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Abstract

This study proposed a novel approach based on the 3D discrete element method (DEM)

to simulate the progressive delamination in unidirectional carbon fibre reinforced polymer

(CFRP) composite laminates. A hexagonal packing strategy was used for modelling 0◦

representative plies, the interface between different plies was modelled with one bond and

seven bonds following the conservation of energy principle and a power law. The num-

ber of representative layers and the stiffness of bonds within these layers were calibrated

with a comparison of results obtained from finite element method and theoretical analysis.

DEM simulations of delamination with both interface models were conducted on unidirec-

tional composites for double cantilever beam (DCB), end-loaded split (ELS) and fixed-ratio

mixed-mode (FRMM) tests. It was found that the seven-bond interface model has a better

agreement with experimental data in all three tests than the one-bond interface model by

adopting the proposed seven-bond arrangement in terms of the progressive delamination

process. The main advantages of the present interface model are its simplicity, robustness

and computational efficiency when elastic bonds are used in the DEM models.

Key words: Carbon fibre reinforced polymer composite (CFRP); Discrete element method

(DEM); Delamination; Conservation of energy principle; Critical fracture energy
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1. Introduction

Advanced Carbon Fibre Reinforced Plastic (CFRP) composite materials are widely used

in various industries including aerospace, automotive and renewable energy due to their ex-

cellent stiffness- and strength-to-weight ratios, corrosion resistance and flexibility of struc-

tural optimisation for economic and environmental reasons. However, the lack of understand-5

ing of composite failure mechanisms under complex loading conditions imposes a challenge

for engineers for the design and optimisition of composite structures. Among composite

failure modes, interlamina delamination is regarded as the most significant issue in CFRP

composites, which occurs at the weakest region in the composite where the matrix is rich

and results in significant stiffness and/or strength degradation. Therefore, high-fidelity mod-10

elling of the interface is of great significance for accurate predictions of damage initiation

and propagation in CFRP composite materials.

Finite Element Modelling (FEM) is widely used for predicting damage initiation and

progression in composites, usually associated with the fracture mechanics approach or co-

hesive zone models. The Virtual Crack Closure Technique (VCCT) [1, 2, 3, 4] and Cohesive15

Zone Models (CZM) [5, 6, 7, 8], including the Discrete Cohesive Zone Model [9] and the

Discrete Damage Zone Model [10] are well studied for the prediction of delamination damage

onset and propagation. The VCCT determines the Energy Release Rate (ERR) at the crack

ahead by using forces and displacements obtained from the FE model. An assumption is

needed when modelling the delamination damage growth that the energy released during20

crack growth is equal to the energy required to close the crack back to its original length [1].

This technique can predict the delamination accurately to some extent, however, it requires

knowledge of the pre-defined delamination path prior to damage [7] and also it assumes

self-similar damage growth [11]. Meanwhile, the potential for non-convergence still exists

due to the singular finite element stiffness matrices[12, 11, 7].25

The aforementioned approaches based on FEM suffer from the meshing issue, especially

when the occurrence of fracture results in mesh deleting. Therefore, these mesh-dependent

approaches require a costly remeshing strategy to alleviate such effects [6]. There is another
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class of numerical methods qualified as meshless methods, which can simulate the crack

propagation without the consideration of the crack’s topology [13]. Two meshless numerical30

methods have been reported for the failure prediction of composite materials, namely peri-

dynamics [14, 15] and discrete element method (DEM) [16, 17]. The peridynamics approach

adopts an integral formulation to describe continuous problems while it avoids classical issues

related to partial differential equations occurring in FEM. Forces applied to a particle are

estimated by summing the contributions from all the particles around it in a certain region.35

The larger the region that is chosen, the more accuracy is obtained. DEM was originally

used in the field of rock mechanics [16], which shares several similarities with the peridy-

namics approach as the motion of a particle is calculated based on Newton’s second law and

uses the forces acting on it from surrounding particles. However, DEM adopts a different

modelling strategy compared with peridynamics, in which all particles in the DEM-based40

model are modelled as individual entities and calibration for their microscopic parameters

(i.e. stiffness and strength), is usually required, especially when the particles are randomly

packed or arranged in a complex layout.

