
End-to-End Disfluency Detection in
Automatic Speech Recognition for
Second Language Learners

Tudor Nicolae Mateiu

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 21.11.2022

Supervisor

Prof. Mikko Kurimo

Advisor

MSc Yaroslav Getman,
Dr. Tamás Grósz

Copyright © 2022 Tudor Nicolae Mateiu

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Tudor Nicolae Mateiu
Title End-to-End Disfluency Detection in Automatic Speech Recognition for Second

Language Learners
Degree programme Computer, Communication and Information Sciences
Major Machine Learning, Data Science and Artificial

Intelligence
Code of major SCI3044

Supervisor Prof. Mikko Kurimo
Advisor MSc Yaroslav Getman,

Dr. Tamás Grósz
Date 21.11.2022 Number of pages 60+2 Language English
Abstract

Second language (L2) learner’s speech data is a big challenge for Automatic
Speech Recognition (ASR) models. Moreover, L2 students’ speech contains many
grammatical errors, mispronunciations and disfluencies, depending on the person’s
proficiency level. Disfluency detection tasks have conventionally been carried out
as an added step after an ASR pipeline, which is inconvenient, as data needs to be
prepared in addition to the one used for ASR, as well as the need of finetuning a
supplemental model and incorporating it into the downstream task.

Conventional ASR systems are comprised of separate model components, an
acoustic model, a language model and a lexicon. End-to-end ASR introduces a
simplified pipeline over traditional systems, such that the acoustic feature sequences
are directly mapped to word sequences, without the need for additional modules.

As end-to-end systems streamline the ASR process, this thesis investigates the
incorporation of disfluency detection into the same low-resource end-to-end ASR
task, thus eliminating the need for a separate component, and ultimately resulting in
reduced computations. The disfluency detection models in this work are developed
for L2 speakers learning Finnish, and obtain good performance without substantially
deviating from an end-to-end L2 Finnish ASR baseline. The best model’s ASR
performance is promising, reaching a word error rate of 30.41 % and a character
error rate of 13.17 %. Moreover, for disfluency detection the model obtains a Recall
of 0.5655 and a Precision of 0.6017. The results are encouraging as the models
can successfully extrapolate different disfluency types from low-resource L2 Finnish
speech.
Keywords End-to-end, disfluency detection, ASR, Wav2Vec2.0

4

Preface
I dedicate this thesis to my loving parents, for all the support and assistance they
have given me during the completion of the Master’s programme and my stay in
Finland.

I also want to thank my significant other, Alicia, for the time spent together in
Finland. For the support and motivation she gave me during hardships, for all the
amazing experiences we went through together and for the loving memories I will
keep from our life in Espoo.

Finally I want to thank my supervisor, professor Mikko Kurimo, and my advisors,
MSc Yaroslav Getman and Dr. Tamás Grósz. I thank them for the incredible
opportunity given to me, for the chance of working at Aalto University, as well as
for the counsel and feedback during the completion of my thesis.

Espoo, 21.11.2022

Tudor Nicolae Mateiu

5

Contents
Abstract 3

Preface 4

Contents 5

Symbols and abbreviations 7

1 Introduction 8

2 Background 10
2.1 Machine Learning . 10
2.2 Machine Learning . 10

2.2.1 Supervised Learning . 10
2.2.2 Unsupervised Learning . 10
2.2.3 Self-supervised Learning . 10

2.3 Artificial Neural Networks . 10
2.3.1 Convolutional Neural Networks 12
2.3.2 Recurrent Neural Networks 13
2.3.3 Transformer models . 15
2.3.4 BERT models . 19

3 Research material and methods 21
3.1 Automatic Speech Recognition . 21

3.1.1 Conventional ASR systems . 21
3.1.2 End-to-end ASR systems . 23
3.1.3 Wav2Vec . 25
3.1.4 Wav2Vec2 . 26

3.2 Disfluency detection . 28

4 Experimentation 30
4.1 Datasets . 30
4.2 Metrics . 33
4.3 Pre-trained model and baseline . 34
4.4 Finetuning . 35

4.4.1 Finetuning environment and hyper-parameters 35
4.4.2 L2 Finnish ASR baseline finetuning 35
4.4.3 L2 Finnish ASR disfluency detector finetuning 37
4.4.4 L2 Finnish ASR Disfluency Detector with Curriculum Learning 39

4.5 Results . 40
4.5.1 Combined results comparison 40
4.5.2 WER and CER analysis . 42

4.6 Validation of Disfluency Detector predictions 45
4.6.1 Kaldi metrics . 45

6

4.6.2 Kaldi alignment examples . 48
4.6.3 Recall, Precision and performance of disfluency tags 49

5 Summary 51

6 Conclusions 53

References 54

A Appendix 61

7

Symbols and abbreviations

Symbols
L() loss function
E loss function error
φ activation function
θ artificial neuron weight
∂ partial derivative
P () probability function

Abbreviations
AM acoustic model
ANN artificial neural network
ASR automatic speech recognition
BERT bidirectional encoder representations
CER character error rate
CL curriculum learning
CNN convolutional neural network
CTC connectionist temporal classification
DL deep learning
DNN deep neural network
FE feature extractor
FNN feedforward neural network
GRU gated recurrent unit
HMM hidden Markov model
L2 second language learning
LM language model
LSTM long short-term memory
MFCC mel-frequency cepstral coefficient
ML machine learning
NLP natural language processing
RNN recurrent neural network
WER word error rate

1 Introduction
Second language learning (L2) is not an effortless task for humans. It is usual, in the
process of learning, for speakers to produce lexical and grammatical errors, enunciate
words incorrectly and generate many types of disfluencies, often correlated to their
native language. These characteristic features are problematic to Automatic Speech
Recognition (ASR) systems to be trained on L2 speech, they ultimately increase
the complexity of learning to recognize the speech. Additionally, this intricacy is
magnified when dealing with lexicogrammatically demanding languages like Finnish.

Research in ASR has achieved great strides in improving the state-of-the-art,
with results reaching that of human level speech recognition. Conventional ASR
systems are normally comprised of separate model components, linked between each
step, as for example an ASR system with an acoustic and language models. These
conventional systems have performance drawbacks and they require labeled corpora
to obtain decent competitive results. However, superior performance to conventional
ASR was achieved with the introduction of self-supervised end-to-end systems [1, 2, 3].
These systems gave way to the development of large pre-trained models, which make
use of substantial amounts of unlabeled data to automatically train and learn the
given language or information about the pronunciation. These models not only obtain
state-of-the-art results in ASR [4, 5, 6, 7], but as well with low-resource language
ASR like for Swedish and Finnish [8, 9].

Early systems had independent ASR and disfluency detection models in the
downstream task. This led to research exploring forms of incorporating disfluency
detection in the same system. However, although recent research obtains satisfactory
results, these systems usually only strive at detecting one type of disfluency or
disfluencies originating from native language speakers [10, 11, 12, 13]. Moreover,
research shows that end-to-end systems can successfully infer knowledge from disfluent
speech [14] and acceptably detect up to two disfluency types [15].

This thesis employs a pre-trained Wav2Vec2 model [3] as the basis for an integrated
disfluency detector in L2 Finnish ASR. Wav2Vec2 models are chosen as they are a
robust self-supervised end-to-end ASR system which obtain state-of-the-art results
with native language speaker speech, and perform well for low-resource languages [8].
Additionally, at the time of writing, only minor attempts have been carried out to
use Wav2Vec2, or similar approaches, as a combined ASR and disfluency detection
system [13, 15]. Therefore, the objectives pursued in this work are:

• Obtain a baseline from a pre-trained Wav2Vec2 by finetuning it on newly
available L2 Finnish data from the Digitala project [16]. Afterwards, compare
the results to previous work [17] in L2 Finnish ASR.

• Obtain a Wav2Vec2 model finetuned for L2 Finnish ASR disfluency detection
by utilizing data with certain disfluencies tagged with a general disfluency
token. Can this new model reach similar ASR results to the L2 Finnish ASR
baseline?

• Validate the predicted results and examine if they are adequate. Additionally,

9

how many disfluencies in the testing set can the model predict correctly? Are
there any specific disfluencies which are harder to infer than others?

The thesis is divided in multiple sections, each, in turn, with their different
subsections. First, in Section 1 a brief introduction is given. Section 2 presents
relevant background for the thesis and in Section 3 the methods researched are
described. Afterwards, in Section 4 all the aspects related to experimentation are
explained. This includes explanations of the data used, metrics, models, finetuning
and commentary on the results obtained. Finally, Section 5 presents an abridged
summary for the work done and the results obtained in the thesis, and in Section 6
the conclusions for the thesis are given.

10

2 Background

2.1 Machine Learning

2.2 Machine Learning
Machine learning (ML) is a branch of artificial intelligence tasked with the scientific
study and development of algorithms that can learn from provided data. The
behaviour of traditional artificial intelligence algorithms is explicitly dictated by
written programming rules in order for them to perform certain tasks. In contrast,
ML algorithms build a mathematical model from training data, and their knowledge
is then applied, for instance, to predict or give decisions based on a series of new
inputs. There are different methods in which a ML model can be built, depending
on how the available data is presented and how the learning process is conducted.

2.2.1 Supervised Learning

Supervised learning is based on the concept of introducing data that is comprised
of inputs and their corresponding labeled outputs. The goal during training is to
approximate the model so that for new inputs the algorithm can predict their output
correctly.

2.2.2 Unsupervised Learning

Unsupervised learning, as opposed to supervised learning, is a training method which
employs completely unlabeled data. The goal for unsupervised learning is to discover
the underlying structure or patterns in the data. It is used for such things as data
clustering tasks, and autoencoder networks which employ unsupervised learning for
training.

2.2.3 Self-supervised Learning

Self-supervised learning is a training method in which an ML model learns from
unlabeled data. As opposed to unsupervised learning, which is typical for tasks
such as clustering, self-supervised models first learn to extract good quality hidden
representations from the unlabeled data, and these representations are then used in
order to learn and predict the actual outputs of the data.

2.3 Artificial Neural Networks
Deep Learning (DL) is based on employing complex architectures which transform
data and extract features to perform a task. These complex artificial neural net-
work (ANN) architectures are trained on considerably more data than normal ML
algorithms in order to achieve reasonable performance. Additionally, DL models
use learning methods such as supervised learning to optimize the many different
hyperparameters they are comprised of.

11

ANNs are complex architectures, loosely inspired by the biological neuron and
synapse connections that constitute an animal’s brain. These networks are comprised
of an input layer, a hidden layer, and an output layer. Additionally, if there are
multiple hidden layers, they are also known as Deep Neural Networks (DNN). The
layers, in turn, consist of connected artificial neurons that compute input data and
send output data to other connected neurons. Like this, data that enters the input
layer, gets passed and processed between layers until it reaches the output layer;
depending on the type of ANN this can be done several times and by following
different strategies.

The elementary artificial neurons, such as perceptrons [18], are comprised of one
or multiple weighted inputs, which are summed to produce an output by passing
them through its activation function. Therefore, given a number of m + 1 inputs,
with signals x0 . . . xm, and weights wi0 . . . wim, the neuron will sum the products of
its input signals and weights, and pass it to the activation function φ, such that:

yi = φ(
m∑︂

j=0
wijxj) (1)

The neuron’s output yi can then propagate through to the input of following
connected layers, or it can exit the network. Additionally, when the connections
between an ANN’s layers do not form cycles, they are known as Feedforward Neural
Networks (FNN) [19]. In FNNs the information moves forward through the connected
layers, and then to the final output layer. In contrast, a Recurrent Neural Network
[20] is a network which can contain layer nodes to create cycles, thus allowing the
output of some nodes to influence subsequent inputs to the same nodes.

Regardless of connection type, the common procedure by which ANNs acquire
knowledge from the input signals is through backpropagation [21]. Backpropagation
is a method used to efficiently train ANNs following a gradient descent approach
that exploits the formula for computing the derivative of the composition of two or
more functions. The main feature of backpropagation is that it enables feedforward
models to become iterative, recursive and efficient at calculating the weight values to
improve the network until it is able to perform the task for which it is being trained.

Before training begins, the network’s weights are all preliminarily set depending
on a chosen method. Habitually, weight values are randomly generated, although
there exist techniques that propose better weight initialization [22, 23]. For supervised
learning, each neuron gains knowledge from labeled training examples, which consist
of a set of tuples of inputs and corresponding correct outputs, (xi, ti). Initially, the
network computes an output, yi, and is penalized or rewarded if the output differs
or not from the correct one.

From this, a loss function L(t, y) is used for measuring the disparity, or error
E, between the expected output and the predicted output. In a way, the training
process can be conceptualized as the need to produce an output that exactly matches
the expected output, which means the error sought after must be zero. ANN training
can be thought of as an optimization problem to find a hypothesis that minimizes
this error.

