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ABSTRACT 

Suspended sediment in the Meghna estuary, Bangladesh, typically consists of fine to medium silt near 

the water surface, silty sand at increasing depth, and sandy silt close to the bed. The behavior of fine, 

cohesive sediment in a complex environment with multiple drivers, such as river and tidal flows, is 

comparatively little understood because the deposition and erosion processes depend on many 

chemical, biological, and physical factors. This article examines the propagation of uncertainty from 

input floc size to output sedimentation rate in the Meghna estuary, Bangladesh, using a fine-sediment 

hydro-morphodynamic model that utilizes the cohesive sediment transport module in Delft3D. We 

assume that sediment particles and flocs are both single-sized throughout the solution domain. The 

effect of uncertainty in floc size on output sediment transport statistics is examined at three sites of 

interest located in the Meghna estuary using a novel numerical derived distribution approach. After 

deriving the probability distribution of suspended cohesive sediment, we find the coefficient of variation 

to range from 20% to 38% across the three locations. Planners therefore need to consider substantial 

uncertainty in cohesive sediment transport estimates for the coastal zone of Bangladesh, especially 

given the increased risk of flooding in deposition-prone areas as they become shallower. The 

methodology may be readily extended to the estimation of uncertainty in land reclamation and erosion 

control planning studies. 

 

Keywords: Cohesive suspended sediment, floc size, Meghna estuary, uncertainty, sediment 

deposition rate 

 

1 Introduction 

 

The Bengal Basin, also known as the Ganges-Brahmaputra-Meghna Basin, consists of 

Bangladesh and parts of three eastern states of India (West Bengal, Assam and Tripura). According to 

Siddique-E-Akbor et al. (2011), more than 90% of the river flow passing through Bangladesh originates 

in upstream countries such as India and Nepal, whereas Bangladesh occupies only 7% of the total 

Ganges-Brahmaputra-Meghna basin area. The riverine discharge through the Meghna estuary is the 

fourth largest in the world (Milliman and Meade, 1983; Mukherjee et al., 2009), and the sediment 

discharge rate of ∼1×109 t/yr is the highest (Goodbred and Kuehl, 2000a; Mukherjee et al., 2009). 30% 
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of the sediment flux is deposited on floodplains, 40% in the marine area, and 10% in the Sundarbans 

and active Bengal delta, with the remaining 20% washed into the Bay of Bengal (Goodbred and Kuehl, 

1999; Rogers et al., 2013, Seijger et al., 2019). 

The Meghna estuary covers the zone of transformation of the Meghna River as it flows to the 

Bay of Bengal over a shallow shelf to a deeper basin. Several channels have formed in the estuary and 

they carry the river discharge to the bay. Large islands such as Bhola, Hatia, and Sandwip are located 

at the mouth of the estuary. According to Jacobsen et al. (2002), the Meghna Estuary is a ‘Coastal 

Plain’ estuary, implying that the estuary is very sensitive to its drivers, including tidal conditions, river 

discharge, and wind speed (Fischer et al. 1979). Local hydrodynamic conditions dominate sediment 

transport in the Meghna estuary, affecting grain size distribution, suspended sediment concentration, 

bed composition, and morphology. Sediment moves back and forth in the estuary, because monsoon 

river discharges bring sediment downstream to the estuary whereas the daily tidal prism pushes 

sediment back upstream (i.e. inland) through tidal channels (Barua et al., 1994; Goodbred and Kuehl, 

2000b; Rogers et al., 2013; Seijger et al., 2019). Fig. 1 shows the elevation of the Bengal basin, which 

mainly comprises flat land of altitude about 5-10 m above mean sea level. 

Bangladesh’s distinct monsoon and dry seasons produce correspondingly different magnitudes 

of rainfall, river flow, and sediment yield throughout the year. During the monsoon season, rainfall is 

very intense and consequently the river flow greatly increases. Heavy rainfall in the Himalaya region 

raises the sediment yield of its constituent rivers. The combined effect of flow and sediment dominates 

the characteristics of the rivers, and hence the character of the Meghna estuary, where complex 

interactions also take place between river and tide (Akter et al., 2016). Erosion and deposition of 

sediment depend on local currents in the river and estuary; in fast currents there is sufficient shear to 

erode the bed with sediment particles transported predominantly in suspension (Brammer, 2014). The 

banks and bed level of the Meghna estuary have changed almost continuously over the centuries, with 

extensive erosion and deposition occurring near the islands. River erosion is a perennial problem in 

Bangladesh, which contains a network of about 230 rivers. The scarcity of land exposes residents living 

in the high-risk zone to natural disasters. 

In the 1960s, extensive embankment construction commenced in the coastal area of 

Bangladesh. The works provided flood protection by decreasing land submergence and prohibited 

sediment from reaching the delta front by reducing sediment input to the delta. Dikes substantially 
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altered the hydro-morphodynamic characteristics of the delta by raising water levels in the diked 

channels and reducing sediment input, which in turn enhanced changes to the local erosion-accretion 

pattern in the channels (Mikhalov and Dotsenko, 2007). By considering a map overlay of shoreline 

position from the Lloyd’s survey in 1840 and the LANDSAT image in 1984, Allison (1998) (cited by 

Mikhailov and Dotsenko, 2007), observed that significant land erosion and accretion occurred near the 

mouth of the Meghna Estuary during the intervening time. Allison (1998) calculated the volume of 

eroded and accreted land at various locations from different maps over several time periods and found 

a trend of net sediment accumulation at the delta front. With the help of satellite images, Mahmood et 

al. (2020) produced a shoreline movement map for 1980-2016 that demonstrates the entire mouth of 

the Meghna estuary is geographically very dynamic. 

Erosion and accretion processes have been transferring sediment around Bhola, Sandwip, and 

Hatia islands. Barua (1997) reported that the erosion rate at the northeast bank boundary of Bhola had 

an average value of about 150 m per year between 1940 and 1963. Using LANDSAT satellite images 

from 1989 to 2018, Anwar and Rahman (2021) found that the northeast face of Bhola had a shore 

erosion rate of 139 m/year, and the southeast part of the island experienced a shore erosion rate of 40 

m/year. Brammer (2014) compared land boundaries between 1984 and 2007, finding that about 40% 

of the eastern side of Sandwip island had been eroded, though there was a net accretion of 451 km2 in 

the Meghna estuary. Considerable erosion and accretion occurred simultaneously at Hatiya island, 

another dynamic island in the Meghna estuary, with maximum shoreline shift rates of 138.5 m/year 

seaward and 285.4 m/year landward (Kabir et al., 2020). Kabir et al. also observed that the tidal flats 

around this island are very active, and predominantly accreting sediment. To the west of the estuary, 

the Sundarbans area is accretion prone, with the bed level increasing with rising sea level because of 

sediment deposition (Rogers et al., 2013). In recent years, Bomer et al. (2020) investigated bed surface 

elevation change and sediment accretion near the Sundarbans for the years 2014-2019, and confirmed 

that bed elevation rise is occurring, with the rate of elevation gain exceeding the rate of relative sea 

level rise. Active land formation is also evident at newly formed land (locally named “Char”) in the 

riverine and coastal areas (Sarker et al., 2003). 

The bed of the Meghna Estuary consists mostly of very fine sand and silt (Anwar and Rahman, 

2021), whereas the suspended sediment typically consists of fine to medium silt near the water surface, 

silty sand at increasing depth, and sandy silt close to the bed (Borromeo et al., 2019). As would be 
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expected, coarser particles were moved by near-bed transport processes, whereas fine particles were 

predominantly transported as suspended material by the current. More than 70% of the suspended 

sediment in the upstream rivers had particle diameter smaller than 63 μm. Kuehl et al. (1989) observed 

that sediment in the estuary mainly comprised fine material. Borromeo et al. (2019) collected silt from 

the Bengal Shelf and found that particles of size < 5 µm occupied from 65 to 80% of the total sediment 

by weight at the locations considered. Barua (1990) reported that the turbidity maximum was generally 

located at or near the head of the salt intrusion where salinity is 1-5 ppt, and that its location fluctuated 

seasonally throughout the estuary. 

