16-bit
resolutions and 200, 500, 1000 and 2000 Hz sampling rates were also evaluated for
a more complete picture. These include 8 bits at 200 Hz, which are the operating
parameters of the Thalmic Labs’ Myo armband [97].

The sEMG signals of DB2 were subsampled at the chosen sampling rates, but first
a low-pass filter was applied with a cut-off frequency of the corresponding Nyquist
rate. The resulting signals with different sampling frequencies were further processed
by clamping the signal values to a range of ±1.04 mV, which is the input range of
gForcePro+. The effect of clamping was evaluated by comparing the acquired signals
to the unclamped signals. Finally, the samples were converted to 8-, 12- or 16-bit
integers, to simulate the possible ADC resolutions.

The signals were cut into segments containing a single gesture each. As a form of
data augmentation, the signals were randomly trimmed to segments with a length
of 11 s. A new trimming of the segment was produced for each epoch of training,
whereas testing was performed with the original segment. As the original segments
were chosen to have considerable overlap, this method is closely related to the SW
method. SW has been shown to be one of the most beneficial data augmentation
methods that has been applied to sEMG signals [68] and other biosignals such as
EEG [64].
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An MLP was used to classify the gestures from all the subjects simultaneously.
The segments were divided into training and test sets, where one of the six repetitions
were assigned for testing and the rest for training. This was repeated for each of the
six repetitions, thus forming a leave-one-out cross-validation (LOOCV) scheme based
on the repetitions. The results are reported as the average of the six repetitions.

The MLP takes feature vectors as input and outputs probabilities for different
gesture classes. The hand-crafted input features include MAV, waveform length
(WL), Willison amplitude (WAMP), ZC, mean absolute value slope (MAVS) and
mean frequency (MNF), which were recommended in [5]. The input signals were
split into windows, from which the features were calculated. The window length was
chosen to be 200 ms for all sampling frequencies, to keep the response time of the
system within acceptable limits for real-time applications [42] and to better ensure
comparability between the simulated operating modes. Thus, the resulting window
lengths were 40, 100, 200 and 400 samples for sampling rates of 200, 500, 1000 and
2000 Hz, respectively.

Before training the models, the mean and standard deviation of the features were
calculated over the training data for each parameter pair, so that the features could
be normalized to have a mean of 0 and a standard deviation of 1. Furthermore, the
weights of the models were initialized using the PyTorch implementation of Kaiming
initialization [98].

After calculating the six normalized features from a given window for all 12
channels, the 72 features were concatenated as a single feature vector and fed to
the MLP. The MLP consisted of 3 hidden layers, sized 2048, 1024 and 512, with
ReLU as the activation function. Dropout layers with a dropout probability of 0.2
was used after each activation to reduce overfitting to the data. All the MLPs with
different sampling rates and resolutions were trained for 50 epochs with a batch size
of 512 using Adam optimizer. The initial learning rate was set to 5.5 × 10−4 with an
exponential learning decay with γ = 0.93.

The previously described model takes the features of a single window as the input
and outputs gesture class probabilities. As the window is 200 ms long, only a fraction
of a complete gesture is analysed per iteration, which can lead to noisy predictions.
To get the final prediction of a complete gesture, the most probable class was picked
from each window and the number of occurrences were counted for each class. The
most common class was then picked as the final prediction, where the null class, i.e.,
no gesture, was ignored as there are no trials with no performed gesture included in
the dataset.

3.3.2 Neural networks

Using the operator detection system described in Section 3.2, the robot is able to
identify and follow the operator. This alone is not sufficient, however, as the operator
has no way to communicate with the robot, apart from altering their relative position.
There are various possibilities for providing the means of communication, such as a
hand-held controller, voice commands, and gestures, the last of which can be detected
through visual means or wearables. In this work, a wearable sEMG armband called
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gForcePro+ was used to enable the required communication.
Multiple neural network architectures were trained and evaluated using a dataset

described in section 3.5.1. The models include an MLP, CNN, MLP-LSTM and
CNN-LSTM models, whose architecture diagrams are shown in Figure 9. For the
MLP and MLP-LSTM models, a feature set was used to extract features of the
sEMG and IMU signals, whereas raw signals were used for the CNN and CNN-LSTM
models.

The MLP was similar to the one described in Section 3.3.1, including the applied
feature set, which contains features MAV, WL, WAMP, ZC, MAVS and MNF.
However, this model included 12 additional features; MAV and VAR, which were
calculated from each of the x, y and z components of the acceleration and gyroscope
signals received from the IMU. The window size was kept at the same value of
200 samples as the 1000 Hz models of the Ninapro data. The loss function was
also changed from cross entropy loss to MSE loss, as the task was changed from
classification to regression.

The CNN model consisted of two convolutional modules and three fully connected
layers. The first convolutional module consisted of 1D convolutional, max pooling,
and ReLU layers, and it was responsible for extracting features from the EMG signals.
Each of the eight channels were processed separately by the same module and the
output was concatenated afterwards. This way the model needs to learn only one set
of weights for processing a generic EMG channel. Both the current and the previous
EMG windows were given as the input. The IMU signals were processed by a similar,
albeit smaller, convolutional module, where all six channels were used as an input in
the same pass. The details of the CNN and the other models are shown in Figure 9.

After training, both MLP and CNN models were frozen and used as backbones for
two LSTM hybrid models: LSTM-MLP and LSTM-CNN. The last fully connected
layers from the baseline models were removed to provide a richer presentation of a
given state of the hand for the LSTM. Both models used one unidirectional LSTM
layer with a hidden state size of 32 and a fully connected layer, which formed the
prediction.

The four models were trained separately for each subject, using the first three
sessions for training and the fifth for validation. The best performing model was
selected based on the regression MSE on the validation set.

