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Abstract

General Video Game Playing (GVGP) creates agents capable of playing several different
games while maintaining competitive performance. Even when the generality of these
agents has evident potential, there is a lack of research looking for applications for them.
This work explores filling that void by advocating the integration of GVGP agents into
the game development process. Additionally, it proposes studying the GVGP agents
from a Player Experience perspective to facilitate their use in games as an alternative
AI approach.

GVGP agents are essentially designed to win and achieve a high score. However,
the players’ actions are driven by different motivations, resulting in diverse behaviours.
These motivations may ultimately involve winning, but it is not necessarily their primary
goal. Thus, why are agents designed with merely this purpose in mind? This work con-
siders that the path that eventually allows finding applications for the agents starts with
eliciting differentiated behaviours by providing them with objectives beyond winning. It
introduces the concept of heuristic diversification that, in the scope of search algorithms,
refers to isolating the evaluation function of the controllers providing the goals externally
without affecting their foundation.

This work proposes that a team of GVGP agents with differentiated behaviours can
assist in the game development and testing processes. The solution applies heuristic
diversification and describes the behaviour of an agent with simplicity and easiness to
evolve. Diverse behaviours can be generated and used to assemble the team indepen-
dently of the game’s characteristics. Based on their stats, the resulting agents are allo-
cated in a behavioural space, which is used to identify behaviour-type agents. The agents
are portable between levels and facilitate diverse automated gameplay. They can detect
design flaws and bugs when introducing modifications to the game or trigger external
development tools without having to play the game manually.
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Chapter 1

Introduction

Video game playing approaches, and especially General Video Game Playing (GVGP),
focus on creating agents with the ultimate goal of winning the game and, ideally, being
the best at it. However, when human players play a game, they do not always focus on
winning first. And, even when they do ultimately play to win, they present different ways
to interact and react to the game, driven by their interests. During the development of
a game, the existence of this diversity of player behaviours, known as player-types or
personas, holds a relevant role in their design and the expected experience of the players.
Furthermore, testing and Quality Assurance (QA) techniques are also directed to detect
bugs and design flaws by asking testers to focus on specific tasks. These goals can be
as simple as going through the level of a game. However, they can also be, for example,
interacting with the walls and objects present in the game to detect errors with collisions,
unintentional shortcuts, or other bugs that can break the gameplay. Game development
is an incremental process, and new changes are included often. Every change can have
unexpected effects on the rest of the game, so QA tests should ideally be carried out
after a new modification is included. However, it is not always possible because manual
testing is tedious and requires organisation and resources. Artificial Intelligence (AI)
agents are being used for testing to address those limitations, but these approaches are
typically game-dependant. As a result, the agents in use also need to be updated after
certain modifications on the game to fit its changes and maintain their purpose.

In AI, a heuristic contains the criteria to follow and decide the actions to take, so
it ultimately describes and controls the decisions of the agent. This thesis looks into
diversifying the heuristics in existent GVGP solutions to provide the controllers with
goals beyond winning to elicit a very diverse range of behaviours.

The ultimate goal of my work is to assist in the game development and testing pro-
cesses by facilitating developers with a method to automatically trigger tests and tools
during the development of the game. My research does not solve automated testing
but introduces a new step toward tackling such a complex topic. I define a theoretical
vision involving the use of general agents with a diversity of heuristics and develop a
technical prototype and proof of concept based on it. I present an approach to generate
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1. Introduction

a team of agents with differentiated behaviours, goals, and achievements that can be at
the disposal of the developers to play the game automatically and, with their generality,
adapt to the changes carried out during its development. Humans are irreplaceable and
would still be required. My idea does not look at removing humans entirely from the
equation but at providing the means to make some of the tasks related to testing and
QA easier. These agents are not expected to simulate players or QA testers. Their be-
haviour originates from the agents focusing on different goals driven by their heuristics,
accomplishing various tasks. An example would be colliding with the walls and objects
distributed on the level, which, as mentioned above, is a usual task during game testing
to detect collision bugs. Although the agent would not replicate game testers, it would
still trigger errors and log information when playing the game, being capable of identify-
ing such bugs quicker or immediately after a change is made to the game. I believe that
having a range of agents where different behaviours and proficiencies can be identified, as
well as a method to generate new ones when needed, addresses the limitations of current
approaches.

