
Length-preserving authenticated
encryption of storage blocks

Jasper Surmont

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 21.11.2022

Supervisor

Adj. Prof. Jan-Erik Ekberg

Advisor

Msc. Arto Niemi

Copyright © 2022 Jasper Surmont

3

Acknowledgements
This work would not have been possible without the support of my advisor, Arto
Niemi. Not only did he read and correct many revisions, he also guided me through-
out the process and supported me during my stay at the Huawei Technologies Re-
search & Development Center. Further, I would like to thank my supervisor Jan-Erik
Ekberg, who gave me the opportunity to perform my work at the R&D center and
helped me during my stay there.

Finally, I would like to thank my parents and Leah for supporting me throughout
this experience.

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Jasper Surmont

Title Length-preserving authenticated encryption of storage blocks

Degree programme Computer, Communication and Information Sciences

Major Exchange studies in Computer Science Code of major SCI3042

Supervisor Adj. Prof. Jan-Erik Ekberg

Advisor Msc. Arto Niemi

Date 21.11.2022 Number of pages 79+1 Language English

Abstract
Digital storage is often protected by individually authenticating and encrypting each
storage unit, usually a disk block or a memory page. This results in one ciphertext
and authentication tag per unit. Where used, these tags are written to external
memory locations or to different blocks within the same device, but this has two
main drawbacks. First, it is not always possible to use external memory, or to
allocate extra blocks to store the tags. Second, storing the tag in a different location
than the ciphertext requires two IO requests for each read or write: one request for
the ciphertext, another for the tag.

In this thesis, I ask and resolve the question: is it possible to use data compression to
provide length-preserving storage protection, providing integrity and confidentiality,
removing the need for external storage or extra blocks.

The thesis contributes to the research of block-level data protection, and analyses
existing protection methods for data protection of block devices, such as dm-crypt
and dm-verity in Linux, as well as RAM protections such as AMD SEV-SNP. Pre-
vious compression-based solutions are analysed and found not to be fully length-
preserving.

The thesis presents LP-SP, a length-preserving storage protection method that does
not need external storage or extra blocks for tags. Additionally, a prototype im-
plementation in the device-mapper in Linux provides compression and performance
measurements. These measurements result in LP-SP being especially useful in RAM
and other environments with high compression rates.

Keywords Data Integrity, Compression, Encryption, FDE

Contents

Abstract 4

Contents 5

1 Introduction 11
1.1 Personal contributions . 12

2 Background 13
2.1 Compression . 13
2.2 Entropy and Noiseless source coding theorem 13
2.3 Modelling . 15

2.3.1 Run-length encoding (RLE) 15
2.3.2 Move-to-Front . 15
2.3.3 Lempel-Ziv . 16

2.4 Entropy coding . 17
2.4.1 Fixed-length . 17
2.4.2 Semi-fixed-length . 18
2.4.3 Variable-length . 19
2.4.4 Interpolative coding . 19

2.5 Cryptography . 20
2.5.1 Encryption and ciphers . 21
2.5.2 Block cipher modes of operation 22

2.5.2.1 Electronic Code Book (ECB) 22
2.5.2.2 Cipher Block Chaining (CBC) 23
2.5.2.3 Counter (CTR) . 24
2.5.2.4 XEX-based tweaked-codebook mode with ciphertext

stealing (XTS) . 25
2.5.2.5 Galois/Counter mode (GCM) 26

2.5.3 One-way function . 29
2.5.4 Cryptographic hash Function (CHF) 29
2.5.5 Message Authentication Code (MAC) 31
2.5.6 Merkle tree . 31

2.6 Storage devices . 32
2.6.1 Hard disk drive . 33

5

6

2.6.2 Solid State Drive . 34
2.6.3 Random Access Memory (RAM) 34
2.6.4 Virtual memory . 35

2.7 Operating systems and Linux . 36
2.8 Filesystem . 37
2.9 Drivers, Device files and Block devices 38
2.10 Device-mapper (dm) . 40

3 Storage protection 42
3.1 File-level protection . 42

3.1.1 eCryptfs . 43
3.1.2 Benefits and drawbacks of file-level protection 43

3.2 Block-level protection . 44
3.2.1 Full Disk Encryption (FDE) 44
3.2.2 Device-mapper protection targets 45

3.3 Page-level protection . 47
3.3.1 AMD SEV-SNP . 47
3.3.2 Intel SGX MEE . 48

3.4 Length-preserving storage protection 48

4 Research question 50

5 LP-SP: Length-preserving Storage Protection 52
5.1 Threat model and security goals . 52
5.2 Architecture . 53

5.2.1 Handling of Incompressible blocks 53
5.2.1.1 Magic number as compressibility indication 54
5.2.1.2 Storing the tag of an incompressible block in the next

compressible block 55
5.2.2 Reading and writing a block with LP-SP 56
5.2.3 Compressed block format . 57
5.2.4 Possible improvements to LP-SP 57

5.2.4.1 Caching and buffered writes 59
5.2.4.2 Using a different block sequence 60

5.3 Implementation . 60
5.3.1 Compression . 61

5.3.1.1 Run-length encoding 61
5.3.1.2 Replacement . 61
5.3.1.3 Move-to-Front . 62
5.3.1.4 LZ-77 . 62
5.3.1.5 Fixed-length binary 62
5.3.1.6 Gamma coding . 62
5.3.1.7 Interpolative coding 62

5.3.2 Algorithm choice . 63
5.3.3 cisetup . 64

7

5.3.4 dm-ci . 65
5.3.4.1 Reads . 66
5.3.4.2 Writes . 66

5.4 Security of LP-SP . 66

6 Empirical evaluation of dm-ci 68
6.1 Speed performance . 68
6.2 Compression . 69

6.2.1 Performance . 69
6.2.2 Compression rates: Files and directories 70
6.2.3 Compression rates: Memory 71

7 Conclusion 73

References 74

Abbreviations and definitions

Abbreviations

HDD Hard Disk Drive
SSD Solid State Drive
KB, MB, GB, TB Kilo-, Mega-, Giga-, TeraByte

OS Operating System
CPU Central Processing Unit
I/O Input/Output
Bit Binary Digit (0 or 1)

RLE Run Length Encoding
MTF Move-to-Front

OWF One-way Function
PPT Probabilistic Polynomial Time
CHF Cryptographic Hash Function
SHA Secure Hash Algorithm
AES Advanced Encryption Standard
UUID Universal Unique Identifier
PKCS Public Key Cryptography Standard
MAC Message Authentication Code
HMAC Hash based MAC

RW, RO Read-Write, Read-Only
dm device-mapper
FDE Full Disk Encryption
LUKS Linux Unified Key Setup

8

9

Definitions

Generic Not specific to a single thing: a generic
thing can be applied to not only a sin-
gle use case, but to a whole family with
some characteristic.

Byte A group of 8 bits.

Octet See Byte.

Access time The time it takes to complete a proces-
sor’s request to get data [41].

Codeword The result of an encoding.

Parallelism The act of performing multiple compu-
tations simultaneously, often resulting in
faster computing speeds.

XOR Exclusive OR (symbol ⊕): a bitwise
XOR results in 1 if only one of the two
values is 1, and 0 otherwise. The XOR
of two numbers is the bitwise XOR on
every bit. For example:
510⊕910 = 01012⊕10012 = 11002 = 1210

Independent and identically
distributed variables

Every variable is an independent draw
from a fixed probabilistic model, i.e. the
probability of an occurrence of an event
x1 is independent whether another event
x2 happened or not: P (x1|x2) = P (x1)
[17].

Decision Problem A problem that can be posed as a yes-
no question. The only valid outputs are
YES or NO.

Deterministic algorithm An algorithm that always provides the
same output for the same input; a pre-
dictable algorithm. On the other hand, a
nondeterministic algorithm can provide
different outputs for the same input; a
non-predictable algorithm.

10

Big O notation: O(·) It describes how a function behaves if
the input goes to infinity, i.e. a func-
tion with O(g(n)) means it is limited by
the function f(n) = M · g(n) as n goes
towards infinity, with M ∈ R.

Probabilistic Polynomial Time
(PPT)

If a decision problem is in PPT, there ex-
ists an nondeterministic algorithm that
runs in polynomial time. This algorithm
returns YES on a YES input with prob-
ability greater than 1

2 , and returns YES
on a NO input with probability less than
or equal to 1

2 .

Negligible function [Informal definition] A function f with
input x that is smaller than any polyno-
mial function, for sufficiently big x.
[Formal definition] A function f with as
property that for every integer c, there
exists an integer Nc such that ∀x > Nc :
|f(x)| < 1

xc

1 Introduction

The rapidly evolving digital world has caused a huge shift in the everyday life. Jobs
that were slow and tedious have been replaced by automatic digital processes, old-
fashioned archives with books in shelves have been transformed in massive databases,
and people from all over the world can connect with anyone almost instantly. One
factor that allows for such a fast growing digitalisation is the ability to store massive
amounts of data in relatively small physical devices. These devices are found every-
where: desktops, laptops, phones, smartwatches, databases, TVs and even lamps.
However, having so much data in such everyday devices can be dangerous. Physical
protection techniques like protecting an archive in a secured building from intruders
are not always possible or sufficient anymore. Instead, newer techniques try to also
protect the actual data, rather than just the device itself.

In the context of storage devices, there are two types of entities: those who should
have access to the data (authorized), and those who should not (unauthorized). This
thesis focuses on providing authentication, confidentiality and integrity. Authenti-
cation ensures that authorized writers and readers can identify each other to make
sure the other one is not an attacker who claims to be authorized. Confidentiality
ensures that unauthorized entities do not gain any new information from analysing
the protected data. It thus provides a way to store private information on an in-
secure disk, preventing attackers who observe the disk from extracting this private
data. Integrity ensures that data is authentic, which means that the data one reads
must be the original data that was written. To provide confidentiality and integrity,
the data has to be transformed and/or new data needs to be created. Confidential-
ity can be provided by encrypting the message, transforming it into data that looks
like gibberish. The encrypted data can be decrypted bu authorized entities back
to the original message. Integrity and authentication can overlap, and can both be
provided by creating integrity metadata. This integrity metadata can be used in
conjunction with the message to verify integrity and authentication.

When these former techniques are applied on storage units, i.e. physical devices in
a computer that store data, some drawbacks become apparent. Storage devices can
be written to and read from in blocks: the smallest addressable size of data on the
device. It can be desired to protect the data on this device block by block, called
block-level protection. The techniques described above expand the data: they create
integrity metadata that also needs to be stored somewhere to be able to verify the

11

12

block. However, if the block is already full with the data that needs the protection,
there is no more room left in the block to store the integrity metadata. Previous
solutions solved this by storing this extra data elsewhere (somewhere else in the
same device, or in a different device). In some environments, these solutions are not
always efficient or even possible. In those cases, weaker protection schemes can be
used, which does not always meet the required security properties.

This thesis tries to find improvements in cases where previous solutions are not
possible or sufficient, and where a strong protection scheme is still required. We
describe LP-SP: a solution to provide block-level, length-preserving storage pro-
tection. LP-SP can be useful in any block-like storage devices, like HDD, SSD and
RAM. Additionally, migration (moving processes from one system to another) might
benefit from it as well.

LP-SP is able to preserve length by compressing the input data; the space that
the compression frees up can then be used to store the integrity metadata. The
idea to use compression is not new [63] [62]. However, not all data is compressible.
Not all data is compressible, which means storing integrity metadata and IVs is
not always possible. Previous solutions that use compression to provide block-level
protection, still require some external, trusted storage to protect blocks that are not
compressible enough (called incompressible blocks). LP-SP does not need any exter-
nal storage, and is thus the first complete length-preserving method that provides
authentication, confidentiality and integrity. A part of LP-SP is also implemented
as a proof-of-concept block device in the Device-Mapper layer in Linux, and is then
called dm-ci: device-mapper confidentiality integrity. Additionally, a tool called
cisetup is implemented that provides two functions. First, it can check disks and
files for compression statistics. Second, it can format a disk to be used by dm-ci.

1.1 Personal contributions
The thesis work was for the most part performed while the author was an intern
at Helsinki System Security Laboratory of Huawei Technologies Oy. The author’s
individual contributions are:

• Designed and wrote this thesis

• Wrote all of the implementation code for LP-SP and dm-ci

• Wrote all of the implementation code of cisetup

• Researched and experimented with the compression algorithms

• Researched and experimented with previous block-level storage protection
methods

• Co-invented the length-reserving storage protection method and contributed
to the patent application (PCT/EP2022/2080427)

2 Background

This section covers the basics of compression, cryptography, storage devices, oper-
ating systems and filesystems. Furthermore, it covers more specific topics like the
device-mapper and Merkle trees.

2.1 Compression
Compression is the act of transforming data such that its size shrinks. Compression
algorithms can be lossy or lossless. Lossy compression algorithms lose information
during the compression, whereas the latter allow reproducing the original encoding
from the compressed one. Lossy algorithms are useful where some data is unneces-
sary or not important. An example is a sound file, where frequencies that are not
perceived by the human ear can be removed. [69]

Compressed data has a certain compression rate. The compression rate x is com-
puted as original size

compressed size . The compression rate depends on the data, the compression
methods, and their parameters. In general, lossy algorithms have a far higher com-
pression rate than lossless algorithms. Another useful statistic is bits per character
(bpc). It is computed as bpc = amount bits in compressed data

amount characters in original data . Since blocks and pages of
storage units must be reproduced exactly we will only look at lossless compression.

Two main tasks arise when trying to compress data: modelling and entropy coding.
The task of the former is to reveal redundancies among the data, as well as to
produce elements and related statistics or probabilities for coding. The task of the
latter is to then remove this revealed redundancy. An important thing to notice is
that the modelling and coding techniques are independent, i.e. in some compression
implementations, the modelling technique can be substituted for a different one
without changing the coding technique, and equivalently for the coding technique.
[69] [61]

2.2 Entropy and Noiseless source coding theorem
The noiseless source coding theorem [72] states that there is a limit on the minimal
possible expected length of a codeword. Take note of the word expected: it places a
lower bound on the average length of a codeword, but it is still possible for a single

13

14

codeword to be smaller than this length. The theorem makes use of the entropy,
which is first explained.

Let X be a set of events x1, x2, ..., xn with probabilities p1, p2, ..., pn. The Shannon
entropy is then defined as

H(X) = −
n∑︂

i=1
pi log2(pi)

It is a nonnegative number and can be seen as the average information per event.
The higher a probability of an event, the less information an occurrence of this event
adds1. The entropy is dependent on the probabilities of certain events occurring.
However, exact probabilities are usually not known, requiring the probabilities to be
estimated. Using different probability estimates may result in a different entropy.
[72]

The theorem now states that: one cannot encode X of length n with fewer than
H(X) · n bits on average [34]. The proof is left out as it’s not vital to understand
the theorem. What is important in this thesis is that it shows that truly random
data on average can hardly be compressed. Take as an example the alphabet with
26 letters. If the data we are trying to compress is random2, each letter has a
probability of 1

26 . Thus, the Shannon entropy for a random sequence of letters Y is

H(Y) = −
26∑︂

i=1
pi log2(pi) = −

26∑︂
i=1

1
26 log2(

1
26) ≈ 4.7

The minimum amount of bits on average to encode Y of length n is then ⌈4.7 · n⌉.
Assuming the input is a fixed-length binary encoding (what will always be the case
in this thesis): 26 characters requires five bits for every character. Hence, in this
case, for n > 1, the minimum amount of bits is lower than the input. This is because
26 is not a power of two, and a semi-fixed coding could be applied to compress the
data slightly.

However, in this thesis, input data is a sequence of bytes (B), with values ranging
from 0 until 255 and is assumed to be random. Its Shannon entropy is then

H(B) = −
255∑︂
i=0

1
256 log2(

1
256) = 8

Indeed, this value is equal to the length of a fixed-length binary encoding of 256
characters, so on average a random sequence of bytes is incompressible. This fact
is very important and introduces a difficult problem for this thesis’ research (see
Section 5.2.1).

1As an example, take as event someone on earth took a shower today. The odds of this happening
are incredibly high, so someone telling you: "Someone took a shower today", hardly adds any
information. Alternatively, someone telling you: "Nobody on earth took a shower today", adds an
enormous amount of information.

2Independently and identically distributed

15

2.3 Modelling
Modelling aims to reveal the redundancy in data. It does this by either using
probability estimations, reordering or recoding of symbols, or building dictionaries
of subsequences and mapping these to indices. The different modelling techniques
used in this thesis are explained more in detail in their respective subsection.

2.3.1 Run-length encoding (RLE)
Opposite of what the name suggests, run-length encoding is a very intuitive mod-
elling technique. It scans over the data and measures the length of each run (a
sequence of symbols with the same value) and produces a combination of length-
value pairs as non-negative integers [35]. Below is an example:

5⏟ ⏞⏞ ⏟
11111

9⏟ ⏞⏞ ⏟
000000000

3⏟⏞⏞⏟
111

5⏟ ⏞⏞ ⏟
00000

4⏟ ⏞⏞ ⏟
1111 → (5, 1) (9, 0) (3, 1) (5, 0) (4, 1)

Reverting this transformation is easy: given some RLE-transformed data x with xi

the value of the symbol at position i, the original data y is then:

y =
x0⏟ ⏞⏞ ⏟

x1x1...x1

x2⏟ ⏞⏞ ⏟
x3x3...x3

x4⏟ ⏞⏞ ⏟
x5x5...x5 ...

RLE performs best on data with long runs, since every run of arbitrary length is
transformed into two symbols. Similarly, it performs poorly on data with short
runs: if the maximum run length is only one, RLE transforms every symbol into
two symbols.

