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Abstract
Centrifugal compressors operating near peak efficiency are prone to aerodynamic instabilities, which in
extreme cases, may lead to quick destruction of the machine. Instabilities are flow structure of different
character, which are not straightforward to detect. One of the possible approaches could take advantage of
feature space representation. Historic data might be used for building clusters of operating conditions and
defining class boundaries. Then, a new point could be classified based on its location in feature space rela-
tive to those boundaries. Different instabilities can coexist temporarily when transitioning from conditions
to another, which makes defining the boundaries in the transition zones a challenge. To deal with those prob-
lems, an application of Gaussian Process Classification (GPC) method is proposed. Being a non-parametric
method of high flexibility, it can provide better separation between conditions in the feature space. GPC
output provides a confidence level of a new observation belonging to a class, which can be used for classifi-
cation but also to introduce a no-classification zones based on class probability values, which could decrease
the error rate in transition zones. In this study, GPC is applied to classify features obtained from physically
interpretable feature extraction method for a centrifugal compressor. Three different classes are defined,
one stable and two related to different instabilities. The classification with GPC is compared to threshold
approach, based on physical interpretation of the features. The results demonstrate that GPC offers a more
flexible and data-driven separation of classes, especially in transition zone between different flow conditions,
however the rejection zone does not prove to provide improvement in the analysed case. Compared to the
threshold approach, GPC requires historic data for all conditions and results depend strongly on data labels.
If the physical interpretation of the features is possible, the advantages of GPC in the transition zone can be
combined with the binary threshold approach in well-defined feature space regions.

1 Introduction

Detection of aerodynamic instabilities is an important issue to ensure safety and efficiency of compressor
operation [1]. The general term instabilities encompasses a number of different phenomena, such as inlet
recirculation [2], rotating stall [3] or surge [4] that negatively influence the performance and can lead to
the destruction of the machine. The impact of instabilities varies depending on the type of phenomenon
occurring, design of the machine and operating conditions [4]. In some cases, milder instabilities such as
inlet recirculation or rotating stall can be used as an early indication of the ultimate instability - surge, in
different cases surge is not preceded by any other instability. However, the presence and order of instabilities
appearance with increasing throttling depends on many aspects, including the rotational speed of the impeller
[5]. Therefore, it is the most desired to understand the operating conditions at each instant of the compressor
operation. Such indication should be robust to avoid false alarms and quickly to enable prompt reaction in
case of appearance of the instabilities.

Detection of instabilities was shown to be possible using data-driven techniques, by analysing the frequency



spectrum [6] or energy of specific frequency bands [3]. Recently, the application of different decomposition
techniques was demonstrated to be applicable for understanding the operating conditions of a compressor
including empirical mode decomposition (EMD) [7, 8] and singular spectrum analysis (SSA) [9, 10]. With
both methods, the signal is decomposed into a number of components, some of which can be used to highlight
the changes in the signal resulting from the presence of instabilities. The components are time series that need
to be furtherly processed to obtain an instability sensitive feature. Features can be built by taking advantage of
energy, frequency or other parameters of the components [11]. Depending on the decomposition algorithm,
the features can be interpretable or abstract, with the former meaning that the connection between the features
and the system physics is fully traceable. The data can be represented in so-called feature space to allow for
interpreted classification of new data [11]. The feature space can be multivariate, with dimensionality equal
to the number of features.

With a recent study, a framework based on compressor operating conditions mapping to feature space was
proposed [12]. It was demonstrated that using EMD on a pressure signal from different locations inside
of the compressor, the features based on energy of selected components could be used for representing
different operating conditions. The approach proved to be very sensitive, allowing for robust and quick
detection of inlet recirculation and surge. An observed shortcoming was an early reaction of the system
to initial surge symptoms, leading to early surge detection, which might unnecessarily limit the operating
range of the compressor. To deal with this problem, an approach based on supervised classification was
proposed. Advanced classifiers allow for great flexibility of the boundaries between classes, ensuring optimal
classification with respect to the training data labels. Some of the classifiers can provide not only class
assignment but also a measure of certainty of the point belonging to a class. This information can offer
additional benefits, as a reject option can be formulated [13]. It could be beneficial in locations of feature
space where probability of neither of the classes is high. Introduction of rejection option can offer a decrease
in error rate, which in case of compressor analysis could be false indication of surge .

