
Programming Language
interoperability in cross-platform
software development

Anh Nguyen

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 31.8.2022

Supervisor

Dr. Matti Siekkinen

Advisor

MSc. Aleksandr Ovchinnikov

Copyright © 2022 Anh Nguyen

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Anh Nguyen
Title Programming Language interoperability in cross-platform software

development
Degree programme Master’s Programme in Computer, Communication and

Information Sciences
Major Computer Science Code of major SCI3042
Supervisor Dr. Matti Siekkinen
Advisor MSc. Aleksandr Ovchinnikov
Date 31.8.2022 Number of pages 65 Language English
Abstract
Recent years have witnessed the rising popularity of software that are constructed by
combining various modules written in different programming languages. While the
coexistence of multiple programming languages within the same codebase might bring
certain benefits such as reusability and the ability to exploit the unique power of each
language, this architecture certainly adds significant complexity to the development
and maintenance process of such systems.

This thesis proposes an approach to alleviate the pain of language interoperability
in those systems by automating the binding code generation process between different
languages. The proposed method uses the metadata extracted from the Interface
Description Language (IDL) to systematically generate the Application Programming
Interface (API) in each involved language. As a result, the code written in one
language can seamlessly interact with code developed in others. The experiment
results showed that the developed code generator has improved the stability, scalability,
and modularity of multi-language software systems.
Keywords Programming language interoperability, compiler, Interface Description

Language, cross-platform SDK, API, C++, Java Native Interface,
Objective-C++

4

Acknowledgements
The time that I spent pursuing my Master’s degree at Aalto University was the most
challenging yet transformative and rewarding years of my life. As all good things
must come to an end, so do my studies at Aalto. This thesis marks the end of my
student life but it also unfolds a new chapter full of adventures in my lifelong learning
journey.

I would like to thank Mapbox for giving me an opportunity to work on amazing
challenges that impact the daily life of millions of people. I am especially grateful for
the guidance, assistance, and constructive feedback from my thesis advisor Aleksandr
Ovchinnikov, my manager Bruno Abinader, Young Hahn, and all my colleagues at
Mapbox. This thesis would not exist without you all. It would be an oversight
if I forgot to thank Peng Liu for his open-sourced LATEX thesis template that I
“borrowed” so that I could whip up a well-formatted thesis over the weekend with
zero LATEX knowledge. Hopefully, there are no remaining parts of his thesis that
were not replaced.

I would like to express my gratitude to my supervisor Dr. Matti Siekkinen from
Aalto University for his valuable advice, feedback, and patience along the journey.

Thanks should also go to my friends who let me use their laundry detergent and
toothpaste for the whole year without a clue, gave me free food occasionally, and
continuously motivate me to push my boundaries. You know who you are.

Most importantly, I would like to thank my family for supporting me uncondi-
tionally during all these years.

Otaniemi, 31.8.2022

Anh Nguyen

5

Contents
Abstract 3

Acknowledgements 4

Contents 5

Abbreviations 9

1 Introduction 10
1.1 Problem statement . 10
1.2 Research questions . 11
1.3 Structure of the thesis . 12

2 Background 13
2.1 Programming language interoperability 13
2.2 Categories . 14

2.2.1 Inter-process approaches . 14
2.2.2 In-process approaches . 18

2.3 Industrial context . 21
2.3.1 Cross-platform library . 22
2.3.2 Multi-language software architecture 23

2.4 Known issues in FFI code . 24
2.4.1 Weak compile-time type safety 25
2.4.2 Complexity . 27

3 Methodology 30
3.1 Requirements collection . 30
3.2 Requirements analysis . 30
3.3 Software design and execution . 30

3.3.1 Simplified Wrapper and Interface Generator (SWIG) 31

4 Technical solution 32
4.1 Proposed solution . 32
4.2 Hypothesis . 32
4.3 Existing solutions . 33

4.3.1 Simplified Wrapper and Interface Generator (SWIG) 34
4.3.2 Djinni . 35

5 Implementation 36
5.1 Front-end . 36

5.1.1 Interface Description Language 36
5.1.2 Key constructs . 38
5.1.3 IDL parser . 40
5.1.4 Abstract Syntax Tree . 42
5.1.5 Semantic analysis . 44

6

5.2 Back-end . 44
5.2.1 Class . 45
5.2.2 Interface . 49
5.2.3 Record and enum . 52
5.2.4 Containers . 52

5.3 Quality assurance, documentation, and integration 53

6 Evaluation 55
6.1 Productivity . 55
6.2 Scalability . 58
6.3 Limitations . 59

7 Discussion 61

8 Conclusion 62

References 63

7

List of Figures
1 RPC end-to-end workflow. 16
2 Direct language translation graph . 19
3 Language translation with shared IR on JVM 20
4 Cross-platform architecture . 24
5 The process of exposing APIs in foreign language 25
6 New architecture after the introduction of IDL 33
7 Architecture of the compiler . 37
8 Abstract syntax tree of the class Foo in Listing 14 43
9 Marshaller structure . 45
10 Memory ownership of class object . 48
11 Marshalling flow chart for class construct 49
12 Marshalling flow chart for interface construct 51
13 The breakdown percentage of each code category 56

8

List of Tables
1 Comparison matrix between different tools 35
2 Comparison matrix between different approaches 38
3 Performance benchmark between ArrayList and Array in JNI 60

9

Abbreviations
REST Representational State Transfer
RPC Remote Procedure Call
FFI Foreign Function Interface
API Application Programming Interface
ABI Application Binary Interface
ML Machine Learning
I/O Input/Output
IR Intermediate Representation
JNI Java Native Interface
SDK Software Development Kit
IDL Interface Description Language
JVM Java Virtual Machine
CPU Central Processing Unit
AST Abstract Syntax Tree

10

1 Introduction
Modern software has become increasingly complex during the past few decades. As
a result, the use of a single programming language for every task has repeatedly
shown its limitations. Alternatively, modern software is the composition of multiple
components, each of which can be written in a different programming language.

There are several reasons behind the proliferation of the multi-language paradigm.
One of the most important advantages of this architecture is that it allows software
engineers to take advantage of the language that is best suited for each individual task.
For instance, the majority of Machine Learning (ML) frameworks offer first-class
Application Programming Interfaces (APIs) in Python programming language1 even
though they are often written in other languages [1]. In fact, Python is considered the
language of choice within the data science community due to its simplicity, high-level
abstractions, and the vast number of useful data-oriented libraries such as NumPy2

and Matplotlib3 in the Python ecosystem. The gentle learning curve and the dynamic
nature of Python allow scientists to conduct experiments and iterate on their ideas
swiftly. Nevertheless, the computational performance of Python has always been a
known weakness of the language. To tackle the lack in performance of Python, ML
frameworks such as Tensorflow4 are often written in highly performant yet low-level
and complex programming languages such as C++5. Within these frameworks,
the Python API layer is merely a shim that internally invokes performance-critical
code written in C/C++ [1]. As a result, combining both high-level and low-level
programming languages often brings the best of both worlds to those multi-language
systems.

Additionally, the higher number of languages involved within multi-language
software means that the software may gain access to a broader set of existing libraries
written in each involved language. As a result, engineers can reduce the development
cost by reusing existing well-tested software modules without reinventing the wheel.
Besides that, the coexistence of different languages within the system allows gradual
migration of legacy software modules from one language to another, which often
reduces the migration risks as the existing implementation does not have to be ported
to the new language all at once [2].

1.1 Problem statement
As the number of languages involved in the system grows, so does the number of
challenges in developing and maintaining such software systems. In fact, the task
of combining multiple languages within the same software system has never been

1Python programming language. https://www.python.org. Accessed 04/2022.
2Numpy. https://numpy.org. Accessed 04/2022.
3Matplotlib. https://matplotlib.org. Accessed 04/2022.
4Tensorflow. https://www.tensorflow.org. Accessed 04/2022.
5C++ programming language. https://www.cplusplus.com/info/faq. Accessed 04/2022.

11

trivial. One such challenge is to design the interface between different languages in a
reliable and scalable way. There exist multiple approaches to achieving programming
language interoperability. However, the scope of this thesis is limited to only Foreign
Function Interface (FFI) - a mechanism that allows interactions between languages
by invoking functions across the boundaries of those languages [3]. While the FFI
mechanism provides a way to interface with different languages, FFI glue code tends
to be complex, verbose, error-prone, and repetitive on a large scale [3][4]. Thus, this
type of code can quickly become problematic to write and maintain in substantial
codebases. Consequently, software that uses FFI without extra care often becomes a
source of defects and security problems.

This thesis aims to design and implement a code generator that automates the
process of producing FFI glue code. The solution is expected to improve the pro-
ductivity, stability, and scalability of multi-language systems. Hence, the developed
tool and technical insights gained during the development should be helpful for the
software community who are involved in the development and maintenance process
of large-scale cross-language software systems.

It is important to note that the project is a collaborative effort between many
engineers from different teams at Mapbox. Even though the thesis’s author is the
main maintainer of the project at the time of writing this thesis, the project was
initiated earlier by other engineers. The contribution of the thesis’ author to the
project includes:

• Developing new generators from scratch for three languages

• Extending the functionality of the current generators.

• Improving the project’s performance, stability, and maintainability by estab-
lishing test and benchmark infrastructure, optimizing, and fixing defects in the
generated code.

1.2 Research questions
To evaluate the effectiveness of the solution, we seek to answer the following research
questions throughout the thesis:

• Does automatic bindings generator solve productivity problems
within cross-language software development? Does it improve the quality
of the bindings code? Does it enhance the developer experience and productiv-
ity? Does it promote the modularity of cross-language software?

• What are the limitations of automatic bindings code generation? Is
there any regression in terms of run-time performance and ergonomics of the
generated API?

• How extensible and scalable is the code generator solution? How easy
is it to support new features and new languages? What other types of code
can it generate apart from language bindings?

1.3 Structure of the thesis
This thesis is divided into 8 chapters. Chapter 2 provides background information
on the cross-language software development paradigm and language interoperability
technologies. This chapter also discusses the problems of language bindings. Chapter 3
describes the methodology that was used in the project. Chapter 4 proposes solutions
to alleviate those weaknesses. Chapter 5 reviews the end-to-end implementation of
the project. Chapter 6 summarises the evaluation results of the project. Chapter 7
discusses challenges and future directions. Lastly, chapter 8 concludes the thesis.

13

2 Background
This chapter aims to provide a broad background of the problem that this thesis
project attempts to solve. The first two sections offer a brief overview of programming
language interoperability in a broad context. Subsequently, the remaining parts
narrow the scope of the topic to only relevant industrial context while diving into
more in-depth details.

2.1 Programming language interoperability
Programming language interoperability is the ability of multiple programming lan-
guages to collaborate within the same software system. This mechanism has played a
crucial part in various systems as each language is designed to tackle specific problem
domains but offers limited support in other areas [5]. JavaScript6, for instance, is
originally the scripting language that runs on web browsers to add user interactions to
web pages. However, it has gained substantial popularity on the server side over the
years thanks to the emergence of Node.js7 - a Javascript runtime environment that
executes JavaScript code outside web browser environments. JavaScript applications
running on Node.js servers became increasingly viral since it allows engineers to use
the same programming language on both client and server sides.

However, the Node.js application has its own limitations. JavaScript uses a
single-threaded, event-driven, and non-blocking Input/Output (I/O) model as it is
specifically designed to handle the Web User Interface (Web UI) [6]. This means that
a Node.js server cannot handle concurrent requests while other tasks are blocking its
event loop. As a result, JavaScript code running on Node.js servers is not suitable for
handling synchronous CPU-intensive tasks due to the lack of proper multi-threading
support.

Nevertheless, there are multiple approaches to tackle this problem, thanks to the
interoperability between different programming languages. One solution is to delegate
CPU-intensive tasks to a different server written in other performant, multithreaded
languages such as Rust8 programming language. With this approach, the Node.js
server acts as a proxy service that receives the requests from the client-side and
then forwards them to the newly created web service written in Rust. By avoiding
direct execution of such blocking tasks, the Node.js application can handle multiple
concurrent requests as it is merely responsible for asynchronous I/O operations,
which do not block the event loop. Another alternative is to leverage Node C++
Addons9 to interact with performant C++ modules within the same process that the
Node.js server runs. This approach allows JavaScript code to offload the computation

6JavaScript programming language. https://developer.mozilla.org/en-US/docs/Web/JavaScript.
Accessed 04/2022.

7Node.js run-time environment. https://nodejs.org/en/about. Accessed 04/2022.
8Rust programming language. https://www.rust-lang.org. Accessed 04/2022.
9Node C++ addons. https://nodejs.org/api/addons.html. Access 04/2022.