2.3.2 Move-to-Front
The move-to-front (MTF) [10] transformation starts with a predetermined list of
possible symbols, called the MTF list. When working with only lower-case letters,
this could be "abcdefghijklmnopqrstuvwxyz". Next, every symbol in the data is
replaced with its position in the MTF list, and that symbol is moved to the front
of the sequence (hence, Move-to-Front). The output of MTF is thus a sequence
of integers between 0 and the length of the MTF list. An example on the word
bananaaa is shown in Table 2.1.

16

Input MTF list Output
bananaaa abcdefghijklmnopqrstuvwxyz 1
bananaaa bacdefghijklmnopqrstuvwxyz 1
bananaaa abcdefghijklmnopqrstuvwxyz 13
bananaaa nabcdefghijklmopqrstuvwxyz 1
bananaaa anbcdefghijklmopqrstuvwxyz 1
bananaaa nabcdefghijklmopqrstuvwxyz 1
bananaaa anbcdefghijklmopqrstuvwxyz 0
bananaaa anbcdefghijklmopqrstuvwxyz 0

Table 2.1: MTF applied to the word bananaaa with initial MTF-array equal to
the alphabet

When performed on data with low entropy, the output will usually have lower values
than the input. This can provide significant benefits to certain coding algorithms,
like interpolative coding (Section 2.4.4). Another side benefit is that repeated se-
quences will result in an output with very few different numbers. For example, The
word banbanbanban... results in 1 1 13 2 2 2 2 2 2 2 2 2 Applying e.g. RLE on
this output will transform it into six symbols, whereas applying RLE on the original
data results in doubling of the symbols.

2.3.3 Lempel-Ziv
LZ-77 and LZ-78 are two modelling techniques published by Abraham Lempel and
Jacob Ziv in 1977 and 1978 [86], [87]. They work by building a dictionary using past
data to match future sequences to the past data. Instead of writing down the original
data, a reference to the previous sequence can be written. LZ-77 encodes matches
by a length-distance pair. The length specifies how long the matched sequence is,
and the distance specifies the amount of bytes behind the start of the sequence is.
The algorithm starts at some position in the data. It fills a lookahead buffer of
a certain length containing the current future data. It then tries to find a match
with a length as large as possible, starting at the window: the window is a buffer
of a certain length that contains the past data. If a match is found, the length and
distance of the match is written down. If not, the length-distance pair is replaced
by 0-x with x being the actual byte value. The following example demonstrates the
algorithm on the string bananabanana with a lookahead buffer size and window size
of 5.

17

input window lookahead buffer result
bananabanana banan (0,b)
bananabanana b anana (0,a)
bananabanana ba nanab (0,n)
bananabanana ban anaba (2,1)
bananabanana banan abana (1,1)
bananabanana anana banan (0, b)
bananabanana nanab anana (3, 1)
bananabanana abana na (2, 3)

Table 2.2: LZ77 applied to the word bananabanana

2.4 Entropy coding
Entropy coding aims to remove the redundancy that some modelling technique(s)
revealed. While many different codings exist, the family that is important in this
thesis is integer coding. As the name suggests, it tries to represent a sequence
of integers into a smaller sequence of integers. The reason integer coding is so
important, is that the architecture explained in this thesis should be as generic as
possible, without knowing what the source of the data is. Hence, the only thing it
knows are the byte values, which should be interpreted as integers3. Another reason
is that most modelling techniques reveal the redundancy using integers. The result
of RLE, for example, are Length-Value pairs. [69]

In integer codings, a distinction has to be made between fixed-length, semi-fixed-
length and variable-length codings. Fixed-length codes encode all integers into some
representation of equal length. Semi-fixed-length does something similar, but has
two possible lengths instead of one. Lastly, variable-length codings encode integers
into differently sized representations.

2.4.1 Fixed-length
To be able to encode integers in to a fixed-length encoding, an upper bound on the
amount of different values must be known (n). One can then easily encode integers
into its binary form, using ⌈log2(n)⌉ bits. For example, for n = 8, the integers 0..7
are encoded as shown in the tree below (take notice of the leading zeroes): [29] [28]

3To give an example, another way to interpret bytes could be as ASCII characters, such that
textual coding techniques can be applied. However, the data could come from any source, also
non-textual sources. This would make the codings pretty useless, as they are optimized for texts.

18

0

0

0
0

1
1

1

0
2

1
3

1

0

0
4

1
5

1

0
6

1
7

This is not limited to incremental integers starting from 0, as one can map the
encodings to different values (e.g. 000 → 12, 001 → 14, 010 → 16, ...). This fixed-
length encoding is only efficient if n is a power of two. If the upper bound would be
anything else, some bit combinations would be unused. For n = 6, the tree below
shows that the combinations 110 and 111 are unused.

0

0

0
0

1
1

1

0
2

1
3

1

0

0
4

1
5

1

0
?

1
?

2.4.2 Semi-fixed-length
Semi-fixed-length (or phased-in) codes try to solve the shortcoming of the fixed-
length approach if n is not a power of two. It creates codewords of two different
lengths: ⌈log2 n⌉ and ⌈log2 n⌉ − 1. The three most widiely known semi-fixed-length
codes are: low-short, center-short, and high-short. These can all be computed using
simple arithmetic and bitwise operations, without able look-ups. Low-short will
encode the lower integers into the shorter length, center-short does this for the
center-valued integers, and high-short does this for the highest integers. The best
compression rates are thus achieved by choosing the appropriate version: low-short
if primarily low-valued integers are present, and analogous to center-short and high-
short. A demonstration of creating a low-short coding is shown, for n = 6. [61]

0

0

0
0

1
1

1

0
2

1
3

1

0

0
4

1
5

1

0
?

1
?

1.
0

0

0
0

1
1

1

0
?

1
?

1

0

0
2

1
3

1

0
4

1
5

2.

19

0

0

0
0

1
1

1

0

0
2

1
3

1

0
4

1
5

3.
0

0
0

1
1

1

0

0
2

1
3

1

0
4

1
5

4.

2.4.3 Variable-length
An unusable, naive variable-length coding is simply its binary code without leading
zeroes (except the number 0 itself), e.g. β(7) = 111, β(4) = 100. However, using
this technique, the decoder can not detect the end of the codeword. Imagine the
binary code of some sequence of integers x : β(x) = 1101. The decoder doesn’t know
how many and which values x contains. In fact, there are five different solutions.
Even if the decoder knows x contains for example 2 integers, there are still multiple
possibilities: x could be 1 3 or 6 1.

One solution is instead to write the unary code, where x amount of zeroes are
written, appended with a 1, e.g. α(7) = 00000001. A decoder now knows a new
integer starts after every 1. A downside is the amount of bits used, especially with
big numbers: to represent 255, 256 bits (32 bytes) have to be used, whereas a fixed
binary encoding of length 8 represents 255 in a single byte. [29] [28]

A technique that combines best of both worlds is the γ code, described by Elias [27].
First write x in binary. Then, prepend x zeroes, with x the number of bits written
minus one. For example: [27]

γ(7) =
x⏟⏞⏞⏟

0..0 β(7) =
x⏟⏞⏞⏟

0..0
x=3−1⏟⏞⏞⏟
111 = 00111

2.4.4 Interpolative coding
Interpolative coding is a technique used to calculate suitable upper bounds to use in
semi-fixed-length codings when no tight upper bound is known. It should be noted
that the original interpolative coding by Moffat et al. [57] was developed for numbers
in inverted lists, which were assumed to be in strictly increasing order. Teuhola [78]
expanded this coding allowing also non-increasing lists. Here, we will focus on his
tree-based version.

The tree-based interpretation starts by building a tree where each parent’s value is
the sum of the two children’s values. This is recursively done until one root value is
reached. An example of the buildup tree starting from the sequence 3 2 6 1 0 0 2 1:

20

?

?

5

3 2

7

6 1

?

0

0 0

3

2 1

1. 15

12

5

3 2

8

6 1

3

0

0 0

3

2 1

2.

The goal now is to encode this tree. It can be optimized by not writing the right
children and the children of zero nodes. The right children can be calculated from
the left child and the parent, and the children of zero nodes are always zero too.
The example tree thus looks as follows

15

12

5

3 6

0

2
To encode the tree, start at the root and go from left to right, before descending
a level in the tree. The root value has to be variable-length encoded, for example,
using the γ code (Section 2.4.3), as there is no upper bound. The rest of the
values can be low/center/high-short encoded with their parent as upper bound4. In
general, the following two rules work best: the law of large numbers states that the
sum of sufficiently many numbers will tend towards the average. This means that
center-short is the most appropriate for internal nodes. Secondly, in leaf nodes lower
numbers usually dominate, so low-short is the better encoding there.

Parents N/A 15 12 3 5 7 3
Value 15 13 5 0 3 6 2
Code 0001111 1101 001 00 011 110 10

The final code is 000111111010010001111010, 24 bits long. In this example, com-
pared to the low-short encoded original sequence (1000111110100000011010, 22
bits), this is a downgrade.

2.5 Cryptography
Cryptography is the study of techniques related to aspects of information security.
The terms confidentiality, integrity and authentication are often used, but they can
have slightly different definitions depending on the context. We define these terms
as follows: [54] [44].

4Since 0 is a possible value, the n explained in Section 2.4.2 is the parent’s value + 1

21

1. Authentication provides identification between entities. Two entities commu-
nicating can identify each other and be sure that they are not talking to an
attacker impersonating the entity. In this thesis, we only make a distinction
between authorized and unauthorized entities. Authorized entities should have
read and write access to the data, while unauthorized entities should not. Au-
thentication thus ensures that entities can be authorized, but doesn’t require
different authorized entities to be distinguishable.

2. Confidentiality ensures that an unauthorized entity has no means of gathering
information about some data. Algorithms providing confidentiality prevent
unauthorized entities from learning new information about the plaintext, based
on the ciphertext5.

3. Integrity ensures that an authorized entity can verify that the data is authen-
tic: the data has not changed since the last authorized entity wrote it. The
authenticity of data fails when:

(a) there is an unintentional modification due to an error in the system.

(b) an unauthorized entity intentionally modified the data.

An integrity providing scheme that can only detect (a), provides passive in-
tegrity protection. An integrity providing scheme that detects both (a) and (b),
provides active integrity protection. Unless otherwise specified, active integrity
protection will simply be referred to as integrity protection.

Since we only make a distinction between authorized and unauthorized entities,
active integrity protection implicitly also provides authentication. When integrity is
ensured, it is not possible for an unauthorized entity to modify data undetectably.
Authorized entities thus know that when the data is authentic, the last entity that
modified the data was authorized.

These security goals can be achieved using three primitives: unkeyed, symmetric-
key and public-key (or asymmetric) primitives [54]. The symmetric-key primitives
require all authorized parties to have an exact copy of the key, whereas the public-key
primitives require each entity to have their own a private-public key pair. Public-key
primitives are not in the scope of this thesis, and are not further discussed.

2.5.1 Encryption and ciphers
Confidentiality is usually achieved by encrypting a message, transforming it into an
incomprehensible message. The transformation is done by passing the data (called
plaintext) through a cipher, and the result is called a ciphertext. A historical example
is the Caesar cipher [7]: transform every letter into the letter three places further in
the alphabet. For example, applying the Caesar cipher to cryptography results
fubswrjudskb. Evidently, it should be possible to revert the encryption process, so
that authorized parties can read the original data. This process is called decryption.

5Plaintext and ciphertext are described more deatiled in the next section

22

It is easy to see that ciphertext produced by the Caesar cipher is not well-protected,
as anyone who is aware of the cipher is able to decrypt the ciphertext. To prevent
unauthorized parties from decrypting ciphertext while being aware of the cipher
used, a key is required. As explained in the previous section, the ciphers important
in thesis are symmetric: they require the same key to encrypt and decrypt the data.

It is important to know that ciphers can be broken. In fact, all ciphers can be
broken by using a brute-force attack6: an attack where the attacker tries every
possible input until it gets the wanted output [64]. Depending on the context, such
a brute-force attack is deemed impossible, as it would simply require too much time
and power to perform. Thus, according to Schneier [70], cryptanalists consider a
cipher broken when a weakness is found that can be exploited with a complexity
less than brute-force.

Symmetric-key ciphers can be further subdivided into block and stream ciphers. A
block cipher takes as input some data of fixed length, called a block (not to be
confused with blocks of a drive or filesystem), after which it transforms the entire
block. Stream ciphers, on the other hand, do not have a restriction on length of the
input data and transform every character or bit individually. A very important block
cipher is the Advanced Encryption Standard (AES), established by the National
Institute of Standards and Technology (NIST) [25]. It is the most widely used
block cipher today and has withstood analysis and attacks for over 20 years. The
best known attack against AES is a key-recovery attack7 which still requires 2126

(instead of brute-forcing 2128) operations for 128-bit keys [76]. Most processors also
have built in hardware instructions for AES, which prevents side-channel8 attacks
[59]. The detailed specification of the algorithm is not relevant to this thesis and is
thus omitted, but the algorithm will often be used as an example.

2.5.2 Block cipher modes of operation
A block cipher on its own is not very useful, as the size of the data that needs
encryption hardly ever matches the block size. Block ciphers are thus executed in
a certain mode of operation. They allow for data to be of arbitrary length and
can achieve more secure results. The following sections explain several modes of
operations that are important and relevant to this thesis.

2.5.2.1 Electronic Code Book (ECB)

The ECB mode is the simplest and fastest mode to implement. To encrypt, it chops
the plaintext in blocks and performs the cipher on each block independently. The

6Except data encrypted in an information-theoretically secure manner. It is a theoretical en-
vironment in which the system is secure against adversaries with unlimited computing resources
and time [52].

7A key-recovery attack is an attack where the adversary tries to recover the key used in the
encryption process.

8A side-channel attack is an attack that exploits physical information leakages such as timing
data, power consumption, or electromagnetic radiation [75].

23

last block is padded9 to match the block size if necessary. The resulting ciphertext is
concatenation of all the ciphertexts of the blocks. Decryption is done by feeding the
ciphertext as input, and performing the cipher decryption. The ECB mode using
AES as its block cipher is illustrated in Figure 2.3a. [23]

Advantages Disadvantages
Every block can be encrypted and de-
crypted independently, so ECB sup-
ports parallelism resulting in fast en-
cryption and decryption speeds.

Identical plaintext input blocks with
the same key are encrypted into ex-
actly the same ciphertext. Although
encrypted, patterns in the plaintext are
thus visible in the ciphertext, which is
not always suitable.

Figures 2.1a and 2.1b show an example of an image encrypted with AES-ECB. It
clearly shows visible patterns, although the image is encrypted.

(a) Original Tux image.
https://isc.tamu.edu/~lewing/
linux/

(b) AES-ECB encryption of this image,
clearly showing visible patterns.
https://words.filippo.io/the-
ecb-penguin/

Figure 2.1

2.5.2.2 Cipher Block Chaining (CBC)

The CBC mode chains the plaintext blocks with the previous ciphertext blocks.
More concretely, the resulting ciphertext of every previous block is XORed with

9Padding: Adding bits to the data such that it matches a certain length. Most often padding
is done on one side with only 0’s or 1’s.

https://isc.tamu.edu/~lewing/linux/
https://isc.tamu.edu/~lewing/linux/
https://words.filippo.io/the-ecb-penguin/
https://words.filippo.io/the-ecb-penguin/

24

the plaintext of the current block, and the initial input block is XORed with an
Initialization Vector (IV). A block’s ciphertext is thus dependent on all the previ-
ous blocks. This solves the problem in ECB where identical plaintext blocks are
encrypted into the same ciphertext blocks. Take note that to decrypt, the XOR op-
eration happens after the cipher decryption. Choosing a random IV is important, as
encrypting identical plaintexts with identical IVs will result in the same ciphertext.
The CBC mode using AES as its block cipher is illustrated in Figure 2.3b. [23]

Advantages Disadvantages
Patterns in the plaintext are not visible
anymore, solving the primary problem
in ECB mode.

Encryption cannot be parallelised, and
is thus slow. This makes it not suitable
for disk encryption.

Not choosing random IVs can still re-
veal patterns.

2.5.2.3 Counter (CTR)

The CTR mode utilises a counter R that has an initial value equal to an IV. In-
stead of encrypting a block of plaintext (like in ECB or CBC), the counter value is
encrypted instead. The encrypted counter is then XORed with a block of plaintext,
creating a block of ciphertext. The counter value is incremented by one for every
block of plaintext: R0 = IV , R1 = IV + 1, ... Observe that decrypting is done
exactly the same: encrypting the counter and XORing it with the ciphertext10.

Every block can be encrypted individually, which allows CTR mode to be fully
parallelised providing fast encryption and decryption. The CTR mode using AES
as its block cipher is illustrated in Figure 2.3c, [23]

Advantages Disadvantages
Both encryption and decryption are
parallelisable, making CTR fast and ef-
ficient

Not choosing random IVs can still re-
veal patterns

The same plaintext does not encrypt to
the same ciphertext, assuming a differ-
ent IV was used.
10This works because the inverse of XOR is itself: a⊕ b = c =⇒ b = c⊕ a, so

ciphertext = counterenc ⊕ plaintext =⇒ plaintext = counterenc ⊕ ciphertext

25

2.5.2.4 XEX-based tweaked-codebook mode with ciphertext stealing (XTS)

XTS [51] [24] is a tweakable block cipher. A normal block cipher E has a key K
and a message M , and its ciphertext C is

C = EK(M)
A tweakable block cipher introduces a tweak T , such that

C = EK(M, T)
It must not be confused with an initialization vector, as they have different proper-
ties: an IV needs to be random, whereas a tweak doesn’t need to be.