The effect of donning and doffing was investigated by replacing the recordings
from the third session of the training set with the recordings from the fourth session
and retraining the selected models with these subsets of the data. The fourth and
fifth sessions were recorded without taking the armband off in between, and are thus
considered to be effectively from the same session.

Reusing the convolutional layers for processing the eight channels of the EMG
signal separately was validated as follows. The input size of the convolutional module
responsible for extracting EMG features was increased from two layers and 200
samples to 16 layers and 200 samples. Now, the signals could be passed through
the module at the same time in the same way as the six IMU signals. While the
concatenated layer previously featured 6336 elements, it was now reduced to 960
elements, which reduces the overall size of the model considerably.
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Figure 9: The architectures of the four models, where the two LSTM models were
implemented using MLP and CNN as backbones. The classifier layer included in the
MLP and CNN models were removed when the models were used as backbones for
LSTM-MLP and LSTM-CNN.

All the models were trained using the Adam optimiser with a batch size of 64. A
learning rate of 5.5e-4 was used for the MLP and CNN models, whereas the LSTM
models were trained with a learning rate of 5e-2. The MLP and CNN models were
trained for 50 epochs and the LSTMs for 30 epochs, as the backbones for these
models were already trained and frozen. Exponential decay of the learning rate was
applied with γ = 0.965 when training all the models. The models were trained using
a system with NVIDIA Titan RTX and Intel i9-9900K.

3.4 Finite-state machine
In other works, where sEMG-based HRI interfaces have been implemented to control
mobile robots, the detected gestures were mapped directly to the move commands
of the robot [15,16]. This is not ideal in this case, as the reliability of sEMG-based
gesture classification is affected by muscle fatigue [18]. By requiring the user to
provide continuous input with their hand should result in faster muscle fatigue.
Instead, the gestures of this work are mainly used as triggers that alter the current
behavioural state of the robot.

The behaviour of the robot was determined by a finite-state machine depicted in
Figure 10. Keeping the state machine as simple as possible was important, as the
operator needs to be able to interact with the system without being able to verify
the currently active state. Changing the movement state from sitting to standing to
the different available walking speeds were performed using wrist extension, while
wrist flexion moves the state to the opposite direction.
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Figure 10: The state machine of the robot. For visualisation purposes, the transitions
corresponding to fist and hand open gestures are not displayed. The fist gesture halts
the movement of the robot from any other state, whereas the hand open gesture
jumps to the second speed of the follow state. A transition between the states is
triggered, when a cumulative value of the corresponding proportional gesture reaches
a predetermined threshold.

Radial deviation gesture was used to change from standing to operating the
arm. In this mode, the robot stays still, while keeping its hand pointed towards the
operator. By performing another radial deviation gesture, the robot held the hand
still for 3 s before taking a picture with an RGB and a thermal camera, which was
also attached to the arm. Returning to the standing state was performed using ulnar
deviation of the wrist.

While the entire state machine could be traversed using the four wrist gestures,
traversing the state machine one state at a time could prove to be tiring for the
operator. To alleviate this, the two remaining gestures were used for jumping directly
to certain states. The hand open gesture initiated following in the second speed of
the Follow state, whereas the fist gesture was used to command the robot to halt
movement immediately from any state, or in other words, transition to the Stand
state. If the BLE connection to the armband was lost for any reason, including the
user turning the device off, a similar halt signal was sent as a precaution.

3.5 Evaluation
3.5.1 Gesture dataset

There are multiple publicly available datasets for sEMG-based gesture detection,
such as the Ninapro [50] and putEMG [67] datasets, but, to the best of the author’s
knowledge, none for this particular device. A small dataset was collected to enable
training a gesture detection neural network.

Based on the literature [4, 50,99], six gestures were chosen for the interface and
are thus included in this dataset. As in [4], the gestures include hand in a fist and
hand open (or finger abduction), wrist extension and flexion, and wrist radial and
ulnar deviation, in addition to a resting pose. The gestures are shown in Figure 11
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To better utilise the IMU built into the armband, two gestures; hand in a fist and
hand open, were modified to include lifting the hand to a vertical pose at the height
of the subject’s head. The rest of the gestures were performed with the hand held
pointing downwards on their side. In addition, idle sequences with no gestures were
recorded, where the subjects were instructed to pace back and forth within a radius
of a few meters.

Figure 11: Gestures included in the dataset: hand open, fist, wrist extension, flexion,
radial deviation and ulnar deviation.

Real-time feedback was provided for the four wrist-based gestures, whereas fist
and hand open gestures were performed with only visual cues. The angle of the
wrist was calculated from a web camera view using MediaPipe Hands [100] for hand
detection. The normalised angle was displayed for the subjects as shown in Figure
12 with the rest of the view that was presented to the subjects during recording.
OpenCV, PyQtGraph and ROS were used in addition to MediaPipe to implement
the recording software.

The dataset was collected in the following manner. The duration for each recorded
gesture was sampled between 2 s and 4 s, and an idle padding was applied so that
each repetition lasted 5 s, with a 0.5 s additional pause between repetitions. Each of
the six gestures was repeated for eight times per session and a total of five sessions
were recorded with each subject. The last session differed from the others in that it
was recorded directly after the fourth session, without taking the armband off. This
way, the effect of donning and doffing could be quantified better.

