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ABSTRACT

WebAssembly is gaining more and more popularity, find-
ing applications beyond the Web browser - for which it was
initially designed for. However, its performance, which devel-
opers aimed at being comparable to native, requires further
tuning, and has not been extensively studied to pinpoint
the cause of various overheads. This paper identifies that
WebAssembly’s unique safety mechanisms, the major one
being bounds-checked memory accesses, may introduce up
to a 650% overhead.

Therefore, we evaluate four popular WebAssembly run-
times against native compiled code. These runtimes have
been enriched with modern bounds checking mechanisms
and run on three different ISAs, including x86-64, Armv8
and RISC-V RV64GC.

We show that performance-oriented runtimes are able to
achieve performance within 20% of native on x86_64 plat-
forms, and 35% for Armv8. On RISC-V the V8 runtime can
achieve a 17% overhead over native code for simple numeric
kernels. For simple numerical kernels, we have shown that
there is no significant difference in the WebAssembly per-
formance compared to native code across different ISAs.

We also show that in the case of multithreaded scaling
of the tested runtimes, which might for example be used to
quickly scale up serverless instances for a single function
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without the overhead of spawning new processes, the de-
fault approach taken by WAVM, Wasmtime, and V8 of using
the mprotect syscall to resize memory can cause excessive
locking in the Linux kernel and so present an alternative
userfaultfd-based solution to mitigate this issue.

We share our results, and the tools and scripts under an
open source license for other researchers to replicate our re-
sults, and monitor the progress that WebAssembly runtimes
make as this technology evolves.
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1 INTRODUCTION

Language virtual machines are incredibly popular, enabling
programs to be written once and run on a variety of CPUs,
specifically CPUs of different Instruction Set Architectures
(ISAs), without the need for recompilation, and often pro-
viding enhanced security guarantees compared to native
execution. WebAssembly is a language that is steadily gain-
ing traction and is intended to be run on a virtual stack
machine. The initial goal of the WebAssembly project was to
develop a portable and compact binary representation that
would reduce the reliance of web applications on JavaScript,
and allow them to run at near-native speeds within browsers.
Since then, WebAssembly has found usage in other appli-
cation domains; most notably as a plugin sandbox mecha-
nism [5] and as a Function-as-a-Service (FaaS) runtime [30].
However, despite the name, WebAssembly applications are
not confined to the web. The WebAssembly System Inter-
face (WASI) [32] provides a uniform way for WebAssembly
code to communicate with the underlying system (be that
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the browser or the operating system), thus extending the
benefits of WebAssembly far beyond the web.

However, WebAssembly is distinct from other languages
that use virtual stack machines, in that it is an assembly-like
language with a low-level memory model. Instead of hav-
ing memory management features like a managed heap and
garbage collection, it is a simple stack-based bytecode that op-
erates on two main data structures: a linear memory, which
is just a large array of bytes, and tables of function pointers,
which act as a sandboxing mechanism for indirect branch
instructions so that their targets can only be valid WebAssem-
bly functions. This suggests that the bounds checking mech-
anism for validating linear memory (and, less frequently, the
function table) accesses is likely a performance overhead
that is largely unique to current WebAssembly runtimes. Of
course, other issues still exist, such as register allocation
from the stack bytecode or limitations of the structure that
WebAssembly enforces on the control flow between basic
blocks, but similar concerns also exist in other native and
dynamic programming languages.

In this paper, we consider a variety of WebAssembly run-
times, ranging from an interpreter to an LLVM-based AOT
compiler. Our aim is to evaluate the current state of We-
bAssembly performance when compared to native code —
without bounds checking — on three major instruction set
architectures: x86-64, Armv8, and RISC-V RV64GC. We also
augment each runtime with multiple bounds checking strate-
gies, in order to isolate the impact of the bounds checking
mechanism from the rest of the code generation.

1.1 Motivation

Following [25], the first goal of WebAssembly (Wasm) is
memory safety, i.e., preventing programs from compromis-
ing user data or system state, while the second goal is speed,
or fast execution. Notoriously, memory safety and fast exe-
cution are conflicting goals, in fact, safety mechanisms usu-
ally negatively impact application’s speed. However, as We-
bAssembly has now a myriad of use cases [31], and it is being
widely adopted [20], achieving safety and speed is becoming
increasingly important. Hence, it is crucial to identify the
available memory safety mechanisms and their compara-
tive performance. Note that herein we focus exclusively on
software memory safety mechanisms, which are portable
across different ISAs, at least when using the same operating
system, if not different ones exposing the same API/system
calls.