XTS uses Rogaway’s XEX (Xor Encrypt Xor) method [67]. Rogaway proved that if
E is a secure block cipher, E ′

K is also a secure block cipher, with:

E ′
K(N, i1, ..., ik, M) = EK(M ⊕∆)⊕∆

∆ = αi1
1 ...αik

k EK(N)

αi1
1 ..αik

k ̸= 1
with α1...αk, N ∈ GF (2n)11 and i1...ik are integers.

It introduces a tweakable block cipher with k + 1 tweaks: i1...ik and N .

XTS builds on top of XEX, limiting the amount of tweaks to two. It is also possible
to use two different keys instead of one. In XTS, the two tweaks are the block
number and offset within the block. Since k = 1, there is also only one α. This
constant is either 2 if the elements are represented as bitstrings, and x if they are
represented using polynomials instead. An overview of XTS is given in Figure 2.2,
with i and j the tweaks (block number and offset).

Furthermore, XTS supports ciphertext stealing, which is needed when the last mes-
sage is shorter than the block cipher size. Imagine the last message Mm has a length
of s, and the block cipher size is n (s < n). The second to last block (Mm−1) is
encrypted creating a temporary value C = Cm||C ′. Cm is s bits long and becomes
the ciphertext for Mm. Lastly, Cm−1 becomes EK(Mm||C ′). The last block basically
’steals’ a part of the second to last block’s ciphertext.

XTS, especially in combination with AES, is a popular algorithm for Full Disk
Encryption (see Section 3.2.1). The first reason for its disk encryption popularity
is the length-preserving nature. The input to the encryption scheme should only
include the data, key, block number and offset, which is what XTS does. Secondly,
XTS protects better than other AES modes against reorder attacks (because of the
tweak) and ciphertext manipulation. [51]

11The Galois Field GF (2n) is a finite field with 2n elements. For example, a 4 bit number is an
element of GF (24) because it can have exactly 16 different values.

26

i
↓

M αi j
↓ ↓ ↓
⊕ ←− ⊗ ←− EK2

↓ ⏐⏐⏐↓EK1

↓
⊕ ←−
↓
C

Figure 2.2: An overview of XTS with M the message, K1 and K2 keys, C the
ciphertext, E the cipher, ⊗ a multiplication and ⊕ a XOR operation.

2.5.2.5 Galois/Counter mode (GCM)

Galois/Counter [53] Mode was invented to improve performance of ciphers that also
require authentication. Hardware accelerated ciphers increased the performance of
other modes, like the normal Counter mode. While the encryption ciphers increased
in performance, there was no standard message authentication algorithm that can
keep up with the cipher. GCM solves this by computing an authentication tag using
binary field multiplication, which can be implemented at a far lower cost than the
counter mode.

Its inputs are similar to the Counter mode: an IV, plaintext and key. Additionally, it
can accept Additional Authenticated Data (AAD). This additional data can be data
that needs to be authenticated, but not encrypted. Its outputs are the ciphertext
and an authentication tag.

GCM is illustrated in Figure 2.3d. The start of GCM encryption is similar to normal
CTR mode, initializing the counter to the IV, incrementing the counter for every
block and encrypting this counter. Then, the encrypted counter is XORed with the
plaintext to get the ciphertext. A small difference with the CTR mode is the first
encrypted counter value that is not used for the plaintext, but kept to calculate
the resulting authentication tag. After the ciphertext is calculated, the AAD is
multiplied in the Galois Field GF (2128) (refer to [53] for specifics) and XORed with
the first ciphertext block. This result is then repeatedly multiplied in GF (2128)
and XORed with the next ciphertext block. The last block is instead XORed with
the concatenation of the lengths of the AAD and Ciphertext, multiplied again in
GF (2128) and XORed with the first encrypted counter value. This result is the
authentication tag.

27

Plain text
Padding

Ciphertext

AES

encryption

Block 0

Ciphertext 0

K
ey AES

encryption

Block 1

Ciphertext 1

K
ey AES

encryption

Block 2

Ciphertext 2

K
ey AES

encryption

Block 3 + padding

Ciphertext 3

K
ey

(a) Overview of encryption in AES-ECB.
For decryption, swap plaintext with ciphertext and AES encryption with AES
decryption.

Plain text
Padding

Ciphertext

IV

AES

encryption

Block 0

Ciphertext 0

K
ey AES

encryption

Block 1

Ciphertext 1

K
ey

AES

encryption

Block 2

Ciphertext 2

K
ey AES

encryption

Block 3

Ciphertext 3

K
ey

(b) Overview of encryption with AES-CBC.
For decryption, swap AES encryption with AES decryption and reverse the ver-
tical arrows.

28

Counter +1 Counter +1 Counter +1 Counter

IV

AES

encryption

Plaintext 0

K
ey AES

encryption

Plaintext 1

K
ey AES

encryption

Plaintext 2

K
ey AES

encryption

Plaintext 3

K
ey

Ciphertext

(c) Overview of encryption with AES-CTR.
For decryption, swap plaintext with ciphertext, but keep AES encryption.

Counter inc Counter inc Counter inc Counter

IV

AES

encryptionKe

y AES

encryption

Plaintext 0

Ke
y AES

encryption

Plaintext 1

Ke
y AES

encryption

Plaintext 2

Ke
y

Ciphertext 0 Ciphertext 1 Ciphertext 2

len(AAD) || len(C)

Auth tag

AAD

mult mult mult mult

mult

(d) Overview of encryption with AES-GCM.
For decryption, swap the direction of plaintext and ciphertext arrows into the
XOR operation.

Figure 2.3

29

2.5.3 One-way function
A one-way function (OWF) is a function that is hard to invert, i.e. finding the
preimage x given the output f(x) should be infeasible. To be more precise about
hard and infeasible, we define a one-way function f with a security experiment shown
in Figure 2.4. Here, A is the adversary and λ is the input length. The definition of
an OWF states that the probability of this experiment returning 1 is negligible for
any PPT adversary12 [14].

Simplified, the definition states that for a one-way function f and random string
x, no PPT adversary given f(x) can find the original value x with a non-negligible
probability.

ExpOW
f,A (1λ)

// sample a random binary

// string of length λ

x←$ {0, 1}λ

y ← f(x)
x′←$A(1n, y)
if

⃓⃓
x′⃓⃓ ̸= λ :

return 0
if f(x′) = y :

return 1
return 0

Figure 2.4: One-way function experiment

2.5.4 Cryptographic hash Function (CHF)
A hash function is a function that deterministically maps input of arbitrary size
to a fixed-size output. A cryptographic hash function is hash function that has
additional security properties [3]:

• It is quick13 to compute the hash for any input.

• It is a one-way function.

• It is collision resistant, i.e. no PPT adversary exists that can find two messages
M and M ′ with M ̸= M ′ such that they map to the same value.

• A small change in input changes the output such that it appears uncorrelated
with the old hash value.

12A PPT adversary is an adversary that can do a task in PPT.
13In a cryptography context, quick means with a time complexity of O(n) or less.

30

A popular family of CHFs is the Secure Hash Algorithms (SHA) family. An example
with the hash function sha1:

sha1(”abc”) = a9993e364706816aba3e25717850c26c9cd0d89d

CHFs are mainly used to compute a digest. Such a digest can then be used for nu-
merous applications: integrity verification, digital signatures, password verification,
etc.

Since CHFs are deterministic, they all share a common vulnerability: an attacker
could precompute a table of a large amount of hashes of common data. This is
called a rainbow table. The attacker can then try to find a match between a new
hash and a hash in the table. If a match is found, the attacker knows with very high
probability what the original message was.

To defend against an attack involving a rainbow table, a salt is added during the
hashing. A salt is a random string of data, which is made public. The new hash
then becomes hash(data + salt). If an attacker now wants to use rainbow tables to
reverse the hashes, a new table for every single salt should be made. If the salt is
large enough, let’s say 128 bits, 2128 different rainbow tables have to be constructed.
Even if the creation of a reasonably sized rainbow table takes only 1 second14,
it would still take 1.08 · 1031 years in total. For comparison, the universe exists
approximately 10 · 1010 years ([70] Section 1.7) . The time is not the only aspect
that limits these brute force approaches, thermodynamics also restricts what can be
done: iterating a 219-bit counter through all its states takes the same amount of
energy as a typical supernova explosion. Hence, to try and construct 2256 rainbow
tables, one would need to consume more energy than a supernova explosion, just
to iterate through all the different salts (without actually computing the rainbow
tables) ([70] Section 7.1).

However, if the attacker is only interested in reversing one specific hash, only a
single rainbow table needs to be made. With the right infrastructure and with data
that is not too long and random (e.g. a password) this could be done relatively
fast. Thus, for relatively short data with low entropy, more protection is needed;
e.g. rate limiting or CAPTCHAs. Rate limiting slows down the amount of incorrect
authentications a user can make. For example, after three incorrect tries, the user
needs to wait five minutes. This prevents attackers from brute forcing common
(combinations of) passwords, as it would take too long. Alternatively or additionally,
a CAPTCHA can be used. CAPTCHA, originally introduced by Ahn et al. [1],
stands for: Completely Automated Public Turing test to tell Computers and Humans
Apart. It is a test that humans can pass, but automated programs can’t. They are
often required when creating new accounts, like an e-mail account. In our password
example, it would prevent a bot from trying a lot of possible passwords, instead
requiring a human to intervene, which is considerably slower.

14This is an enormous underestimation used for demonstration purposes. The true time it
depends on the amount of entries one wants to achieve, and the infrastructure used to construct
the tables.

31

2.5.5 Message Authentication Code (MAC)
A Message Authentication Code (MAC), often just called tag, is added to messages
to allow detecting whether the message has been tampered with. Using a secret key,
the MAC can be computed to tag messages and verify messages using the same key.
MAC algorithms need to be Unforgeable Under Chosen Message Attacks (UNF-
CMA), meaning attackers cannot forge message-tag pairs, even if it has control over
the messages that are being tagged. [14]

More concrete, MACs are computed over some data: files, network transmissions,
programs, etc. This MAC is stored somewhere, or sent along with the data. The
MAC can be recomputed at a later stage, and if the stored / sent MAC is not equal
to the freshly computed MAC, it provides evidence that the data may have been
tampered with. Because of the UNF-CMA property, an attacker without access to
the key can not modify the data and afterwards compute the correct MAC for this
new data.

In combination with encryption, the order of tagging and encrypting is important,
and gives different results. The three methods include: Encrypt-and-MAC, MAC-
then-Encrypt and Encrypt-then-MAC [8]. Encrypt-and-MAC consists of encrypting
the plaintext, and computing the MAC over the plaintext as well. According to
Bellare et al. [8], Encrypt-and-MAC is not secure. An easy example is that a MAC
can leak information about the input [14]. Because neither the input, nor the MAC
is encrypted, it could thus reveal information about the plaintext. In contrast,
MAC-then-Encrypt first computes the MAC over the plaintext, and encrypts both
the plaintext and MAC. Lastly, Encrypt-then-MAC first encrypts the plaintext,
and then computes the MAC over the ciphertext. The two latter modes are simi-
lar even though Encrypt-then-MAC is generally recommended [8]. This is mainly
because it is easier to theoretically prove its security properties. For example, MAC-
then-Encrypt does not provide any integrity protection over the ciphertext. This
vulnerability makes the MAC-then-Encrypt scheme malleable 15 if the used cipher
is also malleable. However, in practice this should not happen, as a malleable cipher
is already dangerous to use and should thus be avoided under any circumstance.

2.5.6 Merkle tree
In 1988, Merkle introduced the concept of what now is known as a Merkle tree. A
Merkle tree is a tree in which every leaf is a hash of some data. Every inner node
is a hash over the node’s children. An example of a Merkle tree is given in Figure
2.5. [55]

In general, verifying if some data is still valid and hasn’t been unintentionally cor-
rupted can be done by storing the hash of each file and comparing the stored hash
to a newly computed hash of the file. However, this doesn’t prevent the corruption

15Malleability: the ability of an attacker to change some ciphertext which decrypts to a similar
ciphertext, hence being able to modify a part of the plaintext [22].

32

by an attacker, as the attacker can replace the data, compute the hash of the ma-
licious data, and store this hash. This is where Merkle trees are useful. Protecting
data in an untrusted storage space simply requires to either store the root hash in a
trusted environment, or digitally sign the root hash. Then, when trying to validate
a file, he needs to request only a small amount of hashes from the tree to verify the
authenticity of the file. Because Merkle trees are expensive to construct, they are
mainly used in read only scenarios, such that the tree does not need to be rebuilt
after every modification.

An example is shown in Figure 2.5. Assume someone with a stored root hash wants
to validate data D1. All he needs to do is request H2 and H1 from the tree. He
calculates H3 of the data he wants to validate; together with H2 he can calculate
H0; together with H1 he can then calculate the root hash. If the root hashes are
equal, the file was valid. If not, there was some error along the way.

hash(H0 + H1)

Root Hash

hash(H2 + H3)

H0

hash(H4 + H5)

H1

hash(D0)

H2

hash(D1)

H3

hash(D2)

H4

hash(D3)

H5

D0 D1 D2 D3

Figure 2.5: A Merkle tree example. The bottom blocks D0-D4 contain the actual
data. H2-H5 contain the hashes of respectively D0-D4. H0 and H1 contain the hash
of respectively H2 concatenated with H3, and H4 concatenated with H5. Lastly, the
root hash is a hash over the concatenation of H0 and H1.

2.6 Storage devices
Storage devices are physical devices that store and retrieve data. They can be split
up in two categories: nonvolatile and volatile devices. Nonvolatile devices retain
their data when electrical power is lost, whereas volatile devices lose their data.
In most computers, the volatile devices are called the memory or RAM (Random

33

Access Memory), and the nonvolatile devices are called disks or drives. The two
most important types of disks are analyzed further.

2.6.1 Hard disk drive
A hard disk drive (HDD) [2] is one of the oldest types of disks. It’s a mechanical
disk which stores and retrieves data using a rotating platter and a moving platter
head, much like a vinyl record. The head can move in one line over the surface of
the platter, and together with the rotation of the platter itself, it can access any
location on the platter. The head can make magnetic changes to the platter, which
can be retrieved at any time.

HDDs are divided into sectors, meaning that data can only be read and written in
multiples of the size of a sector (Figure 2.6). One of the advantages that makes
HDD still relevant nowadays is the fact that the price per storage is very low. For
example, in 2017, Seagate sold 8TB HDDs for 0.038$/GB [48]. Nevertheless, the
HDD’s technology is past its prime. One of the major disadvantages is its slow
speed. The main factor in latency in HDDs is caused by the head that needs to wait
until the platter has spun the correct distance before it can read the data.

Many optimizations have been made like prioritizing certain reads over others de-
pending on the current state of the disk. There is also a significant latency difference
between random access data and sequential data. Sequential data can be written
or read without much extra latency in between the blocks, since the head will pass
over this data as it’s requested. However, for random data the head will have to
stall very often, waiting for the platter to be in the right spot.

Even though HDD’s are slowly being replaced by SSDs (Figure 2.7), the concept of
blocks as a unit remains, and it is also used in newer generations.

A: Geometrical sector

B: Track

C: Disk sector

Figure 2.6: Blue: Geometrical sector, Red: Track, Green: (Disk) Sector

34

Figure 2.7: Estimation of global SSD and HDD shipments until 2017. Years 2018
until 2020 are predictions [77].

2.6.2 Solid State Drive
A Solid State Drive (SSD) [66] is a more recent type of nonvolatile storage device,
that grew a lot in popularity in the past decade. In contrast to HDDs, SSDs do not
have physically spinning platters or other mechanical features. Instead, SSDs store
data in semiconductor cells. Advantages of SSDs consist of higher shock resistance,
lower latency, less noise, and smaller dimensions. The lower latency includes both
sequential and random access data.

Even though SSDs do not have physically divided sectors, the smallest possible
structure to read or write is also called a sector or a block. This size varies, but
most newer disks have sector sizes of 4096 bytes.

2.6.3 Random Access Memory (RAM)
A running processor needs space to store and retrieve data. Linking the processor
directly with an HDD or SSD would be very slow. Instead, computers have a memory
hierarchy, stacking different storage devices. The devices closer to the processor are
faster but have a smaller size. One of these layers is the Random Access Memory
(RAM). Data used by processes is stored on the RAM and allows for faster data
loads and stores compared to drives. RAM can be both volatile and nonvolatile.
While nonvolatile RAM is cheaper per GB, as well as having more capacity, it is
slower and less reliable. [41] [49]

To understand the speed difference between RAM and drives, the latency16 of
DDR3 (a type of RAM with production year 2010) is compared with an HDD pro-
duced in the same year (Seagate ST3600057). DDR3 acquired an average latency

16Latency: The time to complete a simple operation assuming no contention [41] p20.

35

of 37ns(1ns = 10−9s), whereas the average latency of the HDD reached 3.6ms
(1ms = 10−3s). These statistics do not present a perfect example of the speed dif-
ferences between the two, but they do show a rough example of the speed differences
between RAMs and HDDs. [41].