Four male subjects participated in the sessions. Three of the subjects were right-
handed and one was left-handed. The sEMG armband was placed by the subjects
themselves on the right hand either at the 2/3 point from the wrist towards the
elbow, or at the maximum distance away from the wrist if the circumference of
the armband was too small for the chosen point to be used. The zeroth channel of
the device, shown in Figure 3, was placed at the centre, on the ventral side of the
forearm. The subjects were instructed to place the armband approximately at the
same location every time. Slight variation was intended, however, as it would also
be expected when the armband is used outside of laboratory conditions. On average,
the centre of the armband was placed 15.1 cm away from the radiocarpal joint and
the standard deviation in the location within subjects was 0.86 cm. The locations
were estimated from images taken before the sessions, sample of which is shown in
Figure 13. The sessions were divided on multiple days for each subject. Two sessions
were allowed to be performed on a same day with at least 45 minutes separating
them, except for the last session, which was recorded immediately after the previous
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Figure 12: The view presented to the subjects while recording the gestures. Top-
left: Gesture cue (straight line) and feedback (squiggly line), top-right: image of
the gesture being performed, bottom-left: camera view, from which the feedback
is calculated, and bottom-right: channel contents, sampling rate and frequency
spectrum of the recorded signal.

one. On average, there was 29.6 h between each session. The subjects were allowed
to get familiar with the system before performing the gesture sequences.

Figure 13: The sEMG armband was placed by the subjects. Some variation in the
location was present, whereas the rotation of the device around the forearm was
quite consistent. The pictures of the subjects are presented in no particular order.

3.5.2 Complete system evaluation

A proof of concept for the proposed interface was carried out by one expert user.
The interface was used to instruct the robot to follow a operator along a path and to
perform a set of actions. The planned sequence included taking control of the robot,
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walking, stopping the robot, taking a picture from a point of interest, commanding
the robot to turn and stop next to the operator, and to lie down. Completing these
actions using the interface required performing a minimum of 12 gestures, listed in
Table 1 with the corresponding actions. The sequence was repeated for five times.

Gesture detection was performed using the MLP-LSTM network trained previously
using the described dataset. The proof of concept was conducted two days after
recording the last gestures of the dataset.

Table 1: Evaluation sequence.

Task description Gestures
Stand up and follow 1x Hand open
Increase speed to maximum 2x Wrist extension
Stop 1x Fist
Extend arm, keep the operator in
view

1x Radial deviation

Take a picture 1x Radial deviation
Stow arm 1x Fist
Follow 1x Hand open
Increase speed to maximum 2x Wrist extension
Walk to the right-hand side of the
operator, turn around and stop

1x Radial deviation

Lie down 1x Wrist flexion

The sequences were performed outdoors on a 110 m long footpath open to other
pedestrians to evaluate the interface in a realistic environment. Additional gestures
were performed when needed, e.g., stopping the robot when other people were passing
by. The environment around the path is shown in Figure 14.

As the sequences contained some unplanned events, all the performed gestures
were included in these statistics, while the intention of the gestures, i.e., the ground
truth, was determined from a video recorded during the session. The execution of a
gesture is considered to be successful, if the gesture detected by the interface matches
the intended gesture and the robot performs the corresponding action.

The gesture detection accuracies and the F-scores are reported for each gesture
type separately and for all gesture types combined. In addition, total number
of performed gestures and the average trigger times for each of the gesture types
are reported, as well as the average duration and walking speed of the complete
sequences.
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Figure 14: Views from the path the evaluation sequences were performed on. Left:
Commanding the robot to follow, Middle: robot following the operator, Right:
showing the robot where to take an IR image. A nitrogen container was chosen as the
target of the IR imaging task, as the temperature differences were more prominent
there than in the surroundings.
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4 Results

4.1 Parameters for the sEMG armband
The MLP trained with Ninapro DB2 data achieved good results comparable to other,
even state of the art, results. Figure 15 shows the training loss, validation loss, and
validation accuracy for a single window and the validation accuracy for complete
gestures. The testing was performed using LOOCV with each of the six repetitions
of the gestures. Thus, the results are reported as the average of the six training
iterations.

200 500 1000 2000
Sampling rate (Hz)

0.70

0.72

0.74

0.76

Validation accuracy (window)

200 500 1000 2000
Sampling rate (Hz)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98
Validation accuracy (gesture)

200 500 1000 2000

0.6

0.7

0.8

0.9

1.0

Train loss

200 500 1000 2000
0.8

0.9

1.0

1.1

1.2
Validation loss

6
8
12
16
Orig.

Figure 15: Training results of twenty combinations of sampling rate and ADC resolu-
tion. Individual lines indicate the simulated ADC resolutions tested in this analysis.
The signal values with resolutions 6, 8, 12 and 16 have been truncated between ±1.04
mV, whereas "Original" uses non-truncated signals with 16 bit resolution.

The gesture detection accuracy is known to increase with sampling rate up to at
least 1 kHz [6,36] and the results obtained here agree with the previous findings. The
relationship between ADC resolution of the signal and the performance of the model
is more complicated. While increasing the resolution from 6 bits to 8 bits improves
the results, the results start to decrease when the resolution is increased further.

Another set of networks was trained to investigate the relationship between the
truncation limit and the training results, while keeping the sampling rate constant
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at 1 kHz. The gForcePro+ armband has an input range of ±1.04 mV, which was
used as a baseline, around which the limit was varied. As shown in Figure 16, the
best results are obtained by setting the input range between 5 · 10−5 V and 1 · 10−3

V. As before, the results are reported as the average of 6 iterations of LOOCV.
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Figure 16: Comparison between different levels of signal truncation, ADC resolution
and training results. The input ranges of ±0.01, ±0.05, ±0.1, ±0.5, ±1.0, ±1.5, ±2.0
and ±3.0 mV were evaluated. The results are plotted against the upper limit of the
input range.