One of the biggest challenges in studying the hydro-morphodynamic behaviour of the riverine 

and coastal system of Bangladesh is the unavailability of field data.  Bricheno et al. (2016) mentioned 

Bangladesh as “notoriously data-poor” and reported that validation of a hydrodynamic model for this 

region is very difficult. Moreover, the quality of collected data is not good. Sediment data are scarce. 

During the field measurement campaign, data on suspended sediment data from Bangladesh Inland 

Water Transport Authority (BIWTA) were only obtained for 5 random days in 2007. By its very nature, 

sediment transport is a chaotic phenomenon depending on very complicated processes that are 

imprecisely understood. Even the best methods can calculate sediment transport rates to an accuracy 

of a factor of 2 in only 70% of cases in river engineering, and may not achieve accuracy of a factor of 5 

in 70% of cases in coastal engineering (Soulsby, 1997). 

Physical parameters and field data relevant to the floc size of suspended cohesive sediment in 

Meghna estuary are subject to considerable uncertainty. This in turn has a significant impact on 

estimates of sediment transport and morphological change. In practice, it is important to quantify such 

uncertainty and to understand how it affects the output parameters of hydro-morphological models, 

including sediment deposition and erosion. This paper describes use of the cohesive sediment transport 

version of Delft3D, an established hydro-morphological model, along with the numerical derived 

distribution approach to determine the propagation of uncertainty in floc size to uncertainty in sediment 

transport rate and bed morphological change at selected locations in the Meghna estuary, Bangladesh. 

The paper aims to estimate uncertainty in sediment deposition rate at selected locations in the 

Meghna estuary, due to the underlying uncertainty in floc size (composed of 5 micron particles) using 

a numerical version of the derived distribution method. To the best of the authors’ knowledge, this is 

the first time the numerical derived distribution method has been applied to uncertainty in coastal 
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sediment transport processes.  Here, we use a state-of-the-art, hydro-morphodynamic, regional-scale 

model to generate sediment transport scenarios in the Meghna Estuary and the Bay of Bengal. The 

paper is structured as follows. Section 2 compares different methods for assessing uncertainty 

propagation, provides a rationale as to why the numerical derived distribution approach is used herein, 

and describes the numerical derived distribution method used for uncertainty propagation. Section 3 

outlines the Delft 3D hydro-morphodynamic model.  Sections 4 and 5 respectively present and discuss 

the uncertainty propagation results.  The main findings are listed in Section 6. 

 

2. Uncertainty analysis and numerical derived distribution method 

 

Uncertainty propagation analysis offers an effective theoretical means of assessing changes 

between distributions of input and output parameters at locations where field data are not easily 

available. Unknowns in physical parameters (i.e. parameter uncertainty), incomplete idealization of the 

physical processes, and model limitations (convergence, accuracy, and round-off errors) all contribute 

to uncertainty propagation. Initial and boundary conditions are routes by which uncertainty reaches the 

equation system.  Examples include uncertainty in specification of bed friction roughness, sediment 

grain size, eddy diffusion coefficient, and other empirical closure parameters.  The accuracy of outputs 

from a shallow flow water-sediment solver is therefore highly dependent on the accuracy of the input 

data.  As indicated by Xiu (2009), it is important that uncertainty is taken seriously from the beginning 

of numerical model simulations in order to assess the reliability and possible variability of model outputs, 

which of course provide insight into the water-sediment processes.  We will now very briefly comment 

on several of the more common methods used to assess uncertainty propagation. 

Perhaps the earliest and simplest uncertainty assessment technique is sensitivity analysis 

whereby an input parameter is varied by ± per cent, and assessment made of the impact on an output 

variable.  A typical example is the use of sensitivity analysis by Qin et al. (2002) to examine the effect 

of uncertainty in assigned weights and grades on the priority order of three options for post-reclamation 

coastline at Deep Bay, South China. Ni et al. (2002) used the assigned weights suggested by Qin et al. 

(2002) to determine an optimal reclaimed coastline from several options. 

Stochastic modelling has been used for uncertainty quantification for more than a decade. 

Stochastic models estimate uncertainty propagation throughout the simulation, and are not limited to 
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calculating errors and bounds by post-processing the output (Lin et al., 2007). Horritt (2002) used first- 

and second-order perturbation methods to develop a stochastic model of shallow flow hydrodynamics, 

and thence to study the influence of uncertain bed topography. Horritt’s stochastic model gave results 

in good agreement with Monte Carlo simulations.  Flandoli and Pappalettera (2020) used a stochastic 

model to identify the noise required to reduce the complexity of interaction between different scales. 

Monte Carlo simulation (and associated techniques) are routinely used to assess how the 

probability distribution of an input variable X translates into a probability distribution of an output variable 

Y (Hofer, 2018). Monte Carlo methods have been applied to uncertain flood prediction based on input 

parameter uncertainty using a simplified parameterization by Aronica et al. (1998) and Bates et al. 

(2004) and a distributed parameterization of a simplified model by Romanowicz and Beven (1998).  

Monte Carlo simulation is often used as a tool for risk assessment. For example, Lin and Schullman 

(2017) developed an integrated framework for risk assessment of cyclone-induced flooding, which 

considered storm climatology change, sea level rise and coastal development. Lin et al. used the Monte 

Carlo method to estimate risk metrics and the probability distribution of the present value of future 

losses. Wang and Wang (2019) created a high-resolution projection for Texas and produced a Markov 

chain Monte Carlo-based hydrologic forecast for the Guadalupe river basin. Xu et al. (2014) applied an 

integrated hydrodynamic model and Monte Carlo stochastic model of cyclone storm surges to predict 

extreme water levels in Colombo, Sri Lanka. In practice, Monte Carlo simulation is extremely useful, 

and can be readily extended to multiple input variable probability distributions.  It does however suffer 

from a major shortcoming in that huge numbers (often > 105 or 106) of simulations are required as part 

of its repetitive resampling. This incurs an enormous computational overhead, rendering Monte Carlo 

unsuitable at present for application to complicated systems of nonlinear partial differential equations, 

such as the shallow water-sediment-morphodynamic equations considered in this article, given current 

computer technology. Moreover, it is difficult to assess the sensitivity of the results to the assumed input 

distributions, because a single change to an input distribution then requires re-running of the entire set 

of simulations. For the same reason, it is difficult to determine which input parameter has the greatest 

influence on output uncertainty using Monte Carlo simulation.  

The derived distribution method used in our study is a faster approach than Monte Carlo 

simulation and has been widely applied in hydrological engineering. For example, by taking a first-order 

approximation of annual precipitation yield, Eagleson (1978) used the derived distribution approach to 
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determine the cumulative distribution function of annual yield from the cumulative distribution function 

of precipitation, and applied the approach to cases involving an arid climate (Santa Paula, California, 

USA) and a subhumid climate (Clinton, Massachusetts, USA). Díaz-Granados et al. (1984) obtained 

derived flood frequency distributions based on input distributions related to excess rainfall density, etc., 

for the Davidson, Santa Paula Creek, and Nashua River catchments in the USA. The derived 

distribution approach was applied to flood prediction in a basin in Italy comprising 16 poorly gauged 

watersheds (Brocchiola and Rosso, 2008). Chen and Adams (2007) used the derived distribution 

approach to develop an analytical stormwater quality model. Perona et al. (2013) obtained analytical 

expressions for probability distribution functions of optimally allocated river flows to human activity and 

the environment, using the derived distribution approach. Meier et al. (2016) estimated the probability 

distribution function of annual rainfall from short-term records and showed that the derived distribution 

approach can be used for datasets where information is missing in certain years. 