2.6.4 Virtual memory
Originally, programmers needed to know the amount of RAM available, and take
it into consideration when the program’s size would exceed the available memory.
This was feasible for a little while, because programmers knew the specifications of
the machine they were working on. However, the complexity of programs grew, and
taking the RAM into account was not always possible anymore. [20]

This led to the introduction of Virtual Memory. Virtual Memory has the purpose
of giving the programmer the impression as if the RAM is far bigger; it is no longer
the programmer’s task to account for running out of memory. Both virtual and
physical memory are divided into fixed-sized units: pages. A Memory Management
Unit (MMU) maps virtual memory addresses to physical memory addresses. Pro-
grams access their data using the virtual memory, which the MMU translates to the
physical addresses. The RAM then can retrieve or store the requested data using
the physical address. The virtual memory can be made far bigger than the actual
available memory, which relieves the programmer from caring about the available
memory. The MMU makes this possible by dynamically swapping out pages for new
ones. A page that is swapped out is sent to the disk, because the MMU expects
it won’t be used soon. The newly freed memory is then assigned to the requesting
process. When a process wants to access some memory that has been swapped out
to the disk, a page fault occurs. Page faults require the MMU to swap the page from
the disk back in the memory, by swapping another page out. [45]

A simplified paging example can be as follows:

1. A process requests memory

2. There is memory free and the MMU maps a page to assign it to the process

3. A process requests memory

4. There is no memory left. The MMU decides which page to swap to the disk
which frees some memory. It now maps a new page to the process

5. A process wants to access a page it owns, but the page was just swapped out

6. A page fault occurs, the MMU swaps the page back in by swapping another
page out

7. A process signals it does not need a page anymore

8. The MMU frees the page

How MMUs can manage memory the most efficient is an entire study on its own,

36

Hardware

(CPU, Memory, Storage, GPU, ...)

Operating system

Application programs

User

Interacting with the program

e.g. clicking on a button

System calls

e.g. read (data on disk)

Direct management

of hardware

Figure 2.8: A simplified overview of the main stakeholders in a computer

and is not relevant in this thesis. The key takeaway from this section is that memory
is also managed in block-like structures, because it facilitates the organization of the
virtual memory.

2.7 Operating systems and Linux
A computer consists of many different hardware components: processors, disks,
memory, motherboards, GPU’s, network devices, etc. These parts have to somehow
cooperate, which is accomplished by a computer’s Operating System (OS). The op-
erating system is the layer between application programs (like web browsers, games
and mail apps) and the hardware. It manages the resources and assigns these re-
sources to various applications running in the OS. Figure 2.8 shows how an OS is
the bridge between application / user and hardware. [73] [5]

37

Operating systems can vary greatly in responsibilities, depending on the computer
it should be used on. For the everyday user, the most well-known operating systems
are Windows, MacOS, Linux, Android and iOS. Linux is not really one operating
system, but a family of operating systems (called distributions or distros) which are
all based on the Linux kernel.

The Linux kernel is an open source project17, originally released by Linus Torvalds in
1991. It is the kernel for a vast amount of Operating Systems, for example Android
and Ubuntu. Even though the everyday user might not see it, Linux-based operating
systems are dominant on the market. Here are some statistics to prove it [32], [56]:

• 100% of the world’s top 500 supercomputers run on Linux in 2021.

• 96.3% of the world’s top 1 million servers run on Linux.

• 90% of all cloud infrastructure operates on Linux.

• 71.7% of the mobile phones worldwide use Android (based on Linux) in March
2022

Because of Linux’ open source license, its wide usage both on client and server side,
and the fact that the Huawei operating systems HarmonyOS and EMUI are based
on it, it is chosen as the OS to work with in this thesis. Therefore, the next sections
mainly focus on Linux.

2.8 Filesystem
A filesystem or file system defines a data structure and operations on this data which
allows the operating system to manage how files are named, stored and retrieved
from a storage device. Without it, data wouldn’t be isolated and it would not
be possible to tell where individual files start or end. A vast amount of types of
filesystems exist, but they all share a few common purposes: [5]

• Space management

• Providing a structure (hierarchy)

• Bookkeeping of individual or a group of files

• Access control

• Maintaining integrity

• Providing utilities (like moving or deleting files)

Explaining everything about filesystems is far beyond the scope of this thesis. Hence,
we will mainly examine a few specific parts about them: the basic structure of a
filesystem, the bookkeeping and maintaining integrity.

17Kernel: The core of an operating system; it has complete control over the system and is always
in memory.

38

The main goal of a filesystem is to organise the data on a device such that individual
files can be stored and retrieved. It does this by creating directories (sometimes
known as folders) in which one can either store files, or further directories, called
sub-directories. This process can repeat itself to create a tree of directories and files.
Linux goes further than this and implements a Virtual File System (VFS), which
also unifies the physical drives into a single directory structure. Thus, in Linux, there
is a root directory (named /) under which all the other files and directories reside,
regardless on which physical device they are stored. Another important task is the
bookkeeping of all the files on the system. Filesystems keep track of the file name,
timestamps, location on the filesystem, actual physical location, size, ownership,
access permissions, etc. This data and has to be stored and managed too. [5]

Early filesystems like Ext2 [15] supported these features, however, they had a major
flaw. In case of power loss or other crashes, the filesystem was prone to corruption,
because it can be left in an inconsistent state: an exceptional state in which (parts
of) the filesystem is (are) not usable anymore. The consequences can range from a
file not being saved, to the entire filesystem being unusable. Filesystems developed
in the late 90’s like Ext3 [81] and NTFS [74] [68] use journaling to fix this problem.
Journaling is the procedure of first writing changes to the filesystem in a journal,
which is located in a reserved space on the drive. If journaling is applied, the
following ’bad’ scenarios are possible: [65]

• The system crashes before the change is written to the journal: The change is
lost, since the wanted change was stored only in a volatile device (the memory).

• The system crashes after writing to the journal, but before committing the
change to the files itself: The rebooted system sees an inconsistency between
the journal and actual data, and applies the change as specified in the journal.

• The system crashes while writing to the files: The rebooted system again sees
an inconsistency between journal and actual data, and can apply the change
again as specified in the journal.

Journaling provides an excellent solution, but also decreases write performance, as
writes have to be written twice. The actual decrease in write performance depends
on the type, which could be logical or physical, and implementation of the journal.
In short, a physical journal keeps track of what the result should look like (thus
actually storing the intended data), whereas a logical journal keeps track of the
operations performed (e.g. "delete file X"). In general, a physical journal allows for
more fault tolerance, but with lower write performance compared to a logical one.

2.9 Drivers, Device files and Block devices
All devices connecting to a computer must be somehow managed and understood
by the OS. This is done using device drivers. A driver allows the OS (or other
software) to use a hardware device without actually knowing the details about the
device. In general, drivers allow the OS to use a predefined set of operations, and

39

the drivers translate it to the specifics for each device. Drivers are often made by the
manufacturers of the actual device, but they can also be made by third parties. In
short, using drivers forwards the responsibility of ’making a device work with an OS’
to the manufacturers of the device (or others), such that the OS is less complex18.
The example in Figures 2.9 and 2.10 show the difference between having and not
having drivers. [21]

Operating

System

Disk type 3

Disk type 2

Disk type 1

OS needs to know for
every disk specifically

how to read / write

read1(start, amount)

read2(start, end)

read3(offset, size)

Figure 2.9: An example where an OS has no drivers

Operating

System

Disk type 3

Disk type 2

Disk type 1Driver 1

Driver 2

Driver 3

read1(start, size)read(start,size)

read(start,size)

read(start,size)

read2(start, end)

read3(offset, size)

OS doesn’t need to know
any specifics. The drivers

handle the details

Figure 2.10: An example where the OS uses the drivers for each device

In Linux, a driver is accessed using a device file or special file. At first glance, these
18In the present world, not using drivers is not even feasible. Imagine that Windows had to

perform an update for every new device that comes on the market. Not only would this be very
expensive, it would also make Windows itself massive, containing a lot of functionality most people
wouldn’t even use.

40

files look as if they are ordinary files. However, they are used as an abstraction such
that applications can use normal I/O system calls, such as open, read or write to
interact with the driver. This simplifies many applications and leads to consistency
throughout I/O mechanisms.

Two types of device files exist: block device (files) and character device (files). Char-
acter devices are devices with which the driver communicates by sending single
characters or a stream of single characters only. They usually do not store data,
but instead act upon the input immediately. Devices that (indirectly) use character
devices are keyboards, monitors, mice, printers, etc. These devices are not useful in
the scope of this thesis, so they will be omitted. Block devices on the other hand,
can be read from or written to in blocks: the smallest addressable unit of the block
device, with typical values of 512, 1024 or 4096 bytes19. These devices usually store
data. Both HDDs and SSDs are block devices. [83]

2.10 Device-mapper (dm)
The device-mapper is an infrastructure in Linux which provides a generic way of
creating block devices on top of other block devices. In essence, it can create a
virtual block device, which upon request can read, modify, or kill the request, before
forwarding it to the block device layer underneath. The device-mapper allows the
stacking of dm targets, which each implements a distinct function. [50] (appendix
A)

Examples of dm targets are dm-zero [80] and dm-linear [79]. dm-zero will return
only zeros for every read request, and silently drop every write request. dm-linear
maps a continuous range of blocks onto a different range of blocks. A more complex
target is crypt (Section 3.2). It transparently encrypts incoming data, and decrypts
outgoing data. Because the device-mapper allows for stacking of devices, one can
implement a block device as seen in Figure 2.11. The highest layer is a linear target
that maps all blocks 1000 blocks further. It then forwards the mapped request one
layer lower to a crypt target that will encrypt the data. Lastly, the crypt target
forwards this request to another block device. This block device could be the last
layer before accessing the physical drive, or it could be another layer. The fact that
the device-mapper is layer agnostic, makes the device-mapper layer a very elegant
architecture to handle complex transformations over data.

19The block size of the block device can be different from the block / sector size from the
underlying physical device.

41

Data: abdcefg Block: 20945

Incoming write request

Data: abdcefg Block: 2 9451

Remapped write request

Data: 9d5e4s8 Block: 2 9451

Remapped write request

dm-linear

offset: 1000

dm-crypt

key: 5sdf65s8df9

block device

Figure 2.11: A simplified example of device mapper stacking

3 Storage protection

Before analysing previous storage protection solutions, we define storage units and
protection more clearly. A storage unit is a device that stores data in fixed-sized
units. These fixed-sized units are called blocks for drives, and pages for RAM.

Summarizing section 2.5, confidentiality prevents attackers from extracting informa-
tion from the data, while authenticity assures the reader that the data was written
by an authorized entity. Integrity allows the reader to detect unintentional (passive)
or unauthorized modifications (active) on the data. In this thesis, active integrity
protection implicitly ensures authentication.

The protection that is desired in these devices is authentication, confidentiality and
integrity, as explained in Section 2.5.

The protection of storage devices must be efficient, because these devices are read
from and written to frequently. These storage devices are often already a com-
putational bottleneck compared to CPU speeds, and long latencies would decrease
efficiency drastically. The protection schemes should not fail, even when an attacker
can get complete access over it, as well as modify data in it.

This section first introduces file-level protection, and argues why it is not always
suitable. Then, block-level protection is introduced, and its existing protection
solutions are analysed. Next, page-level protection is explained, along with two
existing solutions. Finally, previous research on length-preserving storage protection
is described.

3.1 File-level protection
Nonvolatile storage devices usually have a filesystem stored on them. The filesystem
is situated in a higher layer than the block layer, and is the layer most end users
will interact with. Instead of trying to protect the device on a block level, it is
also possible to protect it on a file level. In the end, what users care about is
that their files stay safe, regardless of how this is done. In Linux, popular file-level
protection methods are Cryptfs and eCryptfs. Android 7.0 also introduced what is
called file-based encryption (FBE) [36].

42

43

3.1.1 eCryptfs
eCryptfs [39] [26], being the successor of Cryptfs [85], is a filesystem for Linux that
can be mounted on top of any directory to protect it. It stores cryptographic data in
the headers of the files, protecting every file individually. In short, eCryptfs has one
main key: the File Encryption Key Encryption Key (FEKEK). This file is derived
from a user’s passphrase. For every file that is encrypted, it generates a random
File Encryption Key (FEK), which is encrypted with the FEKEK. This Encrypted
File Encryption Key (EFEK) is then stored in the metadata of the file. The FEK is
used to encrypt and decrypt the file, but to get the original FEK, the FEKEK needs
to be used to decrypt the EFEK. Figure 3.1 [40] shows an overview of eCryptfs.

Figure 3.1: Overview of eCryptfs
Source: https://www.linuxjournal.com/article/9400
The bottom square is the normal filesystem, containing encrypted files and metadata
including the EFEK. Using the eCryptfs mechanisms and Linux Crypto API, it
decrypts the EFEK, and in turn the encrypted data.

3.1.2 Benefits and drawbacks of file-level protection
File-level protection is useful in the case that individual files or directories need to
be protected. Furthermore, filesystems manage how data is structured and stored

https://www.linuxjournal.com/article/9400

44

(Section2.8). Thus, file-level protection solutions can allocate extra storage per file
that needs to be protected, without changing the entire structure. Nevertheless,
there are five drawbacks:

1. Since files are protected as one unit, reading a fragment of the file requires the
entire file to be read to decrypt and verify integrity.

2. They don’t work without a filesystem. This is common in RAM or swap
partitions.

3. The user needs to explicitly specify which files or directories need protection.
If the user wants all the data to be protected, this can be cumbersome.

4. They create extra data and are thus not length-preserving. In case storage is
limited, this can be an issue.

5. The metadata of the file is not always encrypted, which can lead to data leaks
[36].

Summarized, file-level protection can be inconvenient, since it is not transparent to
the user. This led to the IEEE Security in Storage Working Group (SISWG) [42]
announcing a call for algorithms providing block-level encryption.

3.2 Block-level protection
The SISWG [42] call for algorithms required the algorithms to be length-preserving.
This led to the design of, for example, the XTS mode of operation. However, this is
simply an algorithm to encrypt blocks, and is not a full block-level implementation.
The next sections cover FDE, a technique to encrypt the entire disk, as well as Linux
implementations of FDE and other protection schemes.

3.2.1 Full Disk Encryption (FDE)
FDE refers to the encryption of every block or sector of a disk, providing block-level
confidentiality. Having block-level confidentiality implies that the complete data on
the disk is confidential.

However, being restricted to the block level also has its drawbacks [47]:

1. There is no space to store additional data, such as a MAC or IV, since the
entire disk needs to be encrypted.

2. Adding data integrity is slow: generic solutions require at least double the
amount of read and write operations, while also reducing the available disk
space [30].

In theory, simply adding FDE to a disk does not allow for strong integrity protec-
tion. Often, the notion of integrity is the poor man’s authentication: if an adversary
modifies the ciphertext, the decrypted plaintext will likely be completely different

45

such that the user may detect the tampering. To get stronger integrity protection,
tags need to be stored on a per-block basis. Benadjila et al. [9] call this the Au-
thenticated Disk Encryption (ADE) model. It protects against attackers aiming to
break confidentiality or to successfully modify a block. In their description, ADE
does not protect against replay attacks. However, Section [9].

The following sections describe implementations of FDE, as well as implementations
to provide integrity.

3.2.2 Device-mapper protection targets
In Linux, block-level data protection is usually implemented in the device-mapper
(Section 2.10) layer. An extra virtual block device is put in between the filesystem
and the original block device. Read and Write requests are modified such that
confidentiality or integrity can be achieved.

In 2012, dm-verity [11] was implemented in the Linux kernel. It provides active
integrity protection of a read-only partition. To achieve this, a Merkle tree
(Section 2.5.6) is built in which the lowest level consists of a hash of every block.
Upon a read request, the hash of the block is verified using the Merkle tree. If a
hash is not correct while traversing the tree, the block does not contain the original
content. The reason it only supports read-only partitions is because building a new
Merkle tree is an expensive operation (although implementations exist that support
read-write partitions, see later). dm-verity is used in all Android devices running
Android 4.4 or later [43] to protect the boot partition. Here, the root hash of the
Merkle tree is used together with other metadata to create a mapping table. This
table is then signed using a key, and signature is stored in a metadata block. For
an attacker to successfully modify the content, he needs to have the key to correctly
sign a new mapping table (which contains a new root hash). A replay attack is
theoretically possible if an attacker has old data with its valid signature. However,
dm-verity is supposed to be used on read-only devices, and the data is not expected
to change. A replay attack would thus not accomplish anything.

More recently in 2016, dm-integrity [12] was introduced. It supports passive integrity
protection for read-write partitions. Instead of creating a Merkle tree and storing
it in a different device, it concatenates multiple hashes or checksums of blocks of data
into a metadata block and stores this block inside the device itself. These metadata
blocks are interleaved with the actual data. Since the metadata blocks consist of
unsigned checksums or hashes, dm-integrity protects only against silent corruption
and not active attackers (although dm-integrity can be combined with dm-crypt to
also protect against attackers, see later). Since a change in data requires a change in
the metadata as well, the device could end up in an inconsistent state, for example
because of a system crash that happened in between the change of the actual data
and metadata. dm-integrity solves this by using a journal (Section 2.8) which has
a reserved space on the device. Before committing a write to the actual data, it is
first written to the journal, after which it actually committed. After a crash the

46

journal can be consulted to see if something went wrong, and if so try to restore it.

The dm-verity and dm-integrity targets provided some form of data integrity. Data
confidentiality can be achieved using FDE. The most popular Linux FDE solution is
dm-crypt [82] [18]. It provides data confidentiality using transparent encryption and
works by encrypting all writes before forwarding the write request to the next layer,
and similarly decrypts reads from the previous layer before returning the decrypted
data to the caller.

dm-crypt can be completely customised, however, the developers created and rec-
ommend using LUKS (Linux Unified Key Setup), which is now the standard for
Linux disk encryption. It allows a user to have multiple passwords, to change or
delete passwords and to facilitate compatibility among other distributions. Using
LUKS is not mandatory, but it allows for more usability, automatic configuration of
non-default cryptography parameters, and more. One disadvantage of using LUKS
is that damage to the header could lead to permanent data-loss. Furthermore, it
is obvious that the disk contains LUKS-formatted data. This can be an issue in
countries where encryption is not always legal [84].