One of the advanced classifiers with probabilistic output is Gaussian process classifier (GPC). GPC is a
non-parametric algorithm that can be applied to binary as well as multiclass classification problems [13]. A
Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian dis-
tribution. Taking advantage of this formulation of the problem, it is possible to infer the class of a new point
based on previous observations of values of features for this new point. Using GPC, the level of probability
of belonging to selected class can be found for each location in the feature space. Thus, knowing a location
of a query point, the probability of that point belonging to a class can be obtained. Due to high flexibility
of the GPC algorithm, the shape of probability contours defining boundaries between classes is strongly
data-driven and can be optimized to best represent the data [13]. The aim of this study is to investigate the
application of Gaussian process classification for statistically-enhanced detection of centrifugal compressor
operating conditions.

The study is organized as follows. First, methodology regarding feature extraction and classification with
GPC and threshold approach is given. The test rig for a compressor used for validation of the methodology
is described. Then, the results of GPC method application are demonstrated and the outcomes are com-
pared with threshold approach. The improvement due to GPC is quantified, and influence of the rejection
zone introduction is discussed. Finally, the limitations and challenges of GPC are discussed and potential
recommendations for the application in a monitoring system are given.

2 Methodology

2.1 Feature space representation and class boundaries

The feature space representation in this study is constructed using components obtained with empirical mode
decomposition (EMD). The features are representative for the energy of flow fluctuations at different scales.
EMD is an algorithm that iteratively extracts subsequent modes of oscillations from the signal. Those modes,
called intrinsic mode functions (IMFs), are amplitude and frequency modulated time series of a length equal
to the input signal. A detailed description of EMD algorithm can be found in [14].
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Figure 1: Transformation of input signal to a feature space representation

The procedure to obtain feature space representation from input signal is demonstrated in Figure 1. First,
the static pressure signal x(t) of length L is collected from selected location inside the compressor. It is
then subjected to EMD to obtain a set of IMFs. Specific IMFs or groups of IMFs are selected, based on
prior knowledge and experience or extended analysis [12]. To construct a feature, the root mean squared
(RMS) value of the IMFs is computed. Though this procedure, the input signal of length L gets to be
represented as a single value of a feature. This procedure has to be repeated for the number of times equal
to the dimensionality of feature space NF . For a single portion of data, a vector of feature values is obtained
xi = [x1, x2, .., xNF ]. The values of features are used to map the points onto the space.

For classification of an unknown data point, the feature space is divided into classes and class boundaries
are introduced. The boundaries of feature space are set based on training data. Training data points can be
represented as a set D = (X,y), where X = [x1,x2, ...,xN ], Xi ∈ RN is a matrix of N feature vectors and
y = [y1, y2, ..., yN ] is a vector of classes. The classes are represented with integer values yi ∈ {1, 2, ..., k}.
A single class value is assigned for each feature vector representative for given portion of the signal. Having
a feature vector x∗ for a new observation, the aim is to predict its class y∗. To do so, the location of the
new point in feature space has to be found, relative to the class boundaries. In this study, two different
approaches to defining boundaries are compared - Gaussian process classification and thresholds based on
physical interpretation of the features. The flowchart for classification methodology is shown in Figure 2.

ValidationTraining 

Training
data

Boundaries with GPC
approach

Test data

GPC-based
classification

Boundaries with
threshold approach

Threshold-based
classification

Figure 2: Flowchart of training and validation approach in the study

2.2 Gaussian process classification approach

Gaussian process classification is made using training data for all of the available classes. The class bound-
aries are driven by the choice of covariance function type, its parameters and training data.