At the same time, there are several different Wasm run-
times available to choose from, with a diverse set of designs
and implementations, potentially each with a unique ap-
proach to bounds checking and code generation. Like many

R. Szewczyk et al.

v8 Bounds checkinclll No checks il Mprotect

PolyBench/C SPEC CPU

Time vs native (Lower=Better)
o kN w & @

2mm
3mm
adi
atax

Benchmark

Figure 1: Cost of default bounds checking strategies in
a WebAssembly runtime

implementation details, the choice of bounds checking strat-
egy can introduce significant overhead, and ultimately im-
pact application execution time. While other issues such as
register allocation and dealing with inlining are encountered
by many language virtual machines, the bounds checking
for all memory accesses is Wasm-specific. Despite diversity,
to the best of our knowledge, most of the adopted Wasm
runtimes implement bounds checking with mprotect() on
POSIX-compliant operating systems (OS), even if several
mechanisms have been made available recently and there-
fore need evaluation. In this paper, we will focus on POSIX
OSes, specifically on Linux due to its wide adoption in data
centers.

Is bounds checking the real culprit of the performance dis-
parity with native execution? The work of Jangda et al. [12] is
the first highlighting that safety checks affect performance
- including stack overflow checks, indirect call checks, and
reserved registers. To assess their claim we run two set of
benchmarks on different Wasm runtimes and three different
ISAs (x86, Arm, and RISC-V), Section 3.3 includes details.
Benchmarks have been run with and without bounds check-
ing, Figure 1 shows the resulting execution times normalized
on native execution (no bounds checks) for V8-TurboFan
on x86_64. This shows that while about half of the bench-
marks of PolyBench are not affected, bounds checking may
introduce from 20% (Cholesky) to 220% (gemm) overhead
in application execution. SPEC benchmarks show from 10%
to 80% overhead. We obtained similar results on other ISAs
and with different runtimes, recording overheads of up to
650% on Arm/Wasmtime, and a peak 50% overhead on RISC-
V/V8. Thus, while not the only source of overhead, for many
applications bounds checking negatively impacts execution
time.

Driven by the above, this work is the first empirical evalua-
tion that broadly compares different WebAssembly runtimes,
specifically looking at the impact of different bounds check-
ing strategies across diverse, modern and widely used ISAs,
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evaluating how well they achieve WebAssembly’s principal
goals.

1.2 Key Contributions

Our key contributions are:

e An extensive comparison of the performance of prominent
WebAssembly runtimes on three different ISAs.

e Isolating the impact of bounds checking mechanisms on
that performance.

e Implementations of alternative bounds checking strategies
for several WebAssembly runtimes.

o A reproducible benchmark suite that can be reused on new
platforms — with automatic execution and data collection.

e Reproduction of past findings on WebAssembly perfor-
mance, confirming and expanding upon the current knowl-

edge.

1.3 Key Results

The key results of our investigation are:

o No difference in the relative costs of bounds checking meth-
ods across architectures: the cost of each method seems
to be roughly the same on x86-64, Armv8 and RISC-V -
the relative differences between architectures are within
2 percentage points of each other for the commonly used
mechanisms.

e Using mprotect() on linux to dynamically adjust size of
WebAssembly memory causes poor multithreaded scaling:
lowering maximum CPU utilization by up to 25% on short-
running benchmarks.

e WebAssembly is fast enough for server applications if an
appropriate runtime is used, with WAVM achieving per-
formance on par with native code for half of the tested
benchmarks, and 8-20% average runtime overhead overall
on x86_64.

2 BACKGROUND
2.1 WebAssembly

WebAssembly is a portable binary code format, but can also
be thought of as a programming language. [25] It is a simple
bytecode format for a stack-based virtual machine, that is
designed to be an easy target for compilation of native pro-
gramming languages such as C, C++, Go, and Rust, while
itself being easy to compile to efficient native code. It grew
out of a need for running safe, fast, and portable code on
the Web, replacing previous attempts such as asm.js [10]
and NaCl [6] with a clean-slate design. Despite its origins,
WebAssembly can be used outside of the Web ecosystem.
Supporting standards such as the WebAssembly System In-
terface (WASI) [32] were co-developed with WebAssembly,
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and explicitly create a POSIX-like environment rather than
a Web-based one.

In this way, WebAssembly can be compared to other pro-
gramming language virtual machines, like the Java Virtual
Machine (JVM) [23], which was originally advertised with
the slogan “write once, run anywhere”, and supports promi-
nent programming languages such as Java, Kotlin, and Scala.
Another similar example is the Common Language Runtime
(CLR) [19] for languages such as C#, F#, and Visual Basic.