There are 2 versions of LUKS [31] [13]. Figure 3.2 shows an overview of a LUKS1
formatted disk. The data is encrypted with a master key (not chosen by the user,
but created from a high entropy source). The partition header contains information
about the used cipher, cipher mode, the key length, a UUID, a master key checksum
and a salt for each key. It also contains information about the different key slots.
Multiple (up to 8) passwords can be added, and the respective Key Material slots,
if activated, each store the encrypted master key using its password (processed by
PBKDF2 [46]). Thus, supplying one of the passwords unlocks the master key, which
in term unlocks the data . This makes adding, removing and changing passwords
easy. In case of such a change, it only needs to change a small bit of data, instead
of having to re-encrypt the entire disk.

LUKS phdr KM1 KM2 ... KM8 encrypted data

Figure 3.2: LUKS formatted disk. phdr: Partition Header, KM: Key Material

One improvement of LUKS2 over LUKS1 is the ability to also provide integrity
protection. It accomplishes this by combining dm-crypt and dm-integrity [12].

dm-crypt is not the only FDE solution. Windows, for example, has BitLocker [30]
which acquires the same results as dm-crypt, albeit using different techniques.

In 2017, Chakraborti et al. introduced dm-x [16]: a device-mapper target that can
be seen as a mix between dm-verity and dm-integrity. It extends dm-verity with
journaling and read-write capability. To achieve this read-write capability, it needs
a small trusted storage, like a trusted local disk, a removable storage device or some
trusted network service. This trusted storage needs to keep a 32 byte root hash of
the Merkle tree, and a 32 byte secret to generate HMACs of the journal. Upon a read

47

request, if there’s a mismatch between the Merkle tree and block hash, dm-x will
throw an I/O error. Like in dm-integrity, dm-x uses a journal to ensure consistency
among data and the tree after a crash. The journal design stores the old and the
new hash of the data, and ensures that the journal entry is committed to the device
before the data and hashes are written. Unfortunately, apart from the initial paper,
no further information or implementations of dm-x seem to be available, so no tests
or comparisons could be done.

Table 3.1 compares the security features of the discussed device-mapper targets.

Confidentiality passive Integrity Authentication Read / Write
dm-verity ✕ ✕(because of read-only) R

dm-integrity ✕ RW

dm-crypt LUKS1 ✕ RW
LUKS2 ✕ ✕ ✕ RW

dm-x ✕ ✕ ✕ RW

Table 3.1: Comparison of the security features of different dm targets.

3.3 Page-level protection
The solutions explained in the previous section require either read-only mode, or
some permanent structure on the device itself. However, RAM devices often do not
satisfy these requirements, as they are often volatile and required to be read-write.
Two page-level protection methods are described below.

3.3.1 AMD SEV-SNP
AMD introduced Secure Encrypted Virtualization (SEV) in 2016, isolating Virtual
Machines (VM) from their hypervisor. This proves to be very useful in environments
like the cloud, where the intent is to build an architecture where there is no need
to trust the host anymore. More recently, AMD added Secure Nested Pages (SNP)
to SEV, adding memory integrity protection. According to AMD [4], The basic
principle of SEV-SNP integrity is that if a VM is able to read a private (encrypted)
page of memory, it must always read the value it last wrote. This should hold
regardless of what happens in the memory, or even when the process is migrated to
another host. [4]

This memory integrity protection is achieved by using a Reverse Mapping Table
(RMP). It is a table containing an entry for every page that might be used by a
virtual machine. These entries keep track of who owns that page. When the memory
is accessed, after the translation from virtual address to physical address, the RMP
is checked with the physical address as entry. If the caller does not own this page,
a page fault occurs and the access is denied. Since reads do not modify data, read
requests generally do not require an RMP check.

48

The introduction of the RMP requires new CPU instructions to modify the RMP,
which allows the hypervisor to assign pages to guests, take pages back, etc.

3.3.2 Intel SGX MEE
Intel’s Software Guard Extensions (SGX) [38], [58] provides a way, similar to AMD
SEV, to create and work in a hardware-assisted Trusted Execution Environment
(TEE), also called an enclave. Intel SGX also provides a technique to provide
memory integrity protection, called Memory Encryption Engine (MEE) [37].

Typically, a CPU has a memory cache, a small storage unit that delivers faster results
than the actual RAM. When the needed value is not present in the cache, the request
is handled by the Memory Controller (MC), before being forwarded to the RAM.
Intel MEE is an extension of this MC. The RAM is split up in three regions: the
protected region, the seized region, and the general region. The protected region is
to be protected by the MEE. The seized region is used by the MEE to build, update
and verify the integrity tree of the protected region. Lastly, the general region is
unprotected memory that is handled by the MC directly. Reads are decrypted by
the MEE after fetching it from the RAM, and writes are encrypted before sending
it to the RAM. The MEE also automatically updates and verifies the integrity tree.

The integrity tree consists of MAC tags and nonces. These nonces in turn consist of
the address of the storage unit, and a counter. Similar to a Merkle tree, this tree has
one root level. This root is considered to be stored in a trusted environment. In a
simplified view, the tree consists of different levels with nonces and a tag over these
nonces. Every data unit has a MAC tag and a nonce. This nonce is first verified
by descending down in the tree and verifying the nonces stored at each level. If the
last nonce is verified (the nonce belonging the the data unit), a new MAC tag can
be computed over the data and nonce. This value is compared to the stored tag to
verify integrity.

3.4 Length-preserving storage protection
The previous sections introduced techniques for data confidentiality and integrity.
The techniques providing data integrity all have one thing in common: they require
some extra storage to store the integrity metadata. Even more, page-level integrity
protection requires specific CPU instructions and new hardware to be added. In
length-preserving (LP) protection, the intent is to remove the need for extra storage
while still providing confidentiality and integrity protection. This section summa-
rizes previous research on LP protection.

Oprea et al. [63] provide a solution for block-level integrity protection for blocks
stored on an untrusted storage server. It does this by storing integrity metadata on
the trusted client device, and focuses on keeping the trusted space needed as small
as possible. It is not a length-preserving protection solution itself, but provides

49

insight into how to construct one. To keep this size small, it uses the following two
properties:

1. Most blocks written to a disk have low entropy.

2. An attacker modifying a block without knowing the encryption key will result
in the decrypted block having high entropy (with very high chance).

Their solution exploits these properties by only computing and storing integrity
metadata in case a written block has high entropy. To do this, they use a statistical
test IsRand(M), which returns 1 with high probability if M is a uniformly random
block, and 0 otherwise.

Before encrypting a block M, IsRand(M) is computed. After a positive result, the
client stores a hash of that block. Otherwise, nothing needs to be done. Similarly,
on a read after decrypting a block, the client computes IsRand(M) again. If the
result is positive, a hash is computed. If this hash is not present or equal to a
stored hash, the block is assumed to have been tampered with. According to their
findings, most written blocks have a low entropy. This means that the proposed
scheme can provide data integrity with very small storage needed. However, since
IsRand is not perfect, and a tampered block could decrypt into a low-entropy block,
the scheme can sometimes (although very unlikely) fail. Another vulnerability it
does not prevent is a replay attack. A block with some data creates the same hash
every time. An attacker can thus eavesdrop the hash and data, and replace it at a
later stage.

In a follow up paper [62], the authors go further and claim to provide data integrity
with only a small, constant trusted storage. Furthermore, it aims to solve the
replay attack vulnerability present in their previous paper. The approach is again
based on the former two properties. In this new solution, write counters are used:
a number representing the amount of writes done to that block index is stored,
preventing replay attacks. Keeping track of a counter for every block index would
require a relative big additional storage. Hence, the authors propose a more space-
efficient method of storing the counters. According to their observations, most
file accesses are sequential, meaning most write counters of adjacent blocks are
correlated. Instead of implementing write counters, counter intervals are stored
instead. These are stored as an array containing the indices where a new counter
starts and an array containing the values of the counters for each interval. They
propose two solutions: one of which is closely related to the solution proposed in
this thesis. The idea is to use compression in some blocks to reduce the size of
the block. The integrity metadata can then be stored inside the block itself. For
incompressible blocks they use a Merkle tree in a small trusted storage. Together
with the write counter (intervals), this prevents replay and reorder attacks.

4 Research question

The previous sections gave insight on how data confidentiality and integrity in var-
ious storage devices is usually achieved. In short, confidentiality is achieved by
encrypting the data using a secret key, and integrity is achieved by computing in-
tegrity metadata which can be verified the next time the data is read to detect
unauthorized changes. Depending on the encryption method used, an IV might also
be used; this IV is then also needed during decryption. The conventional solution
is to use external storage to store the integrity metadata and IV. However, this is
not always efficient or even impossible.

Previous solutions aiming to provide length-preserving integrity protection by Oprea
et al. [62] are not truly length-preserving, as they still need some external trusted
storage. This begs for the following research question:

Is it possible to create a method that provides complete length-preserving
integrity and confidentiality protection?

Such a method should not use any external data ——the input data should have
exactly the same length as the output data. Figure 4.1 illustrates the research
question.

Integrity protection schemes always produce more data than they consume because
of the creation of integrity metadata. The key insight of this work is that, by
compressing the input block before encryption, it is possible to make room for
integrity metadata, such that the metadata can be placed in-situ in the compressed
block, instead of in external storage.

Shannon’s noiseless source coding theorem (Section 2.2) shows that there is a the-
oretical limit on the achievable compression rate, and that there exist data that
cannot be compressed. Already compressed or encrypted data has a very high en-
tropy, making it on average incompressible. Obviously, the in-situ approach does
not work for incompressible blocks. The main research in this thesis thus aims to
provide a solution that should work regardless of the underlying data, also being
able to protect incompressible blocks.

50

51

(modified) data (modified) datametadata metadata

data data

providing confidentiality

and integrity

providing confidentiality

and integrity

Previous solutions
size n size n

size nsize n + m

Proposed solution

Figure 4.1: The difference between previous solutions and our proposed solution to
provide confidentiality and integrity. Left: current methods providing confidentiality
and integrity cause data expansion. Right: length-preserving methods providing
confidentiality and integrity, studied in this thesis, use compression to make room
for in-situ metadata in blocks.

5 LP-SP: Length-preserving Stor-
age Protection

This section introduces our design, called LP-SP, which provides complete LP con-
fidentiality, authentication and integrity protection

To make this section easier to understand, some terminology is used:

• Reader: an entity that reads blocks of data from insecure storage

• Writer: an entity that writes blocks of data to insecure storage

• Encoder: the entity that transforms a block coming from a writer into a
different format to be stored on insecure storage

• Decoder: the entity that transforms a block coming from insecure storage back
into its original format to be read by the reader.

5.1 Threat model and security goals
Constructing and understanding the threat model is critical to designing a secure
architecture. We assume that the attacker has unlimited access to the storage unit,
allowing him to perform arbitrary read and write operations. Key management is
considered to be out of scope; we assume that authorized encoders and decoders
have the correct key, but that unauthorized entities such as the attacker, do not.
There are four types of attacks that such an attacker can do:

R1 Eavesdropping: an attacker tries to extract information by passively looking
at all the changes of the device.

R2 Reordering: an attacker swaps blocks around.

R3 Modification: an attacker modifies stored blocks, replacing, inserting, deleting
or truncating the data.

R4 Replay: an attacker overwrites a block with another block that was previously
there.

For example, an eavesdrop attack can be launched by an attacker aiming to get some-
one’s password. Users sometimes store passwords in plaintext on their computer.

52

53

Even if the user doesn’t do this, passwords may also be temporarily in memory.
Since memory can sometimes be swapped out to the disk, both cases might expose
the password unprotected on the disk. If an attacker has access to the disk, it is
possible to eavesdrop and extract the password from other data.

Another example, assume a storage device in an energy company contains informa-
tion about its users that owe the company money. An attacker that has access to
the device can capture the data right after he pays the company (at that time, the
debt is 0). In a later stage, when his debt has grown, he can overwrite the data with
the data he earlier captures. Even though he does not know the actual plaintext,
he can succeed in reducing his debt to 0 again.

By achieving the security properties of Section 2.5, R1, R2 and R3 can be achieved.
The use of encryption (applied correctly) ensures protection against R1. R2 can be
achieved by using a tweakable or authenticated block cipher, using the block number
as tweak or AAD respectively. To protect against R3, tags are created of the blocks
which can be used to validate their authenticity. Protecting against R4 is usually
done by including nonces or write counters: values that get updated every time the
data updates.

In Section 5.4 we discuss how and which of these threats are prevented.

5.2 Architecture
The main goal of LP-SP is to store integrity metadata in-situ. On a write, it needs
to create the integrity metadata, compress the block, store the integrity metadata
inside the compressed block and encrypt the block. Similarly, on a read, it needs to
decrypt and decompress the block, and validate the integrity of the decompressed
block.

First, we explain how incompressible blocks are handled in Section 5.2.1. Then,
Section 5.2.2 describes the procedure of reading and writing blocks when LP-SP is
used. Next, Section 5.2.3 illustrates the format of a block after being compressed by
LP-SP. Finally, Section 5.2.4 describes possible improvements that might increase
the efficiency and security of LP-SP.

Then, we explain the used compression algorithms in Section 5.3.1. The encoder
needs to choose which, if any, compression algorithms and combinations thereof to
use. Section 5.3.2 describes this more in detail.

5.2.1 Handling of Incompressible blocks
Since Shannon’s noiseless source coding theorem (Section 2.2) states that not all
data is compressible, LP-SP should be prepared to always handle incompressible
blocks. For example, the data that LP-SP processes might already be encrypted or
compressed. Since cryptographic and compressed data generally have high entropy,
those blocks will often be incompressible. LP-SP needs to also provide confidentiality

54

and integrity for incompressible blocks. To achieve this, two problems need to be
solved:

1. How does the decoder know whether a block was compressed or not?

2. Where and how is the integrity metadata of incompressible blocks stored?

The first problem is discussed in Section 5.2.1.1, the second problem is discussed in
5.2.1.2.

5.2.1.1 Magic number as compressibility indication

A magic number is a sequence of bytes which should occur rarely in the blocks.
If it is injected in the header, it can be used to identify compressible blocks by
checking the presence of the magic number. If it’s present it must mean the block
was compressed.

The weakness of the magic number approach that an incompressible block containing
that magic number on the correct position1 will be falsely signaled as compressed.
The decoder will try to decompress the block. If not already failed, the integrity
check will fail, resulting in the decoder alarming an error. The odds of this happening
can be decreased by increasing the magic number size. This, in turn, requires the
block to be more compressible, as the header size has to increase.

The choice of a magic number is not trivial. It needs to be a sequence of bytes that
has a low probability of occurring in an incompressible block. We can summarize
the four ways a block might be incompressible:

(1) The block contains already encrypted data.

(2) The block contains (pseudo)random data (e.g. the result of a random number
generator).

(3) The block contains already compressed data.

(4) The block contains none of the above, and is incompressible by ’coincidence’.

Based on these four cases, we can make an informal decision on what the magic
number should be. Because encrypted data is supposed to look random, we assume
that data in cases (1) and (2) is independent and identically distributed (i.i.d)2. In
this case, the choice of magic number has no effect at all, because every combination
is equally likely to occur. Case (4) is assumed to be a coincidence, e.g. a file format
that usually is compressible, except not in this one case. Since there is no knowledge
over the data, there is not much to say on the effect of the magic number. Finally,
in case (3) we know the data was compressed. In this case, it can be assumed that
the data will often have a high entropy: it does not make a lot of sense that the
output of a compression algorithm has low entropy, because it could be compressed

1Correct position: At the position where a compressible block would store the magic number
2This is not the case, but we need to make approximations or assumptions in order to get some

knowledge on what the magic number should be.

55

Compressed data

Multittag

Uncompressed data Uncompressed data Uncompressed data

Local tag

... ...

One block

Figure 5.1: An illustration of how a multitag of a compressed block covers the
plaintext of the preceding chain of incompressible blocks. The blocks in this figure
are already decrypted.

again. As a result, we believe it is a good idea to use as magic number a sequence
of null bytes.

5.2.1.2 Storing the tag of an incompressible block in the next compress-
ible block

If a block compresses enough, the tag of a preceding incompressible block can be
stored in it. Incompressible blocks can thus store their integrity metadata in the next
compressible block. The problem with this solution it it puts a higher constraint on
the compressibility requirement3

To solve this, instead of computing a tag for every incompressible block individually,
we concatenate the plaintext of a chain (sequence) of incompressible blocks and
compute the tag over the concatenated blocks. We call the resulting tag the multitag
of the incompressible chain. The multitag is added to the block’s header along with
the block’s own tag. It means that a compressible block always needs to compress the
same amount, regardless of the amount of preceding incompressible blocks. It also
prevents complete failure, where there are not enough compressible blocks to store
the meta-data of all the other blocks, assuming there is at least one compressible
block. Figure 5.1 illustrates this method.

3Adding another tag to a compressed block requires it to be recompressed to a smaller size. It
can happen that this is not possible anymore, rendering this block as incompressible. The next
compressed block will then get an even higher compressibility requirement, etc.

56

5.2.2 Reading and writing a block with LP-SP
Figure 5.2a shows the procedure of reading a block in LP-SP. It is best explained
with an example:

Let’s say you have three uncompressed blocks (B1, B2 and B3) in a row, followed
by a compressed block (B4). The reader wants to read B2 (so i = 2).