I also explore the idea of taking advantage of the proposed diversification of heuris-
tics in general game-playing agents to study their potential integration in games as
Non-Player Characters (NPCs). This kind of synthesis may become possible when the
general agents are analysed from the perspective of the player and the effect they have
on their experience in the game, instead of looking at their performance. Related to
this goal, I present an exploratory study that we carried out to evaluate the impact of
the behaviour of general agents on Player Experience. This study looks into the results
of various Player Experience constructs in two versions of the same game. The only
difference between these two versions comes from the goal given to the general agent
integrated as NPC.

The experiments are carried out in the GVGAI Framework and are focused on GVGP
search algorithms. I believe the idea can be extended to cover other AI areas and
solutions, but these extensions are out of the scope of this thesis. I encourage the research
community to follow the lines of research opened by my work and develop them.

1.1 Scope

This thesis focuses on the study of AI in games, where the research is broad and involves
several areas: Non-Player Character (NPC) behaviour learning, search and planning,
player modeling, games as AI benchmarks, Procedural Content Generation (PCG), com-
putational narrative, believable agents, AI-assisted game design, general game AI, and
AI in commercial games [Yannakakis and Togelius, 2014]. Not all of these fields are of
interest for this thesis, and, similarly, some of the AI solutions I describe can apply to
areas different to the ones covered. Please note that I may omit or overlook some infor-
mation as I focus on the relevant approaches in the scope of my work, which is limited

31



1. Introduction

to the following areas:

General Video Game Playing (GVGP) My research is within the scope of GVGP,
so it focuses on the implementation of agents that play games. The heuristics imple-
mented and provided to these agents are general, so they do not make decisions based on
hard-coded or explicit information about the game. Their decisions are entirely trans-
parent to the rules of the game. The heuristics consider in their calculations elements
available in the framework for every game supported by it.

Search algorithms My research focuses on approaches and solutions for controllers
with a forward model at their disposal, which covers tree-search and evolutionary algo-
rithms. Therefore, I do not look into learning approaches or develop solutions for these.
However, the background refers to work carried out with learning methods, as some are
relevant to the motivation of my work or have served as inspiration for it. I do not look
into human-like approaches, so imitation learning techniques are also out of the scope of
my research.

Tile-based 2D video games My work focuses on video games, so I do not look at
combinatorial, card, or board games. Only games supported by the GVGAI Framework
(Section 3.1) are in the scope of my research. The games in this Framework are developed
in VGDL (Section 3.1.1) and have some limitations. These are 2D tile-based games where
the interaction between their sprites triggers the rules. Each game session has a limited
time set by default and is formed by a non-scrollable level fixed to the game screen. The
AI takes control of the player, who is represented as an avatar and can move right, left,
up, down, and carry out an action. There are no physics in the games I employ. These
games do not present complex rules or include puzzle or strategy games.

Single player The foundation and core part of my work are carried out in single-
player games. The exploratory case study is carried out in a 2-player setup, but it is
an agent-vs-player game. I do not look at multi-agent systems or collaboration between
agents.

1.2 Research Questions

Current research in General Video Game Playing is mainly focused on creating new and
improving existing approaches instead of taking advantage of what already exists and
finding different ways to apply the game-playing solutions. Games have helped improve
the algorithms to reach a high level of quality. Now, GVGP agents could be applied to
video games and assist in their development by being used for automated gameplay to run
tests and trigger testing tools or by taking the place of Non-Player Characters (NPCs).
Most of the development of GVGP agents focuses on winning and achieving a high score.
This focus could be broadened by providing the agents with goals beyond winning the
game, allowing them to elicit new behaviours. This diversification of behaviours could be
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the key to finding new applications for these agents. Therefore, the Research Questions
(RQs) I look at answering in my work are the following:

Research question 1 (RQ1) Which general heuristics can be defined and imple-
mented beyond the goal of winning the game, and how does each of these affect the
performance and behaviour of existing GVGP agents when it is the only variation in the
algorithm?