14

to C++ worker threads in the thread pool. Hence, the JavaScript main thread can
be unblocked to handle other incoming requests. More details of these approaches
are discussed throughout this chapter.

2.2 Categories
Various solutions for language interoperability have been introduced over the years.
They can typically be categorized into two groups based on their communication
style: inter-process and in-process. This thesis discusses several common approaches
on a superficial level but dives deeper into more details where the concepts are
relevant to the project.

2.2.1 Inter-process approaches

These methods typically leverage I/O streams to exchange data between components
written in different languages. In these approaches, one component informs others
what needs to be done by sending data messages. Usually, the sender and the
receiver follow a set of predefined protocols that dictate the format of the input, what
action should be performed, and the structure of the output. Those components
could be running on the same machine or spanning across multiple machines in the
network. This thesis briefly discusses two common approaches under this category:
Representational State Transfer (REST) and Remote Procedure Call (RPC).

• REST

REST stands for Representational State Transfer, the current de-facto ar-
chitecture for delivering web services based on the traditional client-server
model [7]. Essentially, there are two main concepts behind REST: resources
and actions. REST APIs provide clients access to a set of resources that reside
on the servers. Those resources are uniquely identified by Uniform Resource
Identifiers (URI) - a string of characters that includes the location and name
of each resource. To interact with a specific resource, the clients typically
transfer messages over the Hypertext Transfer Protocol (HTTP) to the URI
address of the resource while using the predefined HTTP verbs (GET, POST,
PUT, DELETE) to select the kind of operation that must be performed on the
chosen resource [7].
For example, the resource representing Mapbox fonts is accessible at the URI
https://api.mapbox.com/fonts/v1/{username}. Clients can get a list of
font names by sending the HTTP GET request to the mentioned address. A new
font can also be added by sending the HTTP POST request that includes the
binary data of the font in the payload. Besides that, the font “Helvetica” can
be removed from the list by sending the HTTP DELETE request to the address
https://api.mapbox.com/fonts/v1/{username}/Helvetica.
REST mechanism promotes the separation of concerns between the client
and the server as the interaction is achieved solely by exchanging messages.

15

This allows the client and the server program to be implemented in different
languages as long as they both adhere to a set of defined protocols.

• RPC

Remote procedure call is the mechanism that enables computer programs
to trigger the execution of procedures located in a different address space
such as another process on the same machine or different machines within the
network [8]. RPC applies the concept of transferring control and data, which
occurs during the local procedure call, to the distributed network of processes.
While REST is a resource-oriented mechanism, RPC focuses primarily on
actions. When the caller process invokes a local procedure, it packs the param-
eters into a message and forwards it to the remote procedure over the network
socket. Then the caller process waits for the result to be returned by the remote
procedure once the execution has finished. RPC is typically designed so that
the implementation details such as the location of the subroutine being invoked
are transparent to the caller, which means that the caller program invokes a
remote subroutine as if that subroutine is a natural part of that program. As
this mechanism allows sharing the computation workload with other machines,
it is commonly used to construct distributed systems [9].

The RPC client (known as the caller) and the server (known as the callee)
programs can be written in completely different programming languages. How-
ever, each language has different method calling conventions as well as different
data structure representations of parameter types. To achieve language in-
teroperability between the client code and server code, namely making the
remote procedure call look and feel as if it is a local one, RPC introduces a
third language known as Interface Definition Language (IDL) to describe the
interface of the remote procedure in a language-agnostic way [9]. Indeed, the
first step to working with RPC is to define the data structures of parameters
and interface function definitions in the IDL. Once the procedure interface
is described in the IDL, an IDL compiler can be used to parse the IDL and
generate the stub code on both the client-side and server-side.
The end-to-end RPC invocation workflow fundamentally consists of 9 steps as
shown in Figure 1.
The local procedure is first invoked on the client-side (1). Then its parameters
are packed into a message (2) following a specific data format before being
sent to the server (3). On the server side, the received messages are unpacked
by the stubs code (4). Next, those unpacked parameters are passed as inputs
to the procedure where the real computation occurs (5). After that, the re-
turned result of the procedure is serialized into a response message (6) that
is subsequently sent back to the client (7). On the client-side, the message is
deserialized by the generated stub (8) and returned as a function result to the
caller (9).

16

Figure 1: RPC end-to-end workflow.

One concrete example of the RPC mechanism is Google Remote Procedure
Call 10 (gRPC) - a popular modern RPC framework that uses Protocol Buffers
11 as both its IDL and its data serialization mechanism. The first step to
using gRPC is to describe the data structures and interface methods using the

10Google Remote Procedure Call framework. https://grpc.io/about. Accessed 04/2022
11Prococol Buffers. https://developers.google.com/protocol-buffers. Accessed 04/2022

17

Protocol Buffers IDL syntax (proto3) as shown in Listing 1.

1 syntax = "proto3";
2

3 package helloworld ;
4

5 // The greeting service definition
6 service Greeter {
7 // Sends a greeting
8 rpc HelloWorld (HelloRequest) returns (HelloReply) {}
9 }

10

11 // The request message containing the user 's name
12 message HelloRequest {
13 string name = 1;
14 }
15

16 // The response message containing the greetings
17 message HelloReply {
18 string message = 1;
19 }

Listing 1: Interface definitions written in Protocol Buffers IDL

Next, the IDL file can be compiled with the Protocol Buffers compiler (protoc)
to generate stub code on both the client and server languages. After that, the
implementation of the remote method on the server-side must be provided as
depicted in Listing 2.

18

1 class GreeterServiceImpl final : public Greeter :: Service {
2 Status HelloWorld (
3 ServerContext * context ,
4 const HelloRequest * request ,
5 HelloReply * reply) override {
6 // user - provided implementation
7 reply -> set_message ("Hello , " + request ->name ());
8 return Status ::OK;
9 }

10 };

Listing 2: The implementation of the remote procedure in C++

Finally, the client code in Java12 can invoke the remote procedure as if it is a
local method call as depicted in Listing 3.

1 HelloRequest request = HelloRequest . newBuilder (). setName ("←↩
Alice").build ();

2 HelloReply response ;
3 try {
4 response = Greeter . helloWorld (request);
5 logger .info(response . getMessage ());
6 } catch (StatusRuntimeException e) {
7 logger .log(Level.WARNING , "RPC failed : {0}", e. getStatus ())←↩

;
8 }

Listing 3: The client code in Java that calls the remote procedure

2.2.2 In-process approaches

These solutions are typically used to provide interactions between different software
modules running within the same OS process. They often rely on the low-level
support of the compiler or language runtime environment to interact with another
language. This thesis examines two common approaches: Common Intermediate
Representation (IR) and Foreign Function Interface (FFI).

• Common Intermediate Representation

Computer programs written in high-level languages are often compiled to
machine code that the running hardware can understand. However, each pro-
cessor architecture has its own type of assembly instruction set. Thus, to run
directly on K different architectures, the program written in a source language
must be compiled to K types of assembly language. This means that it requires

12Java programming language. https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html.
Accessed 04/2022

19

H * K direct translations to compile H languages to target K architectures,
as shown in Figure 2. The huge number of direct translations often indicates
poor reusability and scalability.

Figure 2: Direct language translation graph

To solve this problem, the majority of compilers introduce a third language as an
Intermediate Representation (IR) [2]. This “middle” language is independent of
the source language and the target language, and it must be designed in a way
to abstract the assembly code of the target architecture while still having the
capability to capture the necessary metadata of the source language [10]. By
compiling H languages to the same IR language and subsequently compiling
the IR language to K types of assembly language, we can significantly reduce
the number of implementations from H * K down to H + K , as depicted in
Figure 3.
Software components written in different programming languages that are
compiled to the same intermediate language can interact with each other as
long as they follow the same Application Binary Interface(ABI) contract. This
contract dictates several low-level aspects such as method calling conventions,
data layout, and name mangling that the compilers of different languages must
conform to in order to generate interoperable low-level code [11].
One notable example in this category is that languages running on Java Virtual
Machine can interact easily with Java. For example, Kotlin13 can interop

13Kotlin programming language. https://kotlinlang.org/. Accessed 04/2022.

20

Figure 3: Language translation with shared IR on JVM

seamlessly with Java for two main reasons. Firstly, they are both compiled to
Java bytecode - the shared IR of Java Virtual Machine (JVM). Secondly, the
compiled Java bytecode of Kotlin and Java follows the same method calling
conventions which specify the label names of the methods, how input parameters
are structured and passed to the callee, and how to access the returned value
of the callee method.

• Foreign Function Interface

Foreign Function Interface (FFI) is a low-level programming language in-
terface that allows code written in one programming language (known as the
host language) to access objects and invoke functions that reside in a foreign
language across the boundaries of the two languages [2]. Typically, FFI APIs,
which are often exposed by the runtime environment of the host language, are
used in a layer of bridging code to interact with the foreign language. This
FFI code is often referred to as the glue code because it acts as the bridge
connecting a pair of programming languages. The primary purpose of the FFI
APIs is to allow high-level programming languages to interact with low-level
C/C++ code [2]. Essentially, the runtime environment of the host language
loads the dynamic native library into memory, and then it maps the set of
the method declarations in the host language to the function pointers of the
native library using the method dlsym(). When a function is called in the host
language, the runtime converts the parameters to suitable data structures in
the foreign language [12]. Next, it forwards the call to the corresponding native
function, given that the runtime environment of the host language knows the
ABI of the foreign language. Some of the notable FFI technologies include Java

21

Native Interface14 (Java - C/C++ interop), Dart FFI15 (Dart - C interop), and
Node Native Addons (Node.js - C/C++ interop).
For example, Java Native Interface (JNI) is an FFI API that allows code
written in Java to interact with native C/C++ code and vice versa. The first
step to interact with C++ code via JNI is to load the native dynamic library
greeter.so with System.loadLibrary() method as shown in Listing 4. Next,
the native method must be declared using the modifier native to indicate
that it is implemented on the native side. When the method helloWorld() is
called on the Java side, the JVM searches for the symbol of the native method
Java_Greeter_helloWorld() in the loaded library and forwards the call to
the native implementation. In order to access data structures and methods
from the Java side, C/C++ code can invoke JNI APIs16 on the JNI parameters
passed as input to the native function, as shown in Listing 5.

1 public class Greeter {
2 public native void helloWorld (String name);
3

4 static {
5 System . loadLibrary (" greeter .so");
6 }
7

8 public static void main(String [] argv) {
9 Greeter greeter = new Greeter ();

10 greeter . helloWorld ("Foo");
11 }
12 }

Listing 4: Java program that uses JNI

1 JNIEXPORT void JNICALL Java_Greeter_helloWorld
2 (JNIEnv *env , jobject thisObj , jstring name)
3 {
4 std :: cout << jStringToCString (env , name) << std :: endl;
5 }

Listing 5: C/C++ implementation of the method helloWorld()

2.3 Industrial context
This section aims to provide the concrete industrial background of the thesis project.
The first subsection introduces the industrial context where the multi-language scheme

14Java Native Interface. https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/intro.html.
Accessed 04/2022.

15Dart FFI. https://dart.dev/guides/libraries/c-interop. Accessed 04/2022
16JNI specifications. https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html.

Accessed 04/2022

22

is applied. The second subsection discusses the programming language choices and
software architecture. Finally, the third subsection highlights the problems that are
commonly encountered in the bridging code.

2.3.1 Cross-platform library

Cross-language software development is a broad topic. However, the scope of this
thesis is limited to only cross-platform software library development. The case study
was provided by the company Mapbox in 2022. Mapbox is a location technology
provider that offers flexible and powerful tools for developers and designers to embed
interactive maps, geocoding, turn-by-turn navigation, route optimization, and data
visualization in their applications [13]. The solutions offered by Mapbox have been
powering two million developers, with over 600 million users worldwide touching
Mapbox maps every month. In particular, the case study focuses on the development
and maintenance process of various Mapbox Software Development Kits (SDKs)
available on platforms such as Android, iOS, and embedded Linux.

One approach to bringing SDK support to multiple platforms is to concurrently
develop an SDK in multiple programming languages that are natively supported by
each platform. For example, Java and Kotlin are first-class languages on Android17

while Objective-C18 and Swift19 are the best-supported ones on iOS20. Other than
that, C and C++ are often the first choices when it comes to embedded Linux. The
main benefit of building software using the first-class language on a particular plat-
form is the full support of the ecosystem. It means that developers can gain full access
to the APIs, libraries, and documentation that the platform provides. Additionally,
software can be specifically designed and fine-tuned to target the selected platform.
As a result, the software’s performance and user experience benefit vastly from the
first-class support provided by the programming language. However, writing the
same software in different languages is labor-intensive and often unscalable. Besides
that, the parity of the software written in different languages tends to diminish over
time as different languages and platforms tend to impose different practices and
conventions. As a result, the development and maintenance costs would multiply
when it comes to porting a set of different SDKs to various platforms.