12

The network’s output is ultimately obtained by the calculation of the node’s
activation functions, which in turn employ the values of the neurons’ weights and
input signals. However, as the input signals can not be modified, the error depends
on the variable value of the node weights, therefore they are ultimately what needs to
be changed in the network to enable learning. Thus, together with backpropagation,
the gradient descent algorithm is used to find the set of weights that minimizes the
error.

The gradient descent method involves calculating the derivative of the loss function
L(t, y) with respect to the weights of the network in order to update the weights
accordingly. Afterwards, the gradient descent method updates each weight according
to the subtraction of the weight’s original value and the multiplication of the learning
rate and partial derivative, such that:

θijk = θijk − (lr × ∂E

∂θijk

) (2)

where E is the loss L(ti, yi) between the expected output ti and the predicted
output yi, θijk is the weight value j of neuron i from layer k, and lr is the learning
rate, a value which controls the step size by which weights are updated.

Backpropagation is performed for each of the weights and for all the examples
in the training dataset, although not all backpropagation implementations use the
same loss function. Every pass over all the training examples is called an epoch.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [24] are a specialized kind of ANN for pro-
cessing data that has a known grid-like topology. They are most commonly applied
when required to analyze visual imagery, however there are multiple other fields
where it has been applied with successful results, including text and audio processing
[25, 26]. Additionally, CNNs have been utilized as the building blocks of more
complex networks [60, 3]. They make use of a mathematical linear operation called
convolution at least once throughout the network.

Its design, shown in Figure 1, is comprised of connected layers, each built of
groups of artificial neurons. Neurons from one layer receive input from a specific
group of neurons of the previous layer, this group is called a receptive field. The
architecture has an input and an output layer, as well as multiple hidden layers. The
hidden layers of a CNN typically consist of a series of convolutional layers that carry
out linear transformations via multiplication or other scalar products.

13

Figure 1: CNN architecture example [27]. The network contains multiple convo-
lutional layers, pooling layers after each convolutional layer, and a final possible
flattening of features passed to a fully connected layer to obtain the outputs.

Convolutional layers are the fundamental element of CNN architectures. The
feature extraction is carried out through the receptive fields in each convolutional
layer. In the feedfoward process of the network, the set of learnable parameters of
these fields, the kernel, is moved across the input. Next, the dot product between
the strides of the kernel and the input values is calculated. The result is a feature
map from which the system learns when some feature is found at specific locations
of the map. Because of this, the main body of convolutional layers is also known as
a feature extractor.

Additionally, pooling layers are used in order to reduce the number of dimensions
of the featured maps obtained from one convolutional layer to another. There are two
ways of carrying out layer pooling, local and global. Local pooling merges small areas
of the feature maps, while global pooling combines all of the neurons of the feature
maps. Moreover, there are many techniques to calculate these pooling operations,
the most famous are max pooling and average pooling. Max pooling obtains the
maximum value of each of the clusters being pooled from the feature map, while
average pooling instead calculates the average value.

After having passed through all the convolutional and pooling layers, it is cus-
tomary to flatten the feature maps into a vector before the feature maps arrive to
the final layer. The final layers are comprised of one or multiple fully connected
layers, and the output is calculated depending on the task at hand. For instance, to
compute the output for a binary classification task a sigmoid activation function is
employed. However, for a multiple class classification task, it is common to use the
softmax function.

2.3.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) [20, 28] is an augmentation of a standard
feedforward neural network, which is able to handle sequential input that can vary
in length. The network handles this variable sequence by having a recurrent hidden
state whose activation at each pass is dependent on that of the previous iteration, as

14

shown in Figure 2. Unfortunately, it is often difficult to train RNNs without facing
its two main problems: gradient vanishing and gradient explosion. On one hand, as
the backpropagation algorithm progresses, the gradients obtained get smaller at each
step. This can result in unchanged weights closer to the input layer and a convergence
to local minima will be more complicated. On the other hand, occasionally the
gradients obtained via backpropagation will increase in value and gradient descent
will fail to converge. These issues have led to the research of recurrent gated units,
which have become a dominant approach for reducing the negative impacts of the
gradient problem in RNNs.

Figure 2: Illustration of a folded RNN architecture (left) and one unfolded over
different time steps (right) [29].

The Long Short-Term Memory (LSTM) gated unit architecture [30] consists of a
set of recurrently connected memory blocks, shown in Figure 3. Each block contains
self-connected memory cells and three multiplicative units. These units allow the
LSTM’s memory cells to store and access information over long steps of time. As
a result, the units will help in mitigating the vanishing gradient problem RNNs
inherently have, and enable the use of RNNs for tasks requiring longer contextual
memory.

The Gated Recurrent Unit (GRU) gated unit architecture [31] is similar to that
of the LSTM: it consists of an update gate and a reset gate but it does not make use

15

of any memory cells, shown in Figure 3. These two gates decide what information
should be passed to the output and can be trained to keep contextual information or
remove information that is irrelevant to the prediction sequence. Just as LSTMs,
GRUs also help in mitigating the vanishing gradient problem. Moreover, they are
faster to train than LSTMs, given the lack of memory cells, and obtain similar results.

Figure 3: Illustration of Long Short-Term Memory (left) and Gated Recurrent Unit
(right) [31].

These established RNN approaches have obtained good results in sequence trans-
duction tasks, as they solve the gradient vanishing problem. Specifically, they have
obtained substantially better results than older feed-forward approaches in tasks
such as sequence to sequence translation [32] and text generation [33]. Regardless of
obtaining better results, their sequential nature impedes parallelization during the
training and evaluation process, which becomes critical if longer sequence lengths
are used or needed as input or output. These memory constraints limit batching
across examples and restricts the model to longer training and evaluation times.
However, there have been improvements in the computational efficiency of training
and evaluation via parameter reduction tricks [34] and conditional unit activation
[35]. Irregardless, the sequentiality remains, and, ultimately, their efficiency remains
restrained.

2.3.3 Transformer models

The Transformer model [36] is the first ANN transduction model which relies entirely
on self-attention mechanisms to carry out computations without using sequence
aligned RNNs or convolutions. This fact enables the model to successfully train
and evaluate using parallelism, which considerably lowers the time needed for these
computations, while also enabling it to keep contextual information over much larger
sequences without the fading of gradients [2].

The Transformer model principally follows the same architecture as established
sequence transduction encoder-decoder models. It employs stacked fully connected

16

encoder-decoder layers and multi-head attention layers, as can be observed in Figure
4.

Figure 4: Illustration of a basic Transformer model architecture [36].

The standard Transformer’s encoder stack is composed of six identical layers,
in turn comprised of two sub-layers each. These sub-layers are composed of: first,
a multi-head attention mechanism, and second, a basic position-wise feed-forward
network. Additionally, they are followed by a residual connection [37] and layer
normalization [38]. The residual connections help to increase accuracy, as they can
help to optimize deeper networks. The layer normalization normalizes the results
obtained after each layer, thus helping in reducing the computation times. After
having passed all of these layers, the encoder’s outputs of dimension dmodel = 512 is
then be passed onto the decoder.

The decoder stack is composed of six identical layers, similar to the encoder. The
main difference is that there is an extra sub-layer in addition to the two present in
the encoder. This other sub-layer is a masked multi-head attention mechanism which
computes over the outputs obtained from the encoder. The decoder’s sub-layers are
also followed by a residual connection and layer normalization operations.

The Transformer models’ self-attention techniques enable the decoder to handle
all positions in the decoder up to and including the current position of the decoder.

17

A basic attention function is described as the mapping of a query and a set of
key-value pairs to an output, and is calculated as a weighed sum of these values.
More specifically, Transformer models use scaled dot-product attention, shown in
Figure 5, as it benefits the model with faster and more space-efficient calculations.

Figure 5: Illustration of a scale dot-product attention mechanism [36].

The dot product of the query, Q, and keys, K, is divided by the square root of
the dimension of keys dk. This division is done to scale the dot products, in order to
keep the softmax function out of regions with extremely small gradients. Afterwards,
the softmax function is applied to normalize the results and the attention weights
are performed. These weights are subsequently multiplied to all the input sequences,
V . These calculations [2] are done as:

Attention(Q, K, V) = softmax(QKT

√
dk

)V (3)

This scaled dot-product attention function is performed h times, shown in Figure
6, with different projections to the dimensions of queries, keys and values, dk, dk and
dv respectively, as it is more beneficial than applying only a single attention function.
A total of h = 8 parallel attention heads are used at no additional computational
cost, as each head is reduced dimensionally to dk = dv = dmodel/h = 64. The benefit
of using this multi-headed approach is that the Transformer can attend to the data
from different representation subspaces at different positions.

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)W O (4)

The multi-head attention function is calculated, as shown in Eq 4, as the mul-
tiplication of the concatenation of the attention heads and the weights matrix

18

W O ∈ Rhdv×dmodel . Additionally, each attention head is calculated with the projec-
tions of the weight matrices W Q

i ∈ Rdmodel×dk , W K
i ∈ Rdmodel×dk and W V

i ∈ Rdmodel×dv ,
such that:

headi = Attention(QW Q
i , KW K

i , V W V
i) (5)

Figure 6: Illustration of a multi-headed attention mechanism [36], with h scaled
dot-product attention heads.

Furthermore, besides multi-head attention layers, the encoder and decoder stacks
contain fully connected position-wise feedforward networks. These networks are
separately and identically applied to each position.

FFN(x) = max(0, xW1 + b1)W2 + b2 (6)

As shown in Eq 6, the output of these layers is calculated with two linear
transformations and a ReLU activation. The linear transformations employ different
weights from the different attention layers, and the inner-layer output results in
a dimensionality of dff = 2048. Additionally, the inputs and outputs of both the
encoder and decoder stacks are transformed into low-dimensional vectors. These
transformations are done using learned embeddings to convert the input and output
token vectors to a dimension of dmodel = 512. Moreover, the decoder outputs are
transformed into predicted next-token probabilities by applying the standard learned
linear transformation and softmax function.

As a final note, the Transformer model requires the injection of information
pertaining to the relative or absolute position of tokens in a given sequence. This
additional information is necessary due to the lack of recurrence and convolutions
in the model. The Transformer employs fixed positional encodings [39], which are
calculated using sine and cosine functions, such that:

19

PE(pos,2i) = sin(pos/100002i/dmodel) (7)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (8)

where pos is the position and i is the dimension. The model uses the sinusoidal
fixed positional encoding method because it is theorized that the model may be able
to extrapolate to sequence lengths longer than the ones encountered during training.

2.3.4 BERT models

The Bidirectional Encoder Representations from Transformers (BERT) [40] is a pro-
posed language representation model that reduces the limitation of unidirectionality
in prevalent techniques before this model. BERT employs a masked language model
in the pre-training task, which randomly masks a number of input tokens. The task
is then to predict the original vocabulary id of these masked tokens based on context.
This effectively allows for the pre-training of deep bidirectional Transformer models,
as the masked language model allows BERT to learn words based on their left and
right contexts.

The BERT architecture is based on the original Transformer implementation
and is designed as a multi-layer bidirectional Transformer encoder. There are two
proposed BERT configurations [40] depending on the preferred parameter count:
“BERTBASE” and “BERTLARGE”. The base model is comprised of 12 Transformer
blocks, 768 hidden nodes and 12 self-attention heads. This version has a total of 110
million parameters, and illustrated in Figure 7. On the other hand, the large model
is comprised of 24 Transformer blocks, 1024 hidden nodes and 16 self-attention heads,
for a total of 340 million parameters.

Figure 7: Illustration of an example BERT base-sized architecture [41].

20

The BERT model has been designed with the possibility of carrying out different
tasks. The input representation can handle single sentence inputs and pair of
sentences inputs in one sequence. The first token of every BERT sentence is the
special token [CLS], which represents sentence-level classification. However, when
using sentence pairs as inputs, the two sentences are separated with the additional
[SEP] special token, which indicates where the sequence separates the first and
second sentences. Moreover, embeddings are added to each token to indicate the
position of the token and whether the token originates from sentence A or sentence
B, shown in Figure 8.

Figure 8: Illustration of an example pair of sentences as a BERT input representation
[41].

Finally, the BERT pre-training phase is divided in two tasks. First, the masked
language model masks 15 % of the tokens in each sentence from the training data.
Afterwards, the tokens selected have an 80 % chance at being replaced with the
[MASK] token, a 10 % chance at being replaced with a random token and a 10 %
chance at remaining unchanged. This additional procedure is necessary so that there
is no inconsistency between pre-training and finetuning, given that the [MASK]
token is technically only found in the pre-training phase. Subsequently, the task is
for the original token to be predicted with the cross-entropy loss.

The first step in pre-training ensures a robust deep bidirectional representation,
however, there are many tasks which are based on sentence pair relationships. Thus,
the BERT model aims at learning to capture these in its second pre-training step by
carrying out a binarized next sentence prediction task. The sentences in the data
are generated such that, the first sentence A is always the correct one, while the
next sentence B has a 50 % probability of being a random sentence from the corpus
and 50 % probability of being the correct next sentence to A. The model is then
tasked with predicting if the input sentence pair is correct, whether sentence A is
truly followed by sentence B.