Polynomial chaos methods greatly reduce or even remove the requirement of repetitive 

sampling that limits statistical sampling techniques like Monte Carlo simulation (Xiu, 2009).  Polynomial 

chaos methods were first introduced in the early 2000s (Ghanem and Spanos, 2003; and Xiu and 

Hesthaven, 2005), and are very well documented in the literature (Xiu, 2010). The method can cope 

with a wide variety of stochastic variables, which represent the probability distribution function (Lacor 

and Savin, 2018). Polynomial chaos expansions have been applied in practical engineering problems, 

reducing the cost of computation in uncertainty quantification. However, the computational cost is still 

high when polynomial chaos is used for design optimization.  Also, when information about the input 

probability distribution is incomplete, then the polynomial chaos expansion method may no longer be 

suitable. 

It is obvious from the foregoing discussion that uncertainty propagation is a rapidly developing 

topic in data analytics.  Of the methods considered, the derived distribution approach strikes a sensible 

compromise between accuracy and computational efficiency when applied to complicated model(s), 

and so is used herein.  Herein, we adopt a numerical version of the derived distribution approach 

(following Kreitmair et al., 2019) to obtain the probability distribution of cohesive sediment deposition 

rate in the Meghna estuary. In the analytical version, both the independent and dependent variables 

are considered continuous, whereas in the numerical version, both are discrete. 
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In the analytical approach, the probability distribution function (PDF) of an input parameter is 

prescribed by an analytical expression wherein the standard deviation represents uncertainty in the 

input parameter. The cumulative distribution function (CDF) of the input parameter is obtained by 

integrating the PDF. The CDF of the output parameter is then determined by invoking conservation of 

probability and using the functional relationship between the input and output parameters. This is an 

efficient method to estimate uncertainty propagation, provided the functional relationship between input 

and output parameters is monotonic. The analytic version of the derived distribution method has been 

used to estimate parameter uncertainty for about fifty years. Ang and Tang (1975) demonstrated that 

the method can be adopted to determine the PDF of an output parameter directly from the PDF of an 

input parameter with the help of their monotonic functional relationship. All the higher moment statistics, 

such as skewness, kurtosis, etc. are then estimated. To the best of the authors’ knowledge, the 

numerical version of derived distribution approach is applied herein for the first time to assess 

uncertainty in cohesive sediment deposition rate within a major tidal estuary. 

A brief description of the concept behind the numerical derived distribution method now follows.  

According to Benjamin and Cornell (1970), “the likelihood that 𝑌 takes on a value on an interval of width 

d𝑦 centred on the value 𝑦 is equal to the likelihood that 𝑋 takes on a value in an interval centred on the 

corresponding value 𝑥 =  𝑔−1(𝑦) but of width d𝑥 =  d𝑔−1(𝑦)”. Consider a parameter 𝑎 that is assumed 

to be normally distributed with mean 𝜇𝑎 and standard deviation 𝜎𝑎, such that.  

𝛮(𝑎|𝜇𝑎, 𝜎𝑎
2) =  

1

√2𝜋𝜎𝑎
2

𝑒
(𝑎−𝜇𝑎)2

2𝜎𝑎
2

  .                             (1) 

The corresponding cumulative distribution function is 

𝛷(𝑎|𝜇𝑎, 𝜎𝑎
2) =  

1

√2𝜋𝜎𝑎
2

∫ 𝑒
(𝑎ʹ−𝜇𝑎)2

2𝜎𝑎
2

𝑎0

−∞

d𝑎ʹ 

   =  
1

2
[1 + erf (

𝑎0−𝜇𝑎

𝜎𝑎√2
)] .                                     (2) 

The probability that the value of a realization of random variable 𝑎 falls between 𝑎𝐴 and 𝑎𝐵, where 𝑎𝐴 <

𝑎𝐵, is 

Pr(𝑎𝐴 <  𝑎 < 𝑎𝐵) =  ∫ 𝛮(𝑎|𝜇𝑎, 𝜎𝑎
2) d𝑎

𝑎𝐵

𝑎𝐴
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          =  𝛷(𝑎𝐵) −  𝛷(𝑎𝐴) 

     =  
1

2
[erf (

𝑎𝐵−𝜇𝑎

𝜎𝑎√2
) −  erf (

𝑎𝐴−𝜇𝑎

𝜎𝑎√2
)]  .                             (3) 

If the values of 𝑎 are sufficiently finely spaced, then the likelihood of a value 𝑎𝑖 being realised can be 

defined as the probability of 𝑎 falling within the interval bounded by 𝑎
𝑖−

1

2

 and 𝑎
𝑖+

1

2

, such that 

Pr(𝑎 =  𝑎𝑖) = Pr (𝑎
𝑖−

1

2

≤  𝑎 < 𝑎
𝑖+

1

2

) 

            =  Pr (
1

2
(𝑎

𝑖−
1

2

+  𝑎𝑖)  ≤  𝑎 <
1

2
(𝑎𝑖 +  𝑎

𝑖+
1

2

)) 

    =  
1

2
[erf (

𝑎
𝑖+

1
2

−𝜇𝑎

𝜎𝑎√2
) − erf (

𝑎
𝑖−

1
2

−𝜇𝑎

𝜎𝑎√2
)] .                               (4) 

By analogy with the derived probability distribution, equation (4) also describes the associated 

probability of a maximum output value 𝐴, (e.g. of cohesive sediment transport rate) given that 𝐴 = 𝑓(𝑎). 

The expected value of 𝐴 can be calculated as  

𝐸[𝐴] =  ∑ 𝐴𝑖(𝑎 =  𝑎𝑖) Pr(𝑎 =  𝑎𝑖)𝑖  ,                         (5) 

and the variance is  

𝜎𝐴
2 = ∑ (𝐴𝑖(𝑎 =  𝑎𝑖) −  𝐸[𝐴])2 Pr(𝑎 =  𝑎𝑖)𝑖  .                                         (6) 

The higher order (𝑛𝑡ℎorder) statistical moments are given by 

𝜇𝑛 = ∑ (𝐴𝑖(𝑎 =  𝑎𝑖) −  𝐸[𝐴])𝑛 Pr(𝑎 =  𝑎𝑖)𝑖  ,                             (7) 

where 𝑛 = 3 provides the skewness of the distribution (indicating asymmetry) and  𝑛 = 4 gives the 

kurtosis (indicating tailed-ness or peakedness). 

The procedure for applying the numerical derived distribution approach is as follows: 

i. Establish a functional relationship between the input parameter and output parameter from the 

simulated output. Plot the output parameter (𝑢) against the input parameter (𝑡). Use cubic spline 

to interpolate the values.  
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ii. Select a suitable standard probability distribution fitted to the mean and standard deviation of the 

input parameter data 𝑡. Then plot PDF 𝑝(𝑡) and CDF 𝑐(𝑡). 

iv. Calculate the expected value 𝐸[𝑡] and variance 𝑉𝑎𝑟[𝑡]. These values should be such that 𝐸[𝑡]~𝑡 

and variance, 𝑉𝑎𝑟[𝑡]~𝜎𝑡
2. 

v. Divide the PDF and CDF of 𝑡 into a prescribed 𝑖 number of bins. Determine the value of 𝑡 at the 

middle of each bin. Then determine the corresponding values of 𝑢 using the relationship between 

𝑡 and 𝑢. 

vi. Determine the CDF values of 𝑡 at both ends of each bin and find the corresponding values of 𝑡. 