Despite the similarities, at a low level WebAssembly is
significantly less complex in its design than the aforemen-
tioned runtimes. It currently does not have the capabilities
for dynamic code generation and modification, and instead
of managing a heap of objects for the programmer, it only
provides a single “linear” memory buffer which can be grown
in size akin to a dynamic array. Other elements of WebAssem-
bly programs include: module(s) — an organization unit con-
taining the definitions of other elements; functions — named
containers for WebAssembly code, just like functions in most
other programming languages; variables providing an infi-
nite number of local registers within function scope; function
tables — used as an security mechanism for indirect branches
to avoid exposing the host’s instruction pointer directly; ex-
ports — allowing providing named references to various other
elements of a module for other modules or the runtime host
to refer to.

There are only four value types in the language: 32 and
64-bit variants of integers and floating point numbers. Any
other type has to be compiled down to instructions making
use of these four primitive types before generating the final
WebAssembly module.

2.2 Language Virtual Machines

Language virtual machines (VMs), also known as language
runtimes, are programs that execute bytecode, such as We-
bAssembly. Language VMs are what allows the platform-
independence and portability benefits of bytecode represen-
tations, separating the platform-specific VM implementation
from the platform-agnostic bytecode specification.

There are multiple approaches to VM implementation,
ranging from relatively slow, but simple interpreters, to fast,
but complex Just-in-Time (JIT) and Ahead-of-Time (AOT)
compiler-enabled runtimes.

Interpreters, such as Wasm3 benchmarked in this paper,
follow a fetch/execute loop — they read the bytecode, and
execute different native code depending on the instructions.
Various implementation techniques have emerged for inter-
preters, the currently most prevalent one for fast execution is
threaded interpreters[1] which dispatch the next instruction
using a jump table with a separate indirect branch in each
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instruction implementation, allowing independent branch
prediction of those targets for each instruction type.

Just-in-Time compilers generate native machine code dur-
ing the program’s execution, often inserting instrumentation
and recompiling the same functions using the collected data
for better performance. The V8 runtime evaluated in this
paper is one of the classic examples of a JIT runtime for
JavaScript and WebAssembly.

Ahead-of-Time compilers, often just called compilers, con-
vert bytecode into machine code all at once, before the pro-
gram starts executing. WAVM and Wasmtime, while using
JIT frameworks to load the compiled code at runtime into
the host, are in fact AOT compilers, as they never adjust the
generated code after it has been compiled and loaded into
the host process.

2.3 Bounds Checking Techniques

WebAssembly requires checking that each memory load and
store instruction points at an address within the bounds of
the active linear memory. This is similar to inserting checks
for indices laying inside the bounds of an array at each ar-
ray indexing operations, but here it’s done for all memory
accesses.

The naive approach to ensuring instructions do not access
addresses outside the confines of the virtual memory region
is to simply perform a conditional branch on the address
compared to the memory limit, every time a memory access
occurs. However, this approach can significantly affect per-
formance. Load and store instructions on average form 40%
of x86_64 programs [9], inserting a branch instruction before
every single one adds up to a significant cost, even if some
proportion of them can be eliminated by an optimization
pass. Therefore high-performance runtimes use operating
system mechanisms to manage virtual memory themselves,
to catch out-of-bounds accesses when they happen.

This is done by over-allocating a large virtual memory
region, and only populating the valid memory range with
read-write-allowed pages, while the rest of the region gen-
erates a CPU exception on illegal accesses, which can be
subsequently caught and handled by the runtime. Because
current WebAssembly limits the memory instructions to take
a 32-bit integer as a base, and a 32-bit integer as an offset,
the total addressable space is 8 GiB, so on 64-bit machines
with virtual memory the entire 8 GiB region can be preallo-
cated. The generated machine code mathematically cannot
access the area outside of this allocation because two 32-bit
numbers are added.

The downside of this approach is that managing large
allocations like this can be costly in the operating system,
especially on less powerful hardware. In Linux, changing
the size of such an allocation requires adjusting process

R. Szewczyk et al.

VMAs which are binary tree structures requiring taking an
exclusive lock for modification, which can have negative
scaling impact for multithreaded applications.

Various hardware-accelerated bounds checking methods
have also been proposed and implemented for array accesses,
some of which could be reused for WebAssembly. Some Intel
processors had the MPX extension which provide bounds-
checked pointer access instructions. They have been shown
to have a high overhead (50% on average)[21] and there-
fore Intel discontinued this extension, removing it from the
x86 processor manuals in 2019. An upcoming, promising
approach is CHERI[34], providing capability-checked mem-
ory accesses to multiple CPU architectures with a single
mechanism, however it is still in relatively early phases of
development with very limited hardware availability, there-
fore we did not evaluate it in this work.