Because of the manner in which the BERT model is pre-trained, and the knowledge
it receives during said process, the model can be easily finetuned for more specific
downstream tasks. These include the same ones the model has been pre-trained for,
but BERT can also be modified, for example, by attaching fully-connected linear
layers to the end of its architecture to encompass other tasks as well.

21

3 Research material and methods

3.1 Automatic Speech Recognition
Automatic Speech Recognition is an interdisciplinary field, in which human spoken
language is recognized by a machine and transcribed into text. Conventional ASR
performed its recognition task via a probabilistic approach that had dominated the
field until recently. The many drawbacks of conventional ASR gave way to the
research of end-to-end ASR systems, which solved the shortcomings of the previous
research.

3.1.1 Conventional ASR systems

Conventional ASR systems are separated into different independent components,
shown in Figure 9, which need to be trained separately and each perform their
own task during the ASR process. These components are: the feature extraction
segment (FE), the acoustic model (AM), the language model (LM), the lexicon and
the decoder.

Figure 9: Overview of a conventional ASR system [42], comprised of the feature
extraction segment, acoustic and language models and the lexicon.

The FE portion of the pipeline receives speech signal and converts it into feature
vectors. The most common type of feature vector used for conventional ASR are coef-
ficients derived from Mel frequency cepstrum [43]. These cepstra are computed using
frequency bands which closely approximate the perception of sounds by the human
auditory system. From these the Mel Frequency Cepstral Coefficients (MFCC) [44]
are derived. Given an audio spectrum, the usual process of deriving the MFCCs starts
with magnifying high frequencies which can result from natural speech. Afterwards,
the audio spectrum is divided into 20-30 ms frames and discrete Fourier transform is
applied via a windowing process, usually Hamming window, to extract the signal’s
spectral information. The Mel spectrum is then calculated by passing the spectral
information, obtained from discrete Fourier transform, through multiple triangular
band pass filters, from which the logarithmic output is obtained. Ultimately, discrete
cosine transform is applied to the log Mel spectrum and the MFCCs are derived.

Given the MFCCs obtained from the previous step, the AM is utilized to compute
the probabilities of phoneme for each of the feature vector’s split frames. The AM

22

contains the required statistical representations of the phonemes of the words found
in the LM and the modelling is usually done by building Hidden Markov Models
(HMM). The HMMs are comprised of a series of state nodes and transitions between
each state given a set of probabilities. Additionally, given a phoneme, the HMM
can be built according to how many phonemes around the input will be taken into
consideration as additional context. Figure 10 shows a left-right HMM built with 5
hidden states to improve performance in speech with background noise.

Figure 10: Illustration of left-right HMM with 5 hidden states [44]. In this particular
HMM the states are depicted as si nodes, bi() indicate the observation probability
density functions and aij are the transition probabilities from nodes i to j.

The LM is independently trained on a substantial amount of text data, and is
then employed to statistically predict in a sentence what word is the next one, when
taking as context the previous words. Usually these predictions are done using word
frequency counts, such as n-gram LMs. These models employ a n − 1 long context
of previous words, and are developed by building a (n − 1)-order Markov model
from large text training corpora. The model contains all the possible combinations
of contiguous n − 1 words and their frequency. For example a 2-gram (or bi-gram)
model, with the training sentence “Hello good, wonderful people!” will generate the
following bi-grams: “hello good”, “good wonderful” and “wonderful people”. This
type of LM modeling brings multiple drawbacks, that although have been addressed
through research, are ultimately still detrimental.

On one hand, new n-gram sequences that do not appear in training data will
result in errors as their resulting probability by the LM is zero. The implementation
of probability smoothing processes have been employed to solve this issue. Smoothing
methods like Kneser-Ney smoothing [45] recalculate the probability of the n-grams
and assign some small probability to new ones. However, even these methods do
not fully fix the problems which rise from the statistical aspect of LMs, as well as
their failure at capturing longer context, as n-gram models with large n still fail to

23

capture long context with the same capacity as RNNs with recurrent gated units or
Attention mechanisms, or Transformer models [40]. On the other hand, LMs can
suffer from probability biases, as true correct words can be rejected in favour of
stored n-grams with high probability.

The last component of the system is the lexicon. This component is in charge
of storing a huge vocabulary of words with their respective phoneme pronunciation.
Consequential downsides of this are the sheer size and specialized human labor
required in order to have a robust phoneme to word mapping lexicon. Additionally,
given a specific language, many words can be pronounced identically to each other,
but one word can also have multiple pronunciations.

Conventional ASR can be expressed as the task of finding the most probable
word sequence given a set of observations, such that:

W ∗ = argmaxW P (W |O) (9)

where W ∗ is the most probable word sequence, O is the observation sequence and
P (W |O) is the conditional probability of a word sequence W given the observation
sequence O. By using Bayes’ rule, equation 9 can be formulated as:

W ∗ = P (O|W)P (W)
P (O) = argmaxW P (O|W)P (W) (10)

where P (O|W) is obtained from the AM and P (W) is calculated by the LM.
All of these components, work together in the decoder to finalize the conventional

ASR pipeline. First, the AM obtains the most probable phonemes given multiple
MFCC feature vectors. Second, given the lexicon and the LM, a choice is made, with
the phonemes obtained, as to which word should be the correct one.

3.1.2 End-to-end ASR systems

During the past decade, all the drawbacks of conventional ASR have led to the research
of end-to-end ASR systems, and have consolidated their place as the state-of-the-art
models for ASR tasks [15, 46, 47, 48, 49, 50].

Just like conventional ASR, end-to-end systems are comprised of multiple com-
ponents, however, these are merged into one single architecture, and it enables the
model to be trained as a whole. This merged model can single-handedly carry out
the direct mapping of speech signal into text sequence. In contrast, conventional
ASR systems require the individual training of it’s components, which complicates
the training process and decreases their speech recognition potential, when compared
to single end-to-end systems trained on considerable amounts of data.

Ultimately, the use of multiple components can lead to conflicting predictions
between themselves. Moreover, the manual creation of sufficiently large lexicons is
tedious, costly and requires specialized experts. Even with expert human modeling,
homophones still occur in large lexicons. Homophones lead to lexicons with word
entries which possess the same pronunciation, or single entries which hold multiple
pronunciations. For example, read is pronounced differently depending on the verb
tense, and tomato can be pronounced tuh-maa-tow or tuh-may-tow. Moreover, the

24

use of rigid components can lead to out-of-vocabulary errors, which, even with
probabilistic smoothing, the predicted words can be the result of high probability
bias, instead of deduction based on knowledge or on the context the models can take
into consideration.

Finally, end-to-end models can more easily handle the prediction of speech
disfluencies, mispronunciations, make out speech from noisy samples and speaker
accent [15, 48, 49, 50].

Figure 11: Basic illustrations of the different end-to-end ASR systems [51].

As shown in Figure 11, end-to-end architectures can be categorized in three
different approach groups: Connectionist Temporal Classification (CTC), RNN-
Transducers, and Attention-based.

The main problem with speech data is the unknown alignment between the
characters in the transcript and that of the audio. CTC [1] is a way of getting around
not knowing this alignment, and it is especially well suited for ASR applications.
Moreover, a new token, ϵ, is introduced to the set of allowed outputs that gets around
two alignment pitfalls. First, it solves the need to force every input step to align
to some output, as utterances can have stretches of silence with no corresponding
output. Second, the inability of producing outputs with multiple characters in a row
if we assign an output to each input and then collapse the repeats. This blank ϵ
token does not correspond to anything and is removed when obtaining the output.

The CTC alignments result in a more natural way of obtaining the probability
of an output sequence given the probabilities at each time-step. These conditional

25

probabilities are calculated by CTC as:

p(Y |X) =
∑︂

A∈AX,Y

T∏︂
t=1

pt(at|X) (11)

Models trained with CTC typically employ an LM, such as a RNN, to estimate
pt(at|X), in order to also account for context. Additionally, the loss can be computed
faster with a dynamic programming algorithm, where the main insight is that if two
alignments have reached the same output at the same step, we can merge them.

On the other hand, the RNN-Transducer [52] was proposed to solve the two main
limitations of CTC: the unawareness of CTC to the context of outputs, and the
inability of CTC to map inputs to outputs larger than the inputs. RNN-Transducer
can map an input to any number of outputs while also taking into account the context
between input and output, thanks to its recurrent prediction network.

Finally, the Attention-based systems [2] use attention mechanisms so that the
model can focus on relevant contextual information of the prediction of the next output.
This subsequently aids the model to obtain better results on longer sentences, however
they obtain acceptable results only when dealing with inputs that approximate the
length of the training samples.

3.1.3 Wav2Vec

Wav2Vec [60] is a CNN speech encoder model trained in an unsupervised manner to
learn speech representations without the need of labeled data. The model is trained
to learn these representations by predicting future samples from a given audio signal
context.

Figure 12: Illustration of Wav2Vec pre-training procedure [60].

As shown in Figure 12, the model is comprised of two CNNs: the encoder network
and the context network. Both networks have a causal convolution with a group
normalization layer and ReLU nonlinearity. On one hand, the encoder network is

26

designed as a five layer CNN. It maps the input signal xi ∈ X to the low-frequency
latent representation zi ∈ Z, resulting in feature vectors of 30ms of speech every 10ms,
such that: f : X → Z. On the other hand, the context network is designed as a nine
layer CNN. It maps v encoder outputs z1, ..., zi−v ∈ Z into a single contextualized
tensor ci ∈ C which covers 210ms of audio, such that: g : Z → C.

Instead of predicting future samples, the Wav2Vec is trained to distinguish the
true sample zi+k at the future step k from the distractors/negatives z̃. The training
task is a contrastive loss calculated as:

Lk = −
T −k∑︂
i=1

(logσ(zT
i+khk(ci)) + λEz̃∼pn [logσ(−z̃T hk(ci))]) (12)

where σ(x) is the sigmoid function 1/(1+exp(−x)), σ(zT
i+khk(ci)) is the probability

of the sample being the correct one, and hk(ci) = Wkci + bk is a step-specific affine
transformation.

Wav2Vec obtained better results with a substantially smaller amount of data
than the state-of-the-art at the time [61].

3.1.4 Wav2Vec2

Wav2Vec2 [3], known officially as Wav2Vec 2.0, is a successor of Wav2Vec. The
model is a self-supervised architecture trained from raw audio to learn speech
representations without the need of labeled data. Wav2Vec2 is comprised of a multi-
layered CNN encoder for obtaining latent speech representations, which are then fed
to a Transformer-based model to obtain contextualized representations.

The encoder network, just like Wav2Vec’s encoder network, is designed of a
multi-layer CNN network. It maps input signals xi ∈ X to the latent representations
zi ∈ Z, z1 . . . zT for T time-steps, such that: f : X → Z. However, the network uses
a GELU function [62] for it’s activation, as opposed to the Wav2Vec encoder which
employs ReLU.

The encoder’s latent representation outputs are passed to the Transformer-based
contextual network as inputs. The number of time-steps of the inputs depend on the
encoder’s stride. Moreover, relative positional information is learned from embeddings
obtained from a convolutional layer designed to learn contextual representations [63].
The context network is then followed by a GELU activation and layer normalization.

Additionally, the model contains a quantization module, where the outputs of the
encoder network are discretized to a finite set of speech representations by applying
product quantization [64]. To obtain the quantized outputs q ∈ Rf , the quantization
process concatenates chosen quantized representations from different codebooks.
Moreover, Gumbel softmax is used for choosing which entry v is taken from a given
codebook g, such that:

pg,v = exp(lg,v + nv)/τ∑︁V
k=1 exp(lg,k + nk)/τ

(13)

where the encoder network outputs are mapped to l ∈ RG×V , n = −log(−log(u)),
u are samples from the uniform distribution U(0, 1), and τ is a Gumbel-Softmax [65]

27

temperature variable.

Figure 13: Illustration of Wav2Vec2 pre-training procedure [3].

As illustrated in Figure 13, the pre-training process consists of two main phases.
First, similar to BERT’s training process, a proportion of the encoder network inputs
are masked before being passed to the contextual Transformer network.

Second, the Wav2Vec2 pre-training task solves a combined task. On one hand,
the speech audio representations are first learned via a contrastive loss Lm, where
true quantized latent speech representations needs to be identified from a set of
incorrect representations, or distractors. The contrastive loss is calculated as:

Lm = −log
exp(sim(ct, qt)/k∑︁

q̃∼Qt
(exp(sim(ct, q̃)/k) (14)

where qt is the true quantized latent speech representation, with a set of K + 1
candidates q̃ ∈ Qt. Here, Qt includes the correct sample qt and K other distractors.