The probability is the difference between these two values of 𝑢.  

vii. Calculate the bin widths for 𝑢. These will be different from each other if the relationship between 

𝑢 and 𝑡 is non-linear. 

viii. Determine the PDF for 𝑢 by dividing the probability of 𝑢 of each bin by the width of the 

corresponding bin of 𝑢. 

ix. Determine the CDF of 𝑢 by numerical integration of the PDF of 𝑢. 

x. Calculate expected value, variance, skewness and kurtosis of the output parameter using eqs 5, 

6 and 7. 

Fig. 2 gives a graphical representation of the principle behind the numerical derived distribution method. 

 

3. Delft3D model set up 

 

A two-dimensional depth averaged hydro-morphodynamic Delft3D model was established for 

the Bay of Bengal and coast of Bangladesh, which included sediment transport, entrainment, bed 

deposition and erosion processes. Figs 1 and 3 display the model domain and bathymetry. The model 

is based on a curvilinear grid with small cells (of 100+ m size) located in the estuary and large cells (up 

to 3400 m) in the bay. Use of small cell sizes in the estuary enabled generation of correct bathymetry 

and channel alignment in the region of interest, thus reducing computational error. Larger cells are 

located in the deep-water zone where the bathymetry is less complex. Riverbanks were modeled when 

generating the grid. Given that the coast of Bangladesh consists of multiple tributaries and islands, and 

its coastline has a rather fractal geometry, the model encompassed the entire coastline, including 

islands and tidal flats (allowing wetting and drying to occur). 
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The projected co-ordinate system adopted in the Delft3D model is the Bangladesh Transverse 

Mercator (BTM). Land elevation data were downloaded from the Earthexplorer webpage 

(https://earthexplorer.usgs.gov/) of the United States Geological Survey (USGS). These data were 

available in WGS84 geographic co-ordinate system, and then converted to BTM for input to the Delft3D 

model. The input bathymetry included measured bed elevations of rivers (data obtained from 

MorphoFlood project, IHE Delft, The Netherlands) and land elevations of islands (downloaded from the 

Earthexplorer website of the United States Geological Survey (USGS); https://earthexplorer.usgs.gov/). 

The depth-averaged version of Delft3D-FLOW software (Deltares, 2600 MH Delft, The Netherlands, 

https://oss.deltares.nl/web/delft3d) was used to simulate flow hydrodynamics and sediment transport in 

the Meghna estuary, and hence predict the sediment deposition rate. Using this approach, functional 

relationships were established between floc size and deposition rate at the locations of interest. 

The model domain has two upstream open boundaries and one downstream open boundary, 

as indicated in Fig. 4. Constant river-discharges were prescribed at the two upstream boundaries. The 

Ganges-Brahmaputra river flow input was set to 120,000 m3/s and the Meghna river flow was set as 

20,000 m3/s, representing the annual peak flood (data obtained from MorphoFlood project, IHE Delft, 

The Netherlands). The bathymetry for year 2007 obtained from the same project is also shown in Fig. 

3. Following the tidal component input reduction method suggested by Latteux (1995), the downstream 

offshore boundary is tidal, comprising a single M2 component (obtained from the TPXO 8.0 database 

using Delftdashboard tool from Deltares, The Netherlands; 

https://publicwiki.deltares.nl/display/DDB/Delft+Dashboard) multiplied by 1.20. This method utilizes a 

single representative tidal component rather than the whole set of tidal components in order to produce 

the same morphological changes in the long term. When validating the method, Latteux (1995) studied 

several locations in the vicinity of the English Channel, and represented the tidal behavior there using 

an equivalent single tide, finding that the representative tidal range was about 7 to 20% higher than the 

mean tidal range. However, the increase is case-specific, and depends on various parameters such as 

velocity, bathymetry, etc. In practice, a detailed investigation would be desirable to determine a value 

for the single representative tidal component for the Bay of Bengal, but in the absence of such 

information for the present hypothetical scenarios, it is assumed for simplicity that the representative 

tidal component is 20% higher than the actual M2 component. The amplitude and phase are obtained 

from the TPXO 8.0 database using the DelftDashboard tool.  

https://earthexplorer.usgs.gov/
https://oss.deltares.nl/web/delft3d
https://publicwiki.deltares.nl/display/DDB/Delft+Dashboard
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Manning’s roughness parameter was used to describe bed friction in the Delft3D model. The 

procedure proposed by Soulsby (1997) and Whitehouse et al. (2000) was used to determine the spatial 

distribution of Manning’s n . The bed shear stress is expressed as 

 

𝜏0 =  𝜌𝑢∗
2  ,                                                                (8) 

 

where 𝑢∗ is the friction velocity and  𝜌 is density of water. The depth-averaged velocity is 

 

𝑢̅ =  
𝑢∗

𝜅
(ln

ℎ

𝑧0
− 1) ,                                                          (9) 

 

where ℎ is water depth (obtained from the model output), 𝑧0 is bed roughness length and 𝜅 is the von 

Kármán constant (~0.4). The depth-averaged velocity was evaluated from the model output. The bed 

roughness length is calculated as 

 

𝑧0 =  
𝑘𝑠

30
[1 − exp (

−𝑢∗𝑘𝑠

27𝜈
)] + 

𝜈

9𝑢∗
  ,                                           (10)  

where 𝑘𝑠 is the Nikuradse roughness (= 2.5𝑑50, in which 𝑑50 is the median particle diameter) and 𝜈 is 

the kinematic viscosity of water.  Now, the friction velocity 𝑢∗ is obtained by solving equations (9) and 

(10). 

 

By definition, the bed shear stress is given by 

𝜏0 =  𝜌𝐶𝐷 𝑢̅
2 ,                                                        (11) 

and so, 

𝜌𝑢∗
2 =  𝜌𝐶𝐷 𝑢̅

2 .                                                      (12) 

Then the drag coefficient can be calculated from 

𝐶𝐷 =  [
𝜅

ln
ℎ

𝑧0
−1

]

2

                                                      (13) 

Also, 
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𝐶𝐷 =  
𝑔

𝐶2                                                           (14) 

where 𝐶 is the Chézy coefficient.  Then, 

𝐶 =  
𝑅1/6

𝑛
                                                          (15) 

where 𝑅 is the hydraulic radius and 𝑛 is Manning’s parameter. For very wide channels, 𝑅 ≈ ℎ, and so 

equation (15) can be written as,  

𝑛 =  √𝐶𝐷 
ℎ1/3

𝑔
   .                                                  (16) 

 

Fig. 4 shows the spatial map for Manning’s parameter. The range of the value of Manning’s 𝑛 in Meghna 

estuary lies between 0.01-0.03 s/m1/3. 

In addition to water discharge, the open boundary of the Ganges-Brahmaputra river 

accommodates an extreme flood inflow of suspended sediment of concentration 0.799 kg/m3. This 

value is based on the highest measured concentration of fine sediment at the open boundary, obtained 

on randomly selected days in 2007, 2008, and 2009 by the BIWTA. Sediment concentrations at the 

Meghna river boundary and the offshore boundary are assumed zero. The Meghna river has negligible 

morphological activity, and BIWTA has no data on suspended sediment concentration at this location. 

Turning to the offshore boundary it is assumed that no sediment enters the estuary from the deep ocean 

and all sediment reaching the bay from the river is deposited before reaching the offshore boundary. 