4.2 Interface calibration and evaluation
The results of the calibration for estimating the operator distance from the bounding
box is shown in Figure 17. The number of valid samples received from the depth
camera, i.e., the pixels of the image where a value other than NaN is returned,
drops rapidly as a function of distance. The number is reduced to roughly 1% of
the observed maximum by a distance of 5 m. As described in section 3.2, the depth
image is aligned with the RGB image and only the samples within the bounding box
of a detected person are included. The relationship between valid pixels and the
distance is largely affected by the area of the bounding box, and for this reason also
the ratio between valid pixels to all pixels is shown.
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Figure 17: Depth camera performance with distance between the robot and a person.
Left: The relationship between distance and the quality of the available distance
samples within a bounding box of a detected person. Middle: Ratio of pixels for
which a depth estimate is received vs all pixels within the bounding box. Right:
Bounding box height vs. distance. A regression curve was fitted to estimate the
distance from the bounding box height, whereas as the curve labelled as "ideal" shows
the result obtained with a pinpoint camera model.

From this data, a boundary condition for accepting the distance estimate using
the depth camera was set to 1 · 103 valid pixels, corresponding roughly to 5 m in the
close-to-ideal conditions. An alternative distance estimator was implemented using
the height of the bounding box of a detected person, which is inversely proportional
to the distance. The estimator was calibrated using this dataset and the resulting
regression is close to theoretical results as shown in Figure 17. In Figure 18, it is
shown that the depth camera-based distance estimate . When the distance between
the person and the camera is short, the feet or the head of the person, or both, are
left outside of the view of the camera. This limits the bounding box-based distance
estimator to be used only at distances at which the whole person is visible.

The performance of the depth camera as well as the sEMG data transmission
over BLE was evaluated against distance between a person and the robot in three
locations, shown earlier in Figure 8. In the two outdoor environments, the number
of valid pixels dropped earlier, resulting in discardment of the results at shorter
distances. The bounding box height-based approach was implemented for this reason,
and to extend the detection range further.

The sampling rates were calculated as inverse of the time between samples, dt.
Thus, the mean, and the 5th and 95th percentiles were weighted by dt, to prevent
higher frequencies from dominating lower frequencies. The results are shown in
Figure 19.
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Figure 18: A: Robot odometry vs. depth camera-based estimates of the distance
between a person and the robot. B: Robot odometry vs. bounding box height-based
estimates of the distance between a person and the robot. C: The average number of
depth pixels within a bounding box of a detected person corresponding to the data
shown in A. D: The error in depth camera based distance estimates as a function of
the number of depth pixels within the bounding box.

4.3 Gesture detection
The neural networks described in Section 3.3.2 were trained and evaluated using
the collected dataset. The different models were trained using each of the subjects’
data separately and combined together, resulting in four individual models and a
multi-user model. The results for the multi-user model, that is, training time, number
of parameters in the models, train loss and validation loss, are reported in Table 2
and the validation loss is visualised in Figure 20. The figure also shows the validation
losses of the individual models.

Table 2: Training results of a multi-user model. CNN (cc.) stands for combined-
channel version of the CNN model.

MLP CNN CNN (cc.) LSTM-MLP LSTM-CNN
Runtime (s) 117 440 158 179 688
Parameters 7.2 · 105 6.8 · 106 1.3 · 106 7.6 · 105 6.8 · 106

Train loss 5.7 · 10−3 4.7 · 10−3 7.3 · 10−3 2.0 · 10−3 1.6 · 10−3

Val loss 8.2 · 10−3 8.0 · 10−3 11.2 · 10−3 5.7 · 10−3 4.4 · 10−3
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Figure 19: Performance of the used sensors in scenarios depicted in Figure 8. Left:
Valid depth camera pixels within a bounding box of a detected person. Right:
Received sampling rate of the sEMG signal over BLE. The curves correspond to the
mean of the data, whereas the lower and the upper boundaries of the shaded area
correspond to the 5% and 95% percentiles of the original data.
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Figure 20: Offline proportional control performance of the tested models for each
subject averaged over five iterations. Trained using sessions 1, 2 and 3, and tested
with session 5. Multi-user model was trained using combined data from all subjects.

The effect of two design choices were evaluated, when compared to the base
models. First, the effect of donning and doffing was investigated by including data
recorded in the same session as the validation data when training the model. Based
on a compromise between the number of parameters and the validation loss, the
LSTM-MLP model was chosen as the baseline. The baseline is labelled as inter-
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session in Figure 21 and the model trained on the altered dataset is labelled as
intra-session. On average, including data from the same session as the validation
data decreased the validation loss by 14.5 % on individual models and 3.8 % on the
multi-user model.

The choice of separating the EMG channels in the convolutional layers of the CNN
and LSTM-CNN models, as described in Section 3.3.2, was the second design choice
investigated. Individual and multi-user models were trained with the combined-
channel architecture, and the validation losses are shown in Figure 21 against the
separate-channel counterparts. On average, the validation loss of the individual
models decreased by 20.8 % when using the separate-channel architecture and 28.6
% smaller with the multi-user model.
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Figure 21: Left: Offline proportional control performance of LSTM-MLP models
trained with intra-session and inter-session subsets of the data. Inter-session results
are the same as in Figure 20, whereas intra-session models were trained using
sessions 1, 2 and 4 for training, and 5 for validation. Right: Offline proportional
control performance of the combined-channel variant of the CNN model and the
separate-channel variant. The latter variant was used in Figure 20.

4.4 Evaluation
The proof of concept consisted of walking the robot around a predetermined route
and instructing it to perform a set of actions using the proposed interface. The
resulting paths are depicted in Figure 22. For visualisation purposes, the rotation
and the starting point of the paths were aligned, as the odometry of the robot drifted
by some amount. The drift is still visible in the figure, however, as the starting
points and ending points were approximately the same in the real world, whereas in
the figure, there is a slight gap between them (points A and E). On average, the
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angle was corrected by 2.75◦ between each session, and there was a 2.83 m difference
between the starting and the ending point.
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Figure 22: Left: Paths of the operator and the robot, aligned at the starting point.
Right: The distance between the operator and the robot during each of the five
repetitions.