Gaussian process classification is based on Gaussian process regression, bearing certain similarities to lo-
gistic regression [13]. For binary classification, a regression problem is solved with input being the features
vector and target being class labels. It is subsequently translated into classification with use of a latent



function, for example logistic function [13]. The mathematical formulation of GPC is building upon the
regression, thus a Gaussian process regression is introduced first. A more in-depth description of Gaussian
process for classification can be found in textbooks of Rasmussen [13] or Bishop [15].

2.2.1 Gaussian process regression

A regression problem aims to find a function f that connects the input variable, or to the output variable. In
majority of cases also noise term ϵ is involved, to account for the fact that taken observations (t) are bearing
also a certain amount of noise. This noise can be assumed to be normally distributed. A general regression
problem can be therefore described as in equation (1).

t = f(x) + ϵ (1)

A Gaussian process, by definition, is a collection of random variables, any finite number of which have a joint
Gaussian distribution. Observing a process, we can obtain a dataset D = (X, t), where X = [x1,x2, ...,xN ],
xi ∈ RN is a matrix of N feature vectors and t = [t1, t2, ..., tN ] is a vector of target values. We are
representing a given physical process that lead to obtaining a D data set as a Gaussian process (equation
(2)) for the purpose of modelling the mapping function f . A Gaussian process can be fully described by
mean function m(x), and covariance function k(x, x′), which can be defined as in equations (3) and (4)
respectively, where E[·] stands for an expected value.

f(x) ∼ GP(m(x), k(x, x′)) (2)

m(x) = E[f(x)] (3)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (4)

A Gaussian process uses distribution over functions, assigning probability of a given function fitting the data.
For a noise-free case we can obtain values of functions for input X as t = [f(x1), f(x2)..., f(xn)]. Taking
advantage of Gaussian formulation, we can assume a joint distribution of the known functions values t and
unknown values t∗, which we try to predict based on new inputs X∗. The joint distribution is given by
equation (5). It is a common approach in practical applications to assume zero mean [13].[

t
t∗

]
∼ N

(
0,

[
Kt K∗
KT

∗ K∗∗

])
(5)

The covariance matrix is composed of four terms representing the relations between training data X and
new data points vector X∗. In this equation Kt = k(X,X) is the covariance between training points,
K∗ = k(X,X) represents for the covariance of training points and new data points and K∗∗ = k(X∗,X∗)
represents the covariance for test data vector, therefore it is a scalar value.

The covariance can be computed as in equation (4) or obtained with so-called kernel function. The kernel
function defines covariance based solely on the inputs. A commonly used kernel function, also employed in
this study, is radial basis function (RBF) shown in equation (6). For this function, is expected that for two
inputs located close to each other, the outputs would have a similar value. The two parameters of a kernel
function, called hyperparameters are lengthscale l and variance σ. The variance defines average distance of
the function away from its mean, while lengthscale influences the scale of function variability [16].

k(x, x′) = σ2 exp

(
−d(x, x′)2

2l2

)
(6)

With all the abovementioned assumptions, having defined the prior and using test points we can infer about
the posterior. The posterior is given by equation (7). It is normally distributed with mean m(t∗) and co-



variance cov(t∗), which can be computed as per equations (8) and (9) respectively. Using the outcomes of
regression, the predictive distribution for new input data vector X∗ can be

p(t∗|X∗,X, t) = N (m(t∗), cov(t∗)) (7)

m(t∗) = Kt
T
∗ Kt

−1t (8)

cov(t∗) = K∗∗ −KT
∗ Kt

−1K∗ (9)

It can be noted that the covariance does not depend on the output values t but only on the covariance. Due
to this, the prediction of the model will strongly depend on the type of covariance function chosen and its
hyperparameters. Those hyperparameters can be represented through a vector θ. To ensure the fit of functions
to the data, the hyperparametrs are optimized to maximize the log marginal likelihood L, given by equation
(10), with |Kt| being a determinant of Kt.