This research question is motivated by the sentiment that the start point of ultimately
allowing a successful application of GVGP agents in games and their development pro-
cess is looking at providing these agents with goals beyond winning to elicit a range of
behaviours. To answer this question, I first need to identify general goals that can apply
to several games and define and implement their corresponding heuristics. The ultimate
purpose of my work is to enlarge the research and applications of general game-playing
agents, so I also need to apply them to different GVGP agents to study and compare
their performance (based on the characteristics of the goal provided) and behaviour.
Once this question is answered, I should have the foundation for the rest of my work.

Research question 2 (RQ2) How to define, create, and use a team of GVGP agents
with distinct behaviours to assist in the development and evaluation of games?

This research question covers the central part of my research and is motivated by
looking at applications for the GVGP agents in the game development and testing pro-
cesses. To answer this question, I first need to define a long-term vision that describes
the expectations that should allow these agents to be used for such a purpose. Then, I
need to implement a prototype based on this concept presenting an approach capable of
generating a team with an identifiable diversity of behaviours. This procedure should be
flexible enough to be applied to different games and allow the agents to adapt to changes
in the levels. Finally, I need to define a proof of concept that uses the agents generated
to support identifying issues that may arise from such modifications.

Research question 3 (RQ3) Can GVGP agents with distinct behaviours potentially
be integrated into commercial video games as an alternative AI approach when these
agents are studied from a Player Experience (PX) point of view?

This research question is motivated by a plausible alternative application of GVGP
agents to games. To answer this question, I need to define an exploratory case study to
examine the impact the behaviour of general agents has on various Player Experience
constructs. I need to compare the results when players are presented with two versions of
the same agent-vs-player game where the only difference is the general goal of the agent
included in the game. It looks at the possibility of building a bridge between GVGP
and Player Experience and opening a new line of research that could ultimately allow
general agents to be integrated within games as NPCs.
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1.3 Contributions

The main contributions of my work can be summarised as follows:

• It broadens the research in General Video Game Playing (GVGP) by providing
new applications for general agents in the scope of video games.

• It elicits differentiated behaviours in the general agents by providing them with
goals beyond winning. Their play-throughs and reactions to the game based on
their motivations differ to cover multiple states and situations, equipping the game
developers with a rich selection of agents to use.

The detailed contributions of my thesis broken down by their corresponding RQ are
the following:

RQ1

• It introduces the concept of heuristic diversification. It defines an approach to
change the heuristics in search controllers by isolating their evaluation function
without modifying the core of the algorithm. This is the first step in the path of
broadening the research in GVGP and serves as the foundation for the rest of the
work.

• It identifies general heuristics beyond playing to win and presents their implemen-
tation and application to different GVGP agents. These heuristics can be applied
to games with various characteristics. Different motivations can drive the way a
game is played, so I include this idea in the study of general agents to expand their
applications beyond merely learning to play games to win.

• It studies multiple GVGP agents when, by heuristic diversification, they are pro-
vided with different general heuristics and goals. It compares the resulting per-
formance (based on the characteristics of the goal provided) and behaviour of the
GVGP agents when the heuristic is the only modification in their algorithm.

RQ2

• It defines a theoretical methodology and implements a technical proof of concept
based on that long-term vision. It proposes using a team of GVGP agents with
different behaviours to assist in the development and testing of video games. It
reviews existing literature, presents the elements and steps that the methodology
should cover, and discusses its strengths and limitations.

• It includes a list of heuristics that describe behaviours that can be identified in
games and can be applied to the general agents.

• It presents an approach to creating the team of agents proposed in the methodology.
It applies the MAP-Elites algorithm to generate different behaviours for GVGP
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agents and implements a general solution in the GVGAI Framework. In contrast
to existing solutions, the agents are given diverse behaviour by their heuristics and
identified after the execution of the algorithm. The description for each agent is
generated and located in a behavioural space based on the gameplay results when
provided with it.