Particle settling velocity is one of the most important parameters that influences sedimentation 

rate. Winterwerp and van Kesteren (2004) provide the following empirical expression for the settling 

velocity of fine sediment,  

 

𝑤𝑠 =  
𝛼𝑔

18𝛽𝜇

𝜌𝑠− 𝜌𝑤

1+.15𝑅𝑒𝑓
0.687 𝑑𝑝

3−𝑛𝑓𝑑
𝑓

𝑛𝑓−1
 ,                                               (17) 

 

where 𝑑𝑝 is particle diameter, 𝑑𝑓 is floc diameter, 𝑅𝑒𝑓 is floc Reynolds number (given by  
𝑤𝑠𝑑𝑓

𝜈
 , in which  

𝜈 is kinematic viscosity of water), 𝜌𝑠 is density of solid sediment, 𝜌𝑤 is density of water, 𝑔 is acceleration 

due to gravity, 𝜇 is fluid dynamic viscosity, 𝛼 is a shape factor for gravitational force (which is equal to 

1 for a spherical particle), 𝛽 is a shape factor for drag force (which is equal to 1 for a spherical particle), 

and 𝑛𝑓 = 3 for a Euclidean particle in the Stokes’ regime where 𝑅𝑒 ≪ 1 . Herein, the particle size of the 
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fine sediment is taken as 5 µm. The floc diameter is selected according to a probability distribution fitted 

to field data obtained by Winterwerp and van Kesteren (2004) who examined the relation between floc 

size and settling velocity of sediment obtained from several locations in the North Atlantic and North 

Sea, and noted that the floc diameter falls in the range of 20 µm – 1000 µm.  

 The critical bed shear stress for erosion in the case of fine sediment can be expressed as 

follows (Thorn and Parsons, 1980; Whitehouse et al., 2000): 

 

𝜏𝑒 =  𝐸1 𝐶𝑀
𝐸2  ,                                                            (18) 

 

where 𝜏𝑒 is critical shear stress for erosion, 𝐶𝑀 is dry density, and 𝐸1  and 𝐸2 are site-specific dimensional 

coefficients. 𝐸1  is 5.42 × 10-6  for water-sediment samples of dry density between 30-200 kg/m3  (Thorn 

and Parsons, 1980) and 0.0012 for water-sediment samples of dry density 30-400 kg/m3  (Delo and 

Ockenden, 1992). Also, 𝐸2 is 2.28 for water-sediment samples of dry density between 30-200 kg/m3 

(Thorn and Parsons, 1980) and 1.2 for water-sediment samples of dry density 30-400 kg/m3 (Delo and 

Ockenden, 1992). Critical bed shear stress for deposition is typically half the value of the critical shear 

stress for erosion (𝜏𝑒). Laboratory tests have shown the critical bed shear stress for deposition to be 

about 0.06-0.10 N/m2 (Whitehouse et al., 2000). 

 The Delft3D model was first run solely for hydrodynamics in the Meghna estuary, driven by tidal 

flow and river water discharge inputs. The simulation commenced from a cold start comprising an initial 

water level set 3 m vertically above mean sea level. After 7 days of hydrodynamic simulation, when the 

velocity and water level in the domain became stable, the output map file then provided the initial 

condition for the morphodynamic run. The time step of the model simulation was 0.5 minutes. 

 For the morphodynamic computations, one day of simulation time was set as the spin-up 

period, during which sediment transport calculations were undertaken without implementing bathymetry 

update. After spin-up, the duration of the morphodynamic change simulation was set to 14 cycles of the 

representative M2 constituent tide, i.e. 7 days 5 hours and 50 minutes. In Delft3D, a morphological 

acceleration factor (Morfac) equal to 12 was used to optimize the model simulations of overall duration 

3 months. It was important to run complete cycles of the tidal component while using Morfac because 

the hydrodynamic run-time was multiplied by Morfac to calculate morphological changes in Delft3D, 
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and so it was necessary to simulate complete tidal cycles in order to obtain the best possible output 

with less error. The time step for the morphodynamic change computations was 0.25 minutes.  

 

4. Results 

 

4.1 Model outputs 

 

Before carrying out the computations, it was necessary to determine a suitable statistical distribution of 

floc sizes that might apply to the Meghna Estuary. In the absence of field data specific to the estuary, it 

was decided to use the extensive set of floc size data compiled by Winterwerp and van Kesteren (2004) 

from sites in the North Atlantic and North Sea. These floc size data were found to have a mean value 

of 227 µm and standard deviation of 171 µm. Several candidate probability distributions were then fitted 

to this data, and the chi-square (χ2) goodness of fit test used to determine best fit distributions. Of the 

distributions considered, the Weibull and Gamma distributions gave the closest fits (Fig. 5). From the 

frequency distribution of floc size, χ2 values [∑
(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
] were calculated for the 

Weibull and Gamma distributions. The χ2 values for the Gamma and Weibull distributions were 696.2 

and 719.1, respectively. Considering the significance level, α = 1%, the p-values for the Gamma and 

Weibull distributions were respectively 3.61×10-10 and 1.30×10-17.  Note that the p-value or the right-tail 

probability is the cumulative probability at (1 –χ2) in the associated χ2-distribution. If an assumed 

distribution has a p-value below the significance level, then the assumed distribution is acceptable. 

Hence, both Weibull and Gamma distributions proved to be suitable statistical representations of the 

floc size data. Given that the Gamma distribution had the smaller χ2-value, the Gamma distribution was 

therefore selected as the best-fitted distribution for this case. This Gamma distribution has a mean of 

227 µm, standard deviation of 169 µm (Fig. 5), and coefficient of variation of 169/227 ≈ 0.75. 

  

 Delft3D morphodynamic computations were then undertaken for six representative floc sizes: 

20, 50, 100, 227, 500, and 1000 µm.  Fig. 6 presents the sedimentation rate distribution in the Meghna 

estuary for flocs of different sizes, obtained from the simulation output. Smaller-sized flocs have lower 

settling velocities and hence exhibit lower deposition rates.  The pattern of deposition of sediment 

indicates that deposition phenomena in the Meghna estuary are closely linked to its complicated 
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bathymetry, with erosion prevalent in the deeper reaches of rivers, and sedimentation evident in 

shallower areas (noting of course that the sediment deposition rate is driven by the combined effects of 

rivers and tidal current).   

The erosion-deposition pattern along the estuary mouth is broadly similar to the historical map 

given by Brammer (2014). Both the map and model output indicate that the selected locations are prone 

to deposition. However, the model failed to generate erosion in the historically erosion-prone areas 

around Hatia and Sandwip islands. Furthermore, the model did not reproduce accretion along the whole 

Tetulia channel, illustrated in Brammer’s map. There are several possible reasons for this. First, the 

model was not calibrated and validated against field observations for the sediment transport and bed 

morphodynamics calculations. Second, we assumed a constant single size of cohesive sediment 

particle and applied a constant single floc size throughout the domain in each simulation. In fact, the 

Meghna estuary contains particles and flocs that both have size distributions and are not single-valued.  

However, in the absence of field data on sediment particle and floc size distributions in the Meghna 

Estuary, and for model simplification purposes, the assumption was made bearing in mind that the aim 

of this paper is purely to look at uncertainty propagation. Even so, it must be emphasized that without 

proper information concerning the spatial variations in size distribution of particles in the Meghna 

estuary, the model outputs must be treated as purely hypothetical. Third, the model was run for a steady 

peak flood event lasting three months, representing a highly idealized extreme flood situation. Historical 

records show that such a prolonged extreme situation has not lasted for more than a week in the 

Meghna estuary. Fourth, it would have been computationally very expensive to simulate the 

morphodynamics over an entire monsoon season lasting 5-6 months, and so a simplified approach was 

taken using the morphological acceleration factor in the Delft3D simulation tool. Fifth, noting that the 

amount of erosion-accretion would be rather small during a short-duration peak flood event, a simulation 

time of 3 months was selected in order to drive obvious morphological change in the Bay of Bengal and 

around Meghna estuary. Of course, if the model input comprised more accurate time series of river 

flow, sediment size, and suspended sediment concentration covering the whole year including 

consecutive dry and monsoon seasons, then it would be expected that the model would produce output 

closer to historical evidence. Sixth, all the properties of the cohesive sediment were either assumed or 

calculated from theoretical formulae. The lack of field data about bed material, sediment size, unit 

weight, etc., are of course major sources of uncertainty.  For reasons of brevity, this article focuses on 



18 
 

uncertainty arising from a single parameter, the floc size, and how it translates to uncertainty in sediment 

deposition/erosion rate.   