On the other side of the spectrum is the approach in which software is written
in a single programming language with the ability to run on all platforms. This
approach prioritizes the reusability and cost-efficiency of the development process
because a small development team can write the software once and run it everywhere.
For example, programs written in languages such as C++ can be compiled and run
performantly on a wide range of platforms. As a result, User Interface applications

17Android operating system. https://www.android.com/what-is-android. Accessed 04/2022.
18Objective-C programing language. https://developer.apple.com/library/archive/documentation

/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html. Accessed 04/2022.
19Swift programming language. https://developer.apple.com/swift. Accessed 04/2022.
20iOS operating system. https://www.apple.com/ios/ios-15. Accessed 04/2022.

23

can be built using only C++ with Qt21 framework and run on both Android, iOS,
and Linux. Nevertheless, cross-platform software tends to suffer from the limited
support of the platform. This often leads to the disparity in the user experience
of cross-platform applications compared to native applications. In addition, not
every native API is available when using cross-platform frameworks, and it takes
non-trivial efforts to expose those native APIs to cross-platform frameworks.

Mapbox cross-platform SDKs take a hybrid approach by combining the cross-
platform C++ codebase with platform native code such as Java, Objective-C, and
Node.js to get the best of both worlds. More in-depth technical details of the setup
are discussed in the following sections.

2.3.2 Multi-language software architecture

Mapbox selected C++ as a primary language to share the business logic across plat-
forms for several reasons. Firstly, C++ is one of the most performant cross-platform
languages that excels at executing CPU-intensive tasks. In fact, C++ gives complete
control over the memory allocation and management, which is the key that helps
the map rendering engine achieve a high frame rate with minimal memory footprint.
Efficient memory usage is especially critical when running on low-end embedded
hardware with limited memory. Apart from the manual memory management scheme,
C++ is a large and complex language that offers full access to low-level system APIs
while developers can still express their ideas using high-level abstractions in C++
with minimal overhead. As a result, C++ gives developers fine-grained control over
their program, which is essential to squeeze every last bit of performance from the
hardware. Secondly, C/C++ is commonly used for low-level graphics programming,
which is the core of Mapbox’s map rendering engine. By using C/C++, the map
rendering engine can easily access low-level graphic APIs offered by libraries such as
OpenGL22.

The low-level native C++ libraries at Mapbox are exposed to developers via
layers of wrapper code written in native mobile languages such as Java/Kotlin on
Android and Objective-C/Swift on iOS. These layers of bindings serve two main
purposes. Firstly, they allow APIs written in C++ to be exposed in an idiomatic,
transparent fashion to mobile developers who typically write their code in native
mobile languages. Secondly, the interoperability between C++ and native mobile
languages allows the cross-platform C++ code to leverage the existing libraries and
platform-dependent APIs written in Java/Objective-C. For instance, both Map-
box C++ rendering engine mapbox-gl-native23 and Mapbox Android SDKs use the
same Java networking library named OkHttp24 on the Android platform. By reusing
the library OkHttp on both Java and C++ sides, Mapbox is able to reduce not only

21Qt framework. https://www.qt.io. Accessed 04/2022.
22OpenGL website. https://www.opengl.org. Accessed 04/2022.
23Mapbox-gl-native repository. https://github.com/mapbox/mapbox-gl-native. Accessed 04/2022
24OkHttp networking library. https://square.github.io/okhttp. Accessed 04/2022.

24

their engineering efforts but also the binary size of the final product because OkHttp
has already been a dependency of Android SDKs.

Those wrapping layers contain a large portion of bindings that connect the mobile
platform languages with the C++ codebase. To create an interface between C++
and Android/Kotlin, Mapbox SDKs leverage Java Native Interface (JNI), which
was briefly introduced in the previous section. On iOS, language interoperability
was achieved by a hybrid language named Objective-C++. Objective-C++ is the
superset of both Objective-C and C++ as it allows mixing Objective-C and C++
code in the same source file. The overall architecture is depicted in Figure 4.

Figure 4: Cross-platform architecture

2.4 Known issues in FFI code
Despite the fact that Mapbox can share the same C++ codebase between different
platforms, making native languages on these platforms interop seamlessly with C++
is not a trivial task. The two biggest challenges are the reliability and scalability of
the FFI solutions.

Conceptually, the process of exposing an already existing C++ API to mobile
platforms consists of 3 steps. Firstly, a stub class is declared in the platform languages.
This class may contain several instance variables and methods so that it can be used
transparently in the platform language as if there exists no foreign implementation.

25

Secondly, the glue code to convert data types between two languages must be provided
in the body of those stub methods. Those data type conversions typically use FFI
APIs such as Java Native Interface and Objective-C++ since these APIs offer access
to foreign objects and methods. Finally, the converted parameters are passed to the
foreign function where the actual implementation is located. If the foreign function
produces a returned output, that value must be converted to the host language before
being returned from the stub method. Essentially, each supported language requires
its own marshaling implementation. This process is visualized in Figure 5.

Figure 5: The process of exposing APIs in foreign language

This layer of bindings code can be particularly problematic due to several weak-
nesses of language interoperability:

2.4.1 Weak compile-time type safety

The majority of FFI technologies typically operate at run-time instead of compile
time. As a result, the bindings between two languages can usually be considered as
weakly typed code. Java Native Interface, for instance, is the FFI mechanism that
allows two statically typed languages - Java and C/C++ to interact with each other.
Unfortunately, there exist severe type-safety limitations in JNI code as C/C++ code
interacts with Java objects and classes via the reflection mechanism. Reflection
allows C++ code to dynamically create Java objects, call Java methods, and access
object fields at run-time using their identifiers. While the reflection scheme provides
a flexible way to interact with Java from C++, it can easily become error-prone
due to the lack of static type analysis at compile time [14]. This means exceptions
are only thrown at run-time when the reflected Java function calls are executed

26

rather than at compile time. As a result, programmers often fail to detect their
programming errors until their programs crash while being used by the end-users.

To understand how brittle the Java program using JNI can be, it is important to
examine an example as depicted in Listing 6, and 7.

1 public class Greeter {
2 public static native void helloWorld ();
3

4 public static void invokeThisFunctionInC (long number) {
5 System .out. println ("long from C++: " + number);
6 }
7

8 static {
9 System . loadLibrary (" greeter .so");

10 }
11

12 public static void main(String [] argv) {
13 Greeter . helloWorld ();
14 }
15 }

Listing 6: Java program using JNI

1 JNIEXPORT void JNICALL Java_Greeter_helloWorld
2 (JNIEnv *env , jclass klass)
3 {
4 static jmethodID & javaMethod = env -> GetStaticMethodID (
5 klass ," invokeThisFunctionInC ", "(J)V");
6 if(javaMethod == nullptr) {
7 std :: cerr << "ERROR: method void invokeThisFunctionInC () ←↩

not found !" << std :: endl;
8 return ;
9 }

10 env -> CallStaticVoidMethod (cls2, javaMethod , 100L);
11 if (env -> ExceptionCheck ())
12 {
13 env -> ExceptionClear ();
14 std :: cerr << "ERROR: Error is thrown when invoking the ←↩

Java method invokeThisFunctionInC () " << std :: endl;
15 }
16 }

Listing 7: C++ implementation that calls Java methods

If there is a typo when looking up the Java method invokeThisFunctionInC()
using the name string "invokeThisFunctionInC" or a typo in the method’s in-
put/output signature string "(J)V", the error is only detected when the body of the
C/C++ function is executed. Similarly, errors can be detected only at run-time if
the method invocation env->CallStaticVoidMethod(cls2, javaMethod, 100L);
is provided with the wrong parameter value or the wrong number of parameters.
Those scenarios can easily occur if the methods are modified without the synchronized

27

updates in other parts of the codebase. As a result, the lack of compile-time checking
for glue code can severely affect the quality of cross-platform software.

2.4.2 Complexity

Writing bridging code between 2 languages requires comprehensive knowledge of
both languages. For example, programmers must deal with three types of bugs: bugs
from the host language, bugs from the foreign language, and bugs from the bridging
code when two languages interact. It is crucial to take into consideration the vast
differences between languages to write bug-free, memory-efficient, and performant
glue code. This thesis highlights several key differences between C++ and the
platform languages used by Mapbox.

• Memory management

Java, Dart25, and JavaScript are all automatic garbage-collected languages. It
means that their automatic memory management systems take responsibility
for allocating memory for objects and deallocating them when those objects
are no longer needed. Hence, programmers do not need to manage memory on
their own. On the other hand, C/C++ typically does not have an automatic
garbage collector, so developers need to handle memory management on their
own. The disparities between automatic and manual memory management
must be taken into consideration when writing code that connects a garbage-
collected language and C/C++. Hence, programmers must determine which
resource should be explicitly deallocated as not all objects are automatically
garbage-collected when mixing both types of languages. For example, global
references to Java objects, C pointers to Java String, or Java arrays in JNI must
be manually freed to avoid memory leaks [15]. As a result, programmers must
not assume that the garbage collector automatically manages all the resources.

• Concurrency

The disparities in the concurrency models between different languages could
also pose significant challenges when producing glue code. Many languages,
such as C++ provide support for multithreading. It means that the running
process can create multiple threads of execution that run the code concurrently
while sharing the process’s resources. Multithreading is widely used for perfor-
mance reasons as this mechanism can allow running computation in parallel
on multiprocessors. In contrast, some languages such as JavaScript use the
single-threaded concurrency model, which means that the code section written
in those languages can only be executed one statement at a time. Interfacing
between a single-threaded language and a multithreaded language can be chal-
lenging in the situation where a worker thread in the multithreaded language
invokes a callback written in the single-threaded language. One common use

25Dart programming language. https://dart.dev. Accessed 04/2022.

28

case is when a Node.js program invokes a long-running task that is executed on
a C++ worker thread. During the execution of the task, the Node.js program
needs to receive the progress status update in the form of callbacks. This
requires the worker thread to invoke callbacks written in JavaScript, which is
obviously forbidden because JavaScript code can be executed only on the main
thread. As a result, a special implementation technique is needed to bridge
the gap between 2 opposite concurrency models.

• Exception handling

Another common problem when mixing two programming languages is the
differences in the exception handling mechanism. Programmers often have to
deal with two types of exceptions: one in the host language and another in
the foreign language. Unfortunately, those two exception handling mechanisms
can differ significantly, often requiring additional efforts to ensure exceptions
are handled properly. For example, Java requires methods that can throw
exceptions marked with the throws keyword, which provides the Java static
analysis tools with information to force the caller to handle exceptions when
compiling Java code. However, the Java compiler cannot statically check if
the native C/C++ methods called via JNI throw any exception [15]. Hence,
the caller in Java often misses handling native exceptions when invoking na-
tive methods, which might cause the application to crash unexpectedly. In
addition, the different exception handling behaviors in JNI APIs can pose
a huge challenge when creating the bridge between Java and C/C++. In
fact, C/C++ code can throw Java exceptions using JNI exception APIs such
as env->ThrowNew(). However, raising Java exceptions in C/C++ code via
JNI does not automatically stop the execution of the C/C++ methods. This
behavior can surprise both Java and C/C++ developers as exceptions in their
languages typically stop the current execution flow [15]. Thus, programmers
might not be aware that the remaining code of their C++ function is still
executed even after the Java Exception is thrown in JNI. Hence, this behavior
can easily create bugs and security problems if mishandled.

• Lack of separation of concerns and poor scalability

Writing bridging code between two languages requires comprehensive knowledge
of both languages. This means that C++ engineers often have to write code in
Java/Objective-C while using JNI or Objective-C++, which may not be their
expertise. Likewise, mobile developers tend to have limited knowledge of C++
as it is often overly complex and low-level compared to Java or Objective-C.
Hence, it is often not clear who should be responsible for establishing the
bindings between C++ and native mobile languages. One possible answer
would be to hire experts who are competent in both languages and have good
knowledge of language interoperability tools such as Java Native Interface,
Objective-C++, Dart FFI, and Node Native addon. Unfortunately, the pool
of engineers who would fit under this category is relatively small. Moreover,

29

not every engineer in that group is comfortable with all the pairs of languages.
For example, an engineer who is familiar with Objective-C++ might not feel
comfortable dealing with Java Native Interface or Dart FFI.
There can be certain costs associated with developing and maintaining language
bindings on a large scale. Whenever a new API is introduced in the C++ library,
the engineering team has to write bindings to expose it to all the supported
platforms as well. As the requirements of the software change constantly over
time, the APIs of the C++ library along with their platform bindings need to be
modified accordingly to reflect the changes. This can lead to huge development
and maintenance costs as the number of supported platforms might grow over
time. One example is that an organization is responsible for X numbers of C++
libraries, each of which has on average Y APIs and is exposed to Z platforms.
This means that the organization needs to manage bindings in X * Y * Z
places, which can easily become a huge source of bugs and security problems
without extra attention.