In the last decades, DEM has attracted increasing attention in the composite communi-

ties due to its capability of capturing damages and their growth in the composite materials45

without any preset paths [18]. For example, crack initiation and propagation in compos-

ite materials were simulated by DEM models under various loading conditions at different

scales [19, 20, 21, 22, 23], which demonstrate the capability of DEM in the prediction of

cracks in composites with details of crack density and stiffness reduction. Yang et al. [24]

proposed a 2D DEM model to model progressive delamination of laminated composites, in50

which the anisotropic composite plies were constructed with a hexagonal packing strategy

while the interface between plies was modelled by a contact softening model with a bilinear

elastic behaviour. Good agreements were observed between the DEM and existing numerical

and experimental results in terms of the double cantilever beam (DCB), end-loaded split

(ELS) and fixed-ratio mixed-mode (FRMM) tests. However, it was limited to the 2D DEM55

modelling of the progressive delamination of composites, which cannot capture the delami-

nation in three dimensions for angle-ply composites and the interaction of different damage
3



modes. Meanwhile, due to the softening behaviour considered in every single bond with the

contact softening model in [24], the computational cost could be much higher than the one

which uses the linear elastic brittle model. More recently, Le et al. [25] developed a 3D60

DEM model to capture several damage modes in composite materials, such as fibre/matrix

debonding, matrix cracking, fibre breakage and delamination. In the 3D DEM model, ma-

trix and fibres were modelled as brittle materials, in which two failure criteria were used for

comparison, i.e. a breakable bond failure criterion and a removed discrete element failure

criterion; while the interfaces between fibres and matrix and different plies were modelled65

by cohesive contact models [26], in analogy to the cohesive zone model in FEM. Due to

the random arrangements of the particles and bonds, calibration of microscopic parameters

(i.e. the radius of particles, Young’s modulus and Poisson’s ratio) were conducted for the

DCB test by i) determining the radius of particles with arbitrarily selected Young’s modulus

and Poisson’s ratio and ii) determining the microscopic Young’s modulus and Poisson’s ratio70

with the calibrated radius of particles. Ammar et al. [27] applied a similar bond constitutive

model with bilinear softening law to capture the delamination in DCB, ELS and MMB tests.

However, the interface was modelled with randomly distributed bonds, inevitably increasing

the computational cost.

In this paper, a novel approach is proposed to model the interlaminar interface of unidi-75

rectional composites with a seven-bond interface model based on DEM, aiming to capture

the progressive delamination process. This approach used elastic brittle bonds with a specific

pattern, instead of the exclusive use of cohesive/softening bonds, to capture the progressive

delamination of composites by the progressive bond breaking events. The fracture criterion

is stress-based, in which the strength of interface bond is determined by the critical energy80

release rate within the framework of fracture mechanics. The relation of the fracture en-

ergy stored in different types of bonds within one unit can be represented by the length of

the bonds based on a power law. This approach can be also extended to the prediction of

delamination in angle-ply composites and provides guidance for other meshless bond-based

lattice models (i.e. peridynamics [28]) for modelling interlaminar interface. This paper is85

organised as below. The general concept of the DEM theory is first recalled, followed by a
4



discussion of the modelling of the unidirectional composite lamina with a hexagonal packing

method. The DEM models of the composite interlaminar interface were built up with a

newly proposed approach, in which the stiffnesses and strengths of bonds were determined

based on the ERR concept. Numerical analysis of DCB, ELS and FRMM tests was con-90

ducted on unidirectional CFRP composites and validated against experimental data in the

literature.

2. DEM modelling of composite lamina

DEM was originally proposed by Cundall [16] to simulate the movement and interaction

of rigid particles assemblies in the context of rock mechanics and has been extended to other95

fields, such as concrete [29], ceramics [30] and fibre reinforced polymer composite [25, 23].

In a typical DEM model of a solid, the particles are assumed to be rigid spheroid in a 3D or

disc in 2D, in which the interaction between the contacting particles is treated as a dynamic

process and the stress and deformation of the particle assembly are obtained from the force

and displacement of each individual particle. The translational and rotational motion of100

a single, rigid particle is determined by the resultant force and moment vectors acting

upon it. The contact forces and displacements of the assembled particles can be recorded

by tracing the movements of the individual particles. In a typical cycle of calculation,

the forces/moments and displacements are exchanged between Newton’s second law and a

force-displacement law. The position and velocity of each particle are updated according to105

Newton’s laws of motion in the current timestep and the forces/moment calculated during

the previous timestep, while the forces/moments developing at each contact are updated by

an appropriate contact model using the current state of the particles.