1. Read and decrypt B2. It is not compressed. Go to part B

2. Read and decrypt B3. It is not compressed. Concatenate the plaintext of B3
with B2. Go back to B

3. Read and decrypt B4. It is compressed. Read multitag X. Compute the tag
over the concatenation of blocks B2 and B3 and compare with multitag X.
Since multitag X also depends on C1, it will not match. Go to block i − 1
(B1) and go to part C

4. Read and decrypt B1. It is not compressed. Concatenate the plaintext of B1
with B3 and B2. Compute a new tag over B1, B2 and B3. This is equal to
multitag X, so (decrypted) B2 is returned.

Figure 5.2b show the procedure of writing a block in LP-SP. Parts B and C are
best explained using two examples.

The first example covers part B. Let’s say you have three uncompressed blocks (B1,
B2, B3) in a row, followed by a compressed block (B4). The writer wants to write
B to number 2 (i = 2), and B is compressible.

1. Compute the local tag, compress B and store the local tag in-situ.

2. Read all preceding incompressible blocks by decrypting, checking for compres-
sion and, if uncompressed, moving on the the preceding block.

3. Concatenate all the decrypted blocks just read (B1) and compute multitag X1
over it.

4. Copy multitag X1 into B, encrypt B and write B to block number 2.

5. Starting from 3 (i + 1), read all the following incompressible blocks using the
same procedure as (2), but in the other direction.

6. Concatenate the decrypted blocks just read (B3) and compute multitag X2
over it.

7. Decrypt the first compressible block B4 and copy multitag X2 into B4.

8. Encrypt B4 again and write it again to its position 4.

The second example covers part C. Let’s say you have three uncompressed blocks
(B1, B2, B3) in a row, followed by a compressed block B4. The writer wants to
write B to number 2 (i = 2), and B’ is incompressible.

57

1. Read all the blocks in the incompressible chain except for B2. This is like step
2 in the previous example, but going both directions.

2. Concatenate all the decrypted blocks just read as well as B and compute the
multitag over it.

3. Decrypt the first following compressible block B4 starting from number 3 (i+1)
and copy the multitag into Bc.

4. Encrypt both B and Bc and write them to their respective numbers (2 and 4)

5.2.3 Compressed block format
Blocks that are compressed must store various data. This data can be split up in
six parts:

1. The compression algorithm choice

2. The compression data

3. The magic number

4. The local tag

5. The multitag

6. The compressed data

Figure 5.3 illustrates such a block. The compression algorithm choice is most likely
only one byte, as one byte has the ability to differentiate 256 different algorithms.
Next, the compression data is found which is used by some compression algorithms
to be able to decompress the block. This should also not take too many bytes (the
current implementation of dm-ci uses three bytes, see later). Further, the magic
number is stored, used by the decoder to determine if a block was compressed or
not. The fourth and fifth part are the tags that provide integrity. The lengths of
these can vary based on the algorithm used. Usual values are between 16 and 32
bytes. These five parts form the header. The size of the header will be referred to
as HS (Header Size).

For a block to be compressible, it needs to be able to compress HS bytes, such that
the resulting size of the compressed data is block size−HS.

5.2.4 Possible improvements to LP-SP
The proposed solution has three drawbacks:

(1) When the decoder falsely identifies a block as compressed, the integrity check
will fail.

(2) There is not yet a way to store individual IVs in incompressible blocks.

58

C

Decrypt

Return block i

No

Yes

Unsuccessful

Yes

C

Compressed?

Perform integrity

check of concatenation

of previous blocks
against multitag X

Perform integrity

check of concatenation

of previous blocks
against multitag X

Decrypt

Block i

Decompress

Read tag

Return block i

Compressed?

Integrity check

Succeeds?

Yes

Yes

No

No

B

Start

Read next block

Read
multitag X

C

Return block i

Yes

No
B

B

Compressed?

Decrypt

Concatenate
plaintext with

previously read
block(s)

Concatenate
plaintext with

previously read
blocks

Go to block

i - 1

Go back

one block

Reading a block flow chart

Block i is

corrupt or

tampered with

A block in the

chain is corrupt or

tampered with

Successful

Successful

Unsuccessful

(a) Procedure of reading block number i in LP-SP. Refer to Section 5.2.2 for a detailed
example.

B

Compute local
tag

Compress B and

store tag in-situ

Read all preceding

incompressible blocks*

Read all incompressible
blocks following i*

Compute multitag X2
over these blocks

Decrypt first compressed

 block B_c after i

Copy multitag X2

in B_c

Encrypt B_c

Write B_c

Compute multitag

over preceding blocks
Compute multitag X1

over preceding blocks

Copy multitag X1

in B

Encrypt B

Write B

Read current block

B’ on number i

Decrypt Decrypt

Read current block

B’ on number i

Writing block

B to number i

B Compressible?

B’ Compressed?

A

C

B

Start

Compress B

Encrypt B

A

Copy multitag
from B’ into B

Compute local tag
and store in-situ

Write B

C
Read all incompressible

blocks in chain*

Concatenate B with all

the decrypted blocks of

the chain

Concatenate B with all

the decrypted blocks of

the chain

Compute multitag over

this concatenation

Decrypt first following

compressed block B_c

Copy multitag into

compressed block

Encrypt B and B_c

Write B and B_c

Writing a block flow chart

(b) Procedure of writing a block to number i in LP-SP. The blocks with an asterisk
are a condensed version of: Read the next/previous block, decrypt it and check if it is
compressed. Repeat until you find a compressed block. Refer to Section 5.2.2 for a detailed
example.

Figure 5.2

59

Magic

number

Compression

data

Multitag Compressed data
Compression

algorithm

choice

Header size

Block size

Local tag

Block size - Header size

Figure 5.3: The format of a compressed block by LP-SP. It contains five parts;
compression algorithm choice and compression data are needed to correctly decom-
press the block. The local tags is needed to verify integrity of the block itself, the
multitag is needed to verify integrity of the preceding blocks.

(3) Long chains of incompressible blocks require a lot of extra reads every time
one block of the chain gets read. Similarly, writes are very inefficient for long
chains.

To improve (1), the decoder can assume that when an integrity check fails, the
block was a false positive. It then looks for the next compressed block to find the
tag. This next compressed block might also be a false positive, and the decoder
can again assume this was a false positive. This process can thus repeat itself a
specified amount of times, where the user can choose a trade off between correctness
and speed. It should be noted a sufficiently long magic number makes the odds of
having two false positive blocks in a row extremely low. As an example, let’s assume
that the incompressible blocks contain i.i.d data and that the magic number is 10
bytes long. Then, 10 bytes can have 25610 ≈ 1.21 ·1024 different values, which makes
the odds of an i.i.d. block having the magic number extremely unlikely.

For (2), the technique used to combine tags for incompressible blocks cannot be
used for IVs. Optimally, every block needs their own IV. One solution is to have
all the blocks in the chain use the same IV (stored in the next compressible block).
The incompressible chain is then seen as one big protected block, since both the IV
and tag cover the entire chain. This way, when one incompressible block is updated,
the IV must change and the other incompressible blocks in the chain need to be
re-encrypted. Because this solution has not been explored further, the security of
this solution is also not known.

Finally, for (3), two improvements can be made: caching & buffered writes and using
a different block numbering. They are explained in their own section.

5.2.4.1 Caching and buffered writes

Depending on the use case, our block sequence might match the sequence of whatever
application is using our architecture. As an example, imagine we have a block
sequence b0 b1 b2 b3 · · · A filesystem on top of our architecture also has some sequence
of blocks: b′

0 b′
1 b′

2 b′
3 · · · . If our sequence matches the filesystem’s sequence, writing

a 4-block file to b′
i b′

i+1 b′
i+2 b′

i+3 results into the filesystem writing to our blocks

60

bj bj+1 bj+2 bj+3. In case this file consists of four incompressible blocks, we now have
an incompressible chain of length four.

However, since filesystems most likely read complete files and not random blocks,
the next time bj is read, we can assume that bj+1 bj+2 bj+3 will be read too. Thus,
it would be very beneficial to temporarily store the result of the integrity check
of this chain. A sequential read to bj+1 will not require any extra reads, as the
integrity check has recently been validated. The process of temporarily storing data
to increase performance is called caching.

A similar improvement can be performed for writes: instead of immediately writing
every block, writes can be buffered to see if the following writes are sequential. If
they are, we can compute the tags together, after which all the sequential blocks are
written.

Caching and buffered writes are only useful if:

1. Our block sequence matches the block sequence of the layer above

2. Data is mostly re-read and written sequentially

5.2.4.2 Using a different block sequence

This improvement takes an entirely different approach than the one explained above.
Here, we try to have a complete different block sequence than the layer above. If
we were to use a deterministic pseudo-random block sequence, sequential reads by
the upper layer will seem like total random reads to our layer. For example, reads
/ writes by the upper layer from block 1 til 4 are transformed into reads / writes
by ours layer on blocks 9, 186, 301, 84. This way, clustered incompressible blocks
on the upper level (think of an encrypted file or a compressed video) are not longer
chained together on our layer. The odds of having a compressible next to one of
these incompressible blocks are far higher, and the average incompressible chain
length will be lower.

5.3 Implementation
A proof-of-concept of a part of LP-SP was implemented in Linux (kernel version
5.19.0) for the device-mapper layer. The implementation is called dm-ci (device-
mapper target providing Confidentiality and Integrity). More specifically, it im-
plements the read and write operations on compressible blocks. Ultimately, dm-
ci should also implement the read and write operations on inompcressible blocks.
However, due to time constraints, it was not possible to make dm-ci fully functional
before the end of the thesis deadline. Even though most of the incompressible block
logic is implemented, it is not yet possible to read/write such blocks.

To make a disk work with dm-ci, all the blocks should be put in the format that
is expected by the decoder. This is why a disk (on which the user wants to retain

61

its data) needs to be initialized: integrity metadata is computed and compressed
blocks are compressed. Device-mapper targets are kernel modules, and are thus
not suggested to use when iterating an entire disk. Instead, apart from dm-ci, a
userspace program was written, called cisetup (it can be seen as a similar tool to
cryptsetup for dm-crypt).

The total lines of code (LoC) for both cisetup and dm-ci were calculated using cloc
[19]: at the time of submission, cisetup contained 1618 LoC and dm-ci contained
2517 LoC, both excluding comments or blank lines.

First, we explain the implementation of the compression algorithms. Then, we
describe the cisetup tool. Finally, we explain the implementation of dm-ci.

5.3.1 Compression
Most modelling and coding methods were explained in section 2.1. This section cov-
ers the implementation and its optimizations, as well as introducing a new methods:
replacement.

5.3.1.1 Run-length encoding

Run-length encoding is relatively easy to implement. A difference with the example
in Section 2.1 is that instead of storing the length-value pairs as L0V0L1V1L2V2 · · · ,
we will store them as L0L1L2 · · ·V0V1V2 · · · . The reason for this is that this output
has some redundancy that can be exploited by applying an MTF transform on the
Length and Value sequences.

To be able to revert this transform, all we need to know is the amount of runs (the
amount of length-value pairs). Reverting is then done by reading each length(l) and
its value(v) and repeating v l amount of times.

5.3.1.2 Replacement

If a block has a sequence of HS bytes that all have the same value, the original
first HS bytes can be moved to the start of this sequence. Then our header is
injected to the start of this block. Since we have some storage in our header to store
decompression information, we can store the offset and value of this sequence. On
decompression, the data found at the offset is copied back to the start of the block,
and the HS bytes at this offset get their original value again. An example of this
procedure with a sequence of numbers 8 and offset 86 is shown here.

1. Bytes 0 ... 85 86 ... 86 + HS 86 + HS + 1 ... end
Content data 8 data

2. Bytes 0 ... HS − 1 HS ... 85 86 ... 86 + HS 86 + HS + 1 ... end
Content our data original data original header original data

62

5.3.1.3 Move-to-Front

If the bytes are interpreted as unsigned integers, their values lay between 0 and 255
inclusive. Thus, the starting MTF-array is simply an array with incrementing values
until 255: [0, 1, 2, ..., 255]. The rest of the implementation is very straightforward.
However, when the previous transform was RLE (section 5.3.1.1), we know that
every value in the value vector is different from the previous value, hence the value-
to-be-written will never be 0. We can thus execute MTF as usual, but the resulting
values can be decremented by 1: on decoding, we simply increment the read value
by 1 and decode the values as normal. This will lower the average bit value, and
smaller integers get smaller codewords in interpolative coding.

5.3.1.4 LZ-77

Implementing LZ-77 has to be done carefully, as its performance can decrease dra-
matically by choosing the wrong lookahead-buffer size and window size. Compared
to a generic implementation, the constraints on our data does not provide any opti-
mizations. Tests show that increasing the buffer size and window size over 20 and 30
respectively slows down the application too much to be efficient. More information
about the tests and results can be found in Section 6.

5.3.1.5 Fixed-length binary

Some models might reduce the amount of output symbols enough, such that a simple
fixed-length coding can be applied. The easiest length is 8 bits (a byte) as it is easier
to implement, and most outputs of the models that can be fixed-length encoded have
an output between 0 and 255. This can especially happen with RLE, as sparse data
will require very little symbols. However, a run with a length of 256 or more can not
be encoded like this, as the maximum value of a byte is 255. However, the moment
a run has length HS or more, the replacement technique can be applied. Thus, there
is no need to worry about runs of length greater than 255.

5.3.1.6 Gamma coding

The γ coding explained in Section 2.1 needs a small adjustment: it is not able to
encode the value 0. Since we need to be able to encode 0, we increment every byte
value by one before applying the γ coding. A table of the first few numbers with
their γ encoding is shown in Figure 5.4.

5.3.1.7 Interpolative coding

An implementation of interpolative coding without any specific optimizations is
used, which is straightforward to implement.

63

Number Number + 1 in binary Code
0 1 1
1 10 010
2 11 011
3 100 00100
4 101 00101
5 110 00110
6 111 00111
7 1000 0001000
...

Figure 5.4: The modified γ coding of the first few integers.

5.3.2 Algorithm choice
It is clear that when multiple algorithms compress enough, the fastest one should
be chosen. For most algorithms, predicting the compression rate is almost the same
amount of work as actually performing the algorithm. Hence, the implementation
in this thesis has a static hierarchy of algorithm combinations that it will try before
proceeding to a different combination. This hierarchy is chosen based on speed
and compression rate and can be seen in Figure 5.5. It evidently prioritises the
fastest and most successful combinations. These measurements were tested, and
their results are analyzed in Section 6. Furthermore, we do not intend to compress
a block more than it is needed. This was chosen because LP-SP does not gain
anything from blocks compressing more than needed (see Section 5.2.1). On the
contrary, it might even decrease performance.

data
RLE

Replacement
MTF

Gamma
Interpolative

Interpolative
MTF

Interpolative
LZ77

Figure 5.5: The hierarchy of algorithms, with priority order from top to bottom
and left to right. For example, RLE + Replacement has priority over RLE + MTF
+ Golomb; RLE + MTF + Interpolative has priority over LZ77.

One nuance that should be noted is the prioritisation of RLE over Replacement.
This is merely an optimization choice: RLE checks the length of every run, and
thus also notices when a run has sufficient length to perform Replacement. While
Replacement individually can be checked a little bit faster, it is not worthwhile to

64

perform it first, as on failure RLE will have to pass over all the runs again.

5.3.3 cisetup
Cisetup is a command-line interface tool that can perform two main operations:

1. Check a file or partition for compression rates (check)

2. Format a file or partition to be used by dm-ci (format)

To achieve this, it contains the implementation of all the compression algorithms
explained in the previous section. They were made with a focus on scalability:
adding new models or codings should not require a lot of boilerplate code, and
apart from the actual algorithm itself, not a lot needs to change.

Check works by iterating over all the blocks in a file or partition to scan every
block for their compressibility rate. The user has the ability to disable certain
algorithm combinations4. The results are then shown per algorithm combination.
Furthermore, check also prints some information about incompressible block chains
like the average length, the standard deviation, the maximum length and the median
length. These statistics are very important to maximize dm-ci’s performance, and
could be used to apply an improvement to reduce the chain lengths as specified in
Section 5.2.4. An example of the program’s check output can be seen in Figure 5.6.

Figure 5.6: An example of cisetup’s check method. The test drive /dev/nvme0n1p4
consists of 6320896 blocks, of which 80.68% were compressible. RLE was the most
chosen algorithm, while RLE -> MTF -> Interpolative was the second most chosen.

4Combination: a sequence of compression models and codings

65

Format also iterates over all the blocks, but actually applies and writes the com-
pressed and encrypted blocks to the device. Ultimately, this should work no matter
what the original state of the disk is. However, because cisetup is not the main focus
of this thesis, cisetup’s format command is currently only able to initialize disks to
all zeroes, losing the original data. Nevertheless, implementing this feature should
not prove too difficult, as most of the logic used in dm-ci can be reused.

5.3.4 dm-ci
As said before, dm-ci currently only functions with compressible blocks, which means
that even though most incompressible logic is implemented, it is omitted in this
explanation.

The implementation of dm-ci contains two design choices that simplified the imple-
mentation:

1. The usage of the Linux kernel’s crypto API [60] is used for cryptographic
function calls. Most functions can be executed both synchronously and asyn-
chronously. In the current dm-ci implementation, all the crypto API calls are
doing synchronously. However, an efficient implementation that makes use of
concurrency most likely requires the API to be called asynchronously.