30

3 Methodology
After having identified the challenges of the FFI mechanism in the previous chapter,
this chapter aims to establish the requirements to be satisfied by the thesis project.
The process can be divided into two main steps: collecting the requirements and ana-
lyzing those requirements to come up with usable solutions. Section 3.1 describes the
requirements collection methodology. After that, section 3.2 covers the requirements
analysis process. Finally, section 3.3 depicts the software design and execution.

3.1 Requirements collection
The first step to gathering requirements for this project is to identify stakeholders
who might become potential customers of the product to be developed. In this
case, the stakeholders are C++ engineers, platform SDK engineers, and engineering
managers of all the teams in charge of cross-platform SDKs within Mapbox. The
next step is to interview the representatives within each group to gain insight into
the current system’s status, their problems related to language bindings, and their
vision of the desired system. Those interviews were conducted via online meetings
and direct messages on an internal communication platform. Next, stakeholders’
inputs were noted in a Software Design Document (SDD) for design consideration.

3.2 Requirements analysis
From the input provided by the stakeholders, we picked a handful set of common
requirements to be met by the solution:

• Reduce not only developer efforts to expose APIs to other languages but also
bandwidth to maintain language bindings across different platforms.

• Promote the separation of concerns: C++ engineers should be able to minimize
their involvement in platform codebase and vice versa.

• Foster the reusability of language bindings solutions across various SDKs.

• Ensure consistency in the quality of language bindings across various SDKs.

• Enhance the visibility and manageability of cross-language APIs: It should
be trivial to observe and control which platform a specific API is available
on without browsing the source code. For example, the fine-grained visibility
control is useful when an API is exposed in Java while intentionally hiding in
Objective-C. Similarly, the fine-grained visibility control is useful when an API
is exposed only in certain flavors of the SDKs.

3.3 Software design and execution
Once the requirements are identified and clarified, the next phase is to design the
software solution that can address those requirements. This is an iterative process

31

requiring the team to outline the design of the solution in the SDD and request
feedback from stakeholders during the weekly SDK review forum. Next, the feedback
was addressed by updating the design until the majority of the stakeholders reached
a common consensus. After that, the team provided the project’s roadmap, which
consists of several milestones, their Level Of Effort (LOE), and their Expected Time
of Arrival (ETA). Each of the milestones includes tasks to be completed within that
milestone.

During the development process, we used scrum as an agile software methodology
where user stories were broken down into smaller tasks executed on different bi-weekly
sprints. The project used Git as version control and Github repository to host the
code and collaborate with team members and stakeholders. Each task that requires
code change was resolved by at least one pull request on Github. Pull requests were
typically reviewed by experts in the related languages and platforms. Often, the
committers and reviewers were also stakeholders from different teams who desired to
influence the design decisions of the product at the early stages.

3.3.1 Simplified Wrapper and Interface Generator (SWIG)

One of the most popular tools in this category is Simplified Wrapper and Interface
Generator (SWIG). SWIG is a battle-tested compiler capable of parsing C/C++
headers and generating language bindings to multiple host languages [17]. At a basic
level, the key advantage of this approach is that it requires trivial efforts to expose a
huge existing C++ library to other languages under time constraints. This is because
raw C++ headers are the only requirement of SWIG to generate basic bindings
out of the box. For advanced use cases, SWIG was designed with extensibility and
flexibility in mind as it provides users with fine-grained control over the generated
code. In particular, SWIG allows programmers to not only customize the output
APIs but also provide custom data type conversion code via its typemap annotation
mechanism [17]. Additionally, programmers can also extend SWIG by adding their
custom language generators.

32

4 Technical solution
This chapter seeks to provide a solution that can potentially meet the requirements
stated in the previous chapter. In particular, section 4.1 offers an overall view of the
solutions. Section 4.2 provides hypothetical evidence that the proposed solution can
satisfy most of the requirements. Section 4.3 evaluates the existing solutions.

4.1 Proposed solution
One observation is that most language bindings consist of a large amount of boilerplate
code. Thus, the repetitive process of writing language bindings can mostly be
automated. This thesis proposes a solution that uses Interface Description Language
(IDL) to describe the common interface between different languages. The thesis
project aims to develop a compiler that reads the interface description written in IDL
syntax and generates all the necessary marshaling code in the chosen languages. The
proposed solution is a hybrid approach that applies the concept of IDL, as described
under the Remote Procedure Call category, to FFI code generation. Figure 6 shows
the new architecture introduced by this solution.

Similar to the RPC workflow, the process of exposing APIs to different languages
consists of three steps. Firstly, the APIs between languages are described in text
files using a specific IDL syntax. IDL files are then compiled to generate all the stub
APIs and necessary boilerplate bindings. Finally, the actual implementations are
manually connected to the bindings by developers.

4.2 Hypothesis
Our hypothesis is that the new workflow might help improve cross-language SDK
development in four key categories. Firstly, developers’ productivity is expected
to increase as the code generator exempts them from manually developing and
maintaining language bindings. In fact, this approach should only require developers
to describe the interfaces in the IDL files and then regenerate the bindings when
their APIs are changed. Secondly, the stability of the bridging code could also be
enhanced since human errors are substantially minimized thanks to automation. We
firmly believe that code generation can compensate for the limitations of static code
analysis tools in multi-language systems.

Thirdly, this approach offers a higher level of separation of concerns as experts in
one language no longer need to work directly in codebases written in other languages.
For example, Java developers no longer have to work directly in the C++ codebase
and vice versa. Last but not least, scalability is the main advantage of this approach,
thanks to the centralized and streamlined fashion of the code generator. In fact,
the code generator can serve as a hub for handling language bindings in multiple
libraries across the organization. This means bug fixes, improvements, and new
features such as new languages added to the generator can easily cascade to all the
dependent libraries. As a result, the quality of the bindings code can be assured at
one single point instead of scattering all over multiple projects and teams within

33

Figure 6: New architecture after the introduction of IDL

the organization. For example, an organization is responsible for X numbers of C++
libraries, each of which has on average Y numbers of APIs and is exposed to Z numbers
of platforms. With the IDL approach, a team that is in charge of a single library
only needs to manage Y APIs as opposed to Y * Z pieces of bindings. This means
that the entire organization barely manages X * Y APIs instead of X * Y * Z pieces
of bindings, as pointed out in section 2.2.3.

4.3 Existing solutions
Bindings code generator is certainly not a new topic. In fact, various solutions have
been developed to solve language interoperability problems in the past few decades.
Those solutions can be divided into two groups: single-pair and multi-pair generators.
Single-pair generators cater towards a specific pair of programming languages such
as Python-C++ interop with PYLCGDIC generator [16]. In contrast, the goal of
multi-pair generators is to generate bindings for multiple pairs of languages. This
section aims to briefly overview two prominent multi-pair binding generators (SWIG
and Djinni) and highlight their key differences. Frankly, our solution does not aim

34

to compete with those generators but rather solves Mapbox-specific problems in our
multi-language software stack.

4.3.1 Simplified Wrapper and Interface Generator (SWIG)

One of the most popular tools in this category is Simplified Wrapper and Interface
Generator (SWIG). SWIG is a battle-tested compiler capable of parsing C/C++
headers and generating language bindings to multiple host languages [17]. At a basic
level, the key advantage of this approach is that it requires trivial efforts to expose a
huge existing C++ library to other languages under time constraints. This is because
raw C++ headers are the only requirement of SWIG to generate basic bindings
out of the box. For advanced use cases, SWIG was designed with extensibility and
flexibility in mind as it provides users with fine-grained control over the generated
code. In particular, SWIG allows programmers to not only customize the output
APIs but also provide custom data type conversion code via its typemap annotation
mechanism [17]. Additionally, programmers can also extend SWIG by adding their
custom language generators.

Despite the flexibility that SWIG provides, we believe this tool might not be
suitable for our long-term use, mostly due to its heavy dependence on C++ headers
and its lack of support for Objective-C language. First and foremost, C++ is a
complex language with a history of over 40 years. Thus, it supports a wide range
of semantics and idioms from both modern and legacy versions of the language. In
practice, a considerable portion of C++ features can pose challenges when mapping
directly to other languages [18]. One notable example is the ambiguous use of raw
pointer as parameter type in function void test(Bar* bar). This is because bar
can be a pointer to either a single object of type Bar or an array of Bar objects, which
requires different generated code. To resolve this ambiguity, programmers are often
required to annotate the APIs to tweak the behavior of the generated code. Hence, the
complexity of C++ syntax and semantics demands more responsibility from C++ pro-
grammers to ensure that the exposed C++ APIs are compatible with other languages.

Secondly, introducing additional custom marshaling code snippets and anno-
tations to the already complicated C++ syntax not only reduces readability but
also promotes tight coupling in C++ headers. Consequently, those drawbacks pose
maintenance burdens for engineers to manage the exposed APIs, especially mobile
engineers who are not necessarily familiar with C++. Thirdly, consuming raw C++
headers as input is not portable when targeting languages that are not C/C++. For
example, we might want to replace C++ with Kotlin-native to share business logic
between iOS and Android platforms in the future. In addition, the demands for
glue code between native mobile languages and cross-platform languages such as
JavaScript and Dart are increasing thanks to the growing popularity of cross-platform
UI frameworks such as React-native and Flutter. Last but not least, SWIG does not
provide official support for Objective-C bindings - one of the supported languages at
Mapbox.

35

In short, SWIG shines when exposing an existing large-sized C++ library to other
languages in one shot. However, SWIG might show shortcomings in maintenance
and incremental development due to the dependence on C++ syntax.

4.3.2 Djinni

Djinni26 is a code generator originally developed by Dropbox with the aim to share a
common C++ codebase between mobile platforms. Conceptually, there exist ample
similarities between Djinni and the generator proposed in this thesis: the exposed
APIs are both described in separate IDL files and then parsed to generate binding
code in each involved language. Indeed, the design philosophy of this approach is
the opposite of the SWIG approach. In particular, SWIG gives ample flexibility
to C++ programmers; thus, it puts more responsibility on C++ programmers to
ensure the compatibility between the exposed C++ APIs and other languages. In
contrast, Djinni dictates and restricts the design of the C++ API exposed to host
languages because it generates the interface code and requires programmers to fill in
the implementation.

In fact, we had considered leveraging Djinni as our potential solution to language
interoperability instead of building our in-house tool. However, Djinni has no longer
been actively maintained by Dropbox since 2019. Even though Djinni has become a
community-driven project recently, it still has a long way to catch up with the growing
demand for Mapbox. In particular, Djinni does not generate bindings for languages
such as Swift, Dart, and Node.js, which we aim to support. In addition, Djinni does
not provide support for many useful features such as asynchronous callback, class
inheritance, and interface inheritance. Apart from those generic functionalities, we
also desire to embed many of our own existing data structures like GeoJSON to the
IDL and the support library.

As a result, we decided to build our in-house bindings generator to avoid the
limitations of Djinni. We want complete control over the tool so that we can
move quickly when solving Mapbox-specific problems. Indeed, the Djinni generator
influences many ideas in our project. Table 1 summarises the differences between
different tools.

Table 1: Comparison matrix between different tools

Ease of adoption Ease of maintenance Support for Dart/Swift
SWIG High Low No
Djinni Medium High No

Our solution Medium High Yes

26Djinni code generator. https://github.com/dropbox/djinni. Accessed 06/2022.

36

5 Implementation
This chapter describes the end-to-end implementation of the generator. In detail, the
generator consists of 3 main components: front-end, back-end, and toolings, which
are covered in chapters 5.1, 5.2, and 5.3 respectively. The front-end is the component
where users interact with the software. It is responsible for defining the syntax and
semantics of the IDL. In particular, the front-end part is in charge of parsing the
IDL to construct a data structure known as Abstract Syntax Tree (AST). Once
the AST is available, the front-end then validates the AST before passing it to the
back-end side.