Particles are usually bonded at contacts when the surface gap between the two particles

is less than or equal to zero and separated when the bond stress exceeds its strength. The110

advantage of this method is that the crack can be tracked at the contact point when the bond

breaks. The mechanical behaviour of bond-based DEM model is largely dependent on the

contact model which updates the forces and moments. Here in this study, the parallel bond

contact model, is selected to describe the mechanical behaviour of the bonds at contact. As
5



shown in Fig. 1, the components and parameters of the parallel bond model in normal and115

shear directions are illustrated, in which kn and kn are the normal stiffness of the parallel

bond and particles, respectively. gs and σc are the surface gap between two particles and

the tensile strength of the bond, respectively. ks and ks are the shear stiffness of the parallel

bond and particles, respectively. µ is the friction coefficient between two particles, and

the Φ and c are the friction angle and cohesion stress, respectively, in the failure curve of120

the parallel bond subjected to tension/compression and shear stresses. In the DEM model

Figure 1: Parallel bond in DEM modelling

constructed with parallel bonds, the contact stiffness, Ki, at the particle-particle contact

can be obtained from the stiffnesses of particles and parallel bonds [31],

Ki = Ak̄i + ki (1)

A = 2R̄δ (2)

Ki =
k
[A]
i k

[B]
i

k
[A]
i + k

[B]
i

(3)

where R̄ and A are the radius and cross-section area of the parallel bond, respectively. δ is

the element thickness, k̄i is the parallel bond stiffness and ki is the equivalent stiffness of the125

two contacting particles. i is in place of n or s, which indicates normal or shear direction,

respectively.

6



In our previous work [32, 23], an extended 2D DEM model with the hexagonal packing

method was successfully applied to construct unidirectional composites. In the extended

2D DEM model of a composite lamina, the basic unit comprises seven particles, in which130

one particle is located in the centre of the unit and the surrounding particles are packed

in a hexagonal pattern. The parallel bonds aligned with the fibre direction are called fibre

bonds and the remaining bonds in blue are called matrix bonds. The angle of the lamina is

dependent on the direction of the fibre bonds. The stiffnesses of the fibre bonds and matrix

bonds are determined by the average strain energy method [33], while the strengths are135

calibrated from the experimental data.

The constitutive law of the parallel bond is defined by a relationship between the traction

and the relative displacement at the interface, see Fig. 2. The fracture criterion of interface

bonds is based on the ERR concept. Since the bond-based DEM model implies the absence

of stress singularities at the crack tip, the ERR in an interface model can be defined as the140

elastic strain energy per unit length stored in the unbroken bonds at the crack tip [34, 35]. In

the constitutive model , the normal stress increases with the elongation of the bond between

two adjacent particles and reduces to zero when it exceeds the corresponding strength σnc. It

should be noted that the normal strength σnc is calculated from the critical fracture energy

GIC , i.e. the grey triangle area in Fig. 2(a). The normal stress is calculated from σn = Fn

A
.145

The bond is deleted when the normal stress exceeds the strength and no longer holds stress

between two particles, which is found in Fig. 2(b). The shear strength σsc and stress σs of

the bonds are calculated from critical fracture energy GIIC and force F s in the tangential

direction, respectively. The constitutive model of the bonds in the tangential direction for

the undamaged and damaged interface can be seen in Fig. 2(c) and (d), respectively. Here150

in this study, Double Cantilever Beam (DCB), End Loaded Split (ELS) and Mixed Mode

Bending (MMB) tests are studied with a newly proposed seven-bond interface model and

previously reported one-bond interface model.
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Figure 2: Linear elastic brittle law of the parallel bond in the normal direction for (a) an undamaged

interface and (b) a broken interface, and in the tangential direction for (c) an undamaged interface and (d)

a broken interface [36].