2.3.1 Userspace Page Fault Handling. Adjusting virtual mem-
ory protection in Linux is costly in multithreaded applica-
tions due to inter-processor TLB shootdowns and locking on

the process’s VMA structure in the mprotect implementation[13].

One alternative mechanism for managing virtual memory
is Userfaultfd[14], which lets applications reserve a region
of virtual memory and handle page faults on that region in
userspace, with VMAs remaining untouched and no kernel-
side locking.

The page fault handler can choose to populate the faulted
page, or a larger range of pages, with zero-filled pages, con-
tent copied from another range of pages, or not populate the
pages at all and instead raise an exception if it determines the
access is illegal. The handler can operate either as a thread
polling the userfault file descriptor, being notified of events,
or as a signal handler for SIGBUS signals which the kernel
sends to the pagefaulting thread. The SIGBUS handler avoids
back-and-forth context switches, because it gets executed
on the same thread that caused the page fault, and can thus
achieve lower latency.[35] This is the method we decided to
use in our Userfaultfd-accelerated bounds checking imple-
mentation.

3 BENCHMARK DESIGN

In this section, we present how we analyze and compare
the performance of different bounds checking techniques on
selected WebAssembly runtimes, on three different ISAs.

3.1 Bounds Checking Mechanisms
We consider the following bounds checking mechanisms:
(1) none: The entire possible memory space (8 GiB) is read-

write mapped. No bounds checks are performed during
execution.
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(2) clamp: All memory accesses pass through a conditional
selection operator. If the given pointer is out of bounds,
the memory end pointer is used instead.

(3) trap: Another conditional selection. If an access is out of
bounds, a trap to the host is generated by jumping to an
invalid instruction (e.g. ud2), which generates a SIGILL
to be caught by the runtime.

(4) mprotect: The entire memory space is preallocated with
no permissions. Illegal accesses during runtime generate
a SIGSEGVY, and then the handler invokes mprotect to
modify the process’ virtual memory area (VMA) to grant
the necessary permissions. As implemented in Linux, this
requires acquiring a lock on the VMA of the process [13],
since all threads within a process share one VMA!

(5) uffd: Similar to mprotect, but instead, the entire mem-
ory space is lazily read-write mapped and registered with
the userfaultfd feature, so that the bounds checking can
be handled in user space. Any attempt to write a miss-
ing page generates a SIGBUS?, which prompts either an
ioctl call to copy or zero the page, or a new signal can
be sent to the runtime. A lock is only acquired for the
page in question rather than the entire VMA, so requests
from multiple threads can be handled simultaneously (as
long as they reference distinct pages).

3.2 Runtimes

We consider a total of six execution environments. Two are
native environments, where the benchmarks are compiled to
machine code using either GCC 11 or Clang 13, and then ex-
ecuted with no WebAssembly-style bounds checking to give
baseline metrics. The other two are WebAssembly runtimes,
where the benchmarks are first compiled to WebAssembly
using Clang 13 (target wasm32-wasi) before being executed
by the runtime, which just-in-time (JIT) compiles the code to
native code. The WebAssembly runtimes are able to provide
isolation, so the WebAssembly benchmark runner spawns
one instance of the runtime for each benchmark instance,
all contained within the same process in isolated threads,
whereas the native benchmark runner spawns one process
for each benchmark instance. The four WebAssembly run-
times are:

(1) WAVM [26]: A virtual machine that uses the LLVM [15]
compiler infrastructure (specifically the MCJIT frame-
work [16]) to compile WebAssembly to machine code
ahead of the time of execution. We modified 140 lines of
code to add alternative bounds checking methods.

Technically, Linux treats everything as tasks, but conceptually, a process
is a group of threads that share a thread group identifier (TGID) and a set
of resources, and a thread is the unit of work that is scheduled.
2userfaultfd can also use a poll-based method that listens for page faults,
but this has a higher latency than the signal-based method that we use.

1ISWC’22, November 6-8 2022, Austin, Texas, USA

(2) Wasmtime [3]: A standalone runtime that uses the Cranelift

[2] code generator to compile WebAssembly to machine
code. We modified 500 lines of code.

(3) Wasm3 [17]: A standalone threaded interpreter for We-
bAssembly bytecode. We modified 80 lines of code to
integrate it with our harness.