• It proves the validity and generality of the approach by applying it to four games
with differentiated characteristics, generating a team of agents with differentiated
behaviours for each of them.

• It implements an provides an interactive tool to go through the resulting MAP-
Elites, including details about each of the agents generated and a pre-recorded
preview of their behaviour during gameplay [Guerrero Romero, 2021e].

• It introduces the concept of behaviour-types. In contrast to personas or player-
types, these agents do not simulate human players or aim to imitate their gameplay.
These agents are proficient in particular aptitudes related to the game as they
are expected to obtain particular resulting stats during gameplay, comparable to
the achievement of different tasks when playing the game. Each of these agents
allows testing different interactions with the game based on their corresponding
behaviour-type. They do not simulate play tester behaviour either, but the tasks
usually carried out by QA testers can be used to inspire the identification of these
agents.

• It presents a procedure to identify agents of different behaviour-types from the
MAP-Elites generated. It would still be applicable if the MAP-Elites approach
is used in other frameworks or games. This selection is carried out based on the
location of the agents in the behavioural space and their resulting stats.

• It demonstrates that the behaviour-types agents identified are general enough to
be transferable to levels of the game different to the one they were generated for.

• It proposes and carries out an exploratory experiment to use the identified behaviour-
types agents from the team for testing new ‘broken‘ levels and includes a discussion
about this application. The generality of the approach developed makes it appli-
cable to other frameworks and games.

RQ3

• It proposes a new line of research that studies GVGP agents from a new perspec-
tive, looking at their impact on Player Experience instead of the quality of the
algorithms. The quality of the AI algorithms is usually measured by how well the
agent performs.

• It includes an exploratory work aimed to build a bridge between the study of Gen-
eral Video Game Playing (GVGP) agents and Player Experience (PX) to ultimately
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allow the integration of those agents in commercial video games. In this prelim-
inary study, general agents are integrated into a game as Non-Player Characters
(NPCs).

• Applies heuristic diversification to a 2-player controller from the GVGAI Frame-
work.

• It introduces a new game developed for the GVGAI Framework: Skulls and Tomb-
stones, used in the case study.

1.4 Publications

The following list of published papers constitutes the work detailed in the thesis. The
portion of the thesis they contribute to is listed in bold. Please note that they also add
to the introduction, background, and conclusions.

1. Cristina Guerrero-Romero, Annie Louis and Diego Perez-Liebana. Beyond Playing
to Win: Diversifying Heuristics for GVGAI. Proceedings of the 2017 IEEE Con-
ference on Computational Intelligence and Games (CIG), 118-125, 2017 [Guerrero-
Romero et al., 2017].
Contributions: Implemented, carried out the experiments, processed the results, and
wrote the paper. The second and third authors participated in the discussions and
helped with shaping and polishing the paper.
Included in Chapter 4.

2. Cristina Guerrero-Romero, Simon M Lucas and Diego Perez-Liebana. Using a
Team of General AI Algorithms to Assist Game Design and Testing. Proceedings
of the 2018 IEEE Conference on Computational Intelligence and Games (CIG),
1-8, 2018 [Guerrero-Romero et al., 2018].
Contributions: Wrote the paper. The third author participated in the discussions
and helped with shaping and polishing the paper. The second author helped with
polishing the paper.
Included in Chapter 5

3. Cristina Guerrero-Romero*, Shringi Kumari*, Diego Perez-Liebana and Sebastian
Deterding. Studying General Agents in Video Games from the Perspective of Player
Experience. Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), 217-223, 2020 [Guerrero-Romero et al.,
2020].
Contributions: Implemented the code, shaped and carried out the study, processed
the results, and wrote the paper. It was an equal collaboration with co-author Shringi
Kumari, as each of us brought our own expertise in the two fields the paper brings
together: Player Experience and General Video Game Playing and heuristics. The
third and fourth authors helped with polishing the paper.
Included in Chapter 8
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4. Cristina Guerrero-Romero and Diego Perez-Liebana. MAP-Elites to Generate a
Team of Agents that Elicits Diverse Automated Gameplay. Proceedings of the 2021
IEEE Conference on Games (CoG), 2021 [Guerrero-Romero and Perez-Liebana,
2021].
Contributions: Implemented, carried out the experiments, processed the results, and
wrote the paper. The second author participated in the discussions and helped with
polishing the paper.
Included in Chapter 6