The back-end part plays the most crucial role in the generator. It traverses the AST
and performs all the heavy-lifting bindings generation for multiple languages. The
generated bindings typically include APIs in the host language, APIs in the foreign
language, and marshaling code that converts data structures between languages. In
the context of this problem, host languages refer to mobile platform languages while
foreign language is C++. Finally, the toolings consist of several components such as
the support library and build plugins to facilitate integration with the existing build
systems of each language involved. Figure 7 depicts the high-level architecture of
the compiler.

5.1 Front-end
This section provides implementation details on how the front-end component was
constructed. First of all, subsection 5.1.1 begins by explaining the technical reasons
behind the introduction of the third language. Next, subsection 5.1.2 walks through
the key building blocks of the IDL. Then, subsection 5.1.3 presents the syntax of the
IDL and parsing techniques. After that, subsection 5.1.4 provides information about
the Abstract Syntax Tree (AST) data structure. Finally, subsection 5.1.5 explains
how semantic analysis is performed on the AST.

5.1.1 Interface Description Language

There are two steps that the generator in this project performs: it parses the API
specifications described in a certain format and then generates code according to
those specifications. It means that the first step of the project is to pick a suitable
data format for API specifications.

There exist various data formats for such purposes. For instance, JavaScript
Object Notation (JSON) or Yet Another Markup Language (YAML) are commonly
used for writing configuration. While JSON and YAML are language-agnostic, those
data formats are often error-prone, verbose, and inexpressive for specifying this type
of API. As a result, it requires a non-trivial amount of boilerplate to describe and
verify the APIs. This poses challenges not only in writing the API specifications
but also in maintaining those specifications on a large scale. Thus, we need a more

37

Figure 7: Architecture of the compiler

compact and expressive medium for API specifications.

Another alternative is to parse C++ header files to capture API specifications.
Indeed, this is the approach of the SWIG generator. This approach might exempt
programmers from describing the APIs in separate files since most metadata is already
available or can be added directly within the corresponding C++ headers. While
this solution allows C++ developers to expose their native APIs conveniently, it is
not language-agnostic. Hence, it can be cumbersome for platform developers under
certain situations since they are required to read and modify C++ code. Moreover,
the dependency on C++ headers might hinder the portability of the solution since
we might want to switch the target to a different language in the future. In addition,
parsing C++ is non-trivial due to its syntax and semantics complexity.

38

Another solution is to introduce a new domain-specific language (DSL) that can
be used for describing APIs. This language is supposed to be sufficiently compact,
user-friendly, and independent from all the generated languages. Indeed, this IDL
language is intentionally designed to be the lowest common denominator among all
the generated languages. As a result, both C++ engineers and platform engineers
should have little to no difficulty developing and maintaining API specifications.
Thus, the IDL files can serve as a contract between all the parties, including C++
engineers, platform engineers, and managers. In particular, this solution can mitigate
the weaknesses imposed by the two solutions discussed previously in this section.
First, it can offer a higher level of conciseness and expressiveness that JSON and
YAML lack when describing APIs. For example, describing C++ or Java methods
in a simplified version of both languages feels more intuitive. It is because of the
syntactical similarity between the IDL and those languages. Second, introducing a
new language can also promote portability and reusability, which are lacking in the
solution that parses C++ header files for API specifications. This solution is reusable
as we no longer depend on a specific language such as C++. Indeed, the IDL can be
used to generate bindings between various pairs of different languages, or it can be used
for different purposes apart from bindings generation. The challenge of this approach
is that we must introduce a new language, which requires additional engineering
effort to develop the parser. In addition, C++ and platform engineers must also learn
the new Interface Description Language. Table 2 depicts the summarised comparison
matrix between 3 approaches under three criteria.

Table 2: Comparison matrix between different approaches

Conciseness Language Agnostic Ease of implementation
JSON/YAML Low High High

Parsing C++ headers High Low Low
IDL Medium High Medium

5.1.2 Key constructs

Before constructing the IDL, it is important to clearly define a minimal set of key
features that are frequently exposed to platform languages and map them to IDL
constructs. Those IDL building blocks can be categorized into functional constructs
and data constructs.

The functional category is a set of constructs that can invoke user-defined code.
This group includes class, interface, and callback. Types under this category are
marshaled by reference across the language boundary.

• Class is the IDL construct used for exposing concrete classes whose implemen-
tation resides in C++. In practice, class is the most crucial building block in

39

the IDL since most use cases are when the platform language invokes methods
implemented in C++. An example of class Foo in IDL syntax is illustrated in
Listing 8.

1 class Foo {
2 constructor () // implementation in C++
3 constructor (arg1: Type1)
4 constructor (arg1: Type1, arg2: Type2)
5

6 bar (): void // implementation in C++
7 bar(arg1: Type1): Type2
8 static staticMethod (arg1: Type1, arg2: Type2): Type1
9

10 instanceVar 1: Type1
11 static var2: Type2
12 }

Listing 8: Example class in IDL

• Interface is the IDL construct used mainly for exposing an abstract plat-
form class object to C++. This construct allows C++ to invoke methods
implemented in platform languages via conformed interfaces. It is useful in
situations where C++ code needs access to native platform APIs and libraries.
An example of an interface Bar in IDL syntax is illustrated in Listing 9.

1 interface Bar {
2 foo (): void
3 bar(arg1: Type1, arg2: Type2): Type2
4 }

Listing 9: Example interface in IDL

• Callback is the IDL construct that allows C++ to invoke a lambda function
created in platform languages and vice versa. It is primarily used for subscribing
to asynchronous events whose emitters are located on the other side of the
language boundary. Listing 10 shows an example of a callback named Baz in
IDL syntax.

1 callback Baz(arg1: Type1, arg2: Type2)

Listing 10: Example callback in IDL

The data constructs category includes types primarily responsible for holding
data. Those constructs are marshaled by copying value across language boundaries.

• Primitive types are the smallest building blocks in the IDL, including nu-
meric types (int8, int16, int32, int64, uint8, uint16, uint32, uint64),
boolean, timestamp, and string.

40

• Enum construct represents enumeration types.

• Container types are generic data structures that store a collection of a specific-
typed element. This group includes array<T>, map<K, V>, optional<T>, and
result<S, F>.

• Record is the IDL type that represents pure data objects. Typically, it contains
a group of fields of various types. An example of a record named Person in
IDL syntax is illustrated in Listing 11.

1 record Person {
2 name: string
3 age: uint8
4 email: optional <string >
5 favoriteColors : array <Color >
6 }

Listing 11: Example record in IDL

5.1.3 IDL parser

Once all the essential IDL constructs have been defined, the next phase is to parse the
IDL constructs. This section does not aim to provide in-depth details about low-level
parsing techniques but rather gives a cursory look into how parsing is performed in
a large picture.

Similar to any language, Interface Description Language is constructed by ar-
ranging a set of keywords in a way that follows pre-defined grammar rules. In fact,
parsing is a process that takes a linear stream of tokens and transforms them into a
meaningful hierarchical data structure known as the Abstract Syntax Tree (AST).
The first step of parsing is to define IDL keywords and grammar rules in Context-free
grammar format. The over-simplified grammar rules of the IDL are shown in Listing
12.

1 IDL -> (CLASS | INTERFACE | RECORD | CALLBACK | ENUM)+ EOF
2

3 // top level
4

5 CLASS -> 'class ' TYPE_NAME '{' CONSTRUCTOR * METHOD * ←↩
INSTANCE_VARIABLE * '}'

6

7 INTERFACE -> 'interface ' TYPE_NAME '{' NON_STATIC_METHOD * '}'
8

9 RECORD -> 'record ' TYPE_NAME '{' INSTANCE_VARIABLE * '}'
10

11 CALLBACK -> 'callback ' TYPE_NAME '(' ARGUMENT ? ')'
12

13 ENUM -> 'enum ' TYPE_NAME '{' ENUM_VALUE + '}'
14

41

15 // nested level
16

17 CONSTRUCTOR -> 'constructor ' '(' ARGUMENT ? ')'
18

19 METHOD -> 'static '? ID '(' ARGUMENT ? ')' ':' RETURN_TYPE
20

21 NON_STATIC_METHOD -> ID '(' ARGUMENT ? ')' ':' RETURN_TYPE
22

23 ARGUMENT -> ID ':' TYPE_ID | ARGUMENT ',' ARGUMENT
24

25 INSTANCE_VARIABLE -> ID ':' TYPE_ID
26

27 ENUM_VALUE -> ID
28

29 ID -> /[a-zA -Z][_a -zA -Z0-9]*/
30

31 RETURN_TYPE -> 'void ' | TYPE_ID
32

33 TYPE_ID -> TYPE_NAME | NUMERIC | 'bool ' | 'string ' | 'timestamp←↩
' | CONTAINER

34

35 TYPE_NAME -> /[A-Z][_a -zA -Z0-9]*/
36

37 NUMERIC -> 'int8' | 'uint8' | 'int16' | 'uint16' | ' int32 ' | '←↩
uint32 ' | ' int64 ' | ' uint64 ' | 'float ' | 'double '

38

39 CONTAINER -> 'optional ' '<' TYPE_ID '>' | 'array ' '<' TYPE_ID '←↩
>' | 'map ' '<' TYPE_ID ',' TYPE_ID '>' | 'result ' '<' ←↩
TYPE_ID ',' TYPE_ID '>'

Listing 12: Context-free grammar of the IDL

The defined IDL grammar rules are then fed to a parser to parse IDL files and con-
struct the AST for further processing. This project uses an open-sourced JavaScript
parsing tool named Parsimmon to perform the heavy-lifting parsing work. Parsimmon
is a top-down parser using the Left-to-right, leftmost derivation(LL) parsing
algorithm that is suitable for the simple, unambiguous grammar of the IDL. The
process of describing IDL grammars to Parsimmon parser is relatively straightforward.
For example, the over-simplified grammar of the IDL Record in Parsimmon is shown
in Listing 13.

1 const token = str => Parsimmon . string (str)
2 .skip(Parsimmon . whitespace);
3

4 const recordParser = Parsimmon . createLanguage ({
5 Record : parser =>
6 Parsimmon . seqObj (
7 token('record '),
8 ['name ', parser . TypeID],
9 token('{'),

10 ['fields ', parser .Field.many ()],
11 token('}')

42

12),
13 Field: parser =>
14 Parsimmon . seqObj (
15 ['name ', Parser .ID],
16 token(':'),
17 ['type ', Parser . TypeID]
18),
19 ID: parser => token(
20 Parsimmon . regexp (/[a-zA -Z][_a -zA -Z0-9]*/)),
21 TypeID : parser => token(
22 Parsimmon . regexp (/[A-Z][_a -zA -Z0-9]*/))
23 });

Listing 13: Persimmon grammar format of IDL Record construct

5.1.4 Abstract Syntax Tree

The responsibility of the parser is to scan the input source code and convert them into
a hierarchical representation known as Abstract Syntax Tree (AST). Essentially, AST
is a tree data structure that can capture the semantics of a programming language.
It also discards redundant details such as colons, semicolons, and parentheses that
are only useful for parsing. For instance, the program in Listing 14 is parsed into
the AST shown in Figure 8. One observation is that all the leaf nodes are colored in
red, containing the smallest building blocks such as ID or TYPE_ID. On the other
hand, non-leaf nodes are the ones that capture the higher-level construct such as
CLASS, METHOD, and FIELD. In addition, leaf nodes containing redundant tokens are
all discarded from the tree.

1 class Foo {
2 constructor (arg1: Type1)
3

4 bar(arg1: Type1): Type2
5

6 variable : Type1
7 }

Listing 14: Example class Foo in the IDL

In fact, the front-end part hierarchizes a linear stream of tokens into a tree data
structure while the back-end reverses the process by linearizing the AST into a
string in a different language. Hence, the AST acts as a bridge or an intermediate
representation between the front-end and back-end components of the compiler. This
tree representation can be used for semantic analysis, early optimization, and code
generation.

43

Figure 8: Abstract syntax tree of the class Foo in Listing 14

44

5.1.5 Semantic analysis

The parser can detect syntactical errors when the source code fails to follow language
grammar rules. Nevertheless, other categories of errors exist that the parser usually
fails to recognize. One such category of errors is semantic errors. For example, the
interface illustrated in Listing 15 is syntactically correct even if the same namespace
contains two top-level constructs with the same name "Foo", and the type of the
parameters arg1 is undefined.