(4) V8 TurboFan [8] with the Node.js WASI implementa-
tion [22]: A standalone JavaScript and WebAssembly run-
time, used as a part of the Chromium[7] web browser —
focused on striking a balance between speed of compila-
tion and speed of the executed code for Web applications.
We modified 400 lines of code.

The WAVM, Wasmtime and V8 runtimes both use mprotect
to implement bounds checking by default. We augmented
those three runtimes with implementations for none, clamp,
trap, and uffd strategies. Wasm3 effectively uses an equiv-
alent of the trap mechanism, due to the way the memory
instruction interpreter code is written, and because it does
not generate compiled code. Since this runtime is signifi-
cantly slower at executing WebAssembly we did not change
this mechanism. All runtimes are also designed to be stan-
dalone; that is, able to run outside of a web browser environ-
ment. They do this by targeting the WebAssembly System
Interface (WASI) [32], rather than any specific browser APL
This removes the dependency on JavaScript and increases
portability.

3.3 Benchmarks

We chose to use the Polybench/C benchmarks [24] in the
MEDIUM configuration for evaluation, to allow us to com-
pare with earlier results [12] [25]. We also decided to use
the SPEC CPU 2017 Rate benchmark suite [27] in order to
provide a more comprehensive evaluation. Due to the very
long running times of the SPEC benchmarks, and very high
number of tested configurations, they were run in the Train
configuration rather than Ref, we estimate based on trial runs
that running all of them in Ref mode in our configurations
would take about a month of CPU time on each machine, pos-
sibly more in the RISC-V case if there was enough memory
available on our platform to run SPEC there.

However, some of these benchmarks rely on libc and C++
functionality (e.g. signal handling, non-local exits, excep-
tions), and the WASI libc [33] implementation is still under
development, so we were only able to compile a subset®
of the benchmarks to WebAssembly for evaluation. As the
WASI and WebAssembly standards evolves, and a Fortran to
WebAssembly compiler is developed, we hope the rest of the
SPEC CPU suite will run under WASIL.

3Subset of SPEC CPU 2017 Rate suite used: 505.mcf r, 508.namd_r,519.1bm r,
525.]bm_r, 531.deepsjeng_r, 544.nab_r and 557.xz_r
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3.4 Hardware

The runtimes (3.2) were evaluated on the benchmarks (3.3) on
three hardware configurations with different architectures:

(1) x86_64: Intel Xeon Gold 6230R, with 16 hardware threads
enabled, 768 GiB of system memory.

(2) AArch64: Cavium ThunderX2 CN9980 v2.2 configured
to have 16 hardware threads, 256 GiB of system memory.

(3) RISC-V: Nezha D1 1GB development board, with the
XuanTie C906 CPU, single core and hardware thread.

Each system was running the Ubuntu 22.04 LTS operating
system, with recent kernel versions (5.16, 5.13 and 5.16 re-
spectively). We disabled CPU vulnerability mitigations with
the mitigations=off kernel command-line argument to
better represent the architectural differences between CPUs,
excluding the impact of OS-based mitigations of problems
that have been and will be addressed in newer CPU mod-
els [28]. The CPU governors were set to performance mode
where possible, to prefer higher operating frequency over
power saving.

On each system, we ran the benchmarks with 1, 4 and
16 copies of the Rate benchmarks running pinned on sep-
arate logical cores, following how the official SPEC CPU
Rate suite runner works in multithreaded configurations.
The RISC-V system was only tested with the PolyBenchC
suite, and only in a single-threaded mode, because the 1 GiB
physical memory available made it impossible to run the
SPEC suite, and the CPU only has one physical core with
no simultaneous multi-threading capabilities. The WAVM
and Wasmtime runtimes also do not have RISC-V backends
to test - WAVM when forced to generate RISC-V code via
LLVM was leading to crashes in the MCJIT framework, while
Wasmtime’s Cranelift backend does not have a RISC-V target
implemented, leaving the RISC-V platform with the Native,
Wasm3 and V8 runtimes.

3.5 Benchmarking harness

In order to make consistent measurements between all of
the runtimes and native code, we implemented a custom
benchmarking harness in 2000 lines of C++ code that inter-
acts directly with the WebAssembly runtimes via their C and
C++ APIs. The harness first ensures the wasm code is fully
loaded into the runtime and compiled where appropriate,
then a clone of that module is executed in a timed loop in
each worker thread that is pinned to a CPU core. Only the
module execution is timed, while the setup and tear-down
between loop iterations are not a part of the reported time.

There is a warm-up phase to ensure all physical CPU
threads are equally busy before the timed execution runs
happen, and once each thread finished its timed workload,
it continues to run the WebAssembly code for a few more
iterations, until all the threads finish their measured runs,
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to ensure the final measurements are not affected by other
CPU cores becoming less busy.