L(θ) = log(p(t|X)) = −1

2
log|Kt| −

1

2
tTKt

−1t− N

2
log(2π) (10)

2.2.2 Transformation of regression into classification

A binary classification problem requires the output to be in a range [0, 1] to be representative for a class prob-
ability. To translate the regression problem into binary classification, the regression outcome t is transformed
through an additional function. A commonly used function is a logistic function as in equation (11).

σ(t) =
1

1 + exp(−t)
(11)

In this case we are interested in finding a class for a given feature vector x∗. With a binary classification,
it is enough to predict classes for a single class p(y∗ = 1|x∗,X, t), as the other class probability p(y∗ =
−1|x∗,X, t) can be deduced as 1 − p(y∗ = 1|x∗,X, t). To obtain the predictive distribution for a class
y = 1, the integral from equation (12) is evaluated. It is not analytically traceable, therefore it has to be
approximated, for example using Laplace method [13].

p(y∗ = 1|x∗,X, t) =

∫
σ(t∗)p(t∗|x∗,X, t)df∗ (12)

The binary classification can be translated into a multiclass one using one-vs-all approach [17]. A number
of binary classifier is trained on differently configured data. The data for a class of interest is treated positive
and data for all other classes is considered negative. This is repeated for all the classes. The probability for
each classifier is then combined to ensure that the output is within the range [0, 1].

The GPC algorithm applied in this study is a Python implementation included in scikit-learn library [18]
based on formulation shown by Rasmussen [13]. The method is not fully multiclass, but rather uses a series
of one-vs-all binary classifications to deal with a multiclass problem. Using Gaussian process approach, the
kernel function has to be specified and optimized. The kernel parameters for RBF function chosen in this
study are optimized with a built-in optimization procedure, using gradient-based optimizer L-BFGS-B [18].
A kernel hyperparameters vector θ is obtained for every one-vs-all binary classification. As output of GPC
algorithm, the probability of a point in feature space belonging to each class is given. Considering three
classes used in this study, the probabilities can be stated as pc1, pc2, pc3. The default classification approach
implemented in scikit-learn assigns the most probable class to a given query point. In parallel to the threshold
method, one can consider the classification to be a check of three hypotheses, marked H1 to H3.



H1 : (pc1 > pc2) & (pc1 > pc3) → Class 1 (13a)
H2 : (pc2 > pc1) & (pc2 > pc3) → Class 2 (13b)
H3 : (pc3 > pc1) & (pc3 > pc2) → Class 3 (13c)

Having all the information regarding all class probabilities, it is possible to provide more sophisticated clas-
sification conditions or introduce a reject option, where no class is assigned to the data point. Apart from
classification, the probability estimation can allow to investigate stability changes within a class, which is
not possible with binary classification approach. The disadvantage of GPC compared to threshold approach
is that the data representing all classes is needed.

2.3 Threshold approach

In the threshold approach, the boundaries between classes are constructed using a single class - Class 1. Two
independent features, x1 and x2, are used to map the data onto two-dimensional feature space. The threshold
value for the first feature is marked Tx1 and for second feature Tx2 . The thresholds are constructed using high
percentile of data distribution to diminish the influence of outliers that may be present in the pressure signal.
In this study 99th percentile of the distribution is used. For a new unknown observation to be classified, it is
compared against the thresholds in a sequential manner. First, the IR feature is examined. Two hypotheses -
H4 and H5 are tested, allowing to investigate if the compressor is generally stable or unstable.

H4 : x1 ≤ Tx1 → Class 1 (14a)
H5 : x1 > Tx1 → Class 2 or Class 3 (14b)

If H5 is fulfilled, then the next set of hypotheses is investigated - H6 and H7. Depending on which of those
is true, the indication of type of instability is either inlet recirculation or surge.

H6 : x2 ≤ Tx2 → Class 2 (15a)
H7 : x2 > Tx2 → Class 3 (15b)

Using this indication, decision about the actions in regards to the operating machine can be made. The
presence of surge would possibly lead to engaging a surge-suppressing mechanism [19]. It would disrupt
normal operation of the machine, therefore it should take place as close to the true danger zone as possible
in order not to limit the operating range of the compressor.