1 enum Foo { foo bar }
2

3 class Foo {
4 constructor (arg1: MissingType): void
5 }

Listing 15: Semantically incorrect IDL interface

As a result, compilers often introduce another step to ensure the semantic cor-
rectness of the parsed source code. This semantic analysis step is typically performed
on the AST because it contains all the necessary source code information. This step
has two primary responsibilities for full-fledged programming language compilers:
ensuring that variables are not used out of their scopes and type-checking the program.
However, the IDL semantic rules in this project are reasonably trivial as we only
check for the correctness of IDL declarations.

In this step, the tool first traverses the AST and uses a hash table to store the
mapping between the label of a construct and its corresponding AST node. This
data structure allows O(1) time-complexity when retrieving an AST node by its
label, which is frequently used in type-checking and further code generation. This
step ensures that all the types are defined and that the IDL definitions follow the
semantical rules. In practice, the program is typically organized into a set of IDL files
that can import definitions from each other. As a result, the generator recursively
parses the specified IDL file and its imported dependencies to construct the symbol
table for the semantic analysis process.

5.2 Back-end
While the user interface is a vital part of the tool, the heart of the generator inevitably
lies on the back-end side. The back-end component is responsible for taking the
previously constructed AST, traversing its nodes, and subsequently producing bind-
ings code. This chapter presents the techniques for bridging different IDL constructs
across language boundaries.

Generally, the generated code can be divided into three parts: APIs in platform
languages, APIs in C++, and the marshaling code written in C++ or platform
languages. The implementation details of the APIs may vary across different IDL

45

constructs and languages. Nonetheless, the marshaling code of different IDL con-
structs all share a standard format. They are organized into a set of marshallers,
each responsible for converting a separate IDL construct between two languages.
Those marshallers of IDL constructs conform to the interface Marshaller and have
the shape as shown in Figure 9:

Figure 9: Marshaller structure

As discussed previously, there are two groups of types in the IDL: default types
and user-defined types. The marshallers of default types such as string, double,
and date are provided out-of-the-box as part of the support library. In contrast,
marshallers of custom types such as class, record, interface, and callback are all
generated. Since all marshallers conform to the same interface named Marshaller,
they can be composed arbitrarily to marshal complex, nested data structures such
as map<string, array<optional<record>>>. In practice, the complexity of the
marshaling code for reference types is substantially higher than that of value types
such as record and enum. The following sections dive into the implementation details
of a few notable IDL constructs.

5.2.1 Class

When a class is defined in the IDL, the generator generates three components: the
APIs for that class in C++, the APIs in the platform language, and the marshaling
code to convert between two class objects:

• C++ class:
The C++ library exposed via this generated C++ interface can be consumed
as a standalone product for embedded Linux environment. It uses Pointer
to Implementation (PImpl) idiom in C++: the generator outputs a class
that declares all the methods specified in the IDL. That class also holds a
private pointer to a separate implementation class object in C++. When a
method is invoked from the C++ interface, the generated code forwards the
call to the implementation class, which programmers must provide manually.

46

This PImpl idiom hides the implementation details from users and allows the
C++ implementation to change without triggering compilations for all of its
dependencies.

• Platform class:
The similar PImpl technique is also used for the platform class, which means
that the platform class is a proxy that forwards method calls to its native peer.
In particular, the object of the generated C++ class is instantiated in the
constructor of the platform class. Next, an instance variable of the platform
class object is used to store a memory address of the C++ class object. Then,
the code that registers native handler functions for platform class methods
is activated. After the setup has been completed, the platform object can
forward the invocation to the native C++ code. This cross-language method
call is implemented by extracting the native C++ object from the platform
class object, marshaling the parameters to C++, calling the corresponding
method on the extracted C++ object, and subsequently marshaling the re-
sult back to platform languages. It is important to wrap this cross-language
method invocation inside a try-catch block to systematically catch and handle
exceptions thrown by the C++ method. If an exception is thrown from C++,
the generated code must translate it to platform exception and rethrow in
the platform language to avoid leaking native exception. For example, C++
exceptions are translated to Exception in Java or NSError in Objective-C.

Regarding memory management, this PImpl design requires a special memory
management technique since the C++ object must stay alive as long as the
platform object is still alive. Otherwise, there exists a situation known as
dangling pointer where methods are called on the proxy object after its native
peer has already been destroyed. This means that the proxy class needs to hold
a strong reference to the C++ object to keep it alive. When the proxy class
object is about to be collected, it must trigger the C++ object deallocation
to release the occupied memory. One tricky implementation detail is about
C++ pointer ownership. A naive solution is to let the platform object directly
hold a raw pointer to the native object. This means that the platform object
takes ownership of the native object and must deallocate its native peer at the
end of its life cycle. Nevertheless, C++ code sometimes also needs to take
ownership of the C++ object. One example is when a singleton C++ object
is exposed to platform code. The singleton pattern requires the object to be
stored in a C++ static variable. If the platform object exclusively owns the
singleton native object, it might as well prematurely deallocate the singleton
object, which is typically supposed to live until the program terminates. Hence,
C++ code should also be able to share the ownership of the C++ object.
One solution to this problem is to use a shared pointer to manage memory
for C++ objects and let the platform object exclusively hold a raw pointer
to the heap-allocated shared pointer. Indeed, the platform object can safely
deallocate the raw pointer to the shared pointer without affecting other parts

47

of C++ code. Thus, this approach allows both C++ and platform objects to
share ownership of the C++ object since it is only deallocated as soon as the
last instance of the shared pointer is out of scope.

• Marshaling code:
When a shared pointer to the C++ object is marshaled to platform languages,
a copy of that shared pointer is allocated on the heap, and a new proxy class
in platform languages is created to hold that pointer. However, there occur
situations where the same C++ object is marshaled to the platform object more
than once. Suppose a new platform proxy object and a new copy of that shared
pointer are created whenever a C++ object is marshaled to platform languages.
In that case, the binding code will have two problems: poor performance and
loss of object identity. The first problem happens because new platform objects
are created whenever C++ class objects are marshaled to the platform side,
which is not only slow but also resource-consuming. The second problem exists
because we always receive a new and different platform object when an original
platform object is marshaled to C++ and back. The loss of object identity
can be problematic in code that compares objects’ identity, for example, when
platform objects are used as keys in a hashmap. One solution to this object
identity problem is to cache the reference to the platform proxy object in
an instance variable of the C++ object to reuse the existing platform object.
However, suppose the C++ object holds a strong reference to the platform
proxy object. In that case, it will create a circular dependency situation because
the platform object also holds a strong reference to the C++ object to keep the
C++ object alive as long as the platform object stays alive. As a result, one
will wait for the other to be deallocated, creating a strong circular reference,
which prevents both objects from being collected. In order to avoid such a
circular reference scheme that leads to the memory leak situation, the C++
object can only cache the weak reference to the platform object. Thanks to
the nature of weak references, the circular reference scheme is broken because
weak references do not interfere with the garbage collector. Thus, the platform
object can now be deallocated before its native peer. If the native peer is still
alive after its platform object is collected, the weak reference returns null
when being marshaled back to the platform side. The marshaling code can
create a new platform object to hold the native object in this situation. Figure
10 illustrates the memory ownership of the class object.

48

Figure 10: Memory ownership of class object

Class objects are marshaled in 2 directions: from C++ to platform languages
and from platform languages to C++, as shown in Figure 11. When a proxy
class object is instantiated in platform languages, a native peer object is created
as a result. The marshaling code ensures that the platform object always holds
a strong reference to the C++ object while the native object holds a weak
reference to the platform one. The process of marshaling a platform object
to C++ is trivial as we only need to load the shared pointer to the C++
object from its address stored in the instance variable of the platform object.
Nonetheless, the marshaling logic is slightly more complicated when marshaling
C++ object to platform proxy object. First, we need to check if the C++
object has a reference to the alive platform object. If the platform object is
alive, we simply return it to the platform code. Otherwise, we allocate memory
for the shared pointer on the heap and create a new platform object to hold it.

49

Figure 11: Marshalling flow chart for class construct

5.2.2 Interface

Interface construct is an abstract class that specifies a list of methods to be im-
plemented by other concrete classes. Other parts of the code can interact with
conforming classes via the interface without knowing the underlying class. An inter-
face can be conformed by both platform classes (platform interfaces) and native
classes (native interfaces). There are four situations where the interface concept is
used:

• Platform code invokes methods of the conforming platform classes.

• C++ code invokes methods of the conforming C++ classes.

• Platform code invokes methods of the conforming C++ classes.

• C++ code invokes methods of the conforming platform classes.

The first two cases are trivial as those are the normal behaviors of interfaces in
any language. However, the last 2 cases pose cross-language challenges to be solved
in this subsection. In detail, native interfaces are useful when platform code needs to
invoke methods on C++ objects via the interfaces that those objects implement. To
achieve this goal, we generate an anonymous platform proxy object that conforms to
the interface since platform code only interacts with the proxy class via the interface.
Internally, that proxy class holds a strong reference to the native C++ object so that

50

it can forward the call to C++ methods. In fact, it is undeniable that native interfaces
work similarly to class constructs. Nevertheless, native interfaces differ from class
constructs since they can not be instantiated by calling constructors directly from
the platform code. This is because an interface is an abstract class implemented by
an anonymous concrete proxy class. It is only created by the marshaling code when
converting an existing C++ class object to the platform language.

Another type of interface that is more frequently used than native interfaces is
platform interfaces. Platform interfaces allow C++ code to interact with platform
objects via interface methods. In general, platform interfaces are the reverse version
of native interfaces. C++ proxy objects hold a strong reference to platform interface
objects, while platform interface objects hold a weak reference to C++ objects.
When C++ code calls methods that are implemented in platform language, the proxy
object extracts the reference to the platform object, marshals parameters, and then
forwards the call to platform methods. Like native interfaces, C++ proxy objects
are only constructed in the marshaling code when converting the existing platform
objects from platform languages to C++.

The generator generates three main parts for interface construct:

• Abstract classes/interfaces that declare a set of abstract methods to be
implemented by concrete classes in both languages.

• Concrete anonymous proxy classes that conform to the interface in each
language. Each proxy class holds a strong reference to the implementation
object on the other side of the language boundary. In contrast, each object of
the implementation class must hold a weak reference to its proxy to preserve
the identity when being marshaled bidirectionally. One challenge is that the
user-provided concrete classes that implement interfaces are unaware of the
weak references to the proxy object. The unawareness means that the weak
reference to the proxy object cannot always be stored in an instance variable
of the class. Hence, the trick is to use a hashmap to store user-defined class
objects as keys and weak references to proxy objects as values. When the proxy
object is under destruction, the associated entry is removed from the hashmap
so that the implementation class objects can be eligible for garbage collection.

• Marshaling code:
Like the marshaling process of class constructs, interfaces are marshaled in
two directions. However, there are two distinct interface types, and they
are marshaled differently. When marshaling a native interface from platform
languages to C++, we simply extract the memory address of the heap-allocated
native peer object from the platform object. In contrast, the native interface
object is marshaled from C++ to platform languages by returning an alive
platform peer object from the weak reference or by creating a new one if no
alive platform peer object exists. Symmetrically, the platform interface object
is converted from C++ to platform languages by extracting a strong platform

51

object from its C++ proxy. In the direction from platform languages to C++,
we return an alive C++ proxy object from a weak pointer or create a new one
if none exists. The marshaling flowchart of an interface is illustrated in Figure
12.

Figure 12: Marshalling flow chart for interface construct

Calling methods implemented in C++ from platform object is usually trivial.
In contrast, extra attention is required when calling platform-implemented
methods in platform languages due to inconsistencies between concurrency
models of different languages. For example, Dart and JavaScript are single-
threaded languages that rely on the asynchronous concurrency model powered
by the event loop. It means that code written in those languages can only
be executed on the main thread. Hence, calling methods implemented in
JavaScript or Dart from C++ worker threads might crash the program. As a
result, the native proxy object must always schedule tasks that invoke platform
methods with the Node.js, and Dart event-loop and wait to execute those tasks.
On an unrelated note, methods implemented in Java can only be called from
C++ threads that have already been attached to the JVM. As a result, threads
that are not created by the JVM need to be attached and detached from the

52

JVM to invoke Java methods. These specific implementation details are all
considered in the generated code and are abstracted away from the end-users.

5.2.3 Record and enum

Record is a data object containing various fields, each of which can be of different
types. We generate three pieces of code for each record: a class in platform language,
marshaling code, and a struct in C++. The generated class/struct in each language
simply includes a set of fields with different types in that language. The job of the
marshaller is to convert each field of the record from one language to another and
create a new object on the other side of the language boundary. Hence, records are
marshaled by value rather than by reference like class, which means that we always
receive a new record that looks identical to the original record if it is converted to
the other language and back.