The following paper has been submitted to IEEE Transactions on Games, and it
is being reviewed at the moment of the thesis submission. Similarly to the published
papers, it also adds to the introduction, background, and conclusions.

1. Cristina Guerrero-Romero, Simon M Lucas and Diego Perez-Liebana. Beyond
Playing to Win: Creating a Team of Agents with Distinct Behaviours for Automated
Gameplay. 2022.
Contributions: Implemented, carried out the experiments, processed the results, and
wrote the paper. The third author participated in the discussions and helped with
polishing the paper. The second author helped with polishing the paper.
Included in Chapters 6 and 7

Other publications related and resulting from my main work but that do not con-
tribute to the core of the thesis are the following:

1. Damien Anderson, Cristina Guerrero-Romero, Diego Perez-Liebana, Philip Rodgers
and John Levine. Ensemble Decision Systems for General Video Game Playing.
Proceedings of the 2019 IEEE Conference on Games (CoG), 1-8, 2019 [Anderson
et al., 2019].
Contributions: Provided code of some of the heuristics that have been adapted and
used in the experiment and participated in the discussions. Helped with creating the
resulting graphs, writing, shaping, and polishing the paper.

2. Diego Perez-Liebana, Cristina Guerrero-Romero, Alexander Dockhorn, Dominik
Jeurissen and Linjie Xu. Generating Diverse and Competitive Play-Styles for Strat-
egy Games. Proceedings of the 2021 IEEE Conference on Games (CoG), 2021
[Perez-Liebana et al., 2021].
Contributions: Provided code of the MAP-Elites solution that has been adapted and
used in the experiment. Helped with polishing the paper.

1.5 Structure

The main contributions of the thesis are described in Part II, structured in three blocks:
The first one, included in Chapter 4, presents the foundation, heuristic diversification.
The second block is covered in Chapters 5, 6 and 7, and corresponds to the main work
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of the thesis, which describes a long-term vision and implements a technical proof of
concept based on it. The last block is comprised of Chapter 8, which introduces a new
line of research with initial exploratory work. Each of these differentiated sections focuses
on a research question. Overall, the thesis is structured as follows:

Chapter 2 reviews literature related to the work presented in the thesis and its moti-
vation. It goes through the evolution of the research in AI and games, lists the
primary types of game-playing agents in the field, and introduces General Video
Game Playing (GVGP) and the list of frameworks that facilitates its research. It
also discusses the existence of differentiated behaviour during gameplay, existent
methods to identify them, and the approaches followed to apply these behaviours to
game-playing AI. Lastly, it includes methods that propose the use of game-playing
agents for automated testing and a high-level overview of the AI techniques com-
monly applied to commercial games.

Chapter 3 lists and describes in detail the framework, algorithms, and games used.

Chapter 4 presents the foundation of the work. It introduces the term of heuristic di-
versification and defines a series of general game-playing goals to apply to different
controllers to compare them in terms of performance and behaviour. The approach
introduced and the results obtained serve as inspiration for the rest of the work.

Chapter 5 presents the vision of using a team of general agents with different be-
haviours to assist in the development and testing processes of games.

Chapter 6 presents and implements an approach to generate the team of agents with
distinct behaviours envisioned by applying the MAP-Elites algorithm. The method
is applied to four games, validating its usability across games of different types
and characteristics. It proposes using the resulting agents to trigger automated
gameplays of the game with various tasks.