3 Experimental test rig and data collection

The measurements of static pressure used in this study were obtained from two locations inside a single-stage
centrifugal compressor. Data was acquired using subminiature Kulite transducers (XC0-080 series) mounted
flush to the shroud walls. The operating conditions of the compressor were changed through throttling with
a valve downstream the outlet section. The level of throttling was defined as a throttle opening area (TOA)
being the relation of the open flow area to restricted flow area at the valve section expressed in percent.
The rotational frequency of the compressor was kept constant at 100 Hz and pressure data was sampled at
100 kHz. Figure 3 demonstrates the cross section of the compressor with indicated locations of sensors. A
detailed description of the test rig can be found in [20].

The data used in this study was collected under two different protocols. The first protocol lead to obtaining a
set of data termed quasi-dynamic (QD). The measurements were performed in an iterative procedure where



the throttling was changed in a step-wise manner and a set of data was collected for given constant position of
a valve. A number of position was used to obtain data for different operating conditions. The other protocol
lead to obtaining dynamic data (D), which was collected while the throttle position was constantly changed
in the process, increasing the throttling level. The throttle positions used for obtaining the dynamic data
were within the range for which quasi-dynamic data was collected. In previous study it was demonstrated
that two locations inside the machine were sufficient to represent the operating conditions of the compressor
[12]. The first location was before impeller, using ps−imp1 sensor and the other was at the outlet, using
ps−out sensor. For the described machine, two distinct instabilities were observed - inlet recirculation (IR)
and surge.

Figure 3: Cross-section of the experimental rig with pressure transducer locations [20]

The methodology presented in this study was used for the data from a centrifugal compressor. Using prior
knowledge about the data [20], three classes were defined in the data. Class 1 being stable conditions, class
2 - inlet recirculation conditions and class 3 - surge conditions, making ci ∈ {1, 2, 3}. Two features were
used to represent the data in the feature space, x1 and x2. The first feature, x1, obtained as RMS of IMF
6 from ps−imp1 sensor before impeller was shown to be related to inlet recirculation intensity, but it could
also be used to differentiate stable and all unstable conditions. The second feature - x2 was obtained as RMS
of IMFs 9 to 11 from ps−out sensor at the outlet. It is related to surge intensity and allows to differentiate
between the type of instability - inlet recirculation or surge - when the unstable conditions are present. A
thorough description of the feature extraction procedure, choice of features and discussion on their physics
can be found in [12].

For the purpose of training and validation of the method, two data subsets are defined. The training subset
is the quasi-dynamic data, obtained within a range from 35 to 8% of TOA with a step of approximately
1%. The validation set is the dynamic data, representing a dynamic transition from stable to fully unstable
conditions. The count of data for training and validation in each of the classes is given in Table 1 in terms of
number of points in the feature space.

Table 1: Training and validation data count

Data type Quasi-dynamic Dynamic
Condition Benchmark Validation
Stable (c1) 280 60

Inlet recirculation (c2) 240 30
Surge (c3) 180 110



4 Results and discussion

The very first step in the analysis is confirmation that the mapping obtained with quasi-dynamic data can be
representative for the dynamic data. It is not obvious as the data are collected under different protocols. A
more abrupt change in throttling can render more dynamic behaviour of the flow, resulting in an increased
level of fluctuations due to higher process dynamics. Figure 4 demonstrates the mapping of quasi-dynamic
and dynamic data in the feature space. The features for stable conditions are concentrated in a confined
location in feature space. The data for inlet recirculation sets off from that location and forms a path. It first
moves upwards due to increase in x1 feature value, up to the peak of inlet recirculation intensity and then
gradually moves to the right with increase in x2 feature value and downwards with decrease in x1 feature.
The points for dynamic data follow the same path and overlap the quasi-dynamic data in feature space.
Therefore, quasi-dynamic data can be considered representative for the dynamic data, rendering the general
approach based on mapping with use of quasi-dynamic data viable.