Enum is a data type containing a mutually exclusive set of predefined constants.
We generate an enum class that consists of a list of enum values in both C++ and
platform languages. When marshaling enum types between languages, the marshaling
code converts the enum value to an integer, passes through the language boundary,
and finally converts it back to the enum value in the other language.

5.2.4 Containers

Many container types such as array, map, set, stack, queue, and optional are
objects holding a collection of other types. Those container types are parameterized
types, which means that they are designed to work flexibly with different inner types
to make the collection logic reusable. As a result, the marshaling code has to be
generic as well. Indeed, the marshaler works similarly to the higher-order function
map() on collection types of most modern languages. They accept the marshallers of
their inner types as parameterized types, then iterate through the collection and use
the marshallers of inner types to marshall each element. This higher-order marshaller
design separates the concern between the collection marshaling code and its element
marshaling code, which allows marshaling any arbitrary inner type as long as the
marshaller of that inner type conforms to the common marshaller interface. This is
because element marshallers are responsible for converting each collection element to
another language. In contrast, the marshaller of container types marshalls the whole
collection without knowing the low-level details on how to convert inner elements.
For example, Listing 16 demonstrates how an array of strings is marshaled between
Objective-C and Cpp.

1 // Parameterized ArrayMarshaller
2 template <class ElementMarshaller >
3 struct ArrayMarshaller {
4 using CppType = std :: vector < typename ElementMarshaller ::←↩

CppType >;
5 using ObjCType = NSArray * _Nonnull ;
6

53

7 static ObjCType toJava (const CppType & cppVector) {
8 auto array = [NSMutableArray arrayWithCapacity : static_cast <←↩

NSUInteger >(cppVector .size ())];
9 for (const auto& element : cppVector) {

10 [array addObject : ElementMarshaller :: toObjc (element)];
11 }
12 return [array copy];
13 }
14

15 static CppType toCpp(ObjCType objcArray) {
16 CppType result ;
17 result . reserve (objcArray .count);
18 for (id element in objcArray) {
19 result . push_back (ElementMarshaller :: toCpp(element));
20 }
21 return result ;
22 }
23 };
24

25 struct StringMarshaller {
26 using CppType = std :: string ;
27 using ObjcType = NSString * _Nonnull ;
28 static ObjcType toObjc (const CppType & cppString) {
29 return [NSString stringWithUTF 8 String : cppString .c_str ()];
30 }
31 static std :: string toCpp(ObjcType objCString) {
32 return [objCString UTF8 String];
33 }
34 };
35

36 // Generated marshalling code
37 NSArray * objcArray = ArrayMarshaller < StringMarshaller >:: toObjc←↩

({"foo", "bar"});

Listing 16: Parameterized array marshaller

5.3 Quality assurance, documentation, and integration
A typical code generator project consists of two types of code: generator code and
generated code. This means that quality assurance and documentation are required
for both of those categories.

Quality assurance plays a crucial part in software development. Indeed, high-
quality bidings code is especially critical in the Mapbox software stack as the generator
serves as a central hub for producing bindings in various SDKs. This means that
software defects in the generated code are likely to affect most SDKs. To ensure
the high quality of the project, we employ not only unit tests to test the generator
logic but also a collection of integration tests to assure that each feature behaves
correctly in all supported languages. We use Jest as a testing framework for unit
testing to test the parsing and generator logic. Apart from unit tests, the integration

54

test of each feature not only ensures that the generated code works seamlessly on all
supported platforms but also serves as an example and documentation on how that
feature can be used. To make integration tests self-documenting to even non-code
stakeholders, we chose Cucumber as our Behavior-Driven Development framework,
which allows test steps to be specified in plain English. Apart from tests at the
project level of the generator tool, the generated code in each Mapbox SDK is also
extensively tested at the product level.

Once the behavioral quality of the generated code is ensured, the next step is to
ensure that the generated code’s style is consistent and follows the best practices. In
particular, the generated code is checked and formatted using tools such as clang-tidy
and clang-format.

One important aspect of the generated code is documentation. Similar to hand-
written code where methods and classes require documentation, the generated code
must be documented. In reality, documentation in multi-language software requires
non-trivial efforts to create and maintain since a function’s documentation in one
language also needs to be populated to other languages. As a result, this requires a
substantial amount of duplicated documentation, posing maintenance problems. To
tackle this problem, our IDL allows programmers to add comments to each entity
in the IDL and use those comment sections to generate correctly-formatted docu-
mentation for each supported language. For example, the generated documentation
comments in Java follow Javadoc format while those in C++ follow the Doxygen for-
mat. This feature allows documentation to be populated from a single source of truth.

The code generator is distributed as a Node.js command-line program. This
means that programmers can directly supply the IDL filename to the generator
program to generate bindings for the constructs defined in that file. Using the
generator this way usually requires programmers to maintain a separate script to
generate bindings for a set of IDL files and add the generated source files to their
build system. To facilitate this integration process, we provide build-script utilities
in CMake and Gradle so that programmers only need to specify their IDL files in
their build system. The build tool utilities take responsibility for generating bindings
and including them in the built target at built time.

55

6 Evaluation
This chapter seeks to evaluate the solution proposed in the thesis. In particular,
this thesis aims to create a tool that automates the process of producing language
bindings within various Mapbox SDKs. Hence, the evaluation results were collected
from stakeholders’ feedback and statistics from Mapbox’s Github repositories when
four teams within Mapbox Maps, Navigation, and Search organizations had adopted
the generated code in their code base. In particular, the feedback was collected via
four main channels:

• Github issues submitted by internal customers in the repository of the gener-
ator project. In fact, the Github issues tab played an important part in the
development process as it was the single source of truth where we documented
all the actionable items and suggestions. Hence, all the feedback collected from
the other three channels was eventually converted to respective Github issues
for cross-team visibility.

• Comments in the Request For Comments (RFC) document collected during
the Technical Discussion Forum meeting. Before the meeting, we described the
problem the team was attempting to solve and provided questionnaires in a
document. Then we asked for stakeholders’ opinions written in the comment
format of the document. During the online meeting, we discussed each point
noted in the document and create a list of actionable items. In practice,
Technical Discussion Forums are mainly designed for debating coarse-grained
architectural decisions due to time constraints and broad audiences.

• Verbal feedback from engineers of other teams during code pairing sections. As
opposed to Technical Discussion Forum meetings, pair programming sections
offer useful discussions on fine-grained implementation details, which are still
important yet insufficiently notable for Technical Discussion Forums.

• Self-reflection when generating code for new APIs and using them.

We attempt to evaluate the project in three categories guided by the research questions
raised in the earlier chapter.

6.1 Productivity
The generator has been extensively leveraged in 4 core projects that involve nine
teams within Mapbox. Specifically, API specifications have been written in 14002
lines of IDL code to generate 194366 lines of code that would otherwise be written
and maintained manually by engineers across three Mapbox organizations. In fact,
the amount of generated code accounts for approximately 50-70% of the total
amount of code in each repository, depending on the size of the repository. Figure
13 shows the breakdown percentage of each code category in production. As a
result, automating the binding generation process drastically reduced programmers’
bandwidth to write and maintain bindings by hand for various platforms.

56

Figure 13: The breakdown percentage of each code category

One notable example is the Mapbox GL Native codebase which was a mono-repository
before using the code generator. It contained three parts:

• C++ native library and third-party libraries.

• Platform bindings for Node.js, Java, Objective-C, and Qt.

• Platform adaptation code on top of the bindings for the platforms above,
including examples, tests.

In this system, introducing a new API to both Android and iOS platforms typically
requires one C++ engineer to expose a new native API and then two platform
engineers to write bindings on their respective platforms. This workflow requires
careful communication, coordination, and progress tracking to ensure the parity
of the SDK on two distinct platforms as the process involves multiple parties. In
reality, the process of exposing new APIs could take hours, days, or even months to
finish due to delays in the coordination process, different priorities between different
teams, or technical glitches. One notable example is the feature that adds aggregated
cluster properties was introduced in C++ on August 16th, 2019. It was exposed
on Android on August 20th, while the equivalent bindings were not added on iOS
until October 11th. To make the matter worse, refactoring the already exposed APIs
is a different challenge on its own. Every change in the C++ public API required
adjusting the platform bindings for Node.js, Java, Objective-C, and Qt and the
adaptation code, examples, and tests. C++ engineers were frequently required to
update or refactor platform code outside their scope and expertise domain. Like-wise,

https://github.com/mapbox/mapbox-gl-native/pull/15287
https://github.com/mapbox/mapbox-gl-native/pull/15287
https://github.com/mapbox/mapbox-gl-native/issues/15417
https://github.com/mapbox/mapbox-gl-native/pull/15515

57

platform engineers were required to understand how to develop and interact with a
low-level platform adaptation code using Java Native Interface or solve Automatic
Reference Counting(ARC) memory management issues in Objective-C++. The
tightly coupled issues above adversely affected the overall project velocity, especially
when introducing complicated concepts in the APIs.

After adopting the generated code, GL Native development is now divided into
separate repositories: one for the C++ native library and individual repositories for
the platform SDKs such as Maps Android SDK or Maps iOS SDK. C++ engineers
are now responsible for maintaining an IDL file that describes their public API and
generating the platform bindings code. Platform engineers develop their SDKs using
the provided platform bindings as a base. All teams involved were no longer required
to deal directly with issues associated with data marshaling and memory management
issues between language domains, which were notoriously unpleasant to handle. As
a result, the developer experience was significantly enhanced thanks to the new tool.

Thanks to the automation, the task of exposing APIs to different platforms be-
came trivial since this step merely requires updating IDL files and regenerating code.
Stakeholders are happy with the new workflow because we can now kill two birds
with one stone: reducing human cost while iterating on our APIs more agilely. This
is because APIs can now be exposed or modified within a matter of minutes instead
of hours, days, or months as in the previous workflow. In addition, automating code
generation reduced bandwidth for cross-team coordination since a C++ engineer can
single-handedly generate bindings for both platforms with ease.

As the amount of manually-written bindings was minimized, so was the number
of software defects related to glue code. For example, notorious Java Native Interface
bugs such as JNI reference table overflow, which had been reported 16 times in
the mapbox-gl-native Github repository since 2016, have yet to be seen after the
transition. Apart from the JNI reference table overflow issue, JNI run-time exceptions
caused by failing to lookup methods, fields, and classes because of typos in their
signature strings were also eradicated in the generated code. In addition, pending
exceptions thrown by FFI operations are now exhaustively handled in the generated
code. More importantly, the code generator has become a hub for language bindings
within Mapbox SDKs, which means that the quality of the bindings code is assured
and improved at a centralized location instead of scattering all over multiple places.
This is critical for future development when scaling Mapbox products and teams.
According to a senior C++ engineer, we had never systematically audited the manual
bindings to look for improvements in the previous workflow as the bindings code
scatters in multiple places. The advantage of this centralized bindings generator
is that all the teams using it will receive improvements in the bindings if one is
added to the generator. As a result, the quality of the bindings code across different
products can easily be monitored and controlled. On the other hand, the drawback
of this approach is that a bug in the generator might affect multiple APIs and products.

https://github.com/mapbox/mapbox-gl-native/issues?q=is%3Aissue+reference+table+overflow+
https://github.com/mapbox/mapbox-gl-native/issues?q=is%3Aissue+reference+table+overflow+

58

Another advantage of adopting the generated bindings is the consistency and
homogeneity of the exposed APIs. According to a senior Android engineer, the
concept of generating code from specifications is appealing because the generated
code is consistent and predictable. Same specifications always yield the same code
when using the same generator version. He believes that the concept of IDL is
powerful because a few simple IDL concepts can be combined arbitrarily to describe
a full set of complex Mapbox products. Previously, the way the teams exposed APIs
was fragmented across Mapbox products or even within the same product for various
reasons. Using the code produced by the generator, we enforced strict rules, idioms,
and practices on how Mapbox products should look, making different products look
and feel the same from the client’s point of view.

6.2 Scalability
One of the main advantages of the code generator is its high scalability and reusability.
The solution shines in four situations: adding/modifying APIs to existing products,
supporting new languages, exposing APIs for new products, and scaling engineering
teams.