2.1. DEM modelling of delamination in unidirectional composites

2.1.1. One-bond interface model155

In the previous DEM models, the particles in the adjacent two plies are mirrored about

the interface, thus the particle in one ply is only bonded to the mirrored particle in the other

ply. This model is named as a one-bond interface model. The illustration of the one-bond

interface is seen in Fig. 3(a), in which the red vertical bonds represent the interface between

two plies. The critical fracture energy GIC and GIIC are related to the effective ultimate160
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nominal traction σnc and σsc of material and the final separation δnc and δsc, respectively.

GIC =
σncδnc

2
(4)

GIIC =
σscδsc
2

(5)

Since the damage model is brittle, so the bond stiffness kn and ks can be calculated from

the final separation δnc and δsc via

kn =
σnc

δnc
(6)

ks =
σsc

δsc
(7)

The critical fracture energy GIC and GIIC can be obtained from the corresponding DCB and

ELS experiments, respectively. Therefore, the ultimate nominal traction can be determined165

from

σnc =

√
2knGIC (8)

σsc =

√
2ksGIIC (9)

It is reasonable to assume that the relationship between the critical strain energy release

rate in mode I and mode II is linear when subjected to a mixed-mode loading condition

[37, 38]. Thus a linear fracture criterion for mixed-mode loading is adopted:

GI

GIC

+
GII

GIIC

= 1 (10)

where GI and GII are the strain energy release rate of mode I and mode II, respectively.170

Here a mixed-mode FRMM test was used for the numerical simulations of mixed mode

fracture. The ratio of mode I to mode II loading is approximately constant throughout the

test at 4:3 [39], resulting in the value of GI/GII as 1.33.

2.1.2. Seven-bond interface model

Different from the one-bond interface model, each particle is connected with seven bonds175

within a unit region in the seven-bond interface model. The configuration of the interface

9



Figure 3: (a) One-bond interface DEM model, (b) seven-bond interface model and (c) configuration of bonds

in one unit of seven-bond interface model.

is illustrated in Fig. 3(b-c), in which particle A connects not only with the counterpart

particle B, but also the other six particles surrounding particle B. Therefore, considering

the conservation of energy principle, the whole critical fracture energy can be spread into

seven parts, which represent the fracture energy of the primary vertical bond (GI) and the180

surrounding softening bonds (Gi(i = 2, 3...7)), respectively. Thus the whole fracture energy

can be written as:

GIC = G1 + ΣGi, (i = 2, 3...7) (11)

The relation between G1 and Gi can be established based on the relation of the length of

these bonds by using a power law:

G1 = A(
Li

L1

)BGi, (i = 2, 3...7) (12)

where A and B are two factors influencing the relation between G1 and Gi. L1 and Li185

are the length of the primary vertical bond and surrounding softening bonds, respectively.

According to the spatial location of these bonds in Fig. 3(c), the ratio between the Li and L1

is
√
2. This ratio can be adjusted for other composite laminae according to the configuration

of the packed particles.
10



3. Determination of packing strategy and bond stiffness190

Before carrying out numerical simulations of DCB tests, it is necessary to determine the

radius of particles used for the configuration of the DEM model. In order to be in accordance

with the DCB specimen in the literature [40], the size of the specimen size for the cantilever

test is 64.8 mm × 10 mm × 1.62 mm, with a length of 1 mm for loading on the left (blue

balls) and a length of 13.8 mm on the right (red balls), resulting in an effective length of 50195

mm. The schematic and configuration of the cantilever constructed by DEM can be found

in Fig. 4. The material properties of this specimen [40] are: longitudinal Young’s Modulus

E1=130 GPa, transverse Young’s Modulus E2=6.5 GPa, shear modulus G=2.7 GPa, and

mode-I critical energy release rate GIC = 643 J/m2.

Figure 4: Layups of UD laminate with different configurations for the cantilever test. (The particles in the

DEM model with two layers are hidden, the radius of particles is reduced to half of its original size in the

one with three layers model and no change is made in the one with four layers for interpretation.)