Three locations, where the deposition rate is substantial, were selected for uncertainty analysis. 

Fig. 7 indicates the locations, which surround Bhola, the largest island of Bangladesh.  Location 1 

occupies a shallow area of West Shahbazpur channel at the northwest of Char Gazaria, where the 

mean depth is about 6 m (relative to mean sea level). Fig. 7 also shows the initial bathymetry, which 

corresponds to a complicated pattern of islands and shoals, created in the delta region as river branches 

meet the sea. The West Shahbazpur channel around this location is erosion prone, as confirmed by 

both the historical map and the Delft3D results. The depth-averaged velocity during high water is about 

2.75 m/s and the current is invariably directed southward over the whole tidal cycle. 

Accumulation of sediment occurs when and where flocs settle as the flow velocity slows.  The 

flow direction reverses around the shallow tidal flats and islands during tidal high water, triggering the 

localized movement of sediment. Fig. 8 shows the local bathymetry (Fig. 8(a)) and the changes in 

sediment deposition/erosion per week averaged over 14 tidal cycles for increasing floc size (Fig. 8(b)-

(g)). Fig. 8 indicates that the deposition-prone locations occur where the depth is predominantly shallow. 

It may also be seen that as the floc size increases, the deposition rate also increases. This occurs 

because the settling velocity increases progressively with increasing floc size, leading to more 

deposition of sediment.   

Location 2 is a tidal flat in West Shahbazpur channel west of Manpura island. Fig. 9 depicts the 

initial bed condition and deposition after 14 cycles of M2 tide (about a week). Fig. 9(a) shows the local 

bathymetry near Location 2, which is again characterized by islands and shoals. Again, deposition 

increases progressively with increase in floc size (Fig. 9(b)-(g)). Deposition is most prevalent in shallow 

areas where the flow velocity drops to zero or near-zero. The residual circulation adds to the deposition 

process by inducing further localized movement of sediment. 

Location 3 is at the north of Bhola Kheyaghat in Tetulia channel. Fig. 10(a) shows the initial bed 

condition and Fig. 10(b)-(g) the bed morphology changes in the region of Location 3. Due to near-zero 

flow velocity during high water period, the Tetulia channel is deposition-prone. The river flow in Meghna 

follows the bathymetry in that the velocity is larger in the deeper channels. This results in erosion. 

Shallower areas display a depositional trend because of the low magnitude of flow velocity. Similar to 

previous cases, deposition increases as floc size increases because the settling velocity is proportional 
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to floc size, but the rate of increase becomes extremely low at the higher values of floc size (see 

Supplementary Information for 2-hourly velocity plots in a tidal cycle).   

 

4.2 Convergence tests 

 

The numerical uncertainty propagation method requires a response surface to be derived 

connecting values of the input parameter to the output response.  Here, the morphodynamic version of 

Delft3D was used to predict output values of sediment deposition/erosion rate for a series of given input 

values of sediment floc size covering the majority of the range of floc sizes within the truncated 

probability distribution.  Delft 3D was first run for floc sizes of 20, 50, 200, 500, 1000 microns, and the 

output sediment deposition/erosion rates in m/week extracted from the results at three locations of 

interest. To refine the parameter relationship between input floc size data and output 

sedimentation/erosion rate, a cubic spline was then fitted (using Matlab).  Once the relationship was 

obtained, the uncertainty propagation method involved discretizing the probability density distribution 

for floc size into a number of bins, and then using the numerical derived distribution approach to 

determine the probability density distribution for sedimentation/erosion rate. It was important to conduct 

a convergence test to check that the probability density distribution had been divided into a sufficient 

number of bins.  

Location 1, West Shahbazpur channel, northwest of Char Gazaria, Meghna estuary was 

selected as a suitable candidate site for the convergence test. Fig.11 shows the cubic spline that 

interpolates the functional relationship between (output) sedimentation rate and (input) floc size. As can 

be seen, this functional relationship is monotonically increasing. Fig. 12 shows the probability density 

distribution in floc size.  The PDF exhibits strong asymmetry, with peak occurring at about 120 micron, 

and a long tail to 1000 micron. 

Next, the statistical convergence of deposition rate is investigated according to the number of 

bins used to discretize the probability density function of floc size. Given that deposition rate is a function 

of floc size and that probability is conserved, the cumulative probability of a floc size is equal to the 

cumulative probability of the corresponding sedimentation rate. The transferred probability distribution 

contains the same number of bins, but the bin width is no longer fixed; this is because of the nonlinear 
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relationship between floc size and deposition rate (as obvious in Fig. 11). The numerical PDF transfer 

method is used to obtain the probability density of deposition rate and the statistical moments. Fig. 13 

depicts the resulting probability density function and cumulative density function of deposition rate at 

Location 1 obtained for different numbers of bins used to discretize the probability density function of 

floc size. Table 1 summarizes the expected value and other statistical moments of sediment deposition 

rate at Location 1. 

Table 1 indicates that the probability distribution of deposition rate is sensitive to the number of 

bins used to discretize the PDF of floc size.  The expected value, variance, standard deviation and non-

dimensional kurtosis of deposition rate converge to within two significant figures when the number of 

bins ≥ 400. Non-dimensional skewness converges to within one significant figure to a value close to 

zero. Consequently, the number of bins used in the following analysis is chosen as 400. 

 

4.3        Uncertainty in model prediction of sediment deposition rate 

 

Fig. 14 shows the relationships between sediment deposition rate and floc size, and the PDFs 

and CDFs at the three locations of interest. To be more specific, Fig. 14(d) and Fig. 14(g) display the 

PDF and CDF of sedimentation rate at Location 1. The peak of the derived probability distribution occurs 

at 0.16 m/week. The right-hand tail of the distribution appears elongated, a reflection of its asymmetry. 

The CDF approaches but does not quite reach unity. This slight mismatch would be expected to reduce 

if a larger number of bins were to be used for discretization and a larger portion of the stretched right-

hand tail of the PDF taken into consideration. Table 2 lists the expected value, coefficient of variation, 

and other statistical moments of sediment deposition rate at Location 1. From Table 2, the expected 

value of the sedimentation rate at Location 1 is 0.22 m and the standard deviation is 0.0828 m. The 

coefficient of variation is smaller than unity, implying that this is a low-variant dataset. The non-

dimensional skewness is ≈ 0, which indicates that the probability density distribution of sedimentation 

rate at Location 1 is almost symmetric around its mean. The kurtosis is a little below 3, which indicates 

that the probability density distribution of sedimentation at Location 1 is slightly flatter than a standard 

normal distribution. Propagation of uncertainty in floc size (75% of the mean value) caused the standard 

deviation of deposition rate to be 38% of the mean value. The coefficient of variation of deposition rate 

at Location 1 is smaller than that of the input floc size, implying the dispersion of the distribution of 
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deposition rate is less than that of floc size. Given that a high-variant distribution of floc size results in 

a low-variant distribution, the floc size of suspended particles of cohesive sediments does not seem to 

be a highly dominant parameter contributing to its deposition. The flow velocity, greatly influenced by 

the bottom geometry in this region, plays a vital role. 