Completing the sequences took 147 s on average with a standard deviation of
9.9 s. On the first relatively straight segment of the path (from point B to C in
Figure 22), the average speed of the robot was 1.21 ±0.21 m/s based on the odometry
of the robot. The speed of the operator was estimated using the operator detection
module of the interface, which resulted in an average speed of 1.44 ±0.24 m/s on the
same segment of the path.

The robot was stopped and the pictures were taken at point D in the figure. This
required some additional movement from the operator which can be seen adjacent to
the point. A short series of false detections of the operator can be seen between points
D and E, when the tracking of the operator abruptly jumps towards E. Similarly,
there is a sudden increase on the distance between the operator and the robot. The
detections originated from a person, but not from the one controlling the robot.

Precision, recall and F-score were calculated for each gesture type used in the
sequences. The overall performance of the interface and the robot combined is shown
in Table 3. Here, all attempts at commanding the robot are included. Table 4 shows
the same data, but some of the gesture attempts were changed or removed. These
include attempts that failed due to problems with BLE data transmission or the
robot not performing the issued task, despite receiving a correct command. In the
latter case, the gestures were classified as incorrect in Table 3 and correct in Table 4.
Ulnar deviation was not required for completing the sequences, and is not included
in these tables.

Table 5 shows the time that was required to perform each of the gesture types.
The time was measured from when the operator reached the pose of the gesture to
relaxation of the pose. Usually the relaxation began when the user received feedback
that the gesture recognition was successful. Otherwise, the gesture was continued
until the operator concluded that the gesture would not trigger before trying again.

The total time spent performing gestures during a session was 22.7 s on average
with a standard deviation of 4.1 s. On average, it spans 15.5 % of the duration of
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the entire route.

Table 3: Realtime gesture detection and task completion performance, based on
intended gesture vs. action realised by the robot.

Average Open Fist Extension Flexion Radial
Precision 0.95 0.92 1.00 0.95 1.00 0.94
Recall 0.86 1.00 0.92 0.95 0.33 0.88
F-score 0.90 0.96 0.96 0.95 0.5 0.91

Table 4: Realtime performance of the neural network alone. Misclassifications due
to either poor data transmission or the robot not performing the issued command
are not considered here.

Average Open Fist Extension Flexion Radial
Precision 0.97 0.92 1.00 0.95 1.00 1.00
Recall 0.93 1.00 1.00 0.95 0.75 0.88
F-score 0.95 0.96 1.00 0.95 0.86 0.94

Table 5: Average times in seconds for successfully triggered gestures. Measured from
reaching the characteristic pose of the gesture to relaxation.

Average Open Fist Extension Flexion Radial
Average 1.76 1.42 1.18 1.99 2.77 1.91
SD 0.94 0.33 0.26 0.71 2.56 1.15
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5 Discussion
In addition to sEMG sensors, the gForcePro+ armband includes a magnetic and
intertial measurement unit (MIMU). The accelerometer and gyroscope signals are
regularly used for gesture detection, whereas magnetometers are often disregarded.
Magnetometer can be used to improve sensorfusion-based estimates of the device
orientation. It affects mostly the heading component of the estimate, which is not
generally relevant when recognising simple gestures. The direction towards which
the gestures are performed could even degrade the results if sufficient variation of
the heading is not included in the data.

Combining EMG and IMU signals as the input of the algorithms has yielded
better results than relying only to either IMU or EMG signals alone [13,14,40]. Using
IMU data, however, could complicate the data collection procedure, especially in
cases where the intended user movement is less restricted than that of laboratory
conditions. In these cases, unseen hand movement and gesture combinations could
have a negative effect to the results. On the other hand, inclusion of IMU signals
makes dynamic gestures more recognisable, given that sufficient variation is present
in the data. If an IMU is used, the subjects should be moving similarly as they would
when the system is used outside the laboratory.

There are advantages and disadvantages of using a sEMG armband together with
a camera-based user recognition system for controlling a robot when compared to
other input schemes. Gesture recognition can be achieved with purely camera-based
systems and the detection of the user does not have to rely on detecting the bracelet,
as was done in this thesis. Without detecting some sort of marker for the user, other
initialisation methods could include a predefined gesture, such as a hand wave, which
is recognised and the corresponding user is tracked for as long as a line of sight to
the camera is maintained. A loss of a track would then have more adverse effects, as
the user would have to reinitialise the session. The tracking could be improved by
incorporating a histogram of the pixels corresponding to the user, which could be
matched in future frames. More advanced approaches include deep learning-based
user reidentification, as demonstrated in [87,88].

If no marker or a detected object, such as an armband, is used for user detection,
the risk of wrong initialisations is larger. A simple image-based recognition of an
armband does not act as a valid security system for accessing the robot, especially as
it could be tricked with a picture of the armband and the occurrence of other false
positives cannot be completely eradicated, but it should decrease the occurrence of
unintentional initialisation, especially in crowded areas.

A key advantage of using only cameras is that the user is not required to wear
any additional devices. The use of these devices can be cumbersome as they require
batteries to work, which need to be recharged occasionally, and the systems used
for inference might need retraining for each person for optimal performance. On the
other hand, deep learning-based people detection and pose detection systems have
been shown to generalise well between different people. However, the finest gestures
are not easily detectable by cameras, given that the whole body of the user is in view.
Especially proportional control using a hand or a wrist includes fine movements that
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could be hard to reliably detect from images alone. This would limit the size of the
gestures to medium and large, which can easily be wearing to the user in long term
use. In addition, any breaks in the line of sight between the camera and the user
would render the system unusable until the line of sight is regained.

Gesture recognition and user detection can be achieved using only an IMU
armband. This was demonstrated in [22], where pointing gesture was used to identify
and localise a user who wants to interact with a robot and their pointing direction was
determined using the established localisation. This method also required the local
trajectory of the robot. The scale of gestures recognisable with an IMU armband is
similar to camera-based systems, that is, the gestures need to feature sufficient arm
movement to be distinguishable. Using multiple IMUs could improve the separability,
but it also increases the preparation time, as the devices need to be set up before
use.