For Native code, the same overall procedure is followed,
except instead of simply calling the JITted code a new process
is spawned with a vfork() and fexecve() (on a pre-opened
executable file descriptor) syscall combination, because load-
ing multiple copies of native Linux executables into the same
process is not achievable via any standard system interfaces.
This has the downside of including the process spawning
and tear-down overhead in the native code measurements,
but we measured it to be on the order of a hundred microsec-
onds once the benchmarks warm up, hence not affecting the
results significantly.

We intend to release our benchmarking harness, patches to
the WebAssembly runtimes and automation scripts under an
open-source license, excluding the SPEC benchmarks which
are protected by copyright.

4 EVALUATION

In the following section, we discuss the performance of each
runtime and bounds checking mechanism configuration in-
troduced in Section 3.1, when executing the benchmarks
listed in Section 3.3. We collect a variety of execution sta-
tistics, using the native Clang and GCC benchmark runs as
baselines.

4.1 Execution Time Statistics

We collected detailed execution time statistics for each bench-
mark in each configuration, with a minimum of ten runs of
SPEC benchmarks, and a minimum of hundreds of Poly-
bench/C runs on each CPU thread, excluding the warm-up
and cool-down runs.

A comparison of the results for each single-threaded con-
figuration, by taking the geometric mean of the ratios [4]
of execution times to the Native Clang execution time for
each benchmark, is shown in figures 2a, 2b, 2c. SPEC and
Polybench/C (PBC) results are separated.

From these results we can see that the fastest WebAssem-
bly runtime among the evaluated ones is WAVM, followed
by Wasmtime, and then V8 very closely. No bounds checks
is, as we would expect, the fastest, but the mprotect() and
UFFD strategies have very little overhead, on the order of
1-2 percentage points, except for the 10 points difference for
the V8 runtime.

Software checks are significantly slower in a number of
configurations, most notably in WAVM, with clamping ad-
dresses unconditionally behaving worse than generating
conditional traps.

Based on these results, we can say that WebAssembly run-
times with an advanced backend focusing on performance
(such as WAVM backed by LLVM), can be used to sandbox
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Figure 3: Performance scaling with increased number of threads

code running in server environments with only a minor over-
head. WAVM was able to generate better code with its LLVM
frontend for some Polybench/C benchmarks than native
LLVM, performing closer to a native GCC compiler which
happens to generate faster code for this particular suite.

We investigate the causes of these differences in the fol-
lowing sections by looking at various system and CPU per-
formance counters. This data is presented for the x86_64
and Armv8 architectures, because running the monitoring
tools on the RISC-V board was causing significant changes
to the benchmark results due to the slow, single-threaded
CPU performance.

4.1.1  Scaling with thread counts. One interesting aspect of
the various runtimes and bounds checking methods is to
see how running multiple isolates in parallel on separate
threads affects the overall performance. We investigated this
by running multiple instances of each benchmark on worker
threads pinned to chosen CPU cores to reduce the impact
of scheduling decisions about CPU migrations. The perfor-
mance scaling at 1, 4 and 16 threads (all active CPU cores) is
shown in Figures 3a and 3b.

We can see that in most cases running multiple parallel
benchmark instances in separate threads does not affect the
performance in a major way, the small slowdowns are eas-
ily explained by the usual causes, confirmed by monitoring
the benchmarked systems during benchmarking: different
frequency scaling characteristics when more CPU cores are
busy in modern CPUs, increased memory bus contention
and mutual exclusion when executing certain syscalls such
as write operations.

One major difference between the runtimes visible is that
V8 struggles when 16 worker threads are created, this is be-
cause V8 uses worker threads for some of its internal opera-
tions such as JIT compilation, and periodic garbage collection
locks other worker threads from performing work. When
all of the physical cores are already occupied by the bench-
marks, additional work requires context switches, which are
visible in Figure 5b — scaling the number of threads for V8
increases the measured switches by an order of magnitude.

Another major difference, also visible in the context switch
graphs, is the poor scaling of mprotect()-based memory
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protection to multiple threads. Especially visible in the Poly-
benchC benchmarks, which cause frequent allocation and
deallocation of memory as they execute in a short span of
time, this stresses the virtual memory management subsys-
tem in the Linux kernel for the host process, causing exces-
sive locking and pausing of thread execution.