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
x2

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

x
1

Tx1

Tx2

stable QD

inlet recirculation QD

surge QD

stable D

inlet recirculation D

surge D

Figure 4: Mapping of the data in the feature space for quasi-dynamic and dynamic data; straight lines
depict thresholds Tx1 (blue) allowing to separate stable and unstable conditions and Tx2 (black) used for
differentiation of instability type

The thresholds obtained from stable conditions for both x1 and x2 features are also shown in Figure 4. Those
threshold serve as class boundaries in the threshold approach. It can be noted that a good separation of stable
from unstable conditions is provided with Tx1 threshold, as it represents the intensity of the first instability
appearing in the system. The position of Tx2 threshold is representative for most of the data before the
peak of inlet recirculation. After the peak, the points labelled as belonging to inlet recirculation class tend
to exceed the threshold. The points for dynamic signal for IR class seem to be shifted slightly to the right
compared to quasi-dynamic.

Considering Tx2 threshold as a decision boundary for surge detection, the instability would be detected earlier
than it should. On the other hand, this formulation ensures that all of the surge points are classified correctly,
which is important from safety perspective. In a surge-detection system employing the threshold approach,
a surge indication would appear early, making it very conservative and possibly unnecessarily limiting the
operating range of the machine.

To obtain new, data-driven boundaries, the GPC is used. A posterior probability distribution is computed
using training data and the kernel function. The hyperparameters of the kernel (σ and l) are optimized to



ensure the best fit of the posterior to the training data. To visualize the posterior distribution, probability
value for each class is obtained for a grid of points and plotted as a colormap in Figure 5.

Three classes present in the picture differ in both shape and size. A very concentrated stable values cluster
is represented by a high-probability area (above 0.8) several times bigger than the cluster itself. For inlet
recirculation, the high probability region is also big, containing most of the training points, while in case of
surge the high probability region is very small compared to the extent of data. The shaping of the posterior is
dependent on both training data and choice of kernel function. The optimization method aims to increase fit
to the data, which doesn’t have to mean that the clusters with optimal parameters are closely encompassing
the data. This can be both beneficial and problematic, depending on the character and distribution of the
data. The distance between iso-probability lines is the smallest in transition regions indicating sharp changes
in class probability. The peak for surge class probability is located relatively close to the boundary between
clusters and encloses only a small number of surge points.
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Figure 5: Probability distribution (colormap) and training dataset (scatter points); the intensity of the colors
of colormap is related to probability of a class, with green for stable conditions, orange for inlet recirculation
and red for surge; iso-probability lines at values 0.4, 0.6 and 0.8 plotted with different types of lines; the
training dataset coloring follows the same scheme as in a previous figure

Figure 6 demonstrates the comparison between threshold method boundaries and GPC-based boundaries
with the test data. Comparing the shapes of boundaries, the one between IR and surge is shifted far to the
right and changed from vertical line to an inclined, but could still be quite well represented with a straight
line. This means that surge is to be detected for a much higher value of x2 that in threshold approach. With x2
representing the energy of certain flow scales, it means that stronger structures will be allowable within the
stability limit. The class boundary between stable and IR conditions remained very similar to blue threshold
defined on x1 in the proximity of training points. Further from training points, it shape was altered and all
points on the right side of the feature space are considered surge.

Using GPC, it could be possible to decrease the misclassification rate with use of a rejection zone. Such a
region, called in this study a grey zone, can be understood as locations in feature space where no classification
is made. It could be beneficial for avoiding false positive surge detection in the transition zone, where the
probability for neither of the classes is high. Using GPC-modelled probabilities distribution, it is investigated
if such approach would be viable and of practical use for compressor conditions classification using the
available data.