2. dm-ci uses AES-XTS as encryption cipher, and HMAC(SHA1) to create
the integrity tags. These were selected because these primitives were already
available in the Linux Crypto API. However, the recommended cipher to use
is AES-GCM, which also generates the integrity metadata.

dm-ci is a kernel module. It uses the device-mapper framework, which provides
multiple useful functions, like constructor, map and destructor. The constructor /
destructor functions are executed when the target is initialized / destroyed. Initial-
ization happens when the user uses the dmsetup tool to set up the device-mapper.
Targets are destroyed when the computer shuts down or the user manually removes
the target. Finally, map gets executed every time an I/O request is sent to the
target. These requests are most often read/write requests which can be modified,
cancelled, forwarded, etc. before being sent to the layer below.

The structure that the Linux kernel provides to execute I/O requests is called bio:
block I/O. These bio requests consist of an array of bio_vec. A bio_vec refers
to a page, with an offset and length, basically representing a continuous range of
blocks. The page of a bio_vec contains the read data after a read request, or the
to-be-written data during a write request. The most important members of the bio
struct are summed up:

• bi_io_vec: The array of bio_vecs.

• bi_end_io: The function that should be executed when the request is fin-
ished.

• bi_iter: An iterator that iterates over bi_io_vec:

66

• bi_flags: Indicators that contain the direction of the bio (read / write), and
other flags important for the lower levels executing the bio

The map function gets executed whenever a bio request is submitted to the dm
target. The target can then modify most of the parameters of the bio request,
including the bio_vecs belonging to this bio. Additionally, the target can create
new bio requests in case it needs to read / write data from / to another block.
Because the behaviour of dm-ci is very different for reads and writes, they are split
up in their separated for clarity.

5.3.4.1 Reads

The map function intercepts the read request before it is actually executed, hence,
the read data is not yet available when this function is called. Instead, the end_io
method of the request needs to be changed to a custom made function, and the
original end_io method needs to be stored in memory. This end_io method gets
executed when the read request finished, and thus when the read data is available.
Now, in the custom function, the read data can be decrypted using the kernel’s
crypto API.

The plaintext’s tag is calculated (also using the kernel’s crypto API) and compared
with the saved tag. In case these are different, a DM_MAPIO_KILL is returned in
the map function, which will throw an error to the higher layers. No matter if the
reads were valid or not, in the end, the end_io method should be set back to the
original one. Otherwise, it will cause a deadlock in the layer above (the layer above
is waiting for its end_io function to complete, but it will never do).

5.3.4.2 Writes

Opposed to reads, writes need to be modified before the request is actually ex-
ecuted. Because the current implementation only allows compressible blocks, we
know that the multitag of the block-to-be-overwritten is empty. This block can thus
be overwritten without analysing it first. When the write request enters the map
function, its tag is first computed. Then, it is compressed and its tag is put into the
compressed block. Finally, the block is encrypted and written.

5.4 Security of LP-SP
Section 5.1 explained the possible attacks on a storage unit. This section will eval-
uate if LP-SP reaches the security goals, and possible improvements.

LP-SP is a form of FDE, in which it encrypts every block individually. FDE implies
confidentiality, and thus also prevents attacker from eavesdropping (R1). However,
LP-SP currently does not provide a clear solution on how to store IVs of incompress-
ible blocks. The proposed solution where incompressible blocks all use the same IV

67

(Section 5.2.4) is not proven secure, and may thus reveal patterns or allow for other
attacks.

To protect against modification (R2), every block is integrity protected by a tag.
This tag is present in the block itself in case the block was compressible, or in the
next compressible block. LP-SP cannot guarantee the storage of individual tags for
every block. If an incompressible chain has length two or higher, then the entire
chain will be protected by one tag. It still prevents an attacker from modifying data
in one of the incompressible blocks. However, it has the downside of some blocks
losing independence, which, according to Benadjila et al. [9], is not optimal.

A reordering attack (R3) is prevented by using a tweakable cipher like AES-XTS (a),
or using an authenticated encryption cipher like AES-GCM with the block number
as AAD (b). In the case of (a), swapping blocks will result in a different plaintext,
which will fail the integrity check. In the case of (b), the tag can even be verified
before decryption. The tag containing the old block number will not match a newly
computed tag using the new block number as AAD.

Finally, LP-SP does not provide a countermeasure to replay attacks. All the data
to protect a compressible block is stored inside the block itself. An attacker can
thus copy an old compressed block to the same position at a later stage. However,
if the incompressible chain before the compressible block has since been updated,
the multitag of the replayed block will not be valid anymore. In some way, the
incompressible blocks sometimes prevent a replay attack, but this is not a security
guarantee. According to Benadjila et al. [9], to prevent replay attacks, some trusted
external storage is needed. The goal of LP-SP is not to use any external storage.
Hence, the current design of LP-SP can not prevent replay attacks.

6 Empirical evaluation of dm-ci

LP-SP has been implemented as a device-mapper target in Linux. Thus, to be able
to compare, benchmark and evaluate dm-ci, the tests were done on Linux, often
comparing with other device-mapper targets that achieve confidentiality and data
integrity as well. The most used targets are dm-crypt, dm-integrity and dm-verity.
Furthermore, LP-SP is very dependent on the compressibility rates of the underlying
data. This varies greatly depending on the context. Multiple tests were done to test
and visualise the compressibility rates of entire disks, partitions and memory dumps
of processes. The following sections go more in depth on the tests performed and
their results.

All the tests were performed on a virtual machine (Virtualbox) running Ubuntu
20.04 with Linux kernel 5.19.0, 4096MB of memory, 33MB of virtual memory and a
4.4GB SATA drive. The host machine has an AMD Ryzen 9 5900X CPU and 32GB
of Memory.

6.1 Speed performance
Disk bandwidth was tested with four different dm targets: dm-crypt, dm-integrity,
dm-verity and dm-ci. Both dm-verity and dm-integrity were set up using the default
parameters, providing only integrity protection. Dm-crypt uses LUKS2, providing
both confidentiality and integrity protection using HMAC(SHA256). The most in-
teresting comparison for dm-ci is thus dm-crypt, as their security properties are
most related. Note that dm-ci has biased results, because of two reasons:

1. The tests were only executed with compressible blocks, since dm-ci does not
allow incompressible blocks yet. Incompressible blocks likely form the main
latency in dm-ci. Nevertheless, the test results can be used to approximate
how dm-ci would perform in environments with high compression rates.

2. The other targets, especially dm-crypt, have been in de Linux kernel for a long
time. They have contain many hours of development and are thus written more
optimised. On the contrary, dm-ci was implemented on a relatively short time,
without much focus for optimisations.

The following tests were performed using the fio [6] tool. The tests use direct IO
and the libaio engine, and were run for two minutes.

68

69

Test 1 was a sequential read, using an IO queue depth of 16. This means that
the queue with requests for the disk can have 16 requests, which gives the disk the
opportunity to use parallelisation to improve the bandwidth.

Test 2 was also a sequential read, using an IO queue depth of only one.

Test 3 was a random read, using an IO queue depth of 16.

Table 6.1 shows the results of these tests. Unsurprisingly, dm-integrity is the fastest
in all three tests. The second fastest in all tests is dm-verity. Both of these results are
normal, as neither target encrypts the data. Dm-verity is slower than dm-integrity
because dm-integrity does not need to traverse a Merkle tree. Instead, it calculates
a simple checksum over the data, requiring very little work. Dm-ci and dm-crypt
have closer results, except for test 3, where dm-ci is significantly faster.

Target Test 1 Test 2 Test 3
dm-crypt 83.1 48.5 63.8
dm-ci 86.0 47.5 91.9
dm-integrity 173 71.2 170
dm-verity 108 59.8 113

Table 6.1: The bandwidth (MB/s) of the four device-mapper targets. The three
tests are explained in the section above.

6.2 Compression
Compression algorithms are tested both on compression rates in different contexts,
as well as speed. Throughout the compression-related tests, the compression rates
displayed are calculated as amount compressible blocks

total amount blocks
, which may be lower than the com-

pression rate formula explained in Section 2.1. The tool used to calculate the com-
pression rates is cisetup, as explained in the previous section.

The compression tests are split up in three parts. First, we take a look at the
performance of each compression algorithm. Next, we test the compression rate of
files and directories. Lastly, we look at the compression rate of memory of running
processes. Based on this information, a decision can be made which compression
algorithms to use and which order to try them.

6.2.1 Performance
The cisetup tool has a method built-in that logs the average time it took to process a
block. We can check the speed of each combination by disabling all the combinations
except for one, and letting the tool iterate over incompressible data, forcing the
algorithm to run until its very end. Table 6.2 shows the results.

RLE and Replacement are very fast, requiring only 19µs per block. These are exactly
the same value because replacement only gets executed once RLE finds a run that is

70

long enough, essentially doing exactly the same when checking incompressible data.
Furthermore, we see that Interpolative and RLE -> Interpolative are rather fast
too. Then, the three-stage combinations RLE -> MTF -> Golomb/Interpolative
take about 200µs. Lastly, we see that LZ77 is very slow compared to all the other
combinations. The two parameters of LZ77 (lookahead buffer size & window size)
can be reduced to improve the speed.

Algorithm Time (µs) / block
RLE 19
Replacement 19
RLE -> MTF -> Interpolative 195
RLE -> MTF -> Golomb 215
RLE -> Interpolative 88
Interpolative 40
MTF -> Interpolative 128
LZ77 1139

Table 6.2: Average time per block per compression algorithm

6.2.2 Compression rates: Files and directories
Figure 6.1 shows an overview of the compressibility rate of common directories and
common file formats using all the compression algorithms mentioned here. Uncom-
pressed files like TXT files and source code have extremely high compression rates,
reaching 99% and higher. Furthermore, binary files (the content of /usr/bin and
/usr/sbin) also reach 98% and higher. On the contrary, the already compressed files
(PDF, PNG, JPG, MP4 and MP3) are hardly compressible. The /boot directory
has a compression rate of 54%. This can be explained by the vmlinuz and initramfs
files present in that directory, which are two relatively big compressed files, occu-
pying about 50% of the directory. Lastly, the entire disk has a compression rate of
approximately 80%.

Table 6.3 shows the detailed result of the entire disk. The top 4 combinations
were able to compress about 80% of the blocks. With the exception of MTF ->
Interpolative, the other combinations could not compress a single block. This might
be because the combination is simply not suitable, or because another combination
was already able to compress it.

Table 6.5 shows some statistics on the left about the incompressible chain lengths
of the disk. The average is almost 15, which is relatively big compared to the fact
that 80% of the blocks are compressible. The standard deviation, maximum and
median tell us that this average is so high because of a few extremely long chains.
These chains are most likely part of a compressed or encrypted file.

71

TXT (L
or

um
 ip

su
m

) (
61

M
b)

dm
-c

i s
ou

rc
e

co
de

/u
sr

/sb
in

/u
sr

/b
in

/h
om

e/
jas

pe
r

Ent
ire

 d
isk

/b
oo

t

PDF (2
5M

b)

Rick
 a

stl
ey

 –
 N

ev
er

 g
on

na
 g

ive
 yo

u
up

 (m
p3

)

Rick
 a

stl
ey

 –
 N

ev
er

 g
on

na
 g

ive
 yo

u
up

 (m
p4

)

JP
G im

ag
e

(6
2K

b)

PNG im
ag

e
(2

9
M

b)

PNG im
ag

e
(6

89
Kb)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
100.00% 99.21% 99.18% 98.95%

90.56%

80.72%

54.19%

2.84% 1.97% 0.82% 0.03% 0.00% 0.00%

Compressibility rate of various files and directories (Linux)

C
om

pr
es

si
bi

lit
y

ra
te

Figure 6.1: Compressibility rates of common directories and file formats in Linux.

Number of blocks Compression rate (%) Combination
1668679 26.40 RLE
1116517 17.66 Replacement
923635 14.61 RLE -> MTF -> Golomb
1359281 21.50 RLE -> MTF -> Interpolative
0 0 RLE -> Interpolative
0 0 Interpolative
31662 0.5 MTF -> Interpolative
0 0 LZ77
5099774 80.68 Total compressible

Table 6.3: The detailed result of compression rates on the entire disk.

6.2.3 Compression rates: Memory
The memory of running processes was tested by dumping the memory to a file (using
gcore [33]), and then using cisetup to generate statistics of the dump. Figure 6.2
visualises the results of a few processes. Its results are very impressive, as all of
the processes have compressibility rates higher than 99%. Table 6.4 shows the
detailed information of the Gnome calculator. The reason for the extremely high
Replacement compression rate is most likely the fact that the memory in a process
is very sparse: its different sections are very far apart, and a lot of null bytes are
present throughout the memory. However, this does not mean every process will
compress this well. It is possible that an encryption program is encrypting a big

72

file, which temporarily stores the result in memory.

Gnome calculator Gnome shell Libreoffice calc Vim (4 tabs) Firefox (6 active tabs) Snapd
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
99.98% 99.97% 99.94% 99.92% 99.85% 99.82%

Compressibility rate of memory dumps of various processes

C
om

pr
es

si
bi

lit
y

ra
te

Figure 6.2: Compressibility rates of the memory of common processes in Linux.

Number of blocks Compression rate (%) Combination
3934 2.83 RLE
131579 94.76 Replacement
3025 2.18 RLE -> MTF -> Golomb
284 0.2 RLE -> MTF -> Interpolative
138822 99.98 Total compressible

Table 6.4: The detailed result of compression rates of the gnome calculator memory
dump. The combinations with 0% compression rate are left out.

Incompressible chain statistics Entire Disk Gnome calculator memory
Average 14.90 1.88
Std Deviation 264.16 1.23
Median 2 1
Maximum 38716 5

Table 6.5: The incompressible chain length statistics of left: the entire disk and
right: the gnome calculator memory dump.

7 Conclusion

In this thesis, I have investigated the research question: is it possible to create a
method that provides complete length-preserving integrity and confidentiality pro-
tection? The answer to the question is yes.

The thesis presented a design for block-level length-preserving storage protection,
called LP-SP. Previous solutions providing block-level storage protection need exter-
nal storage to store metadata in. This external storage is not always easy or possible
to provide. LP-SP succeeds in providing data confidentiality and integrity without
the need of any external storage. LP-SP achieves this by compressing blocks using
fast and non-statistical compression algorithms. Then, the integrity metadata (tag)
that is calculated over the uncompressed data is stored in the space that was just
freed by the compression. Incompressible blocks are protected by calculating a tag
over all the incompressible blocks in a sequence, and storing this multitag in the
next compressible block.

A device-mapper target dm-ci was implemented as a proof-of-concept of LP-SP.
Another tool, called cisetup was implemented to facilitate checking disk statistics
on compression rates, as well as giving useful information about the length of in-
compressible chains. Cisetup also facilitates formatting a disk, such that it can be
used by dm-ci.

Two different types of tests were performed. The speed performance tests showed
that, in an environment with no incompressible blocks, dm-ci had a relatively high
bandwidth. It was faster than dm-crypt, which also provides integrity and confiden-
tiality. The compression rate analysis was performed on different types of data, and
showed promising results especially for memory pages. Both of these results hint
towards memory being very suitable to use LP-SP in.

73

Bibliography

[1] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha: Using hard
ai problems for security,” in Advances in Cryptology — EUROCRYPT 2003,
E. Biham, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 294–
311, isbn: 978-3-540-39200-2.

[2] A. Al Mamum, G. Guo, and C. Bi, Hard Disk Drive, Mechatronics and Control.
Boca Raton: CRC Press, 2007, isbn: 9781315222134.

[3] S. Al-Kuwari, J. H. Davenport, and R. J. Bradford, “Cryptographic hash func-
tions: Recent design trends and security notions,” IACR Cryptol. ePrint Arch.,
p. 565, 2011. [Online]. Available: http://eprint.iacr.org/2011/565.

[4] AMD, “Strengthening vm isolation with integrity protection and more,” White
Paper, January, 2020.

[5] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems: Three
Easy Pieces, 1.00. Arpaci-Dusseau Books, Aug. 2018.

[6] J. Axboe. “Flexible I/O tester.” version 3.32. (2022).
[7] F. Bauer, Decrypted Secrets, 4th ed. Berlin: Springer, 2007, isbn: 978-3-540-

24502-5.
[8] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among

notions and analysis of the generic composition paradigm,” in Advances in
Cryptology — ASIACRYPT 2000, T. Okamoto, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 531–545, isbn: 978-3-540-44448-0.

[9] R. Benadjila, L. Khati, and D. Vergnaud, “Secure storage—confidentiality and
authentication,” Computer Science Review, vol. 44, p. 100 465, 2022, issn:
1574-0137.

[10] J. Bentley, D. Sleator, and R. Tarjan, “A locally adaptive data compression
scheme,” Communications of the ACM, vol. 29, pp. 320–330, 1986.

[11] M. Broz. “Dm-verity: Device-mapper block integrity checking target.” (2020),
[Online]. Available: https://gitlab.com/cryptsetup/cryptsetup/-
/wikis/DMVerity (visited on 03/22/2022).

[12] M. Broz, M. Patocka, and V. Matyas, “Practical cryptographic data integrity
protection with full disk encryption extended version,” CoRR, vol. abs/1807.00309,
2018.

74

http://eprint.iacr.org/2011/565
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMVerity
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMVerity

75

[13] M. Brož, “LUKS2 on-disk format specification,” Tech. Rep., 2022.
[14] C. Brzuska and V. Lipiäinen. “Companion to cryptographic primitives, pro-

tocols and proofs.” (2021), [Online]. Available: https://github.com/
cryptocompanion/cryptocompanion (visited on 04/08/2022).

[15] R. Card, T. Ts’o, and S. Tweedie, “Design and implementation of the second
extended filesystem,” in Proceedings of the First Dutch International Sympo-
sium on Linux, 1995, 1995.