Gesture detection using an IMU require a considerably lower bandwidth for data
than what EMG requires. Typically, the IMUs support sampling rates of around 100
Hz, while a lower rate is usually sufficient [101]. At maximum, the IMU requires nine
channels, three components for each accelerometer, gyroscope and magnetometer
outputs, but some of these are optional depending on the task. The gForcePro+
armband supports 50 Hz sampling rate for its integrated IMU, while the EMG is
recorded at a rate between 500 and 1000 Hz and there are a total of eight channels
in the device [93]. Other systems include even higher channel counts and sampling
rates. Assuming the amount of data transmitted correlates with the energy use of
the device, a device using only IMU would be able to operate longer with the same
battery, thus requiring less frequent recharging.

The advantages of using a sEMG bracelet over the previously mentioned input
schemes include the ability to recognise fine gestures, such as different hand poses
and proportional control by bending the wrist. The device does not require a line of
sight and is not affected by changes in lighting conditions, which helps to make the
system more consistent in various environments than a purely camera-based system.
Even when using the armband together with a camera-based user detection, the
gestures do not require the camera for input, making the system more reliable. The
armband is worn by the intended user, which makes the system less susceptible to
detecting wrong person as the user and practically immune to recognising gestures
from other people than the one wearing the armband.

The data from EMG and IMU devices are complementary in the sense that the
EMG signals include information about the fine movements mostly from below the
elbow, while signals from an IMU include mostly larger scale information about the
pose of the arm [14]. If either of these devices is worn on the arm with an intent to
recognise gestures, there is a good reason for including the other one as well.

However, including additional modalities as an input to a machine learning model,
increases the models tendency to overfit to the data, which could be a valid reason to
not include either of these modalities. EMG is especially susceptible to overfitting and
various studies have tried to address the problems with intersession and inter-subject
generalisation. So far, no universal solution has been reported that would be able to
reliably classify gestures regardless of the session and the subject.
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The gesture detection performance based on the Ninapro DB2 dataset improved
when the sampling rate was increased, as shown in Figure 15. However, when the
ADC resolution was increased, the performance first improved, but then started
to decrease. The initial improvement can be explained by the increased amount of
information present in the signal. In this sense, the performance of the model should
increase further with the resolution, but as seen in the figure, this is not the case
and the performance peaked at a resolution of 8 bits. It is suspected that this is due
to a filtering effect of the limited resolution, which acts as a low-pass filter for the
signal. Typically, a low-pass filter of 500 Hz is applied for sEMG signals to reduce
the amount of noise present [38]. Here, an antialiasing low-pass filter was applied
when resampling the signals.

Based on the analysis on Ninapro DB2 dataset, the gForcePro+ armband is a
more potential option for sEMG-based gesture detection, when compared to the other
similar device, the Myo armband. Both available operating modes of gForcePro+, 12
bits at 500 Hz, and 8 bits at 1 kHz perform better in this analysis than the 8 bits at
200 Hz mode available to Myo. Furthermore, the 1 kHz mode performs better than
the 500 Hz mode and for this reason, the 1 kHz operating mode is recommended for
the gForcePro+ armband. However, this is merely a theoretical result, as the signals
used for this analysis are not recorded with the device itself. Further studies using
the device would be required to confirm these results. Nevertheless, the 8 bits at 1
kHz operation mode was used for the measurements with gForcePro+.

Obtaining sEMG-based gesture detection data is time consuming and public
datasets are not available for each device. Transfer learning between devices, i.e., inter-
device transfer learning, could potentially be used to address this problem, assuming
that the signals can be converted to match the target device well enough. The
Ninapro DB2 dataset suits this application well, as the original sampling rate is high
enough to be downsampled to match most devices. Matching the signal characteristics
between devices would require other solutions, such as system identification, domain
randomisation or generative neural networks, such as GANs. Some of these methods,
however, also require considerable amounts of data from the target domain, thus
reducing the potential benefits. This is why a direct mapping between the signals of
the devices would seem most promising, as the final adjustment could be applied with
transfer learning. In practice, inter-device transfer learning would be an extension to
inter-subject transfer learning, as the subjects would most likely be different between
the datasets.

The Ninapro DB2 dataset contains 40 subjects, which is sufficient to confirm the
viability of the gesture detection algorithm for within-session use. For an use case in
HRI, however, it is not feasible, or at least not very convenient, to collect a new set
of data and retrain the neural network every time before use. For this reason, various
options for overcoming this limitation were introduced and experimented with.

Conceptually the simplest case is to collect a dataset which includes donning and
doffing between sessions. Ideally, a neural network trained from such dataset would
be immune to the temporal variation of the sEMG signal as well as the variation in
the electrode placements. However, without sufficient variation in the data and when
using a larger model, there is a risk that the model would simply learn to recognise
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the different configurations leading to poor generalisability.
The applicability of domain adaptation for sEMG-based gesture detection was

studied in [69]. In addition to the explored options, utilising CycleGANs [102] to
perform the adaptation of sEMG signals could be investigated. CycleGANs are
an extension of GANs designed for, but not limited to, tasks such as style transfer
and photo enhancement. CycleGANs are used to transfer the input data from a
source domain to a target domain and back, thus ensuring the preservation of the
characteristic features of the data. By using CycleGANs, a large dataset could be
transformed to the domain of a smaller dataset. As with GANs, however, CycleGANs
can require large datasets to be useful.

Although the two outside scenarios, depicted in Figure 8, resulted in similar
looking BLE performances, as shown in Figure 19, the connection was lost multiple
times when performing the measurements in the sunlight scenario. This resulted in
shorter maximum distance that was reached before the connection was lost, when
compared to the other scenarios. It is suspected that this was due to a nearby
transformer of an office building, as similar performance was not observed at the
other side of the same building.