Chapter 7 reviews the team generated in previous work and identifies agents eliciting
different behaviours and tasks. It tests the portability of the proficiency exhibited
by each of the agents in four new levels with differentiated characteristics and,
given the success of the results, proposes using the team of agents to test new
levels. It presents a preliminary work employing this concept.

Chapter 8 presents an exploratory experiment that diverges from the main line of work
to propose studying the quality of general agents with distinct behaviours from a
player experience perspective; to ultimately integrate GVGP agents as NPCs in
video games.

Chapter 9 concludes the thesis. It gives an overview of the work presented and dis-
cusses the unexplored line of research and future open work.

Appendix A contains details about the games from the GVGAI Framework used in
the experiments without modifications.
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Appendix B contains a list of the resources related to each of the experiments executed.
It includes a list with links to the code and results, relevant demos, and details
about the corresponding appendices.

Appendices C, D and E gather the results obtained in the experiments presented in
Chapters 4, 6, and 7.

Appendix F includes the material used for the Case Study presented in Chapter 8.
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Chapter 2

Background

Artificial Intelligence (AI) is the study of designing and developing artefacts capable
of presenting an intelligent behaviour, which involves perception, reasoning, learning,
communicating, and acting in complex environments [Nilsson, 1998]. Intelligence is de-
fined by McCarthy [1998] as "the computational part of the ability to achieve goals in the
world". Many disciplines include the study the AI, but this thesis focuses in AI in games.
For a detailed overview of AI and games and a full collection of the existing methods
and applications, I recommend referring to specialised books [Russell and Norvig, 2021,
Millington, 2020, Yannakakis and Togelius, 2018].

This chapter presents and describes the topics related to my work. It introduces
the use of games as benchmarks for AI solutions, the evolution of game-playing AI
techniques, presents the primary type of algorithms in the field, and identifies the ones
in the scope of my research. It covers General Video Game Playing (GVGP) and the
list of frameworks that facilitates research in general game AI. It also discusses the
existence of differentiated behaviour during gameplay, existent methods to identify them,
and the approaches followed to apply these behaviours to game-playing AI. Lastly, it
covers current automated play-testing approaches and a high-level overview of some
techniques used in commercial games and their development process that are relevant to
the motivation of my work.

2.1 Definitions

I define some concepts used in this chapter and throughout the thesis. Some chapters
also include a list of definitions that are relevant specifically to each of them.

Sprite 2-Dimensional (2D) visual representation of an element of a game. The sprite
that refers to the player is called avatar.

Game state Representation of a game in a precise moment in time that includes
information about its characteristics at that moment, e.g. player(s) location and status,
score, and distribution of the elements, among others.
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Agent An entity capable of carrying out particular actions in an environment to
achieve a goal. When applying this concept to games, the goal is generally winning
and, therefore, the game-playing agent will take a series of decisions to reach the victory.
It bases these decisions on its knowledge of the surroundings and the state of the game.
As a result, an agent is developed and optimised for the game under consideration to
ultimately achieve a performance comparable to human players and overtake them.

Controller Alternatively term used for agent.

Search space Set of possible solutions. It is constituted by different game states and
the plan of actions required to reach them. It is also called state space.

Heuristic As defined by Pearl [1984]: "Heuristic are criteria, methods, or principles
for deciding which among several alternative courses of action promises to be the most
effective in order to achieve some goal. They represent compromises between two require-
ments: the need to make such criteria simple and, at the same time, the desire to see
them discriminate correctly between good and bad choices".

In the context of games, the ultimate goal is generally to win, but it is not necessarily
true in every case. How victory or any other objective is achieved depends entirely on
the characteristics and rules of the game considered. The knowledge about the game
and the tricks to beat it may be included as heuristics of the game-playing agents. This
information allows the algorithms to explore the search space in a certain way, serving
as a guide to achieving their goals. How these heuristics are defined and implemented
affects the agents’ decisions while playing the game, shaping their behaviour.

Heuristic value/reward Number that represents the quality of a game state. The
higher the number is, the better, as it is considered closer to fit the criteria.

Evaluation function Method operated by the agent to obtain/asses the heuristic
value of a game state.