[16] A. Chakraborti, B. Jain, J. Kasiak, T. Zhang, D. Porter, and R. Sion, “Dm-
x: Protecting volume-level integrity for cloud volumes and local block de-
vices,” in Proceedings of the 8th Asia-Pacific Workshop on Systems, ser. AP-
Sys ’17, Mumbai, India: Association for Computing Machinery, 2017, isbn:
9781450351973.

[17] A. Clauset, “A brief primer on probability distributions,” in Santa Fe Institute,
2011.

[18] J. Cogswell. “How to encrypt a linux file system with DM-Crypt.” (2015),
[Online]. Available: https://www.linux.com/training-tutorials/
how-encrypt-linux-file-system-dm-crypt/ (visited on 03/21/2022).

[19] A. Danial. “Cloc(1) - linux man page.” (2022), [Online]. Available: https:
//linux.die.net/man/1/cloc.

[20] P. J. Denning, “Virtual memory,” ACM Comput. Surv., vol. 2, no. 3, pp. 153–
189, 1970, issn: 0360-0300.

[21] D. Dhamdhere, Operating Systems, 1st ed. USA: McGraw-Hill, Inc., 2008,
isbn: 0072957697.

[22] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,” in Proceed-
ings of the Twenty-Third Annual ACM Symposium on Theory of Computing,
ser. STOC ’91, New Orleans, Louisiana, USA: Association for Computing Ma-
chinery, 1991, pp. 542–552, isbn: 0897913973.

[23] M. J. Dworkin, “Recommendation for block cipher modes of operation :” Tech.
Rep., 2001.

[24] M. Dworkin, “Nist special publication 800-38e,” NIST Special Publication,
vol. 800, no. 38E, 38E, 2009.

[25] M. Dworkin, E. Barker, J. Nechvatal, et al., Advanced encryption standard
(AES), en, 2001.

[26] “eCryptfs - ArchWiki.” (2022), [Online]. Available: https://wiki.archlinux.
org/title/ECryptfs.

[27] P. Elias, “Universal codeword sets and representations of the integers,” IEEE
transactions on information theory, vol. 21, no. 2, pp. 194–203, 1975.

[28] P. Fenwick, Universal Codes, in K. Sayood (ed.): Lossless Compression Hand-
book. San Diego, CA: Academic Press, 2003, pp. 55–78.

https://github.com/cryptocompanion/cryptocompanion
https://github.com/cryptocompanion/cryptocompanion
https://www.linux.com/training-tutorials/how-encrypt-linux-file-system-dm-crypt/
https://www.linux.com/training-tutorials/how-encrypt-linux-file-system-dm-crypt/
https://linux.die.net/man/1/cloc
https://linux.die.net/man/1/cloc
https://wiki.archlinux.org/title/ECryptfs
https://wiki.archlinux.org/title/ECryptfs

76

[29] P. Fenwick, Introduction to Computer Data Representation. Sharjah, U.A.E.:
Bentham Science Publishers, 2018.

[30] N. Ferguson, AES-CBC+ elephant diffuser: A disk encryption algorithm for
windows vista, 2006.

[31] C. Fruhwirth. “Luks1 on-disk format specification.” (2018), [Online]. Avail-
able: https://mirrors.edge.kernel.org/pub/linux/utils/
cryptsetup/LUKS_docs/on-disk-format.pdf (visited on 04/05/2022).

[32] N. Galov. “Linux statistics and facts - linux rock!” (2022), [Online]. Available:
https://webtribunal.net/blog/linux-statistics/.

[33] “GCORE.” (2021), [Online]. Available: https://www.man7.org/linux/
man-pages/man1/gcore.1.html.

[34] M. Goemans. “Shannon’s noiseless coding theorem.” (2015), [Online]. Avail-
able: https://math.mit.edu/~goemans/18310S15/noiseless-
coding.pdf.

[35] S. Golomb, “Run-length encodings (corresp.),” IEEE transactions on infor-
mation theory, vol. 12, no. 3, pp. 399–401, 1966.

[36] T. Groß, M. Ahmadova, and T. Müller, “Analyzing android’s file-based en-
cryption: Information leakage through unencrypted metadata,” in Proceedings
of the 14th International Conference on Availability, Reliability and Security,
ser. ARES ’19, Canterbury, CA, United Kingdom: Association for Computing
Machinery, 2019, isbn: 9781450371643.

[37] S. Gueron, A memory encryption engine suitable for general purpose proces-
sors, Cryptology ePrint Archive, Paper 2016/204, 2016.

[38] A. S. Guevara Noubir, “Trusted code execution on untrusted platforms using
intel sgx,” Virus bulletin,

[39] M. A. Halcrow, “ECryptfs: An enterprise-class encrypted filesystem for Linux,”
in Proceedings of the 2005 Linux Symposium, vol. 1, 2005, pp. 201–218.

[40] M. Halcrow. “eCryptfs: A Stacked Cryptographic Filesystem | Linux Jour-
nal.” (2007), [Online]. Available: https://www.linuxjournal.com/
article/9400.

[41] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

[42] IEEE. “Security in Storage Working Group.” (2006), [Online]. Available: https:
//web.archive.org/web/20070102043342/http://siswg.org/.

[43] Implementing dm-verity: Android open source project. [Online]. Available: https:
//source.android.com/docs/security/features/verifiedboot/
dm-verity.

[44] “Information Security Management,” International Organization for Standard-
ization, Geneva, CH, Standard, 2014.

https://mirrors.edge.kernel.org/pub/linux/utils/cryptsetup/LUKS_docs/on-disk-format.pdf
https://mirrors.edge.kernel.org/pub/linux/utils/cryptsetup/LUKS_docs/on-disk-format.pdf
https://webtribunal.net/blog/linux-statistics/
https://www.man7.org/linux/man-pages/man1/gcore.1.html
https://www.man7.org/linux/man-pages/man1/gcore.1.html
https://math.mit.edu/~goemans/18310S15/noiseless-coding.pdf
https://math.mit.edu/~goemans/18310S15/noiseless-coding.pdf
https://www.linuxjournal.com/article/9400
https://www.linuxjournal.com/article/9400
https://web.archive.org/web/20070102043342/http://siswg.org/
https://web.archive.org/web/20070102043342/http://siswg.org/
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://source.android.com/docs/security/features/verifiedboot/dm-verity

77

[45] B. Jacob and T. Mudge, “Virtual memory: Issues of implementation,” Com-
puter, vol. 31, no. 6, pp. 33–43, 1998.

[46] B. Kaliski, “PKCS #5: Password-based cryptography specification version
2.0,” RFC Editor, RFC 2898, Sep. 2000. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc2898.txt.

[47] L. Khati, N. Mouha, and D. Vergnaud, “Full disk encryption: Bridging theory
and practice,” in Topics in Cryptology – CT-RSA 2017, H. Handschuh, Ed.,
Cham: Springer International Publishing, 2017, pp. 241–257, isbn: 978-3-319-
52153-4.

[48] A. Klein. “The Cost of Hard Drives Over Time.” (2017), [Online]. Available:
https://www.backblaze.com/blog/hard-drive-cost-per-
gigabyte/.

[49] S. Lai, “Non-volatile memory technologies: The quest for ever lower cost,” in
2008 IEEE International Electron Devices Meeting, IEEE, 2008, pp. 1–6.

[50] S. Levine, Logical Volume Manager Administration. Red Hat, Aug. 2020.
[51] L. Martin, “Xts: A mode of aes for encrypting hard disks,” IEEE Security &

Privacy, vol. 8, no. 3, pp. 68–69, 2010.
[52] U. Maurer, “Information-theoretic cryptography,” in Advances in Cryptology

— CRYPTO ’99, M. Wiener, Ed., ser. Lecture Notes in Computer Science,
vol. 1666, Springer-Verlag, Aug. 1999, pp. 47–64.

[53] D. McGrew and J. Viega, “The galois/counter mode of operation (gcm),”
submission to NIST Modes of Operation Process, vol. 20, pp. 0278–0070, 2004.

[54] A. Menezes, Handbook of Applied Cryptography. Boca Raton: CRC Press, 1997,
isbn: 9780429466335.

[55] R. C. Merkle, “A digital signature based on a conventional encryption func-
tion,” in Advances in Cryptology — CRYPTO ’87, C. Pomerance, Ed., Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–378, isbn: 978-3-540-
48184-3.

[56] “Mobile operating system market share worldwide.” (2022), [Online]. Avail-
able: https://gs.statcounter.com/os-market-share/mobile/
worldwide.

[57] A. Moffat and L. Stuiver, Information Retrieval, vol. 3, no. 1, pp. 25–47, 2000.
[58] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A comparison study of intel sgx and

amd memory encryption technology,” in Proceedings of the 7th International
Workshop on Hardware and Architectural Support for Security and Privacy,
ser. HASP ’18, Los Angeles, California: Association for Computing Machinery,
2018, isbn: 9781450365000.

[59] K. Mowery, S. Keelveedhi, and H. Shacham, “Are AES x86 cache timing at-
tacks still feasible?” In Proceedings of the 2012 ACM Workshop on Cloud
Computing Security Workshop, ser. CCSW ’12, Raleigh, North Carolina, USA:
Association for Computing Machinery, 2012, pp. 19–24, isbn: 9781450316651.

http://www.rfc-editor.org/rfc/rfc2898.txt
http://www.rfc-editor.org/rfc/rfc2898.txt
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide

78

[60] S. Mueller and M. Vasut. “Linux kernel crypto API.” (2022), [Online]. Avail-
able: https://www.kernel.org/doc/html/latest/crypto/
index.html.

[61] A. Niemi and J. Teuhola, “Interpolative coding as an alternative to arithmetic
coding in bi-level image compression,” in SCC 2015; 10th International ITG
Conference on Systems, Communications and Coding, 2015, pp. 1–6.

[62] A. Oprea and M. K. Reiter, “Integrity checking in cryptographic file systems
with constant trusted storage,” in Proceedings of 16th USENIX Security Sym-
posium on USENIX Security Symposium, ser. SS’07, Boston, MA: USENIX
Association, 2007.

[63] A. Oprea, M. K. Reiter, and K. Yang, “Space-efficient block storage integrity,”
in Proceedings of the Network and Distributed System Security Symposium,
NDSS 2005, San Diego, California, USA, The Internet Society, 2005.

[64] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and
practitioners. Springer Science & Business Media, 2009, p. 7.

[65] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Analy-
sis and evolution of journaling file systems.,” in USENIX Annual Technical
Conference, General Track, vol. 194, 2005, pp. 196–215.

[66] A. R. Rahiman and P. Sumari, “Solid state disk: A new storage device for video
storage server,” in 2008 International Symposium on Information Technology,
IEEE, vol. 4, 2008, pp. 1–8.

[67] P. Rogaway, “Efficient instantiations of tweakable blockciphers and refine-
ments to modes ocb and pmac,” in Advances in Cryptology - ASIACRYPT
2004, P. J. Lee, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 16–31, isbn: 978-3-540-30539-2.

[68] T. Sammes and B. Jenkinson, “The new technology file system,” Forensic
Computing, pp. 215–275, 2007.

[69] K. Sayood, Introduction to data compression, 5th ed. Morgan Kaufmann, 2017.
[70] B. Schneier, Applied cryptography, 2nd ed. John Wiley & Sons, 1996.
[71] B. Schneier, “A self-study course in block-cipher cryptanalysis,” Cryptologia,

vol. 24, no. 1, pp. 18–33, 2000.
[72] C. E. Shannon, “A mathematical theory of communication,” Bell Systems

Technical Journal, vol. 27, pp. 379–423, 1948.
[73] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, 10e

Abridged Print Companion. John Wiley & Sons, 2018.
[74] D. A. Solomon and H. Custer, Inside Windows NT. Microsoft Press Redmond,

1998, vol. 2.
[75] F.-X. Standaert, “Introduction to side-channel attacks,” in Secure Integrated

Circuits and Systems, I. M. Verbauwhede, Ed. Boston, MA: Springer US, 2010,
pp. 27–42, isbn: 978-0-387-71829-3.

https://www.kernel.org/doc/html/latest/crypto/index.html
https://www.kernel.org/doc/html/latest/crypto/index.html

79

[76] B. Tao and H. Wu, “Improving the biclique cryptanalysis of AES,” in Infor-
mation Security and Privacy, E. Foo and D. Stebila, Eds., Cham: Springer
International Publishing, 2015, pp. 39–56, isbn: 978-3-319-19962-7.

[77] P. Tecchio, F. Ardente, M. Marwede, C. Clemm, G. Dimitrova, and F. Math-
ieux, “Analysis of material efficiency aspects of personal computers product
group,” Luxembourgh. doi, vol. 10, p. 89 220, 2018.

[78] J. Teuhola, “Interpolative coding of integer sequences supporting log-time ran-
dom access,” Information Processing & Management, vol. 47, no. 5, pp. 742–
761, 2011, Managing and Mining Multilingual Documents, issn: 0306-4573.

[79] The kernel development community. “Dm-linear.” (2022), [Online]. Available:
https://docs.kernel.org/admin- guide/device- mapper/
linear.html.

[80] The kernel development community. “Dm-zero.” (2022), [Online]. Available:
https://docs.kernel.org/admin- guide/device- mapper/
zero.html.

[81] S. C. Tweedie et al., “Journaling the linux ext2fs filesystem,” in The Fourth
Annual Linux Expo, Durham, North Carolina, 1998.

[82] A. Wagner and M. Broz. “DM-crypt README.” (2020), [Online]. Available:
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
(visited on 03/21/2022).

[83] B. Ward, How Linux works: What every superuser should know. No Starch
Press, 2021.

[84] “World map of encryption laws and policies.” (), [Online]. Available: https:
//www.gp-digital.org/world-map-of-encryption/.

[85] E. Zadok, I. Badulescu, and A. Shender, “Cryptfs: A stackable vnode level
encryption file system,” Technical Report CUCS-021-98, Computer Science
Department, Columbia University, Tech. Rep., 1998.

[86] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977,
issn: 1557-9654.

[87] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate
coding,” IEEE Transactions on Information Theory, vol. 24, no. 5, pp. 530–
536, 1978.

https://docs.kernel.org/admin-guide/device-mapper/linear.html
https://docs.kernel.org/admin-guide/device-mapper/linear.html
https://docs.kernel.org/admin-guide/device-mapper/zero.html
https://docs.kernel.org/admin-guide/device-mapper/zero.html
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
https://www.gp-digital.org/world-map-of-encryption/
https://www.gp-digital.org/world-map-of-encryption/

	Abstract
	Contents
	1 Introduction
	1.1 Personal contributions

	2 Background
	2.1 Compression
	2.2 Entropy and Noiseless source coding theorem
	2.3 Modelling
	2.3.1 Run-length encoding (RLE)
	2.3.2 Move-to-Front
	2.3.3 Lempel-Ziv

	2.4 Entropy coding
	2.4.1 Fixed-length
	2.4.2 Semi-fixed-length
	2.4.3 Variable-length
	2.4.4 Interpolative coding

	2.5 Cryptography
	2.5.1 Encryption and ciphers
	2.5.2 Block cipher modes of operation
	2.5.2.1 Electronic Code Book (ECB)
	2.5.2.2 Cipher Block Chaining (CBC)
	2.5.2.3 Counter (CTR)
	2.5.2.4 XEX-based tweaked-codebook mode with ciphertext stealing (XTS)
	2.5.2.5 Galois/Counter mode (GCM)

	2.5.3 One-way function
	2.5.4 Cryptographic hash Function (CHF)
	2.5.5 Message Authentication Code (MAC)
	2.5.6 Merkle tree

	2.6 Storage devices
	2.6.1 Hard disk drive
	2.6.2 Solid State Drive
	2.6.3 Random Access Memory (RAM)
	2.6.4 Virtual memory

	2.7 Operating systems and Linux
	2.8 Filesystem
	2.9 Drivers, Device files and Block devices
	2.10 Device-mapper (dm)

	3 Storage protection
	3.1 File-level protection
	3.1.1 eCryptfs
	3.1.2 Benefits and drawbacks of file-level protection

	3.2 Block-level protection
	3.2.1 Full Disk Encryption (FDE)
	3.2.2 Device-mapper protection targets

	3.3 Page-level protection
	3.3.1 AMD SEV-SNP
	3.3.2 Intel SGX MEE

	3.4 Length-preserving storage protection

	4 Research question
	5 LP-SP: Length-preserving Storage Protection
	5.1 Threat model and security goals
	5.2 Architecture
	5.2.1 Handling of Incompressible blocks
	5.2.1.1 Magic number as compressibility indication
	5.2.1.2 Storing the tag of an incompressible block in the next compressible block

	5.2.2 Reading and writing a block with LP-SP
	5.2.3 Compressed block format
	5.2.4 Possible improvements to LP-SP
	5.2.4.1 Caching and buffered writes
	5.2.4.2 Using a different block sequence

	5.3 Implementation
	5.3.1 Compression
	5.3.1.1 Run-length encoding
	5.3.1.2 Replacement
	5.3.1.3 Move-to-Front
	5.3.1.4 LZ-77
	5.3.1.5 Fixed-length binary
	5.3.1.6 Gamma coding
	5.3.1.7 Interpolative coding

	5.3.2 Algorithm choice
	5.3.3 cisetup
	5.3.4 dm-ci
	5.3.4.1 Reads
	5.3.4.2 Writes

	5.4 Security of LP-SP

	6 Empirical evaluation of dm-ci
	6.1 Speed performance
	6.2 Compression
	6.2.1 Performance
	6.2.2 Compression rates: Files and directories
	6.2.3 Compression rates: Memory

	7 Conclusion
	References