On the other hand, in order to equally use entries in each of the codebooks,
the diversity loss Ld is charged with increasing the amount of quantized codebook
representations. The diversity loss maximizes the entropy of the averaged softmax
distribution over the codebook entries for each codebook, and is calculated as:

Ld = 1
GV

G∑︂
g=1

−H(pg) = 1
GV

G∑︂
g=1

V∑︂
v=1

pg,vlogpg,v (15)

where, V is the number of entries in a codebook and G is the number of codebooks.
Therefore, the pre-training task can be described as the need to learn representa-

tions of speech by solving the contrastive loss task, and, additionally, compelling the
model to use all codebook entries equally as often. This task can be formulated as:

L = Lm + αLd (16)

where α is a tuned hyperparameter.

28

After pre-training is done, Wav2Vec2 is finetuned for ASR by a classification
task, where the classes represent the vocabulary, with the aid of a linear classifier
appended to the contextual network. The optimization step is done by using the
CTC loss and applying masking similar to SpecAugment [66], while keeping the
CNN part frozen. By masking to time-steps and channels, these two steps help with
learning on unlabeled data, delay overfitting and improve the performance of the
model.

3.2 Disfluency detection
Conversational speech is an inherently difficult type of speech for ASR, due to
spontaneous errors [53]. For native speaker speech these errors usually are: disfluencies
occurring in the moment (repetitions, stuttering), which are usually not edited out
from the audio, correct but uncommon word pronunciations, and prosodic variability.
All these errors are exacerbated when dealing with unedited L2 conversational
speech data, as well as with L2 read-aloud data. For instance, disfluencies and
mispronunciations occur more frequently, and usually tend to be linked to the
speakers’ native language.

In the past, only a small number of research was done with the aim of developing
robust models with good performance at detecting speech disfluencies, as a result
of a lack of labeled data for a conventional statistical ASR task as well as for
its insignificant application potential. This is in contrast to more mainstream
ASR tasks such as straightforward speech recognition and speaker identification.
Additionally, conventional ASR approaches applied to disfluency detection lacked
significant statistical findings and remained moderately stagnant, as neither HMM
approaches [54, 55] nor more nuanced probabilistic models [56, 57] reached prominent
results to advance the field.

In recent years interest has increased in developing applications for the treatment
of stuttering disfluencies as well as tools aimed for L2 self-learning. The intent of
these L2 tools is for displaying what pronunciation errors the speaker uttered and
what disfluencies were detected, with the aim of correcting and decreasing their
occurrence. This new research wave in disfluency detection incorporated into ASR is
linked to two factors: first, society’s rising regard in recent years at aiding people
with speech impediments and easier integration of non-native speakers, and second,
the normalization of end-to-end self-supervised systems as the state-of-the-art in
ASR tasks.

Forays have been made with end-to-end systems by attempting to detect dis-
fluencies in stuttering therapy [13]. This work obtains good results by using an
end-to-end approach as a disfluency detection system combined with ASR, however it
only strives at detecting one type of disfluency with a CTC Transformer-based model,
the Wav2Vec2, trained on native speech. Moreover, new research expanded the
detection task to two disfluency types, namely fillers and hesitations [15], and showed
that these systems can also obtain acceptable results for tasks with very different
disfluency properties. Their method also outperformed other approaches intended to
reduce disfluency related errors. Specifically, a CTC-based Transformer model for

29

disfluency detection outperformed another CTC-based Transformer approach [58], as
well as individual approaches for disfluency removal [10] and hesitation labeling [59].

This thesis will employ the Wav2Vec2 CTC Transformer-based model, in view
of the fact that self-supervised end-to-end systems have broken through the disflu-
ency detection bottleneck and show prominent results when working with multiple
disfluencies.

30

4 Experimentation
In this section, the speech datasets and metrics employed are discussed, the ex-
periments carried out are presented and the results obtained are examined. The
experiments are tailored to a Finnish L2 ASR approach with an additional disfluency
detection. Therefore, a pre-trained multilingual Uralic Wav2Vec21 model is employed
for the models in this thesis, which will be fine-tuned with Finnish data tailored
to L2. Additionally, a supplemental Wav2Vec2 without disfluency detection will be
employed as a baseline for comparison analysis of the results.

The word error rate (WER) and character error rate (CER) are used to evaluate
the performance of the ASR disfluency detector model. Additionally, Precision and
Recall are used to validate the results of the disfluency detector.

4.1 Datasets
The speech recordings used are a subset of the Finnish speech data which has been
collected for the DigiTala project [16]. The data from the DigiTala project are used
to develop ASR tools that can aid in the examination of L2 Finnish and Swedish
skills, and is primarily intented to reduce the human workload in evaluations of
Finnish high school examinations. The collected L2 Finnish data are sourced on
read-aloud and free-form speaking tasks from high school and university students,
and are of gold standard as they have been manually transcribed. In addition to the
transcripts, the tasks are graded by multiple human examiners in accordance to L2
language skills.

Data Total Fluent Non-fluent
Lukio 2966 730 2236
Aalto 1883 551 1332
YKI 386 0 386

Table 1: Fluent, non-fluent and total amount of recordings in Lukio, Aalto and YKI
compilations.

The DigiTala project’s data has been expanded during 2021 and 2022, and the
L2 Finnish data currently consists of 5235 transcribed speech samples, where the
recordings have a total duration of approximately 1822 minutes. The average duration
of a sample is of 20.8 seconds, but they can vary from simple tasks formed of a few
words to long sentences. The recordings, as shown in Table 1, have been obtained
from speakers of Lukio (higher education high-schools), from Aalto university and
from YKI examinations; the latter are certificates of language proficiency for adults.
The number of Lukio and Aalto recordings, 2966 and 1883 respectively, is much higher
than YKI at only 386, but the recordings from YKI are considerably longer than
the rest, as they come from lengthy oral examinations. Moreover, the transcripts

1https://huggingface.co/Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish

31

of the recordings can contain the errors and disfluencies the speaker may have
generated while talking. YKI is unique because it contains only non-fluent samples,
samples where there are errors or disfluencies, in view of the fact that they are long
examination recordings and the speaker is bound to make some mistake. On the
other hand, the Lukio recordings have 730 fluent and 2236 non-fluent samples, and,
the Aalto recordings have 551 fluent and 1332 non-fluent samples. Additionally, the
non-fluent transcripts contain the following tags:

• Hesitations are marked with the <hesitation> tag along with the hesita-
tion’s text. Some resemble the form: öö<hesitation>, mm<hesitation>,
aa<hesitation>. Additionally, irregardless of their length, the hesitations
are transcribed with only two letters: öööööö is transcribed as öö<hesitation>.

• Paralinguistic events such as laughter, coughing, sighing, exclamations, etc.,
are marked with the <paral> tag.

• Translinguistics, or code-switching, words employed by the speaker from any
language other than Finnish, are marked as <trans>. Moreover, if the tran-
scriber recognizes the language the word originates from, then it must be tagged
accordingly: if the word is in English, then it is tagged as <transen>; if the
word is in Swedish, then it is tagged as <transsv>, etc.

• Unclear words and non-words are marked under the general <garbage> tag.

• Names of people, places and things are marked with a following <name> tag
when the name is known by the transcriber, for example: Mallorca<name>,
Aapo<name>; otherwise, if the name is not understood then with a white-space
followed by <name>.

• Partially correct words are annotated between asterisks and the incorrect form
must be maintained, for example: the correct word is muusikko, the person
pronounces it incorrectly as musikko and the transcriber marks it as *musikko*.

• Repetitions and stutterings are marked with a hyphen, for example: jalkapalloa
ja sul- sulkapalloa.

However, only a handful of tags are actual disfluencies, and, as such, relevant to
the L2 ASR disfluency detector. Therefore, the following disfluencies will be used
and the rest will have their tags removed from the transcripts:

• Hesitations followed by <hesitation>.

• Paralinguistics marked as <paral>.

• Translinguistics of any language will be changed to the general tag <trans>,
and used as is.

• Partially correct words marked with asterisks.

32

• Repetitions marked with hyphen.

As shown in Table 2, the number of <hesitation> tags in the data is of 1346 for
Lukio and 581 for Aalto. The number of <paral> tags is of 933 and 14 for Aalto.
The number of <trans> tags is of 72 for Lukio and 29 for Aalto. The number of
partially correct and repetition tags is of 3069 and 351 respectively for Lukio, 3127
and 118 respectively for Aalto, and, 5835 and 1428 respectively for YKI. None of the
previously mentioned disfluency types, besides partially correct words and repetitions,
are found in the YKI data. This is as a result of the transcriber tasks not containing
the same instructions as for the Lukio and Aalto tasks, only <garbage> tags are
found in YKI and these are not usable.

Disfluency Lukio Aalto YKI
<hesitation> 1346 581 -

<paral> 933 14 -
<trans> 72 29 -

partial 3069 3127 5835
-repetition- 351 118 1428

Table 2: Number of disfluency types in the Lukio, Aalto and YKI transcripts. Partially
correct words are shown as *partial*, and repetitions are shown as -repetition-.

As a note, the YKI data is not be employed for the model, as the data contains
11327 <garbage> tags and the recordings are exceedingly long to be used as inputs.
Additionally, processing the transcripts, as well as the recordings, in order to remove
these tags and also splitting the recordings might not have been a viable solution.
Moreover, the L2 ASR baseline used to compare to the L2 ASR disfluency detector
does not make use of the YKI data, therefore the comparisons are of two models
more alike to eachother. By using only the Lukio and Aalto recordings, the data has
a total of 320 unique speakers.

Additional processing of the different disfluency tags has been carried out, as there
are many errors commited by the transcribers when marking these tags and they
had to be correctly cleaned. For example, many <hesitation> tags were transcribed
incorrectly as <hesitate>, <hesittate> or <hesitatae>, among others. Finally, all
of the disfluency tags are changed to the general tag <disfluency>, as the L2 ASR
disfluency model is not multi-class. This has also been done to tags of partially
correct words by removing the asterisks, for instance *musikko* will change to
musikko<disfluency>. And with repetitions by removing the hyphens, jalkapalloa ja
sul- sulkapalloa will change to jalkapalloa ja sul<disfluency> sulkapalloa.

The audio recordings are converted to monophonic (mono) audio and resampled at
a rate of 16000 Hz with 16 bits per channel. On the other hand, the transcripts have
been preprocessed by converting all letters to lowercase and removing all punctuation
except apostrophe. Finally, the Finnish character å has been added, special tags for
unknown tokens and padding tokens have been inserted in the dataset’s vocabulary,
and all other characters not found in the Finnish alphabet have been removed.

33

The common approach for the process of building the L2 ASR disfluency models
has been followed, and the data has been split into three unique sets to be used
in the three stages of building the model: training, validating and testing. This
division of the data is a straightforward random split where 80% will be used for
training, 10% will be used for validating the training process, and 10% will be used for
testing the model once the training has concluded. The validation will be mentioned
as the development (dev) set. Although, a unique condition has to be upheld in
order for the three processes to be independent between eachother, that is, none
of the speakers found in any one set, should be found in any other, for example:
speaker_156 is found in the training split, thus, it is not present neither in the dev
or the testing sets. This stipulation was taken into consideration when performing
the random split mentioned above, and, as shown in Table 3, from the total of 320
speakers, the training set contains 256, the validation set 32, and the training set
32. Having unique speakers in each of the sets will increase the confidence of the
results obtained, as the testing process will not be adulterated by having the results
influenced by the model having learned on speakers found also in the testing set.
The total duration, the number of samples and disfluencies in the dev and test sets
are approximately the same: 1.98 hours and 2.06 hours respectively, 485 samples and
484 samples respectively, and, 348 disfluencies and 362 disfluencies respectively. On
the other hand, the training set contains 256 unique speakers, a duration of 15.39
hours, 3862 samples and 2741 disfluencies.

Split Speakers Duration, h Samples Disfluencies
Train 256 15.39 3862 2741
Dev 32 1.98 485 348
Test 32 2.06 484 362

Table 3: Amount of speaker, duration in hours, number of samples and <disfluency>
tags for the data splits.

All in all, the training, dev and testing sets have a proportional number of speakers,
total duration of samples, number of samples and of disfluency tags. Finally, the
distribution of sample lengths for these splits has been examined in order to further
validate their correct use. As shown in Figures A1, A2 and A3, the sample lengths
for each of the sets are similarly distributed, with most of the data being short length
samples of less than 25 words per transcript, a smaller spread of samples with larger
lengths as well as a few outlier samples of more than 125 words.