It was assumed that there is no intralaminar and interlaminar damage occurring in the200

specimen for the determination of bond stiffnesses. A convergence study was conducted

on the number of representative layers of the specimen and numerical results are listed in

Table 1. The initial stiffness of the parallel bond at the interface of these representative

layers of the specimen is determined by kn = E2/2R [31]. The diameter of particles was

determined by dividing the composite thickness, which is 1.62 mm in this case, into the205

number of representative layers. The velocity 0.1m/s [24, 32] was applied to the blue loading

11



particles in a vertical direction, and the red particles were fixed. The bending stiffness of

this cantilever was obtained by averaging the unbalanced force of the blue particles in the

loading direction when their displacements reach 1 mm. It can be found in Table 1 that

the stiffness of the cantilever predicted by the DEM model with three representative layers210

becomes converged with a reasonable computational cost, compared to the other models.

The computer used for the numerical simulations is a PC with 8-core Intel E5-2670 (2.6 GHz)

processors and 16 GB of memory and the typical DEM simulation time ranges between 8-

24 hrs depending on the composite structures and boundary conditions. Therefore, three

representative layers were selected for the construction of the DEM models in DCB, ELS215

and FRMM tests.

Table 1: The dimension and obtained results of cantilever DEM model with different configurations

Two layers Three layers Four layers

Particle diameter 2R (mm) 0.81 0.54 0.405

Representative layer arrangement 80 × 15 × 2 120 × 23 × 3 160 × 60 × 4

Bending stiffness (N/mm) 17.47 24.05 23.90

Computation time (min) 7 45 100

It is extremely difficult to acquire a microscale parameter such as interface stiffness from

an experiment. In the simulation of the DCB test with FEM, an empirical penalty stiffness is

usually chosen for the stiffness of the cohesive zone model to maintain its continuity of stress

and strain between different parts [41]. Here, in this case, a parametric study was conducted220

for the determination of interface stiffnesses of DEM models with three representative layers,

starting from the base value of 12000 GPa/m (E2/2R). Comparing the numerical results

obtained from the DEM models, it can be found that the bending stiffness decreases as the

bond stiffness decreases. With a comparison of predicted bending stiffness obtained from

DEM and FEM simulations as well as beam theory, the bond stiffness of 1200 GPa/m was225

found to be in good agreement with FEM and theoretical predictions, see Table 2. Therefore,

1200 GPa/m was selected for the DCB test in the next section.

12



Table 2: Comparison of numerical results obtained from DEM and FEM models with theoretical prediction

kn (Pa/m) Bending stiffness (N/mm)

DEM model 1.2× 1013 24.05

0.6× 1013 20.35

1.2× 1012 12.81

1.2× 1011 5.62

FEM model - 11.77

Beam theory - 11.85

4. Modelling DCB test of unidirectional composites

The DCB test of CFRP composite laminates was conducted with the aforementioned

two interface models and the numerical results were compared to the experimental findings230

[40]. The configuration and dimensions of the specimen are shown in Fig. 5(a), in which the

total length (L) is 180 mm, the width is 20 mm, the initial length of the crack (a0) is 50 mm

and the total thickness (2h) is 3.24 mm. Here in order to reduce the computational cost, the

Figure 5: Configuration of DCB specimen: (a) sketch of DCB specimen, (b) one-bond interface model, (c)

seven-bond interface model. (The radius of particles of DEM models is reduced to half of its original size

for interpretation, and bonds are illustrated as coloured cylinders.)
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width of the DEM models was reduced to 10 mm. In both models, a total of six plies were

used, making the particle diameter 0.54 mm, with the upper and lower laminates consisting235

of three representative layers. The strength of bonds in upper and lower representative

layers was set to be extremely high to prevent any breakage, shown as blue in Fig. 5(b-c).

The strength of bonds at the DCB interface in the one-bond interface model was determined

using Eq. 8, while the strengths of bonds at the DCB interface in the seven-bond interface

model were determined by Eqs. 8 - 12.240

In order to study the influence of stiffness on the numerical results of the DCB test, three

stiffnesses, 120 GPa/m, 1200 GPa/m and 12000 GPa/m were selected and the strength

of the interface bonds was calculated from Eq. 8. The comparison of force-opening dis-

placement curves obtained from DEM simulation and experiment are shown in Fig. 6(a).