Figure 6: Class boundaries for GPC (colormap) and thresholds with reference to the test data (scatter points);
green region marks the locations in the feature space which would be defined stable, yellow - inlet recircula-
tion and red - surge; the class assignment was based on the highest probability value for a given location

(a) (b)

(c) (d)

Figure 7: Grey zones for different probability limits a) 0.4, b) 0.5, c) 0.6, d) 0.7; dark regions indicate the
grey zone, where the maximum value of any class probability is no higher than the limit; with rejection
condition, no class would not be assigned in that region

In default classification approach, the highest probability value decides about the class assignment [18]. For



a binary case it is above 0.5, while for three classes it is above 0.(3). To investigate the grey zone potential,
four threshold values of probability are chosen, being 0.4, 0.5, 0.6 and 0.7. Figure 7 shows grey zones for
different levels of probability. For the lowest probability threshold, grey zone would first appear far away
from the regions where data points are present. Increasing the probability limit, the grey zone becomes more
and more present in between the classes, starting from the locations with low density of the training data, but
also extends importantly in the regions far away from the transition zone. For the probability threshold of
0.6 or 0.7, the grey zone limits the size of the classes, in particular the surge class. In case of quick change
in throttling, a quick transition to high x2 value could be possible. Therefore, the first unstable point after
stable conditions would lie far from from the threshold, but could land in grey zone and not be classified.
This might lead to rejection of classification of the points for strong surge conditions, which should definitely
be avoided in surge detection system.

To quantify the performance of GPC and compare it with the threshold approach, the effects of the test set
classification are investigated. Figure 8 demonstrates the probability values for classes obtained from GPC
and class assignment with threshold-based approach. The true class based on initial labels is also shown with
the background shadow. The comparison focuses on the transition between inlet recirculation and surge as it
was shown to be the most challenging for the threshold approach.

The results for inlet recirculation (Figure 8 a)) show that this instability is first detected for the same sample
number with both methods. The indication for GPC remains relatively constant throughout the recirculation
region, being close to value 1. This is consistent with what was observed in probability contours in Figure
5. For the threshold approach, several changes in predicted class are observed in the recirculation zone,
which comes from the points being shifted slightly to the right side of the threshold. For surge indication, the
GPC predictions are in line with the class labels. Assuming a default probability limit for classification, the
indication of surge is consistent and no misclassifications are observed. The probability value of surge class
is between 0.6 to 0.8 for most of the region, which is lower than what can be observed for inlet recirculation.
The fluctuations of probability are also quite important. With the threshold approach, a number of false
positive indications is observed between samples 60 and 80. This is complementary to misclassification in
inlet recirculation zone. After the sample 75, which is roughly ten samples before data labelled as surge, the
threshold indication of surge remains for the rest of the test data.

(a) (b)

Figure 8: Comparison of class probability and threshold classification for different instabilities a) inlet recir-
culation b) surge; shading in the background indicates the true class label that should be detected

Figure 9 depicts correct and incorrect classifications in the region of transition between inlet recirculation
and surge classes. To better understand the location of misclassifications and investigate possible advantage
of grey zone, the points belonging to grey zone for probability limit of 0.7 are marked with a red color for
GPC plot. It can be seen that a few of the test set points fall within the grey zone. They are not located
exactly in the transition zone, but rather at the beginning of the surge region, where the class probability is
fluctuating. Therefore, using the test set it can be stated that the introduction of grey zone does not help



to avoid false positive surge indication in the transition region. The gray zone shape and influence would
probably change if the data for two classes was not located so closely in the feature space.
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Figure 9: Correct and incorrect classification for a) threshold aproach and b) GPC approach; the background
color indicates a true class for the data point, with green region being stable, yellow being inlet recirculation
and red being surge, red points indicate the data points falling in the grey zone at probability limit 0.7

The threshold approach implemented based on stable conditions prove to be more conservative than the
boundaries created using GPC. When considering data-driven boundaries, surge boundary is at much higher
x2 value than for threshold approach. As much as it can increase the operating range of the compressor, it
should be thoroughly investigated if such placement is not dangerous for machine operation. The location of
class boundary boundary with GPC will strongly depend on the training data labels, therefore those labels
should be thoroughly checked. For the training dataset a single class label was assigned for each TOA value.
As was presented in the previous study, with increasing throttling, the number of points from IR class that
are classified as surge increases [12]. This might suggest that the fluid flow in the compressor might be
temporarily unstable even for IR labelled points, making the global labelling misleading. If shorter portions
of the input signal are considered, a label for each portion should be assigned and one should make sure it is
correct. For a maximum extension of the operating range, the effects of given flow conditions on the structure
should be investigated to understand the safety limits with respect to the features used for classification.