Firstly, exposing and modifying APIs have become a trivial task thanks to the
generator. The generated bindings improve the scalability of our software stack on
two different levels: bindings for a single platform and bindings for multiple platforms.
Even for teams that expose their native library to only a single platform, using the
generator to produce bindings can save considerable time and effort compared to
writing them manually. As the number of APIs to expose grows, so does the number
of benefits engineering teams get from generating bindings. However, the solution
shines especially when the library is exposed to more than one language since a
single IDL file can serve as the common source of truth for API specifications on
both platforms. Hence, adding/modifying APIs requires the programmer to describe
the API specifications in the shared IDL file and regenerate the bindings for all the
desired languages with a single command. This means that the level of effort required
from the users remains the same while the number of supported languages grows.
Hence, adding support for a new language in multiple SDKs requires minimal effort
once the generator for that language is added to the tool. Luckily, the front-end
parts of the generator, such as the IDL parser and AST are reusable when adding
new languages. As a result, adding support for new languages means adding a new
language back-end that traverses the AST and generates bindings. From the business
perspective, the generator allows Mapbox to reach new markets and platforms faster
by adding new supported languages to the existing generators.

Lastly, automating bindings generation helped Mapbox scale the engineering
teams as it brought a certain level of separation of concern. In fact, the pool of
talents with proper knowledge of both C++ and platform languages is small. Hence,
it is significantly easier to hire C++ and platform engineers who focus solely on doing
one thing and doing it well. With the generated bindings, the team structure for

59

each product can now be divided into three separate teams: native C++, iOS, and
Android. Each team has become strongly specialized and can scale independently
now as compared to the previous situation that required engineers to work with
multiple languages.

In addition to bindings, we can also generate skeleton code for test cases. Feature
telemetry code to track the usage of the APIs.

6.3 Limitations
Despite the benefits that the code generator provides, we also received multiple
concerns related to the proposed solution:

• Learning curve:
According to an engineering manager, the Interface Description Language
adds an extra challenge for onboarding new engineers even though its syntax
and constructs are relatively simple compared to other modern programming
languages. In fact, the generator is for internal use only, which means that
no engineers outside Mapbox have any experience with it. It also means no
default integration support from popular IDEs and text editors. Hence, IDL
integration with text editors and IDE requires additional work from the internal
teams. As a result, the support for IDL syntax highlight and code formatting
is limited, which is often considered inconvenient to some developers when
editing or refactoring the IDL code. Besides the lack of integration support,
another complaint is that error messages produced by the generator are not
always informative, especially syntax error messages. Thus, a learning curve
certainly exists for newcomers to use the tool effectively.

• Ergonomics:
According to an iOS engineer, the IDL is not sufficiently expressive for exposing
idiomatic APIs on the iOS platform in many cases. For example, string type
is typically used to represent a URL in C++, while NSURL is a preferred type
for URL on Apple platforms. As a result, URL is exposed as a string type in
the IDL since there is no well-known equivalent of NSURL type in C++. The
engineer strongly believes that the IDL should have been designed to be a union
of the languages it generates rather than merely an intersection. However, this
goal is tricky to achieve since many concepts and idioms in one language do not
translate well to others. In fact, poor ergonomics is one of the main trade-offs
of the generated APIs. To tackle this problem, platform engineers often have
to manually wrap the non-idiomatic parts of generated APIs in another layer
that feels intuitive to developers in several situations.

• Workflow:
The workflow of the generator biasedly caters towards incremental API-driven
software development. This means that the ideal workflow is that developers
first specify the APIs to be exposed using the IDL, then generate the code

60

and provide the implementation class to develop the feature from the ground
up. However, the workflow of the generator is sub-optimal when exposing a
large existing C++ library to other languages in one pass. First, the clients
must select the set of APIs to be exposed and write IDL code to expose those.
Then they have to generate the APIs and bindings code. After that, they must
write an adaptor class that connects the generated C++ class with the existing
implementation. This adaptor can be as trivial as redirecting method calls,
but sometimes it has to convert data structure between 2 distinct C++ data
types, and each exposed method requires one such adapter piece of code. Even
though writing adapter code manually between 2 C++ APIs does not require
as much effort as writing language bindings, this step is repetitive and certainly
requires some bandwidth, according to a C++ engineer. He believes this step
is redundant and should be automated by an extension that can parse C++
APIs directly and generate everything without manual effort.

• Performance:
Other weaknesses of the code generator are the inflexibility and the lack of
awareness of the context where the exposed API is used. In most common
situations, the benchmarking performance results of the generated code are
on par with the manually written one. However, writing bindings by hand
certainly provides programmers with a greater extent of flexibility. As a
result, programmers can flexibly fine-tune and tweak the performance of the
bindings at their own will. For example, ArrayList<T> is our generator’s Java
representation of the IDL type array<T>, which means that the generated Java
APIs always use ArrayList regardless of the inner generic type. However, using
Java’s primitive array is substantially faster for marshaling when the inner type
is primitive. In fact, marshalling a C++ std::vector<int> to a primitive
Java array of integer(int[]) can be 26,3 times faster than between a Java
ArrayList<Integer> and a C++ std::vector<int> as shown in Table 3.

Table 3: Performance benchmark between ArrayList and Array in JNI

Test case
ArrayList<Integer>
-std::vector<int> int[]-std::vector<int>

Sending a vector of
1000 integers from C++ to Java 304468 ns 11604 ns

61

7 Discussion
As the generator enhanced the velocity, consistency, and scalability of our projects,
it also showed weaknesses in certain areas, such as developer experience. As a result,
there are several improvement areas and potential directions that could be explored
as a future extension of the project.

From the front-end side, user interaction with the generator can be improved
by adding syntax highlighting, code format, or auto-completion plugins for the
IDL in common IDEs and editors such as VSCode and JetBrain’s IDEs. Besides
that, we can boost the expressiveness of the IDL by adding more features to the
language, such as introducing annotations to tweak the ergonomics of the generated
APIs. Another idea is to add an extension that parses C++ headers and gener-
ates IDL or bindings directly from the metadata of the APIs. This extension would
simplify the adoption process of the generator, especially within legacy C++ projects.

From the back-end perspective, it makes sense to invest in a proper C language
generator for two reasons. Firstly, most languages provide interoperability with C
APIs, but only a few, such as Carbon and Objective-C++ interoperate with C++.
Interestingly, invoking C++ from Swift via the C wrapper layer might yield better
performance than going through Objective-C because we can avoid the dynamic
message dispatch overhead in Objective-C. As a result, supporting C APIs opens
the door for easier interoperability between C++ and various languages. Secondly,
exposing C++ libraries via a thin layer of C APIs is a good practice to provide ABI
stability for the native libraries since C ABIs mostly remain intact while C++ ABIs
often change over the years.

Performance-wise, it is worth experimenting with marshaling large, nested data
structures by serializing them in fast data format such as Protocol Buffer, sending the
data across the language boundary, and deserializing on the other side. Regarding
the generated code, we believe it is a perfect place to inject code that tracks metrics
about API usage to improve the products. The generator can also target other
languages, such as producing binding code between Dart and Java/Objective-C via
the Flutter platform channel.

62

8 Conclusion
In summary, the rise of multi-language software systems often adds complexity to
the software development process. One challenge of such systems is to make different
languages interoperate seamlessly with each other. Specifically, Foreign Function
Interface code, which allows one language to call functions written in another, can
easily become problematic as the software grows.

The goal of this thesis, which is to automate the FFI code generation, was
achieved since the generated glue code contributes significantly to the productivity,
stability, and scalability of multi-language software. As every coin has two sides,
the generated code certainly shows its weaknesses due to its inflexible nature, which
might require human intervention in certain edge cases. Nonetheless, the generated
code works out-of-the-box and is beneficial in most common situations, which justifies
the decision to avoid writing glue code by hand.

63

References
[1] M. Grichi, E. E. Eghan, and B. Adams. On the impact of multilanguage

development in machine learning frameworks. In Proc. 36th IEEE Interna-
tional Conference on Software Maintenance and Evolution(ICSME) (2020), pp.
546–547.

[2] M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, and M. Luján. Cross-
Language Interoperability in a Multi-Language Runtime. ACM Trans. Program.
Lang. Syst, vol. 40, no. 2, art. 8 (May 2018), pp. 8:2-8:5.

[3] M. Furr, and J. S. Foster Checking type safety of foreign function calls. ACM
Trans. Program. Lang. Syst, vol. 30, no. 4, art. 18 (July 2008), pp. 18:1-18:5.

[4] A. Cleary, S. Kohn, S. G. Smith, B. Smolinski. Language Interoperability
Mechanisms For High-Performance Scientific Applications. In Proc. 1998
SIAM Workshop on Object-Oriented Methods for Interoperable Scientific and
Engineering Computing, vol. 99, SIAM (July 1999), pp. 1–10.

[5] T. Malone. Interoperability in programming languages Scholarly Horizons:
University of Minnesota, Morris Undergraduate Journal 1981, vol. 1, iss. 2, art.
3, 2014, pp. 1-6.

[6] J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei. A
Comprehensive Study on Real World Concurrency Bugs in Node.js. In Proc.
32nd IEEE/ACM International Conference on Automated Software Engineering,
(Urbana-Champaign, IL, USA) (ASE 2017), pp. 520-522.

[7] A. Neumann, N. Laranjeiro, J. Bernardino. An Analysis of Public REST
WebService APIs. IEEE Trans. Serv. Comput, vol. 14 (2021), pp. 957.

[8] P. Gomes-Soares. On remote procedure call. In Proc. 1992 Conference of the
Centre for Advanced Studies on Collaborative Research (1992), pp. 218-226.

[9] S. Kiraly, S. Szekely. Analysing RPC and Testing the Performance of Solutions
Informatica, vol. 42 (2018), pp. 555-558.

[10] C. Lattner, V. Adve. LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In Proc. International Symposium on Code Generation
and Optimization (2004), pp. 75-86.

[11] K. Atkinson, M. Flatt, G. Lindstrom. ABI Compatibility Through a Customiz-
able Language. Sigplan Notices - SIGPLAN. 46 (2010), pp. 147-156.

[12] H. Muhammad, R. Ierusalimschy. C APIs in Extension and Extensible
Languages. Journal of Universal Computer Science, vol. 13, no. 6 (2007), pp.
839-853.

[13] Mapbox website. https://www.mapbox.com. Accessed 04/2022.

64

[14] D. Landman, A. Serebrenik, J. J. Vinju. Challenges for Static Analysis of
Java Reflection - Literature Review and Empirical Study. IEEE/ACM 39th
International Conference on Software Engineering (ICSE) (2017), pp. 507-518.

[15] M. Abidi, M. S. Rahman, M. Openja, F. Khomh. Are Multi-Language Design
Smells Fault-Prone? An Empirical Study. ACM Trans. Softw. Eng. Methodol,
vol. 30, no. 3, art. 29 (July 2021), pp. 5-9.

[16] J. Generowicz, P. Mato, W. Lavrijsen, M. Marino. Reflection-Based Python-
C++ Bindings. In Computing in High Energy Physics and Nuclear Physics
2004. Article, CERN (European Organization for Nuclear Research) and LBNL
(Lawrence Berkeley National Laboratory) (2004), pp. 1-4.

[17] D. Beazley. An Extensible Compiler for Creating Scriptable Scientific Software.
International Conference on Computational Science (2002), pp. 824–833.

[18] T. Ravitch, S. Jackson, E. Aderhold, B. Liblit. Automatic generation of library
bindings using static analysis. In Proc. 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2009). Association
for Computing Machinery, New York, NY, USA, pp. 352–362.

	Abstract
	Acknowledgements
	Contents
	Abbreviations
	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Structure of the thesis

	2 Background
	2.1 Programming language interoperability
	2.2 Categories
	2.2.1 Inter-process approaches
	2.2.2 In-process approaches

	2.3 Industrial context
	2.3.1 Cross-platform library
	2.3.2 Multi-language software architecture

	2.4 Known issues in FFI code
	2.4.1 Weak compile-time type safety
	2.4.2 Complexity

	3 Methodology
	3.1 Requirements collection
	3.2 Requirements analysis
	3.3 Software design and execution
	3.3.1 Simplified Wrapper and Interface Generator (SWIG)

	4 Technical solution
	4.1 Proposed solution
	4.2 Hypothesis
	4.3 Existing solutions
	4.3.1 Simplified Wrapper and Interface Generator (SWIG)
	4.3.2 Djinni

	5 Implementation
	5.1 Front-end
	5.1.1 Interface Description Language
	5.1.2 Key constructs
	5.1.3 IDL parser
	5.1.4 Abstract Syntax Tree
	5.1.5 Semantic analysis

	5.2 Back-end
	5.2.1 Class
	5.2.2 Interface
	5.2.3 Record and enum
	5.2.4 Containers

	5.3 Quality assurance, documentation, and integration

	6 Evaluation
	6.1 Productivity
	6.2 Scalability
	6.3 Limitations

	7 Discussion
	8 Conclusion
	References