4.2 CPU Statistics

4.2.1 CPU Utilisation. We define CPU utilisation as the total
number of milliseconds, averaged across all CPU(s), that the
Linux kernel reports in /proc/stat* spending in either user
or kernel mode, offset by the total number of milliseconds
spent idle, i.e.
us + sys + hi + si
us + sys + hi +si + id

(1)

We rescale this quantity so that 100% utilization is a full
utilization of one cpu core, so 1600% utilization is all 16 cores
occupied.

In Figures 4a and 4b we can see that in the single-threaded
configuration all of the runtimes are able to saturate a full
CPU core, with the Arm machine having larger off-main-
thread activity than x86. The V8 runtime uses extra worker
threads for some tasks, mostly IO and background JIT com-
pilation, in its implementation, therefore the utilization for
it is larger than for the other runtimes.

In the case of the 16-threaded workload, presented in fig-
ures 4c and 4d, we can see that all runtimes except V8 are
able to achieve full CPU saturation. The lower saturation
in V8 is due to the periodically running JavaScript garbage
collector which pauses the execution of other threads.

One big difference visible here between the bounds check-
ing strategies is that mprotect()-based protection does not
saturate the CPU like other mechanisms, as earlier discusses
in Section 4.1.1. This is due to a mutex in the Linux kernel
protecting the process’ virtual memory areas tree [13], when
WebAssembly resizes its memory to allocate or run the next
iteration that mutex is acquired for significant periods of
time that we confirmed by capturing stack traces of threads
in a waiting state via bpftools. Software bounds checking
requires less virtual memory manipulation, hence the ef-
fect there is not visible. The UFFD mechanism in the kernel
does not acquire an exclusive lock over that structure, so the
userspace code is able to use lockfree structures to manage
its memory - in our implementation we use an atomic inte-
ger variable controlling the size of each memory arena, and
a hazard pointer [18]-style implementation for adding and
removing memory arenas, avoiding the need for locks most

of the time.
“4us represents user mode time including “nice” time, sys represents ker-
nel mode time, hi represents time servicing interrupts, si represents time
servicing softirqs and id represents idle time.

R. Szewczyk et al.

Another option is to limit the number of executor thread
per process, and instead build a multiprocess runtime. The
locking effect was significantly more visible in short-running
benchmarks, therefore we make a recommendation that for
short-lived WebAssembly tasks, such as for certain classes of
serverless applications, using userspace-managed pagefault
handlers can be preferential to mprotect()-based handlers,
unless the Linux kernel memory management switches to
more fine-grained locking or lockfree data structures.

4.2.2 Context Switches. We also measure the total number
of context switches per second, averaged across all CPU(s),
for each configuration. The data can be seen in Figures 5a
and 5b.

There is no significant impact of the bounds checking
mechanism on the context switch rate, except for the pre-
viously discussed mprotect() scaling issue. When scaling
V8 to multiple threads, care has to be taken to not saturate
the CPU, as spawning 16 worker threads on a 16-core CPU
negatively impacts performance because of the additional
work the runtime does in its own worker threads.

4.3 Memory usage

We present the memory usage of the different runtimes in all
of the bounds checking configurations in Figures 6a and 6b,
as measured by the difference between total and “available”
memory in /proc/meminfo.

There is no significant variance in memory usage between
the different runtimes or bounds checking methods visible.
One observable difference is the increased memory usage
of the PolybenchC benchmark suite on the x86_64 architec-
ture compared to the Armv8 architecture. This is due to the
Linux kernel using huge pages to serve the WebAsssembly
reservations, removing them from the pool of readily avail-
able memory, but that memory is reclaimable by splitting
them into smaller pages. The transparent huge pages mecha-
nism on the x86_64 ISA uses pages of up to 1 GiB size, while
on Armv8 the limit is 2 MiB, leading to more fine-grained
memory usage reporting.

4.4 Replicating previous results

In 2022, Titzer [29] measured Wasm3 to be roughly 10x
slower than V8-TurboFan on the PolybenchC benchmark,
which agrees with our results of 6x-11x difference depending
on the CPU architecture on the same suite.

Rossberg et al. [25] in 2017 measured PolybenchC execu-
tion time on V8, showing that “WebAssembly is competitive
with native code, with seven benchmarks within 10% of na-
tive and nearly all of them within 2X of native”, with the
measured performance for each benchmark closely matching
our measurement in figure 1.
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recently approaching near-native performance levels for a

wider set of programs.