4.2 Metrics
To evaluate the ASR performance of the system, the WER and CER metrics are
used. WER is a popular metric used for performance assessment of ASR and NLP
systems. It is based on the Levenshtein distance [67], and measures the performance
at the word level. Additionally, there is an inherent difficulty produced by the fact
that generated sequences can have different lengths from the reference sequence, the

34

metric works around this by first aligning the predicted sequence with the reference
using dynamic string alignment. The WER metric calculates the percentage of
predicted words that are incorrectly produced when comparing the sequence to
that of the original reference sequence. It computes the percentage by taking into
consideration the sum of the substitutions, insertions and deletions in the predicted
sequence and dividing it by the number of words in the reference. Although the
WER metric is used as the main performance indicator, the CER metric is also
employed to analyze the ASR results. CER is similar to WER, and it calculates
the percentage in the same way but on the character level. It is a useful metric
characterized by a robustness when comparing words which might differ from the
reference, as a slight deviation in the characters predicted means only a slight increase
in the CER. Although this seems as an apparent advantage over WER, as a single
character difference would increase the WER significantly more, both metrics are
complementary when analyzing the performance of the ASR and lower values of both
indicate good performance for ASR.

Moreover, the Precision and Recall metrics are employed to analyze the perfor-
mance of the disfluency detection model by taking into consideration the disfluencies
predicted by the model. In this work, the Precision is the proportion of tokens
predicted as disfluencies by the model that are labeled correctly as such, it is thus
obtained as the true positives divided by the sum of true positives and false positives.
In turn, the Recall is the proportion of tokens correctly labeled as disfluencies which
are correctly predicted as such by the model, and is obtained as the true positives
divided by the sum of true positives and false negatives. For these two metrics,
higher values indicate a better performance.

4.3 Pre-trained model and baseline
The base model employed for the L2 ASR disfluency detector will be a pre-trained,
publicly available Facebook Wav2Vec2 model, namely wav2vec2-large-uralic-voxpopuli-
v2 2. This model contains approximately 317 million parameters and weighs roughly
1.27 GB. As shown in Table 4, it has been pre-trained on a total of 42.5k hours
of Uralic language family unlabeled data: 14.2k hours of Finnish, 10.6k hours of
Estonian and 17.7k hours of Hungarian speech, sampled at 16000 Hz from the
VoxPopuli v2 dataset. The VoxPopuli dataset [68] is currently the largest publicly
available multilingual dataset, gathered and processed by Facebook, for the purpose
of unsupervised and semisupervised learning. Most importantly, it is comprised
of 400k hours of untranscribed speech from 23 languages, from which the Uralic
languages are used for the models in this work.

Additionally, an L2 ASR Wav2Vec2 model implemented by Yaroslav Getman [69]
is used in order to compare the results obtained by the L2 ASR disfluency detector
models in this project. This model, labeled comparison_model, is also pre-trained
on all the Uralic languages from the VoxPopuli v2 dataset, including the 14.2k hours
of Finnish. Moreover, it is finetuned for L2 ASR on the YKI data, but only on the

2https://huggingface.co/Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish

35

wav2vec2-large-uralic-voxpopuli-v2
Finnish Estonian Hungarian Total

Hours 14.2k 10.6k 17.7k 42.5k

Table 4: Unlabeled data from Finnish, Estonian and Hungarian the base model has
been pre-trained on from Facebook’s VoxPopuli v2 dataset.

first data collection trial of Lukio data, as opposed to the models in this work, which
use the second data collection trial as well.

4.4 Finetuning
4.4.1 Finetuning environment and hyper-parameters

Model finetuning has been carried out using Aalto University’s Triton high-performance
computing cluster. This service provides Aalto researchers and students with power-
ful environments on which to run GPU-intensive computing processes such as the
finetuning operations of this work’s L2 ASR disfluency detector models.

For finetuning, Triton’s gpu[1-10] nodes and dgx[1-7] nodes have been used, which
are comprised of Nvidia Tesla V100 graphic cards with 5120 Nvidia CUDA cores,
and, 32GB and 16GB of GPU memory respectively. Moreover, the dgx[1-7] nodes
provide a priority assignment of resources for the researchers of the ELEC department.
Additionally, Triton provides a work folder with an approximate minimum of 200GB of
storage, which have been used in this work for the storing of code, model checkpoints
and data.

In regard to the model hyperparameters and fitting settings, both the baseline
and the L2 ASR disfluency detector models employ the same parameters. The
models are trained for a total of 40 epochs, and carry out WER and CER evaluation
after each epoch. Additionally, up to 15 checkpoints are saved at a time, and after
the training process is finished the best model with smallest WER is chosen from
the saved checkpoints. Given the immense memory requirements of the Wav2Vec2
model, gradient checkpointing [70] is employed in order to reduce memory usage.
Gradient checkpointing achieves this memory performance boost by trading off
more computational time required, as certain layers’ activations are cleared and
recomputed during backward passes. Moreover, a small batch size of 2 is used for
both the training and evaluation batches, in order to prevent inevitable memory
issues that appear during the training process of large models which additionally
make use of large data inputs. Lastly, a learning rate of 0.0003 and warmup ratio of
0.1 is used.

4.4.2 L2 Finnish ASR baseline finetuning

In the process of obtaining an L2 ASR disfluency detector, initial experiments
consist of obtaining a new baseline L2 Finnish ASR model with comparable or better
performance than the L2 Finnish comparison_model. The previously mentioned

36

model was trained for a duration of 70-80 epochs, on a first compilation of L2 Lukio
data collected before Autumn of 2021 and on the YKI data, and the new baseline,
denominated disfl_baseline, will be trained on the full Aalto L2 data and on the full
Lukio L2 data collected to date as seen on Table 1. From the current data, the same
splits as seen in Table 3 will be employed for training. Moreover, the <disfluency>
tags will not be utilized, with the purpose of first obtaining a reliable ASR baseline
to compare with the comparison_model. Both models have been evaluated on the
same testing set from Table 3.

Model Name Train size, h WER, % CER, %
comparison_model ≈ 14.60 35.47 11.09
disfl_baseline ≈ 15.39 29.09 9.08

Table 5: Results for the comparison model and the baseline used for the disfluency
detector.

As seen in Table 5, the baseline developed for the disfluency detector obtains a
WER of 29.09 %, with an absolute improvement of 6.38 % over the comparison_model,
which obtains 35.47 %. This increase in WER efficiency is most likely correlated with
the longer total duration of the data which the baseline has been trained with, as it
is an increase of 0.79 hours over the comparison model. Similarly the improvement in
WER, the baseline model obtains a lower CER of 9.08 %, while the comparison model
results in a CER of 11.09 %. The baseline results are satisfactory when compared to
the comparison_model, consequently, the same pre-trained model and it’s settings
will be employed for the finetuning of the L2 ASR disfluency detector.

Figure 14 shows the progress of the model after each epoch of the finetuning
process. The training for the baseline model stops after the specified 40 epochs,
which is where the model reaches the WER and CER scores of Table 5. By observing
the graph, the likely possibility is that if the number of epochs was higher, the
baseline model could have achieved better results than the current ones, but the
purpose of these comparisons was to simply validate the use of the chosen model as
the disfluency detector.

37

Figure 14: Time series graph indicating the model’s loss, WER and CER on the dev
set while finetuning.

Moreover, the baseline model required approximately 20 hours of finetuning for
40 epochs, an additional increase in number of epochs would not be necessary, as
with the current amount the comparisons already indicate that the baseline is a
sufficiently good choice for the disfluency detector.

4.4.3 L2 Finnish ASR disfluency detector finetuning

The L2 Finnish ASR disfluency detector has been trained by following the baseline’s
training hyperparameters, employing 40 epochs for a total duration of approximately
21 hours. The training set used is mentioned in Table 3, and contains the <disfluency>
tags indicating the disruptions in speech declared prior.

The results of the L2 Finnish ASR disfluency detector are shown in Table 6. The
disfluency detector, disfl_detector, reaches 30.41 % WER and 13.17 % CER after
40 epochs. Moreover, in order to examine whether the model might achieve better
results with more epochs, another model has been finetuned with 60 epochs for a
duration of approximately 31 hours. The results for this model, disfl_detector_60ep,
are very similar to the latter. For the WER, it obtains an insignificant improvement
of 0.03 %, with a WER of 30.38 %. And, in contrast, it slightly worsens for the CER
as it results in 13.36 % CER, an increase of 0.19 % over the model trained for 40
epochs. Therefore, the results obtained by the model trained for 60 epochs does not
justify the use of this model, particularly when also taking into account the rise in
total training time.

38

Model Name WER, % CER, %
disfl_detector 30.41 13.17

disfl_detector_60ep 30.38 13.36

Table 6: Results obtained by the L2 Finnish ASR disfluency detector.

The progress after each epoch during finetuning can be observed in Figure 15
for the model trained for 40 epochs, and in Figure 16 for the model trained for 60
epochs.

Figure 15: Time series graph indicating the disfluency detector model’s loss, WER
and CER on the dev set while finetuning for 40 epochs.

39

Figure 16: Time series graph indicating the disfluency detector model’s loss, WER
and CER on the dev set while finetuning for 60 epochs.

4.4.4 L2 Finnish ASR Disfluency Detector with Curriculum Learning

In addition to the standard finetuning which employs randomly shuffled data to train,
this work also studies the possibility of improving the performance of the model
via a Curriculum Learning (CL) [71, 72] strategy. The CL strategy is based on the
educational process humans undergo in order to reach a certain level of expertise
needed to perform in their line of work. This educational process gradually introduces
new concepts with an increasing level of difficulty, often in relation to previously
learned ones, in order to successfully guide a person through a meaningful learning
regime. In ML, the basic idea of applying CL to the training process is to start with
data which might be easier for the model to understand, and then gradually increase
the difficulty as the model learns.

Model Name WER, % CER, %
disfl_detector_cl 30.77 13.79

Table 7: Results obtained by the L2 Finnish ASR disfluency detector when using CL
strategy.

There are multiple types of CL strategies one might employ depending on the
task and the angle of choosing the difficulty. In the context of ASR such strategies
include: first starting with short length audio samples, then increasing the length, or,
beginning with clearer samples and gradually introducing samples with more noise
present.

40

In this project, the CL strategy implemented is to progressively feed the model
increasingly disfluent samples. For this strategy, the same training, dev and test sets
as mentioned in Table 3 are used. However, instead of randomly sampling the inputs
from the training set, the split is first sorted according to how fluent the samples are:
the first samples contain no disfluency tags, while latter samples contain the most.
Therefore, the model learns fluent speech before introducing harder samples where
the speaker produced disfluency mistakes.

The results for the L2 Finnish ASR disfluency detector model using the CL
strategy can be observed in Table 7. The model obtains 30.77 % WER and 13.79 %
CER after 40 epochs of finetuning.

Figure 17: Time series graph indicating the disfluency detector model’s loss, WER
and CER on the dev set while finetuning, when using CL strategy.

Moreover, the progress after each epoch during finetuning can be observed in
Figure 17. Compared to the other finetuned models, shown in Figures 14 and 15, the
one employing CL seems to stabilize faster during the first few epochs, and reaches
the best results in less iterations, for example, disfl_detector_cl reaches the best
model in epoch 35, while disfl_detector reaches it in epoch 37.

4.5 Results
4.5.1 Combined results comparison

Considering the number of different models that have been finetuned, their respective
results are abridged in Table 8. Moreover, the baseline model, and the comparison
model comparison_model, are included as well.

41

Model Name WER, % CER, %
comparison_model 35.47 11.09
disfl_baseline 29.09 9.08
disfl_detector 30.41 13.17

disfl_detector_60ep 30.38 13.36
disfl_detector_cl 30.77 13.79

Table 8: Combined results of models finetuned for the L2 Finnish ASR disfluency
detector task, as well as the comparison and the baseline models.

The baseline comparison model disfl_baseline offers great improvement in results
over those of comparison_model. It reaches 29.09 % WER and 9.08 % CER, when
compared to the latter’s results of 35.47 % WER and 11.09 % CER. As has been
mentioned, these results are a good indication of the model’s ASR capabilities, and
has been used as the base for the finetuning of the L2 Finnish ASR disfluency detector
models.

There are three models that have been finetuned based on the baseline. Models
disfl_detector, and disfl_detector_60ep, have been finetuned with randomly sampled
data from the training set, for a duration of 40 epochs for the first and 60 epochs for
the second. The 40 epoch model reaches a WER of 30.41 % and CER of 13.17 %,
indicating a slight increase of 1.32 % in WER and a more tangible rise of 4.09 %
in CER. The 60 epoch model obtains a WER of 30.38 % and CER of 13.36 %, a
respective rise of 1.29 % in WER and 4.28 % in CER. Moreover, disfl_detector_cl,
trained with a CL strategy for input sampling, has obtained minimally worst results.
It achieves a WER of 30.77 % and CER of 13.79 %, an increase of 1.68 % in WER
and 4.71 % in CER, when compared to the baseline results.

Model disfl_detector, henceforth identified simply as the disfluency detector, has
been chosen as the best out of the three finetuned detectors. This is in view of
the fact that, on the one hand, it obtains similar results as the one trained for 60
epochs, with considerably less time required for finetuning. And, on the other hand,
it obtains better results than the CL strategy model, which, although only slightly
worse, does succeed in stabilizing the model faster during the first few iterations of
training.