Fig. 14(e) and Fig. 14(h) show the PDF and CDF of deposition rate at Location 2. The peak of 

the derived probability distribution occurs for a deposition rate of 0.13 m/week. This PDF appears flatter 

than that of Location 1; i.e., the distribution is more dispersive. Table 2 summarizes the expected value 

and other statistical moments of sediment deposition rate at Location 2. Similar to Location 1, numerical 

data on the total deposition of sediment (in m) were obtained from the Delft3D results at Location 2, 

and the rate of deposition (in m/week) calculated. Next, a cubic spline was drawn connecting the 

resulting data on the rate of deposition of cohesive sediment (Fig. 14(b)). The same input probability 

density distribution of floc size as for Location 1 was utilized. From Table 2, the expected value of the 

sedimentation rate at Location 2 is 0.19 m and the standard deviation is 0.07 m. The coefficient of 

variation is less than 1 corresponding to a low-variant dataset. Non-dimensional skewness is negative, 

indicating that the tail of the probability density distribution is asymmetric; with most values leaning 

towards the left side of the mean value of deposition rate. Non-dimensional kurtosis is less than that at 

Location 1, and so this probability density distribution is flatter than the probability density of deposition 

rate at Location 1.  The coefficient of variation of floc size is 75%, which is more than twice the coefficient 

of variation of deposition rate. The standard deviation, which indicates the uncertainty incorporated in 

a parameter, is 36% of the mean value of the deposition rate at Location 2. The derived probability 

distribution is less dispersed than the primary distribution of floc size, this is the similar trend as at 

location 1. 

The PDF and CDF of deposition rate per week for Location 3 are shown in Fig. 14(f) and Fig. 

14(i), derived from the PDF of floc size (Fig. 5) and the cubic spline drawn between deposition rate and 

floc size (Fig. 14(c)). The probability distribution reaches its peak for a deposition rate of 0.25 m/week. 

The left tail of this PDF is more elongated than the right tail. The CDF approaches close to 1. From 

Table 2, the expected value of sedimentation rate is 0.28 m and its standard deviation is 0.05 m, at 

Location 3. The coefficient of variation is 0.2, the lowest value among all three locations. Non-

dimensional skewness is negative, which means the tail of the probability density distribution is 

asymmetric and the tail extends towards the left side of the mean value of the sedimentation rate. 
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Kurtosis is slightly higher than 3, which indicates that the probability density distribution of sedimentation 

rate at Location 3 is not as flat as a standard normal distribution. The probability density distribution 

here is even less variant than at the other locations; the input uncertainty in the floc size leads to an 

uncertainty of 20% in the mean value of the deposition rate. 

 

5. Discussion 

 

The foregoing results illustrate use of the numerical derived distribution method as a 

computationally efficient means of determining uncertainty in the sediment deposition rate of cohesive 

flocs at three point locations in the Meghna estuary.   By means of hydro-morphodynamic simulations 

of hypothetical conditions in the estuary, it was found that the coefficient of variation reduced from 0.75 

for input floc size to range from 0.2 to 0.38 for the sediment deposition rate at locations in West 

Shahbazpur channel and Tetulia channel, implying that the probability distribution of sediment 

deposition rate was less dispersed than that of the floc size.  At all three locations, the flow depends on 

complicated local bathymetry, with sediment erosion/deposition strongly linked to local flow speed.  

Flocs deposit where the current speed, from combined river flow and tide, approaches zero. This is to 

be expected because as the flow stagnates, the particle settling velocity becomes an increasingly 

important driving parameter in sediment transport.  Changes to bed morphology through local 

deposition and erosion processes, in turn affect the local flow field, leading to feedback between the 

hydrodynamics and morphology. In the regions of the Meghna estuary considered herein, we find 

shallow areas to be deposition-prone whereas deeper parts of the channels are erosion-prone. Of 

course, this is not a general observation for the whole estuary given that the analysis is restricted to just 

three point locations.   

With shallower areas more prone to sediment deposition, nearby coastal areas are likely to 

experience higher flood risk as the estuary bed level increases. Deeper areas in the estuary, including 

some near the banks, are under threat of erosion. Partly because we considered a single cohesive 

sediment fraction size of 5 micron, our erosion-accretion patterns only partially match historical 

evidence given by Brammer (2014). Nevertheless, the model output shows that for all six floc sizes 

considered, significant deposition occurs at the mouth of the estuary. The smaller flocs cause less 



23 
 

sediment deposition whereas larger flocs cause heavier deposition (Fig. 6). Further investigations 

involving multiple sediment fractions are recommended to generate more realistic scenarios.  

The numerical derived distribution method offers a very powerful tool by which to assess 

uncertainty propagation in hydro-morphodynamic models.  Once sufficient model runs have been made 

in order to fit curves relating input to output parameters of interest, the method is remarkably fast and 

easy to apply.  However, it does suffer from one drawback – the mathematical requirement that the 

input-output curves are monotonically increasing or decreasing owing to the unique nature of the 

mappings.  This means that physical relationships involving turning points in input-output relationships 

cannot be treated using the derived distribution method to the authors’ knowledge. Herein, the 

numerical derived distribution method was applied at three points of interest in the Meghna Estuary. In 

future, this analysis could be extended to provide contour maps of statistical parameters of uncertain 

input and output parameters by applying the derived distribution method to each grid point within the 

estuary.  The present approach represents an initial step towards much more sophisticated analysis to 

come. 

Estimates of the uncertain deposition rate can also be used to evaluate the changes to bed 

level elevation and hence flood risk at coastal areas in the Meghna estuary.  Ongoing advances in 

decision-analysis under uncertainty (see e.g. Uusitalo et al., 2015; Simpson et al., 2016; Hodgett and 

Siraj, 2019; Bonjean Stanton and Roelich, 2021) offer systematic ways of managing flood risk for 

decadal to century-scale scenarios. The present study of uncertainty propagation from floc size to 

sediment deposition/erosion is important as it illustrates the application of an analysis support tool to a 

coastal region vulnerable to inundation. Such a tool could help develop coastal management strategies 

for Bangladesh, and incorporate climate change effects, such as uncertainty in sea level rise (using 

estimates for different Shared Socio-economic Pathways considered in the 6th Assessment Report by 

the Intergovernmental Panel on Climate Change) and human impacts. For example, the present 

analysis methodology could be useful in helping prioritise land reclamation options, thus aiding the 

coastal planning process in Bangladesh. For example, the Estuary Development Plan (2007) produced 

by the Ministry of Water Resources of Bangladesh identified several deposition-prone areas, for which 

uncertainty quantification could be highly beneficial. In areas where significant erosion may occur, 

uncertain erosion could be calculated as a precursor to assessing land erosion risk. The 

Intergovernmental Panel on Climate Change (IPCC) has stated that low lying countries like Bangladesh 
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will experience increased risk in flooding, salinization and erosion by the year 2100 (Openheimer et el., 

2019), with the latest report stating that the whole of South Asia is under risk of severe shoreline retreat 

(Fox-Kemper et al., 2021). Erosion risk assessment will therefore help local authorities in Bangladesh 

plan long-term protective measures. Notably, the Bangladesh Delta Plan 2014 has adopted a holistic 

approach for which uncertainty quantification of key parameters related to relevant natural disasters 

would be extremely advantageous for agencies charged with coastal management and protection.  

 

6. Conclusion 

This article has investigated the use of the numerical derived distribution method to examine 

the effect of input uncertainty in floc size on output uncertainty in sediment deposition rate at three 

locations of interest in the Meghna estuary. The numerical derived distribution method proved to be 

very efficient, requiring very few full hydro-morphodynamic simulations. However, set against its speed 

and efficiency, the numerical derived distribution method is limited to cases where there is a unique 

mapping between input and output variables.  The hydro-morphological model was quite simplified, 

being limited to cohesive suspended sediment under simplified tide and river flow driving conditions. 