The GPC can provide a much better shaping of the thresholds between classes, very well adjusted to the
training data. A much better accuracy of classification can be obtained compared to the threshold method.
This increased accuracy comes at a price of needing to knowing all of the classes, which may be challenging
for compressor operating at high pressure ratios. Overall, the application of advanced clustering technique
is helpful in reaching better classification of the conditions.

When the whole operating range of the compressor is quantified and the data is properly labelled, the use of
advanced classifier can be beneficial for the accuracy of detection. However, the advantage of the classifica-
tion approach with use of GPC are the most important at transition between the classes. Further away from
the transition, the type of kernel function and its hyperparameters have an important influence on the shape
of probability distribution. With interpretable features used in this study, the increase in value of the feature
can be associated with the increase of instability severity. Therefore, the combination of advanced classifier
and feature interpretation could be proposed. The advanced classifier could be applied in the transition zone,
where a flexible boundary shape is best suited to represent the data. The interpretation of features could
be used away from the boundary. It would ensure that the points with high feature values, classification of
which is easy with expert knowledge, did not get misclassified due to the classifier formulation.

5 Conclusions

In this study, the approach for classification of instabilities enhanced with a probabilistic method was inves-
tigated. The procedure involved transformation of the input signal trough empirical mode decomposition



to obtain a feature space representation of the conditions, following the method presented in a previous
study [12]. Using a set of training data for a centrifugal compressor, the feature space was divided into three
classes for stable, inlet recirculation and surge conditions observed in the machine. Two different approaches
to classification were used, one with thresholds build based on a stable class feature values and the other,
probabilistic, employing Gaussian process classification and using data for all of the classes. The methods
were validated using a test dataset, representing dynamic transition from stable to unstable conditions. A spe-
cial focus was on transition zone from inlet recirculation to surge, as it was shown to be the most challenging
region to classify.

The application of GPC allowed to increase the accuracy of classification in the transition zone compared
to the threshold method. The boundaries created with probabilistic classifier were capable of representing
well the training data and output high accuracy of classification for the test data. Several misclassification
were avoided in the transition zone. The output of GPC is driven by the input data and kernel function. The
shape of the posterior distribution can be very case specific and changes to the input data or hyperparameters
can drive the algorithm towards different solutions. Due to this, the certainty in labelling of the conditions
for training is of a paramount importance. As for a given throttling level the stability can differ in time, the
labelling method should be of sufficient granularity to capture this changes. For this reason, the procedure
where one stability indication is given for a specific throttling could be reevaluated.

The probabilistic formulation of GPC offers a possibility to reject classification in some regions of feature
space where the probability for each of the classes is low. The effects of rejection option did not seem
to have important effect on the accuracy of classification. For closely spaced data in transition zone, the
rejection condition was only present in the transition zone if the rejection threshold was high. For such a
high threshold, the rejection zone was severely limiting the size of classes further away from the boundary,
where the conditions are well understood due to interpretability of the features. Therefore, taking advantage
of GPC in the transition zone and features interpretability further from this region could be the best approach
for a robust classification, providing flexible, data-drive threshold and no misclassification problem further
from the boundaries.

Overall, the application of GPC can allow to avoid too early surge detection and increase the operating range
of the compressor compared to the threshold approach. This increase comes at a cost of having also the
measurements for unstable conditions, which might be difficult to obtain. However, with increasing level of
fidelity in computational models of compressors, synthetic data could be used for representing the unstable
condition without the risk of machine destruction in the process. Further research is needed, but the approach
proposed in this study can be a reliable and precise solution for a compressor monitoring system.
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