As mentioned, the disfluency detector obtains a negligible increase of 1.32 %
WER, but, although it is the best model out of the three finetuned, it nonetheless
achieves a substantial increase of 4.09 % in CER. This rise in WER and CER
develops as the result of the same problem: the detection of <disfluency> tags from
speech and the consequent unalignment of original transcript with the predicted one.
This issue is discussed in subsequent sections; as a summary, when the disfluency
detector incorrectly recognizes a <disfluency> tag, the following predicted transcript
becomes unaligned to some degree and the WER and CER increase. The CER rises
more than the WER, as it calculates the correct alignment of each character instead
of word.

42

4.5.2 WER and CER analysis

The WER and CER metrics of the disfluency detector have been analyzed to verify
their validity by means of different exploratory graphs.

Figures 18 and 19 show the distribution of WER and CER scores respectively
in two separate violin graphs obtained from the test set. The CER distribution is
heavily skewed to the left, close to the average CER score of 0.1317. This is the
desired and correct result, and only a few CER scores are outliers. The WER score
distribution is also heavily skewed towards the left, close to the WER score mean
of 0.3041. However, there are more outliers present than in the CER distribution,
and some are concentrated around a score of 1. This represents a small number of
test samples comprised only of sentences containing one or a few words. Here, the
WER score is 1 when the model has incorrectly predicted the word, or it obtains a
higher than 1 WER score when it has inserted additional words. Such behaviour is
expected, as even one erroneous character in a sample with one word results in a
WER of 1.

Figure 18: WER scores violin graph. Vertical axis depicts the amount of samples for
each WER value. Negative horizontal axis values are due to the figure generation.

43

Figure 19: CER scores violin graph. Vertical axis depicts the amount of samples for
each CER value. Negative horizontal axis values are due to the figure generation.

The previous characteristic is further proven in Figures 20 and 21, which respec-
tively indicate the WER and CER scores as a function of test set sample lengths.

Figure 20: Scatter plot of WER scores as a function of sample length.

44

As can be observed, the model performs uniformly, close to the WER and CER
means, independently of the sample lengths. It obtains great results with smaller
samples, when the samples are longer than 100 words, and surprisingly well for
samples of more than 200 words. However, there are outliers for both WER and
CER scores when dealing with very short utterances, as a consequence of incorrectly
predicting even a single character. Nevertheless, the results are more than satisfactory,
with only a few outliers of such nature, which does not indicate the model as incapable
of performing for the ASR task.

Figure 21: Scatter plot of CER scores as a function of sample length.

The ASR capability of the model has been demonstrated with the previous
examinations. However, another analysis performed examines the possible relation
between a speaker’s proficiency level and the WER score obtained for the samples
of said speakers. In addition to the audio and transcripts, the Lukio and Aalto L2
Finnish datasets contain the proficiency of each speaker as evaluated in accordance
to official CEFR language skills. There are usually multiple proficiency scores per
speaker done by different raters, and they have been averaged to ease representation.
The relation between the WER score and the proficiency of the speakers is shown in
Figure 22. In the data, the proficiency levels are marked in an ascending order as A1,
A2, B1, B2, C1, C2, however in the illustration, they are equivalently labeled 1, 2, 3,
4, 5, 6, with label 0 reserved for speakers without any proficiency score assigned.

It must be noted that a proficiency of C2 is the maximum proficiency one can
obtain via CEFR standards, while A1 is considered the beginner level.

45

Figure 22: Box plot indicating the relation between the WER score (y-axis) and
speaker proficiency (x-axis).

From the representation in Figure 22, we can observe that the WER goes in line
with the proficiency of speakers, which was the expected relation between the two
attributes. While most categories have a similar distribution of WER errors in their
respective samples, there are a few indications that the speakers improve in higher
categories. Category 0, 1 and 2 have a wider distribution, with scores mainly ranging
from 0 % and reaching ≈ 30 %. This can be due to the tasks being shorter and easier,
as they are tailored to beginner speakers. Nonetheless, these proficiencies have longer
tails towards higher error scores, as well as more detrimental outliers. In contrast,
the intermediate proficiencies 3 and 4 have a narrower distribution, shorter tails and
less outliers, when compared to the previous categories. This can be seen as evidence
of skill improvement, as they tend to make less mistakes while also undergoing more
difficult and longer evaluations. Finally, the same pattern occurs with categories 5
and 6, which incidentally are narrower than all the other proficiencies, contain no
outliers and have the shortest tails.

4.6 Validation of Disfluency Detector predictions
4.6.1 Kaldi metrics

Although the WER and CER scores for the disfluency detector are satisfactory,
the generated results need to be scrutinized to guarantee they fulfill acceptable
expectations. Therefore, the validity of the results has been analyzed with tools

46

such as Kaldi [73], the Precision and Recall metrics, and other visual exploration
techniques.

The WER and CER metrics are derived from the Levenshtein distance, and
before calculating the error score, the algorithms first align the two transcripts.
However, in order to manually analyze and validate the predicted transcripts, they
must first be aligned to the original gold transcripts. Therefore, Kaldi has been
used to examine these results, given that this toolkit employs a distinct method for
sentence alignment.

Kaldi [73] is an open-source toolkit designed for ASR development, and offers
features such as: code-level integration with Finite State Transducers, extensive
linear algebra support, matrix library, metrics, acoustic modeling, alignment, among
others. Kaldi’s alignment library has been employed for result validation, and it
makes use of human-readable representations of sequences of Hidden Markov Model
states taken by the best-path Viterbi [74] algorithm alignment of an utterance.

Additionally, before inspecting the model’s alignments using Kaldi, the CSID has
been obtained employing Kaldi’s alignment algorithm. The CSID of the alignment of
a predicted utterance and original transcript represents the correctly (C) predicted
words, the substitutions (S), the insertions (I), and the deletions (D). For a robust
model, the desirable CSID contains substantially more correctly predicted words,
than substitutions, insertions or deletions. Moreover, as a general rule, the number
of insertions and deletions must be considerably smaller than the number of correctly
predicted words and substitutions.

Figure 23: Kaldi obtained CSID for the L2 ASR baseline model.

Figures 23, 24 and 25 show the CSID’s of the L2 ASR baseline model, the L2
ASR disfluency detector model and L2 ASR disfluency model with CL strategy
respectively. As can be seen, the CSID trend for each of the models is practically
identical, further indicating that the disfluency detector models do not deviate from

47

the baseline model. The figures show a substantial difference between the number of
correctly predicted words and substitutions, insertions and deletions. Moreover, the
insertions and deletions comprise a small percentage of predicted words.

Figure 24: Kaldi obtained CSID for the L2 ASR Disfluency Detector model.

There is a considerable number of substitutions, higher than insertions and dele-
tions, and they are an indication of the models generating errors at the character level.
Furthermore, many insertions and deletions happen as a consequence of misalignment
between the original transcript and the predicted one because of human errors in
transcribing or the model not being able to differentiate between complex words, for
example an insertion can happen when the original transcript has the word “vuon-
natuhatyhdeksänsataakahdeksankymmentäyksi” and the model inserts an additional
word such that it predicts “vuonna tuhatyhdeksänsataakahdeksankymmentäyksi”.

48

Figure 25: Kaldi obtained CSID for the L2 ASR Disfluency Detector model using
CL strategy.

4.6.2 Kaldi alignment examples

Some examples of Kaldi alignments are shown and commented below. An important
note is that these examples are predicted by the best disfluency detector model
chosen from the previous section.

Example Text

(I) *** tärkeitä arvoja ovat asiakaslähtöisyys laadukkuus ja yhteistyö
yritykselle tärkeitä arvo ovat asiakaslähtöisyys laadukkuus ja yhteistyö

(II) yritykselle tärkeitä arvoja ovat asiakaslähtöisyys laadukkuus ja yhteistyö
yritykselle tärkeitä arvoja ovat asiakaslähtöisyys laadukkuus ja yhteistyö

(III) (...) perustettu *** *** vuona tuhatyhdeksänsataakaheksankymmentäyksi (...)
(...) perustettu vuonna tuhat yheksänsataa kaheksakymmentäyks (...)

(IV) (...) perustettu vuonna tuhat yheksänsataa kaheksakytyks (...)
(...) perustettu vuonna *** *** tuhatyheksänsataakaheksankytyks (...)

Table 9: Kaldi alignment examples. Each example is comprised of a pair of texts,
where the first sentence is the human transcript and the second sentence is the
predicted one. Long sentences are shortened with “(...)”. Insertions and deletions are
marked with “***” by Kaldi.

Table 9 shows some insertion and deletion errors, which occur either without the
model’s culpability, or because the model fails to differentiate when words are simple
or complex.

49

Examples (I) and (II) indicate such an insertion error. The human transcript from
example (I) begins with “tärkeitä arvoja”, whereas the model’s prediction inserts an
additional initial word such that it outputs: “yritykselle tärkeitä arvo”, besides the
substitution in words “arvoja” and predicted word “arvo”. Without prior analysis,
the error is that of a simple insertion, but the model correctly predicts a word that
in this case the transcriber failed to write. Example (II) proves this human error, as
it originates from the same speaking task, but uttered by a different speaker. In this
case, the transcriber has written this supposed insertion that occurs in example (I).
Although there are not many errors like this, there are still a few present, and the
number of insertions should be minimally lower than Kaldi indicates.

Examples (III) and (IV) show the difficulty that the model experiences with
complex words. The original transcript in example (III) contains the complex word
“tuhatyhdeksänsataakaheksankymmentäyksi”. Meanwhile, the model predicts this
word separately as three: “tuhat yheksänsataa kaheksakymmentäyks”. Conversely, in
example (IV) the transcriber divides the complex word from example (III) in three:
“tuhat yheksänsataa kaheksakytyks”, while the model predicts it as one complex
word: “tuhatyheksänsataakaheksankytyks”.

Moreover, the human error problem when transcribing is fairly common in the
original transcripts when comparing them manually. Although there are not many
examples where there are insertions or deletions between original transcripts, there
are numerous instances where there are obvious differences between the original
transcripts of two different speakers from the same task, some can be seen in
examples (I) and (II), and (III) and (IV). From those specific examples, the errors
are the non-transcribed “yritykselle” word by the transcriber in example (I), but also
the incorrectly transcribed “vuona” in example (III), which the model predicts as
“vuonna”, what should be the correct word as seen in the original transcript from
example (IV). Other examples from the data where the model predicted the word
correctly but the original transcript is incorrect are: “fazer” incorrectly transcribed
as “faser”, “yrityksellä” transcribed as “yrityksel”, “laadukkuus” transcribed as
“laadukuus”, “vienti” as “vieti”, “huimasti” transcribed as “humasti” or “ohumasti”,
among many others.

These errors ultimately worsen the WER, CER and CSID scores of the model, both
of substitutions and of insertions and deletions. However, this is an understandable
consequence of human labeling in such tasks, which is compounded by having
multiple transcribers for instances of the same speaking sample. Human labeling is
time consuming, tedious and monotonous, and many errors such as the previously
mentioned can occur. Regretfully, this is subsequently conveyed to the calculations of
the WER and CER, the CSID counts. Thus, it should be taken into consideration that
the model’s error metric results would unsurprisingly be lower by a few percentages.

4.6.3 Recall, Precision and performance of disfluency tags

The Recall and Precision metrics have been used to validate the prediction of
<disfluency> tags by the model. They have been calculated from the Kaldi alignments
by taking a binary approach to the transcripts. Both original and predicted transcripts

50

have been coded in a binary strategy, by replacing non-<disfluency> tags with 0
and <disfluency> tags with 1.

Model Name Recall Precision
disfl_detector 0.5655 0.6017

Table 10: Recall and Precision results of finetuned L2 Finnish ASR disfluency detector,
employing Kaldi aligned transcripts.

As shown in Table 10, the disfluency detector model obtains a Recall score of
0.5655 and a Precision score of 0.6017. Although these results are not perfect, they
are satisfactory given the task and the amount of data that was used.

Disfluency type Detected Not Detected Total
<paral> 5 22 27

<hesitation> 44 23 67
<trans> 0 5 5

-repetition- 7 10 17

Table 11: Number of predicted disfluencies by type.

Morever, Table 11 shows the number of correctly predicted specific disfluency
tags. Additionally, the previously mentioned issue of wrong insertions and deletions
has to be taken into account, so these values can ultimately become slightly higher.