During the elastic stage, the numerical simulation curves with the stiffness of 1200 GPa/m245

and 12000 GPa/m, are in good agreement with the experimental curve. When the opening

distance is larger than 4 mm, the bonds of the interface between upper and lower layers

start to hold the load, resulting in fluctuations in the curve. It is found that the result

obtained from the model with 1200 GPa/m interface stiffness is in excellent agreement with

the peak load obtained from the experiment [40], while the results obtained from the ones250

with the interface stiffness of 120 GPa/m and 12000 GPa/m were slightly underestimated

and overestimated, respectively. When the displacement increases beyond 7.2mm, the inter-

face bonds start to break, resulting in a decrease in loading force and noticeable fluctuation

during crack propagation. A good match can be observed between numerical simulation and

experiment during the post-peak cracking process.255

The stiffness of interface bonds in the seven-bond interface model are selected as 1200

GPa/m, and the strengths of these bonds are calculated according to Eqs. 8 - 12. The

comparison of force-opening displacement curves between numerical results obtained from

the seven-bond interface model and the experimental result can be found in Fig. 6(b-c).

Since the parameter B has a significant influence on the strengths of the primary bond and260

softening bonds, the parametric study for the determination of B was carried out with the

parameter A = 1. It can be seen from Fig. 6(a) that all of the curves are superposed before
14



Figure 6: Comparison of force - opening displacement curves between the experiment [40] and numerical

results obtained from (a) one-bond interface model, (b) seven-bond interface model with A=1 and (c) seven-

bond interface model with B=8.

the opening displacement of 4 mm during the elastic stage. As the opening displacement

increases, the softening bonds start to break, resulting in a slight drop in the curves, while

the primary bonds still hold the load until their breakage at the peak load, see the curves265

obtained from B = 2 and 4. The peak load increases as the parameter B increases, since

a larger primary strength can be obtained from a larger B. Spurious oscillation can be

observed in all the cases regarding the reaction force, after the peak reaction force when

primary bonds start to break. The fluctuations occurring during progressive delamination

process are related to the explicit dynamic simulations and require a high damping and270

fine time steps to be mitigated. It can be seen in Fig. 6(b) that the seven-bond interface

model with the parameter B = 16 overestimates the peak load, thus a parametric study to

determine the parameter A was conducted with the parameter B of 8. The curve obtained

from the model with A = 4, B = 8 is in excellent agreement with the experiment [40] both

in the elastic stage and during the cracking propagation process, which demonstrates the275

15



capability of this seven-bond interface model regarding cracking prediction in the DCB test.

Fig. 7 shows the comparison of cracking length-opening displacement between the two

interface models and experiment data [40]. For the seven-bond interface model, solid lines

represent the length of a primary zone where the current crack tip can reach during cracking

propagation, while the dash lines represent the length of the softening zone, and the gap280

between these two lines represents the processing zone, see Fig. 7. It was found that with the

parameter B = 8 and 16, the cracking length of softening zone starts from around 55 mm,

this is due to the data saving frequency, and the cracking information can only be recorded

at a prescribed timestep. The opening displacement obtained from the numerical results

with A = 4, B = 8 shows excellent agreement with the one obtained from the experiment,285

which can be also proved by the force-opening displacement curve in Fig. 6(c). However,

during the cracking propagation after the opening displacement of 9 mm, the numerical result

obtained from A = 1, B = 4 has a reasonable agreement with the experiment. The numerical

result obtained from the one-bond interface model overestimates the opening displacement

at the cracking onset and underestimates the cracking length during the propagation process.290

Interestingly, no processing zone, which depicts the difference between the cracking region of

softening bonds and primary bonds, can be found in this case during the cracking process,

see Fig. 7(b) when A = 1, B = 4, that is due to the slight difference between the strength

of the primary bond and softening bonds.

5. Modelling ELS test of unidirectional composites295

An ELS test was carried out with a constant velocity of 0.1 m/min applied on the left

edge of a specimen composed of 18 018 particles and 63 443 bonds (Fig. 8(a)). The geometry

of the specimen is characterised by the following dimensions in Fig. 8: length L=105 mm,

width B=24 mm, thickness 2h= 3.05 mm and pre-crack a0=60 mm. The diameter of the

particle is determined by the thickness of the specimen and the selected number of layers.300

In addition, the material properties of this specimen [24, 42] are: longitudinal Young’s

Modulus E1=130 GPa, transverse Young’s Modulus E2=8 GPa, shear modulus G=6 GPa,

mode-II critical energy release rate GIIc = 856 J/m2 and interfacial strength τ= 48 MPa.
16



Figure 7: Comparisons of cracking length-opening displacement curves between different interface models

and experiment [40], and cracking propagation of (a) one-bond interface model and seven-bond interface

models (b) A=1, B=4, (c) A=4, B=8, (d) A=1, B=16 at the opening displacement of 11.6 mm.