The reason behind the drop in the received sampling rate is not entirely clear. The
theoretical range should be long enough for this use case, as the reported radio power
of the gForcePro+ is 4 dBm [93]. Using an isotropic antenna for transmission and a
receiving antenna with a minimum receiver sensitivity of -70 dBm, the theoretical
range should reach 23 m, as calculated by Equation 6, whereas with a sensitivity
of -90 dBm available to modern chips, the range should be as high as 100 m [103].
This is clearly not the case here, as the optimal range extends only up to 4 m, and
the connection was usually cut completely after 10 m. It is possible that there are
additional interference sources present in these environments that would degrade the
signal, which were not identified here.

d = 10(path loss−40)/25 (6)

The distance estimate was only accepted when the valid pixel count within the
bounding box of a detected person exceeds 103 pixels, corresponding to roughly 5
meters indoors and 2-2.5 m outdoors. This is not a limit for the system, however, as
the distance estimate range was extended by using an estimator based on the height
of the bounding box. As seen in Figure 17, the regression curve fits well to the data,
while being close to the theoretical result. Based on this data, it is not necessarily
required to calibrate the estimator in a separate session, and simply providing the
height of the person should suffice. Alternatively, the height of the person could be
calibrated automatically in a short session.

The caveat of using the bounding box-based distance estimation is that the entire
person has to be visible for the estimates to be reliable. As seen in Figure 18, the
distance cannot be estimated closer than a certain limit, that depends on the height
of the person. For a 1.72 m tall person, for example, the theoretical limit with the
given camera is roughly 2.0 m. Occlusions of the person is also a problem, which
were not addressed here and are considered a limitation of this method. However, on
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closer distances the depth camera is used instead, which does not suffer from the
same problem.

Based on these results, the direct connection between the armband and the robot
would be usable up to a distance of 4 meters between the operator and the robot
in a low interference environment. This is where the received sampling rate begins
to drop below the nominal sampling rate of 1 kHz and the reliability of detecting
the gestures cannot be guaranteed. As the system was intended to work in less
ideal circumstances, a laptop was introduced for the complete system evaluation.
The sEMG armband was connected to the laptop with BLE, from which the data
was forwarded to the robot. In the future, the laptop should be replaced with a
smartphone, or a similar small-sized device carried by the operator, that is able to
communicate with the armband and forward the received data to the robot through
more reliable means of communication. Depending on the environment and available
technology, at least Wi-Fi and cellular networks could be considered.

A finite-state machine is a standard solution for programming the behaviour of
a robot or any similar agent and it proved to work here as well. However, some
changes for the implemented system would be recommended. When the robot was
commanded to follow the operator, the speed of the robot was always separately
increased to maximum, which required two additional gestures to be performed.
Instead, the speed should be a variable within the follow state, which could be
varied by the extension and flexion gestures. When leaving or entering the follow
state using the fist and hand open gestures, the speed would be stored and applied
automatically, thus removing the redundant gestures and reducing the time required
to begin following.

From the neural network architectures evaluated in this work, the multi-user
LSTM-CNN performed the best with an MSE of 4.4 · 10−3. However, the size of the
model was considerably larger than the size of LSTM-MLP: almost by a factor of 10.
As the computational resources of Jetson Xavier are limited, the LSTM-MLP model
was chosen instead, as it achieved the second best results with an MSE of 5.7 · 10−3.

The time required for training each of the models was quite short, ranging roughly
between 2.0 and 11.5 minutes for the multi-user models when trained on an Titan
RTX GPU. The low requirements in terms of training time can be attributed to
the relatively small models and data sets. Fine-tuning an already trained model
usually takes less time than the original training, meaning that a gesture detection
system like this could be updated in a reasonable time even when using less powerful
hardware.

The effect of donning and doffing was present, but the results varied between
subjects as previously shown in Figure 21. For the first two subjects, the effect was a
relatively small 11.8 % decrease on average, whereas for the fourth subject, changing
one of the sets with intra-session data reduced the MSE loss by 42.4 %. On the other
hand, the MSE loss increased by 7.9 % for the third subject. The results for the third
and fourth subject indicate that changing the data of one of the three sessions used
for training can affect the results significantly. Three sessions might not be enough to
train a the individual models reliably. The effect on multi-user models, on the other
hand, was relatively small, only 3.8 %. Using data from multiple subjects introduces
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more variability to the data, which can overlap with the variability resulting from
donning and doffing, thus allowing the models to generalise better.

Overall, the regression error for the third subject stands out from the rest of the
subjects. Interestingly, the third subject had the lowest estimated standard deviation
in the placement of the armband: 0.24 cm whereas the average for the other subjects
was 1.07 cm. As this cannot explain the results, it is instead suspected that the
subject performed the gestures with a lower level of muscle activation than the others,
which could negatively affect the performance of the neural networks.

The individual separate-channel CNNs, which were trained with 1/4 of the data
of the multi-user models, performed better on average than the individual combined-
channel variants of the CNN. This is noteworthy, as the individual CNN models
performed considerably worse when compared to other architectures, but the multi-
user CNN outperformed the multi-user MLP as shown in Figure 20. The assumed
reason for this is the size of the training set, which could be too small to train the
individual CNNs. However, such effect cannot be seen between separate-channel and
combined-channel CNNs. The change in validation loss between multi-user variants
is on par with the change in individual variants, as seen in Figure 21. It could be
assumed, that when the number of parameters is increased from 1.3 · 106 to 6.8 · 106,
the performance of the individual models would decrease as a result of overfitting.
As this is not the case, these results could indicate that the separate-channel variants
help achieving better results on sEMG-based gesture regression without causing the
model to overfit.