The model correctly predicts 44 hesitations and fails to predict 23. Although the
number of failed predictions is high, the model can predict approximately 65.67 %,
which means the model can extrapolate knowledge for these predictions. Paralinguis-
tics and repetitions are sometimes predicted correctly, however the model fails to
predict most of them correctly. This can be as a consequence of these disfluencies
occurring in a variable and context driven manner. While hesitations occur when
the speaker utters expressions such as “öö” or “ää”, paralinguistics only occur when
certain sounds are uttered, such as laughter, coughing, etc., and repetitions when
a part of the next word is previously repeated. Although the results for these two
disfluencies are less than satisfactory, they indicate that the model has the ability to
detect them, and the use of more data for finetuning could result in an increase in
performance when predicting them. Finally, there are no translinguistics predicted
correctly. This is a problem caused by an obvious lack of translinguistic tags in the
data, and the fact that the model has been finetuned for L2 Finnish ASR and may
lack the knowledge to differentiate when words are non-Finnish, specifically as there
are translinguistics from multiple languages.

51

5 Summary
Multiple Wav2Vec2 models have been built in the pursuit of an L2 Finnish ASR
Disfluency Detector. First, a Wav2Vec2 baseline was established for L2 Finnish ASR
by finetuning the pretrained wav2vec2-large-uralic-voxpopuli-v2 model available, and
obtained satisfactory results with a WER of 29.09 % and a CER of 9.08 %. After
corroborating its performance when compared to a previous model, the pretrained
baseline was used to train two approaches to L2 Finnish ASR Disfluency Detection.

The disfluency detectors have been finetuned employing Lukio and Aalto L2
Finnish data from the Digitala project. This data is comprised of audios from
language examination tasks, which have been subsequently transcribed by human
transcribers, and the speakers evaluated by human raters which recorded the scores.
The number of tasks in the Lukio data is 2966, and 1883 in the Aalto data, for a
total of 19.45 hours. The base data contains different types of disfluencies, a useful
and consequential subset of which have been coded into a universal <disfluency>
tag. There are a total of 3451 disfluency tags in the data used.

The first approach is applied for training two models. These models have been
trained on a randomly sampled training set (see Table 3). One model was finetuned
for 40 epochs, while another for 60 epochs. The first model obtains overall the
best results in these experiments, with a WER of 30.41 % and a CER of 13.17 %.
Meanwhile, the model trained for 60 epochs, disfl_detector_60ep, obtains a WER of
30.38 % and a CER of 13.36 %.

The second approach, follows a Curriculum Learning strategy. The CL strategy
used aims at progressively feeding the model increasingly disfluent samples. The
training data is shuffled and sorted from least to most disfluent, therefore the model
learns easy and fluent speech before being introduced to much harder samples. This
strategy aims at simulating human learning on the model. Model disfl_detector_cl
obtains a WER of 30.77 % and a CER of 13.79 %. Although it results in minor
deterioration of these scores, the model does stabilize faster during the first epochs,
and reaches the best result in less iterations (see Figure 17).

Results for L2 Finnish ASR Disfluency Detection were, as expected, worse than
for L2 Finnish ASR, although they are good nonetheless. The best disfluency detector
model, disfl_detector, differs only in a slight increase of 1.32 % WER and a more
tangible increase of 4.09 % in CER. Additionally, the analysis of the L2 ASR
Disfluency Detector’s WER and CER scores validate the correct finetuning of the
model. The WER and CER distributions for the test tasks are compressed around
the respective score’s means, and there are only a few outliers encountered. These
outliers happen as a consequence of samples comprised of one or very few words,
where even one incorrect character in a word results in a high WER for that specific
sample.

Moreover, the Recall and Precision metrics as well as Kaldi’s CSID scores were
used to validate the predicted results and correct disfluency detection. Kaldi’s CSID
scores indicate that the model works correctly in it’s ASR function, as there are
considerably more correctly predicted words than there are insertions and deletions.
Furthermore, there is a small number of substitutions when compared to the correctly

52

predicted words, and they generally occur because of small character errors.
Additionally, when manually analyzing the Kaldi aligned samples, a considerable

number of human errors can be observed in the gold transcripts (see Table 9). This
problem must be taken into account, as the substantial number of errors ultimately
influences the final result of the WER, CER and CSID scores, as well as the Recall
and Precision metric results.

Further result analysis has shown that the model correctly predicts many hes-
itations, and has potential to learn how to correctly predict paralinguistics and
repetitions. However, the model has difficulties in predicting translinguistics, due to
the multilingual domain of these disfluencies and low number of examples containing
translinguistics.

53

6 Conclusions
This work focuses on the research of the use of disfluency detection and tagging in
the context of L2 Finnish ASR. Second language learner ASR is in itself a demanding
task, given likely mistakes such as grammatical, pronunciation and fluency errors. In
this thesis different pretrained publicly available Wav2Vec2 ASR models have been
finetuned to incorporate L2 Finnish ASR with the detection of certain disfluencies
in speech. In contrast to the usual method of employing disfluency detection as a
posterior step, this approach is carried out after an ASR system performs its task.

The models have been trained on 19.45 hours of L2 Finnish data from high-
school and university students, obtained from official second language examinations.
Training the model was approached in two different methods: randomly sampling the
training data and a curriculum learning strategy. The randomly sampled disfluency
detector model provides the best performance, and obtains 30.41% WER and 13.17%
CER.

Further analysis of the results has proven that incorporating the disfluency
detection step inside the ASR system is a viable solution. The L2 ASR disfluency
detector model is only slightly worse than the L2 ASR baseline, with a slight increase
of 1.32 % WER and a more tangible increase of 4.09 % CER. However, while the
model predicts correctly a substantial number of disfluencies, not all of the disfluency
types are predicted correctly and equitably.

As was observed when comparing the baseline model to previous work, more
data resulted in a more accurate model for L2 Finnish ASR. Therefore it is a
logical assumption that utilizing additional data, transcribed with a higher number
of disfluency tags, will produce a better built L2 Finnish ASR Disfluency Detector.
One feasible future work is the use of proven silver data generation methods [75]
to obtain samples with disfluencies from the large YKI dataset, as it will mean a
possible increase to 30.37 hours from the 19.45 hours currently used. This type
of strategy uses a trained disfluency detector model to obtain samples with newly
tagged disfluencies each epoch. The use of this silver data could improve the model,
without the need of costly wait time for new human transcribed data, by making
use of readily available untagged data. Additionally, a supplementary step could be
performed by employing native speaker data to finetune the ASR part of the model
before commencing finetuning of the L2 Finnish ASR Disfluency Detector system as
a whole, this step may improve the model’s ASR performance.

54

References
[1] Graves, A., Fernández, S., Gomez, F. & Schmidhuber, J. Connectionist tempo-

ral classification: Labelling unsegmented sequence data with recurrent neural
’networks. ICML 2006 - Proceedings Of The 23rd International Conference On
Machine Learning. 2006 pp. 369-376 (2006,1)

[2] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.,
Kaiser, L. & Polosukhin, I. Attention Is All You Need. CoRR. abs/1706.03762
(2017), http://arxiv.org/abs/1706.03762

[3] Baevski, A., Zhou, H., Mohamed, A. & Auli, M. Wav2vec 2.0: A Framework for
Self-Supervised Learning of Speech Representations. Proceedings Of The 34th
International Conference On Neural Information Processing Systems. (2020)

[4] Graves, A. & Jaitly, N. Towards End-To-End Speech Recogni-
tion with Recurrent Neural Networks. Proceedings Of The 31st Inter-
national Conference On Machine Learning. 32, 1764-1772 (2014,6,22),
https://proceedings.mlr.press/v32/graves14.html

[5] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E.,
Prenger, R., Satheesh, S., Sengupta, S., Coates, A. & Ng, A. Deep Speech:
Scaling up end-to-end speech recognition. CoRR. abs/1412.5567 (2014),
http://arxiv.org/abs/1412.5567

[6] Prabhavalkar, R., Rao, K., Sainath, T., Li, B., Johnson, L. & Jaitly, N. A
Comparison of Sequence-to-Sequence Models for Speech Recognition. Proc.
Interspeech 2017. pp. 939-943 (2017)

[7] Chiu, C., Sainath, T., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z., Kannan,
A., Weiss, R., Rao, K., Gonina, K., Jaitly, N., Li, B., Chorowski, J. & Bacchiani,
M. State-of-the-art Speech Recognition With Sequence-to-Sequence Models.
CoRR. abs/1712.01769 (2017), http://arxiv.org/abs/1712.01769

[8] Al-Ghezi, R., Getman, Y., Rouhe, A., Hildén, R. & Kurimo, M. Self-Supervised
End-to-End ASR for Low Resource L2 Swedish. Proc. Interspeech 2021. pp.
1429-1433 (2021)

[9] Stoian, M., Bansal, S. & Goldwater, S. Analyzing ASR Pretraining for Low-
Resource Speech-to-Text Translation. ICASSP 2020 - 2020 IEEE International
Conference On Acoustics, Speech And Signal Processing (ICASSP). pp. 7909-
7913 (2020)

[10] Jamshid Lou, P. & Johnson, M. End-to-End Speech Recognition and Disflu-
ency Removal. Findings Of The Association For Computational Linguistics:
EMNLP 2020. pp. 2051-2061 (2020,11), https://aclanthology.org/2020.findings-
emnlp.186

55

[11] Park, S., Shin, D., Paik, S., Choi, S., Kazakova, A. & Lee, J. Improving
Distinction between ASR Errors and Speech Disfluencies with Feature Space
Interpolation. CoRR. abs/2108.01812 (2021), https://arxiv.org/abs/2108.01812

[12] Wang, F., Chen, W., Yang, Z., Dong, Q., Xu, S. & Xu, B. Semi-Supervised Dis-
fluency Detection. Proceedings Of The 27th International Conference On Compu-
tational Linguistics. pp. 3529-3538 (2018,8), https://aclanthology.org/C18-1299

[13] Bayerl, S., Wagner, D., Noeth, E. & Riedhammer, K. Detecting Dysfluencies in
Stuttering Therapy Using wav2vec 2.0. Proc. Interspeech 2022. pp. 2868-2872
(2022)

[14] Salesky, E., Sperber, M. & Waibel, A. Fluent Translations from Disfluent Speech
in End-to-End Speech Translation. Proceedings Of The 2019 Conference Of The
North American Chapter Of The Association For Computational Linguistics:
Human Language Technologies, Volume 1 (Long And Short Papers). pp. 2786-
2792 (2019,6), https://aclanthology.org/N19-1285

[15] Horii, K., Fukuda, M., Ohta, K., Nishimura, R., Ogawa, A. & Kitaoka, N.
End-to-End Spontaneous Speech Recognition Using Disfluency Labeling. Proc.
Interspeech 2022. pp. 4108-4112 (2022)

[16] Karhila, R., Rouhe, A., Smit, P., Mansikkaniemi, A., Kallio, H., Lindroos, E.,
Hildén, R., Vainio, M. & Kurimo, M. Digitala: An Augmented Test and Review
Process Prototype for High-Stakes Spoken Foreign Language Examination. Proc.
Interspeech 2016. pp. 784-785 (2016)

[17] Getman, Y. End-to-End Low-Resource Automatic Speech Recognition for
Second Language Learners. (Aalto University. School of Electrical Engineer-
ing,2021), http://urn.fi/URN:NBN:fi:aalto-202110249766

[18] Rosenblatt, F. The perceptron: a probabilistic model for information storage
and organization in the brain.. Psychological Review. 65 6 pp. 386-408 (1958)

[19] Zell, A. Simulation neuronaler Netze. (Oldenbourg Wissenschaftsverlag)

[20] Rumelhart, D., Hinton, G. & Williams, R. Learning internal representations by
error propagation. (1986)

[21] Rumelhart, D., Hinton, G. & Williams, R. Learning representa-
tions by back-propagating errors. Nature. 323, 533-536 (1986,10,1),
https://doi.org/10.1038/323533a0

[22] Koturwar, S. & Merchant, S. Weight Initialization of Deep Neural
Networks(DNNs) using Data Statistics. CoRR. abs/1710.10570 (2017),
http://arxiv.org/abs/1710.10570

56

[23] Boulila, W., Driss, M., Al-Sarem, M., Saeed, F. & Krichen, M. Weight
Initialization Techniques for Deep Learning Algorithms in Remote Sensing:
Recent Trends and Future Perspectives. CoRR. abs/2102.07004 (2021),
https://arxiv.org/abs/2102.07004

[24] Fukushima, K. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics. 36, 193-202 (1980,4,1), https://doi.org/10.1007/BF00344251

[25] Kim, Y. Convolutional Neural Networks for Sentence Classification. Proceedings
Of The 2014 Conference On Empirical Methods In Natural Language Processing
(EMNLP). pp. 1746-1751 (2014,10), https://aclanthology.org/D14-1181

[26] Han, W., Zhang, Z., Zhang, Y., Yu, J., Chiu, C., Qin, J., Gulati, A., Pang, R. &
Wu, Y. ContextNet: Improving Convolutional Neural Networks for Automatic
Speech Recognition with Global Context. Proc. Interspeech 2020. pp. 3610-3614
(2020)

[27] Albelwi, S. & Mahmood, A. A Framework for Designing the Archi-
tectures of Deep Convolutional Neural Networks. Entropy. 19 (2017),
https://www.mdpi.com/1099-4300/19/6/242