All discrete particles are connected by parallel bonds. The interfaces in the upper and lower

representative layers, depicted with green and blue particles in Fig. 8(a), respectively, are305

connected with one bond. The stiffnesses of these interface bonds are calibrated compared

to the analytical result [42] with an assumption that normal and shear stiffness are equal,

and the strengths are assumed to be infinite to avoid failure. The interface between upper

and lower layers is modelled with one bond and seven bonds, respectively. The stiffness

17



of the interface bonds is calculated using Eq. 8 from the critical energy release rate and310

interfacial shear strength.

It was found from the force-end displacement curves in Fig. 8(b) that the slope of

the curves increases as the bending stiffness of the representative layers increases. A bond

stiffness of 53.8 GPa/m was found to agree excellently well with the analytical result [42].

The fluctuations in the elastic stage found on all curves are probably due to the elastic wave315

passing through the interface region before it becomes stable. An interface shear strength

of 48 MPa was found to be larger in the numerical simulation compared to the experimental

result [42], which is similar to the numerical result obtained with the seven-bond interface

model in Fig. 8(b) when A=1, B=16. The seven-bond interface model with A=1, B=8

agrees reasonably well with the experimental result during the cracking propagation, and320

the results with A=1, B=2 and A=1, B=4 show no failure when the end displacement

reaches 20 mm.

Figure 8: (a) schematic of ELS test and comparison of load-displacement curve from (b) one-bond interface

model and (c) seven-bond interface model.

Fig. 9 shows the comparisons of cracking length and cracking disc number against end

displacement of the ELS test between one-bond and seven-bond interface models. It can
18



be seen in Fig. 9 that in the seven-bond interface model with A=1, B=16, the cracking of325

the softening bond starts when the end displacement reaches about 4 mm (Fig. 9(b)) and

the primary bond loses the capability of holding load when the displacement reaches 17 mm

and becomes stable at 20 mm (Fig. 9(a)). The same phenomenon was found in the seven-

bond interface model with A=1, B=8, where the damage initiates at an end displacement

of 10 mm, and an earlier breakage of the primary bond occurs at around 17 mm. For the330

seven-bond interface model with A=1, B=2 and A=1, B=4, the cracking of softening bonds

was delayed until an end displacement of 18 mm. Such delay results in a higher peak load

compared to the models with A=1, B=8 and A=1, B=16 (Fig. 8(c)). The one-bond interface

model has a similar trend with the seven-bond interface model with A=1, B=16 due to the

close strength of its interface bond with the primary bond in the seven-bond model, however,335

the softening processing cannot be captured by the one-bond interface model.

Figure 9: Comparisons of (a) cracking length - end displacement curves and (b) cracking disc number - end

displacement of the ELS test between one-bond and seven-bond interface models.

6. Modelling FRMM test of unidirectional composites

The mixed-mode fracture of the interface was studied by the DEM simulation of the

FRMM test with one-bond and seven-bond interface models. The mechanical properties of

the specimen were the same as the one used in the ELS test, while the pre-crack length of340

45 mm was used in the FRMM test. Chen et al. [42] artificially increased the longitudinal

Young’s modulus to fit the FEM results close to the experiment. Yang et al. [24] conducted
19



parametric studies of the influences of bond strengths and critical fracture energies on the

performance of a bond-based softening model and found the obtained results generally agreed

but underestimated the peak load. Here, in this FRMM test, the stiffnesses of the interface345

of representative layers were calibrated using the approach described in Section 3 and the

results were compared with analytical and experimental data [42], see Fig. 10(a). It was

found that the stiffness of 538 GPa/m provides an excellent agreement with the analytical

result. For simplicity, it was assumed that the critical fracture energy in mode I and mode

II are the same as the one in the mixed mode, GC = GIC = GIIC and the strength of bonds350

is 48 MPa [24, 42]. It should be noted that the latter value was adopted as a baseline and it

underestimates the peak load compared to another softening bond model in DEM [24] and

a bilinear cohesive zone model in FEM [42] due to the characteristic of their constitutive

models. Thus a parametric study of the bond strength of the interface was conducted, and

the bond strength of 60 MPa was found to be slightly larger than that of the experimental355

result with a similar cracking propagation trend.