While using the separate-channel architecture helped reducing the validation loss,
concatenating the outputs of each channel increased the layer size considerably. For
a more equal comparison, the number of parameters should be matched more closely.
There might also exist a better balance between separate and combined-channel
architectures, as mixtures between these models were not investigated.

Additionally, the separation of IMU channels in the CNN architecture should
be investigated as a way to improve the results further. The potential for the
improvements with separating IMU channels is smaller, however, as they include
three accelerometer and three gyroscope channels, whereas with EMG, there are
eight channels featuring relatively similar signals.

The average time it took for the gestures to trigger was large because there
was uncertainty whether the gesture would trigger or not as sometimes the gesture
triggered noticeably late assumably due to problems with the BLE connection.
Furthermore, it was sometimes unclear whether the gesture was already triggered,
due to the weak form of feedback and sometimes the proportional output from the
neural network was too small to trigger the gesture.

The gesture times also include the reaction time of the operator. Assuming
a reaction time of 250 ms, the average time from onset of a gesture to triggering
reduces to 1.51 s. This is still not within the recommended limit of 300 ms, but
for instructing a semi-autonomous robot, near-instantaneous responses might not
be necessary. The reliability of the system was prioritised, and it could be possible
to reduce the required time to trigger a gesture without affecting the precision too
much. Additionally, lowering the threshold for triggering a gesture could improve
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the recall of the detections.
The total time spent performing gestures and thus, the time spent actively

controlling the robot, was 15.5 % of the duration of the entire route. With the
previously mentioned changes, i.e., fixing the connection issues and reducing the
triggering time, this could be reduced even further. When compared to a hand-
held controller, which requires constant input from the user, this is a significant
improvement. The time required to perform gestures naturally depends on the route
and tasks being performed. With longer walking distances, the relative time required
to perform gestures should decrease and vice versa.

Similarly, other proposed sEMG-based interfaces [15–17] for mobile robots also
require constant input from the user. If the gesture-based input is required to be
constant, the advantage over a hand-held controller is smaller and the user fatigues
faster. Muscle fatigue affects the frequency spectrum of EMG [24], which, if not
addressed properly, can deteriorate gesture detection [18].

Finally, the following behaviour of the robot needs to be addressed. While the
following was consistent and reliable, the current system instructs the robot to walk
directly towards the operator. This is not always desirable, as the robot now has a
tendency to cut corners regardless of the path taken by the operator. Instead, the
robot should follow the operator’s path more closely, which in turn could cause the
operator to leave the field of view of the robot. This in turn could be alleviated by
either having the camera of the robot turn independently towards the operator, or by
tracking the position of the operator by using additional devices such as augmented
reality glasses.
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6 Conclusion
This thesis proposed and validated the first iteration of a novel HRI interface for
controlling mobile robots. In the previous chapter, the interface was compared
to similar solutions and it was found to be capable of supporting a broader set of
instructions than other sEMG-based interfaces. The performance of the gesture
detection neural network was on par with that of other neural networks from the
literature.

Overall, the LSTM-CNN architecture achieved the best regression results from
the architectures used here, when the data from all the subjects were used to train
a multi-user model. Separating the EMG channels proved to improve the results,
but with a relatively high cost in computing time, which is why the LSTM-MLP
model was used in the proof of concept. While donning and doffing is known to
deteriorate the inference of gestures, the effect quantified here was quite small, and
with real-time haptic feedback, the proof of concept could be conducted successfully
without retraining or recalibrating the system. The camera-based operator detection
enabled the proof of concept, and even though there are room for improvements, the
consequences of the few operator detection errors encountered were minimised with
the use of gesture control.

The gesture detection model was selected from a set of candidate models by
comparing their MSE loss on the validation set. For the operator detection, a object
detection neural network was retrained to enable detecting both people and the sEMG
armbands. The proof of concept for the complete system was analysed thoroughly.
F-scores of the used gestures were calculated for both the gestures themselves and as
a part of the system. The time required to perform the gestures was measured as
well as the time to complete the whole course. A set of calibrations for the different
modules of the interface were performed prior to the the proof of concept.

Hand-crafted features are a well-established tool for extracting information from
EMG signals. With the recent advancements in neural networks, more complex
models have been proposed for sEMG-based gesture detection as well, surpassing
the traditional methods. The model complexity, however, introduces increased
computational cost and requirements for larger datasets, which is why the diminishing
returns of the more complex models can not always be justified.

The field of people detection and tracking, on the other hand, enjoys a richer
selection of larger datasets, which can be used to train more specialised models.
People re-identification and pose estimation are among the tasks that seem potential
for an HRI interface, such as the one presented in this thesis. While visual gesture
detection has yielded promising results, the current limitations keep it from being
applied to controlling mobile robots.

The modalities for the interface were set to include an sEMG armband in addition
to visual and depth cameras. The feasibility of the system was demonstrated and
it was concluded that using an sEMG armband and the proposed interface enables
users to interact with robots without many of the limitations with visual or auditory
methods or without having to operate the hand-held controller. Combining a semi-
autonomous user-following robot with gesture control reduces the time required to
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actively control the robot.
The main limitation of the work presented here is that the proof of concept was

performed with only one subject. This was considered adequate, as the gesture
detection was already validated with multiple subjects and other aspects of the
interface are less person-specific. Nevertheless, additional validation for the complete
interface is required. The validation for the operator detection was minimal, as it was
primarily considered an enabler for this work. This leads to the next steps, which
include improving the operator detection system with either person reidentification,
augmented reality glasses, or both. This enables a richer set of available tasks, which
can already be supported with the current gesture detection system. The set of
gestures could be increased further while their required activation time should be
decreased.

User-following robots and sEMG-based gesture detection are both promising
technologies, the potential of which is only increased when combined together with a
multimodal interactive interface.
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