[28] Jordan, M. Serial order: a parallel distributed processing approach. Technical
report, June 1985-March 1986. (1986,5), https://www.osti.gov/biblio/6910294

[29] Rautela, M. & Gopalakrishnan, S. Deep Learning frameworks for wave
propagation-based damage detection in 1D-waveguides. (2020,1)

[30] Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Computa-
tion. 9, 1735-1780 (1997,11), https://doi.org/10.1162/neco.1997.9.8.1735

[31] Chung, J., Gülçehre, Cho, K. & Bengio, Y. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. CoRR. abs/1412.3555
(2014), http://arxiv.org/abs/1412.3555

[32] Sutskever, I., Vinyals, O. & Le, Q. Sequence to Sequence Learning with Neural
Networks. Advances In Neural Information Processing Systems. 27 (2014)

[33] Cho, K., Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H. & Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. Proceedings Of The 2014 Conference On
Empirical Methods In Natural Language Processing (EMNLP). pp. 1724-1734
(2014,10), https://aclanthology.org/D14-1179

[34] Kuchaiev, O. & Ginsburg, B. Factorization tricks for LSTM networks. CoRR.
abs/1703.10722 (2017), http://arxiv.org/abs/1703.10722

[35] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G. & Dean, J.
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer. CoRR. abs/1701.06538 (2017), http://arxiv.org/abs/1701.06538

57

[36] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.,
Kaiser, Ł. & Polosukhin, I. Attention is All you Need. Advances In Neural
Information Processing Systems. 30 (2017)

[37] He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recog-
nition. 2016 IEEE Conference On Computer Vision And Pattern Recognition
(CVPR). pp. 770-778 (2016)

[38] Ba, J., Kiros, J. & Hinton, G. Layer Normalization. (arXiv,2016),
https://arxiv.org/abs/1607.06450

[39] Gehring, J., Auli, M., Grangier, D., Yarats, D. & Dauphin, Y. Convolutional Se-
quence to Sequence Learning. Proceedings Of The 34th International Conference
On Machine Learning - Volume 70. pp. 1243-1252 (2017)

[40] Devlin, J., Chang, M., Lee, K. & Toutanova, K. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. Proceedings Of
The 2019 Conference Of The North American Chapter Of The Association For
Computational Linguistics: Human Language Technologies, Volume 1 (Long
And Short Papers). pp. 4171-4186 (2019,6), https://aclanthology.org/N19-1423

[41] Khalid, U., Beg, M. & Arshad, M. RUBERT: A Bilingual Roman Urdu BERT
Using Cross Lingual Transfer Learning. (2021,2)

[42] Bäckström, T. Introduction to Speech Recognition. ,
https://speechprocessingbook.aalto.fi/Recognition/Speech_Recognition.html

[43] Sahidullah, M. & Saha, G. Design, analysis and experimental
evaluation of block based transformation in MFCC computation for
speaker recognition. Speech Communication. 54, 543-565 (2012),
https://www.sciencedirect.com/science/article/pii/S0167639311001622

[44] Xu, M., Duan, L., Cai, J., Chia, L., Xu, C. & Tian, Q. HMM-Based Audio
Keyword Generation. Advances In Multimedia Information Processing - PCM
2004. pp. 566-574 (2005)

[45] Kneser, R. & Ney, H. Improved backing-off for M-gram language modeling.
1995 International Conference On Acoustics, Speech, And Signal Processing. 1
pp. 181-184 vol.1 (1995)

[46] Chan, W., Jaitly, N., Le, Q. & Vinyals, O. Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition. 2016 IEEE
International Conference On Acoustics, Speech And Signal Processing (ICASSP).
pp. 4960-4964 (2016)

[47] Hollands, S., Blackburn, D. & Christensen, H. Evaluating the Performance
of State-of-the-Art ASR Systems on Non-Native English using Corpora with
Extensive Language Background Variation. Proc. Interspeech 2022. pp. 3958-
3962 (2022)

58

[48] Zhang, Z., Wang, Y. & Yang, J. End-to-end Mispronunciation Detection with
Simulated Error Distance. Proc. Interspeech 2022. pp. 4327-4331 (2022)

[49] Vazhenina, D. & Markov, K. End-to-End Noisy Speech Recognition
Using Fourier and Hilbert Spectrum Features. Electronics. 9 (2020),
https://www.mdpi.com/2079-9292/9/7/1157

[50] Li, S., Ouyang, B., Liao, D., Xia, S., Li, L. & Hong, Q. End-To-End Multi-
Accent Speech Recognition with Unsupervised Accent Modelling. ICASSP
2021 - 2021 IEEE International Conference On Acoustics, Speech And Signal
Processing (ICASSP). pp. 6418-6422 (2021)

[51] Prabhavalkar, R., Rao, K., Sainath, T., Li, B., Johnson, L. & Jaitly, N. A
Comparison of Sequence-to-Sequence Models for Speech Recognition. Proc.
Interspeech 2017. pp. 939-943 (2017)

[52] Graves, A. Sequence Transduction with Recurrent Neural Networks. CoRR.
abs/1211.3711 (2012), http://arxiv.org/abs/1211.3711

[53] Goldwater, S., Jurafsky, D. & Manning, C. Which words are hard to recognize?
Prosodic, lexical, and disfluency factors that increase speech recognition error
rates. Speech Communication. 52 pp. 181-200 (2010,3)

[54] Wiśniewski, M., Kuniszyk-Jóźkowiak, W., Smołka, E. & Suszyński, W. Auto-
matic Detection of Disorders in a Continuous Speech with the Hidden Markov
Models Approach. Computer Recognition Systems 2. pp. 445-453 (2007)

[55] Wiśniewski, M., Kuniszyk-Jóźkowiak, W., Smołka, E. & Suszyński, W. Au-
tomatic detection of prolonged fricative phonemes with the Hidden Markov
Models approach. (2007,1)

[56] Yang, L., Shriberg, E., Stolcke, A. & Harper, M. Comparing HMM, maximum
entropy, and conditional random fields for disfluency detection. 9th European
Conference On Speech Communication And Technology. pp. 3313-3316 (2005,9)

[57] Alharbi, S., Hasan, M., Simons, A., Brumfitt, S. & Green, P. A Lightly Super-
vised Approach to Detect Stuttering in Children’s Speech. Proc. Interspeech
2018. pp. 3433-3437 (2018)

[58] Watanabe, S., Boyer, F., Chang, X., Guo, P., Hayashi, T., Higuchi, Y., Hori,
T., Huang, W., Inaguma, H., Kamo, N., Karita, S., Li, C., Shi, J., Subra-
manian, A. & Zhang, W. The 2020 ESPnet update: new features, broad-
ened applications, performance improvements, and future plans. (arXiv,2020),
https://arxiv.org/abs/2012.13006

[59] Mendelev, V., Raissi, T., Camporese, G. & Giollo, M. Improved Robustness to
Disfluencies in Rnn-Transducer Based Speech Recognition. ICASSP 2021 - 2021
IEEE International Conference On Acoustics, Speech And Signal Processing
(ICASSP). pp. 6878-6882 (2021)

59

[60] Schneider, S., Baevski, A., Collobert, R. & Auli, M. wav2vec: Unsupervised
Pre-Training for Speech Recognition. Proc. Interspeech 2019. pp. 3465-3469
(2019)

[61] Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B.,
Chen, J., Chrzanowski, M., Coates, A., Diamos, G., Elsen, E., Engel, J., Fan, L.,
Fougner, C., Han, T., Hannun, A., Jun, B., LeGresley, P., Lin, L., Narang, S.,
Ng, A., Ozair, S., Prenger, R., Raiman, J., Satheesh, S., Seetapun, D., Sengupta,
S., Wang, Y., Wang, Z., Wang, C., Xiao, B., Yogatama, D., Zhan, J. & Zhu,
Z. Deep Speech 2: End-to-End Speech Recognition in English and Mandarin.
CoRR. abs/1512.02595 (2015), http://arxiv.org/abs/1512.02595

[62] Hendrycks, D. & Gimpel, K. Bridging Nonlinearities and Stochastic Reg-
ularizers with Gaussian Error Linear Units. CoRR. abs/1606.08415 (2016),
http://arxiv.org/abs/1606.08415

[63] Mohamed, A., Okhonko, D. & Zettlemoyer, L. Transformers
with convolutional context for ASR. CoRR. abs/1904.11660 (2019),
http://arxiv.org/abs/1904.11660

[64] Jégou, H., Douze, M. & Schmid, C. Product Quantization for Nearest Neighbor
Search. IEEE Transactions On Pattern Analysis And Machine Intelligence. 33,
117-128 (2011)

[65] Jang, E., Gu, S. & Poole, B. Categorical Reparameterization with Gumbel-
Softmax. (arXiv,2016), https://arxiv.org/abs/1611.01144

[66] Park, D., Chan, W., Zhang, Y., Chiu, C., Zoph, B., Cubuk, E. & Le, Q.
SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition. Proc. Interspeech 2019. pp. 2613-2617 (2019)

[67] Levenshtein, V. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady. 10 pp. 707 (1966,2)

[68] Wang, C., Riviere, M., Lee, A., Wu, A., Talnikar, C., Haziza, D., Williamson,
M., Pino, J. & Dupoux, E. VoxPopuli: A Large-Scale Multilingual Speech
Corpus for Representation Learning, Semi-Supervised Learning and Interpreta-
tion. Proceedings Of The 59th Annual Meeting Of The Association For Com-
putational Linguistics And The 11th International Joint Conference On Nat-
ural Language Processing (Volume 1: Long Papers). pp. 993-1003 (2021,8),
https://aclanthology.org/2021.acl-long.80

[69] Getman, Y. End-to-End Low-Resource Automatic Speech Recognition for
Second Language Learners. (Aalto University. School of Electrical Engineer-
ing,2021), http://urn.fi/URN:NBN:fi:aalto-202110249766

60

[70] Griewank, A. & Walther, A. Algorithm 799: Revolve: An Imple-
mentation of Checkpointing for the Reverse or Adjoint Mode of Computa-
tional Differentiation. ACM Trans. Math. Softw.. 26, 19-45 (2000,3),
https://doi.org/10.1145/347837.347846

[71] Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum Learning.
Proceedings Of The 26th Annual International Conference On Machine Learning.
pp. 41-48 (2009), https://doi.org/10.1145/1553374.1553380

[72] Wang, X., Chen, Y. & Zhu, W. A Survey on Curriculum Learning. IEEE
Transactions On Pattern Analysis And Machine Intelligence. 44, 4555-4576
(2022)

[73] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N.,
Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G.
& Vesely, K. The Kaldi Speech Recognition Toolkit. IEEE 2011 Workshop On
Automatic Speech Recognition And Understanding. (2011,12), IEEE Catalog
No.: CFP11SRW-USB

[74] Forney, G. The viterbi algorithm. Proceedings Of The IEEE. 61, 268-278 (1973)

[75] Rocholl, J., Zayats, V., Walker, D., Murad, N., Schneider, A. & Liebling, D.
Disfluency Detection with Unlabeled Data and Small BERT Models. Proc.
Interspeech 2021. pp. 766-770 (2021)

61

A Appendix

Figure A1: Distribution of sample lengths for the training split. X axis refers to the
sample duration in word count.

Figure A2: Distribution of sample lengths for the dev split. X axis refers to the
sample duration in word count.

62

Figure A3: Distribution of sample lengths for the test split. X axis refers to the
sample duration in word count.

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	2 Background
	2.1 Machine Learning
	2.2 Machine Learning
	2.2.1 Supervised Learning
	2.2.2 Unsupervised Learning
	2.2.3 Self-supervised Learning

	2.3 Artificial Neural Networks
	2.3.1 Convolutional Neural Networks
	2.3.2 Recurrent Neural Networks
	2.3.3 Transformer models
	2.3.4 BERT models

	3 Research material and methods
	3.1 Automatic Speech Recognition
	3.1.1 Conventional ASR systems
	3.1.2 End-to-end ASR systems
	3.1.3 Wav2Vec
	3.1.4 Wav2Vec2

	3.2 Disfluency detection

	4 Experimentation
	4.1 Datasets
	4.2 Metrics
	4.3 Pre-trained model and baseline
	4.4 Finetuning
	4.4.1 Finetuning environment and hyper-parameters
	4.4.2 L2 Finnish ASR baseline finetuning
	4.4.3 L2 Finnish ASR disfluency detector finetuning
	4.4.4 L2 Finnish ASR Disfluency Detector with Curriculum Learning

	4.5 Results
	4.5.1 Combined results comparison
	4.5.2 WER and CER analysis

	4.6 Validation of Disfluency Detector predictions
	4.6.1 Kaldi metrics
	4.6.2 Kaldi alignment examples
	4.6.3 Recall, Precision and performance of disfluency tags

	5 Summary
	6 Conclusions
	References
	A Appendix