The same stiffnesses were used for the interfaces of the representative layers and the

specimen in the seven-bond interface model, and the strengths of the primary bond and the

softening bonds were calculated according to Eqs. 8 - 12. It was found in Fig. 10(b) that all

the simulated results obtained from the one-bond interface model underestimate the peak360

load compared to the experiment. In Fig. 10(c), the results obtained from the seven-bond

model with A=1, B=2 and A=1, B=4 share similar patterns which both agree reasonably

well with the experimental curve regarding the cracking propagation process. The model

with A=1 and B=8 underestimate the peak load compared to the experimental data. The

one-bond interface model generated almost the same curve as the seven-bond interface model365

with A=1, and B=16 due to their close bond strength. However, the cracking lengths are

different due to the faster cracking propagation of softening bonds, see Fig. 10.

Fig. 11 shows the comparison of the cracking length and the cracking disc number against

end displacement obtained from the FRMM test with one-bond and seven-bond interface

models. Smooth cracking propagation was detected in the comparisons, associated with the370

force-end displacement curves in Fig. 10(b-c). In the comparison of seven-bond interface
20



Figure 10: (a) schematic of FRMM test and comparison of load-displacement curves from (b) one-bond

interface model and (c) seven-bond interface model.

models, the results from the model with A=1 and B=16 suggest the cracking of softening

bonds initiated first due to their smallest bond strength at the end displacement of around

3 mm, while the primary bonds break at the end displacement of around 7.5 mm, compared

to other models. The primary bonds in the model with A=1 and B=8 start break at the375

end displacement of 7 mm, indicating the lowest peak load found in 10(c). Interestingly, in

the mixed-mode FRMM test, the primary bonds in the models with A=1, B=2 and A=1,

B=4 break earlier than the ones with A=1 and B=16.

7. Conclusions

This study proposed a novel approach to deal with the softening behaviour at the ply-ply380

interface of composite materials. Based on the conservation of energy principle, a seven-bond

interface model was proposed, in which two kinds of bonds, a primary bond and seven soft-

ening bonds, in one unit, were constructed, and the relation of energy between these bonds

during cracking propagation was correlated with their lengths. Calibration of the stiffness of

the interface of representative layers was conducted and compared with analytical and FEM385
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Figure 11: Comparisons of (a) cracking length - end displacement curves and (b) cracking disc number -

end displacement of the FRMM test between one-bond and seven-bond interface models.

results. For simplicity, the same stiffnesses were used for the interface of the specimen and

the strengths were determined from the elastic brittle constitutive model and the conserva-

tion of energy principle based on the power-law function. Three tests, including DCB, ELS

and mixed-mode FRMM, were conducted and the results were compared to the experimental

data and one-bond interface model. It was found that the seven-bond interface models with390

A=4, B=8, and A=1, B=8 and A=1, B=2 have a good agreement with the corresponding

experimental data, i.e., the force-displacement and cracking length-displacement curves, in

the DCB, ELS and FRMM tests, respectively. Notably, these parameters are only suitable

for the selected cases and materials. They are not versatile but could be easily adjusted

with DCB, ELS and FRMM tests. The main advantages of the proposed approach lie in its395

simplicity of implementation and efficiency in computation, compared to exclusively used

cohesive/softening bilinear model.

It is worth noting that the delamination phenomenon is complex, especially when fibre

bridging is involved. This is due to the interaction between the delamination and other in-

tralaminar damage modes such as fibre breakage, matrix cracking and fibre/matrix interface400

debonding, which influences the damage progression in the composite laminates. Depending

on the strengths of the fibre/matrix interface and interlaminar interface, the delamination

could involve the fibre bridging when the fibre/matrix debonding is triggered. Therefore,

in the future it is worth investigating the progressive damage in composites considering the
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damage interaction with the proposed seven-bond interface bond model.405
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