The application to three locations in the Meghna estuary revealed that uncertainty in deposition 

rate was relatively less sensitive to uncertainty in floc size, with values of normalized variance being 

lower for deposition rate than floc size. The probability density functions of sediment deposition rate 

ranged from almost symmetric platykurtic (i.e. fewer outliers than the normal distribution) in West 

Shahbazpur channel to left-skewed leptokurtic (i.e. more outliers than the normal distribution) at Bhola 

Kheyaghat.  In a densely populated country like Bangladesh, land erosion is a threat to the supply of 

valuable land.  Continuous deposition of suspended sediment near islands and narrow channels in the 

Meghna estuary increases the long-term flood risk to low lying coastal areas but also offers 

opportunities for land reclamation.  

Future studies are required that investigate the deposition of different types and sizes of 

sediment in the Meghna estuary region. Field data on bed material and suspended sediment are vitally 

important as a prerequisite for accurate model predictions. Our paper offers a route towards more 

extensive studies of the morphological behavior of Meghna estuary considering other important 

parameters, such as multiple particle sizes of cohesive sediment based on field data, inclusion of non-

cohesive sediment, bedload transport, salinity, tropical cyclones, Coriolis force, sea level rise, and 
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actual tide and river flow conditions. Such studies would be helpful to decision makers in planning flood 

mitigation measures, land protection works, and land reclamation activities. The numerical derived 

distribution approach has considerable potential as a tool for practitioners to estimate uncertain 

sediment transport, morphological change, and coastal risk arising from uncertainty in a wide range of 

different physical input parameters. 
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Fig. 1.Map showing land elevation of Bangladesh (data downloaded from https://earthexplorer.usgs.gov/). The Delft3D model domain is shown in blue. The 

geographic boundary of Bangladesh was downloaded from www.geodash.gov.bd. 

https://earthexplorer.usgs.gov/
http://www.geodash.gov.bd/
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Fig. 2: Principle of derived distribution method where the PDF of 𝑢 is derived from the PDF of 𝑡 and the simulated relationship between them. 
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Fig. 3: Model bathymetry. River bed levels (data obtained from MorphoFlood project, IHE Delft, The Netherlands) and island land elevations (downloaded 

from https://earthexplorer.usgs.gov/) within the Delft3D domain for the Meghna estuary and Bay of Bengal. 

https://earthexplorer.usgs.gov/
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Fig. 4: Spatial map of Manning’s 𝑛 for the Meghna estuary domain, generated using the procedure by Soulsby (1997) and Whitehouse et al. (2000). Open 

boundary conditions are also shown. 
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Fig. 5: Floc size data from Winterwerp and van Kesteren (2004) classified in 480 bins with fitted Gamma and Weibull distributions superimposed. 
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(a) Floc size = 20 µm (b) Floc size = 50 µm (c) Floc size = 100 µm 

   

(d) Floc size = 227 µm (e) Floc size = 500 µm (f) Floc size = 1000 µm 

Fig. 6: Spatial distribution of cohesive sediment deposition rate (m/week) in Meghna estuary after 14 cycles of 1.2 M2 constituent tide for different floc sizes. 
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Fig.7: Locations considered in uncertainty analysis of sediment transport rate in Meghna estuary, Bangladesh: Location 1 is in West Shahbazpur channel, 
northwest of Char Gazaria; Location 2 is in West Shahbazpur channel west of Manpura island; and Location 3 is north of Bhola Kheyaghat in Tetulia channel. 
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(a)  (b)  (c)  (d)  

   

 

(e)  (f)  (g)   

 

Fig. 8: (a) Initial bed level in vicinity of Location 1 (black circle), West Shahbazpur channel,northwest of Char Gazaria, Meghna estuary. Erosion and accretion 

obtained by considering 14 cycles of the 1.2 M2 constituent tide for the following floc sizes: (b) 20 µm, (c) 50 µm, (d) 100 µm, (e) 227.21 µm, (f) 500 µm, and 

(g) 1000 µm. 
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(a)  (b)  (c)  (d)  

   

 

(e)  (f)  (g)   

 

Fig. 9: (a) Initial bed level in vicinity of Location 2, West Shahbazpur channel, west of Manpura island, Meghna estuary. Erosion and accretion obtained by 

considering 14 cycles of the 1.2 M2 constituent tide for the following floc sizes: (b) 20 µm, (c) 50 µm, (d) 100 µm, (e) 227.21 µm, (f) 500 µm, and (g) 1000 µm. 
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(a)  (b)  (c)  (d)  

   

 

(e)  (f)  (g)   

 

Fig. 10: (a) Initial bed level in vicinity of Location 3, north of Bhola Kheyaghat, Tetulia channel, Meghna estuary. Erosion and accretion obtained by 

considering 14 cycles of the 1.2 M2 constituent tide for the following floc sizes: (b) 20 µm, (c) 50 µm, (d) 100 µm, (e) 227.21 µm, (f) 500 µm, and (g) 1000 µm. 
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Fig. 11: Cubic spline relation between sedimentation rate and floc size at Location 1, West Shahbazpur channel, northwest of Char Gazaria, Meghna estuary, 

obtained by considering 14 cycles of the 1.2 M2 constituent tide. 
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Fig. 12: Probability density function of floc size of cohesive sediment at Location 1, West Shahbazpur channel, northwest of Char Gazaria, Meghna estuary, 
obtained from data given by Winterwerp and van Kesteren (2004). 
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(a) 

 

(b) 

Fig. 13:  PDF (a) and CDF (b) of sedimentation rate at Location 1, West Shahbazpur channel, northwest of Char Gazaria, Meghna estuary, plotted for 
different numbers of bins, obtained by considering 14 cycles of the 1.2 M2 constituent tide. 
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(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

Fig. 14: Floc size and sediment deposition in the Meghna estuary. The first row (a-c) shows cubic spline fits between sediment deposition rate and floc size at 
Locations 1, 2, and 3. The second (d-f) and third rows (g-i) depict PDFs and CDFs of deposition rate at the same locations, obtained by considering 14 cycles 
of the 1.2 M2 constituent tide. 



44 
 

Table 1:  Expected value and other statistical moments of sedimentation rate at Location 1,West Shahbazpur channel, northwest of Char Gazaria, Meghna 
estuary.  

No. of 

bins 

Expected value of 

deposition rate, 

𝐸[𝐷] 

(m/week) 

Variance, 

𝜎𝐷
2 

(m2/week2) 

Standard 

deviation, 𝜎𝐷 

(m/week) 

Non- 

dimensional 

skewness, 

𝑆𝑘𝑒𝑤𝑛(𝐷) 

Non- 

dimensional 

kurtosis, 

𝐾𝑢𝑟𝑡𝑛(𝐷) 

20 0.1818 0.0072 0.0848 1.1318 2.9149 

50 0.2052 0.0067 0.0821 0.5257 2.6053 

100 0.2135 0.0068 0.0822 0.2453 2.5079 

200 0.2178 0.0068 0.0826 0.0992 2.4654 

400 0.2200 0.0069 0.0828 0.0219 2.4463 

600 0.2207 0.0069 0.0830 -0.0041 2.4403 

800 0.2211 0.0069 0.0830 -0.0172 2.4374 

 

 

 

Table 2: Expected value and other statistical moments of sediment deposition rates at Locations1, 2 and 3 in the Meghna estuary. 

Location Mean floc 

size 

(µm) 

Expected value of deposition 

rate, 𝐸[𝐷] 

(m/week) 

Standard 

deviation, 𝜎𝐷 

(m/week) 

Coefficient of 

variation, 

𝜎𝐷

𝐸[𝐷]
 

Non- dimensional 

skewness, 𝑆𝑘𝑒𝑤𝑛(𝐷) 

Non- dimensional 

kurtosis, 𝐾𝑢𝑟𝑡𝑛(𝐷) 

1 227 0.22 0.08 0.38 0.0219 2.4463 

2 227 0.19 0.07 0.36 -0.1567 2.0362 

3 227 0.28 0.05 0.2 -0.7917 3.3127 

 