Jangda et al. [12] in 2019 reported a 1.55X geomean slow-
down of SPEC on V8 compared to Native, we measured 1.69x

Previous work did compare different WASM runtimes al-
ready, but none focused on the overhead added by bounds

checking. Also, no previous work shows how the cost of

5 RELATED WORK

y

were able to run a bigger subset of SPEC thanks to devel-
oping a custom POSIX layer that WebAssembly interacted

with via JavaScript. Most of the runtimes we evaluated in

slowdown on x86_64 and a 1.76x slowdown on Armv8. The

this paper do not support JavaScript, therefore we could not
use Browsix to run the same subset of benchmarks.

bounds checking varies among different CPU ISAs. In the

following points, we briefly summarize previous work:

Comparing against these previous works, we can see that
while Web-focused WebAssembly runtimes and interpreters

With the introduction of WASM in their 2017 paper Ross-
berg et al. [25], the authors compared the WASM imple-

mentation in V8 and in SpiderMonkey on x86 only, without

have made very slow progress on the performance front since
2017, more performance-oriented runtimes have emerged
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breaking down bounds checking overheads. Jangda et al. [12]
introduces additional benchmarks to Rossberg et al. [25] so
that also SPEC can be used to benchmark WebAssembly in
addition to PolyBench, using a JavaScript POSIX emulation
shim. They are the first to highlight that WASM is slower
than what has been reported before, and one of the issue are
the safety checks. However, their work do not explore why
that is the case, is based on x86 only, and it does not intro-
duce new bounds checking mechanisms enabled by latest
advantages in OSes — which is the core contribution of this
paper.

Yan et al. [36] presents a performance evaluation of WASM
on a large collection of benchmarks, being the only work
considering WASM execution on x86 (desktop) and ARM
(mobile). At the same time, their work doesn’t explain what
is the cost of bounds checking, nor introduces anything new
in WASM runtimes.

Hilbig et al. [11] also introduces a large collection of WASM
benchmarks, WasmBench - the largest, which focuses on
x86 only, and does not include considerations on bounds
checking — while highlighting that memory errors can be
propagated into WASM, further justifying our work.

Finally, Titzer [29] compares several engine runtimes (WAMR,

WASM3, V8-liftoff and V8-turbofan, Spidermoneky, and JSC)
on an Intel Core-i7, using PolyBenchC-4.2.1, showing ex-
ecution time, translation time and space statistics. While
we reported similar metrics, Titzer did not breakdown the
cost of bounds checking, nor introduced any new bounds
checking method on any engine runtime on different ISAs.

6 DISCUSSION

Our evaluation of four different WebAssembly runtimes
against native GCC and Clang-compiled code on two bench-
mark suites shows that there is a variety of available run-
times, each striking a different balance between complexity,
size, and runtime performance. WebAssembly has grown

from its initial Web-focused applications to become a generic
sandbox platform for server [30] and client [5] applications.

WebAssembly brings its own unique security mechanisms
to the table, one of the major ones being bounds-checked
memory accesses. While other languages often check ar-
ray index bounds, WebAssembly limits all memory instruc-
tions to access a single, resizable block of memory, checking
whether those accesses are within the current bounds on
each load and store. we implemented alternative approaches
to bounds checking into the WebAssembly runtimes that use
a compiler, and based on this quantified the exact impacts
of pure software and virtual memory-accelerated bounds
checking against disabled bounds checks. The exact over-
heads vary across architectures and benchmarks, but overall
pure software checks cause significantly higher overhead
compared to allocating large regions of virtual memory and
using page fault handlers to catch illegal accesses.

7 CONCLUSION

We show that runtimes such as WAVM and Wasmtime are
able to achieve performance on average within 20% of the
native performance on x86_64 platforms, 35% for Armva8.
On RISC-V V8 can achieve a 17% overhead over native code
for simple numeric kernels. For simple numerical kernels,
we have shown that there is no significant difference in the
WebAssembly performance compared to native code across
the three tested architectures: x86_64, Armv8 and RISC-V
RV64GC.

In case of multithreaded scaling of the tested runtimes,
which might for example be used to quickly scale up server-
less instances for a single function without the overhead
of spawning new processes, the default approach taken by
WAVM, Wasmtime and V8 of using the mprotect() syscall
to resize memory can cause excessive locking in the Linux
kernel. This can be mitigated by using simpler, lockfree data
structures for managing page permissions, which we were
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able to implement using Linux’s recent userfaultfd mecha-
nism for handling page faults in userspace.

We share our results and the entire set of tools and scripts
under an open source license, except for the SPEC CPU
benchmarks for which we only distribute the small patches
required to compile them for WebAssembly due to its licens-
ing terms. We hope that other researchers can use these
tools in the future to replicate our results, and monitor the
progress that WebAssembly runtimes make as this technol-
ogy evolves.
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