Forward model Function available in some systems to simulate future states of the
game without playing it, generally used to calculate the heuristics of the potential plan of
actions and make a decision about the next move. In deterministic games, the simulated
states are expected to be an accurate representation. In stochastic games, a random seed
is also involved in the simulations, so the future states are an approximation.

Search algorithm When I refer to search algorithms in this thesis, I allude to game-
playing controllers that have a forward model at their disposal. It encompasses both
tree-search and evolutionary algorithms. I also use the term planning algorithm.

41



2. Background

2.2 Game-Playing Artificial Intelligence

Games have helped develop and improve Artificial Intelligence (AI) for a long time.
They are formed by a set of well-defined rules that allow the existence of a finite number
of states, which provide information about the environment at every game tick. The
state space can be very extensive and depends on the complexity of the game. Games
provide interactive problems to solve in a controlled environment. As a result, they are
commonly used as a benchmark to check the quality of the solutions, being possible to
transfer the validated approaches to other disciplines and the real world.

Even before computers were built as they are known today, visionaries suggested the
possibility of using machines to play and master the game of Chess, being this game one
of the firsts to get the interest of the researchers. It was considered as an appropriate
start point to ultimately reach the creation of machines capable of solving more signifi-
cant problems on account of a series of reasons listed by Shannon [1950]: Firstly, Chess
is a well-defined problem in terms of the allowed actions (moves) and the goal to achieve
(checkmate). Secondly, the solutions are not trivial or too complicated, but a skilful
play requires planning. Lastly, the game structure fits well in computation, being viable
to create a program capable of playing successfully. Turing [1953] described a series of
rules that fundamentally defined a computer program to play Chess. However, given the
means of the time, it was not possible to execute it in a machine. For years, and with
the born of modern computers, researchers put a lot of effort into looking for methods to
build a system capable of playing Chess with good performance. However, the problem
was not solved until 1997, when Deep Blue, a machine built by IBM, defeated the World
Chess Champion Garry Kasparov in a six-game match [Campbell et al., 2002]. This
event is the first landmark in Artificial Intelligence.

Since the peak of achievements in AI of the late 90s (Checkers and Othello were also
solved [Schaeffer, 1997, Buro, 1997]), new challenges and ambitious goals have appeared
over the years. Go took the attention of the community due to its complexity; it re-
quires years of learning and practising for a human to develop the skills to become a
good player. From a computer program point of view, the size of the search space of the
game is immense, becoming very difficult to evaluate moves and come up with strategies.
For a long time, it was considered the new biggest challenge in AI, so a new milestone
was reached in 2016 when AlphaGo [Silver et al., 2016] defeated Lee Sedol, recognised
as the best Go player of the decade.

All these achievements refer to combinatorial games. Combinatorial games are two-
player, finite, discrete, and deterministic with perfect information. These characteristics
make these games a good start point for every AI research, but it is not limited to this
kind. AI research also covers the study of imperfect-information games, where not all
the information is available to the player, like Poker [Billings et al., 1998, Brown and
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Sandholm, 2019] or Hanabi [Bauza, 2014, Bard et al., 2020]; and stochastic games where
there is an element of chance involved (e.g. rolling the dice), like Backgammon [Berliner,
1977, Tesauro, 1994]. It has even been extended to the study of video games, where
the types and characteristics are wide-ranging. The visual aspect associated with video
games facilitates the comparison between algorithms, so they have become a recognised
benchmark for AI controllers leading to the creation of several competitions. These
competitions are very diverse, covering a wide range of games and problems to solve.
Some examples are the creation of drivers for car races [Loiacono et al., 2010], players
for classic games like Ms. Pac-man [Midway, 1982, Lucas, 2007], first-person shooters
like Doom [id Software, 1993, Wydmuch et al., 2018], and real-time strategy games like
Starcraft [Blizzard Entertainment, 1998, Ontanón et al., 2013]. Some competitions have
gone a step further and, in addition to the development of agents capable of playing a
certain game (Super Mario Bros. [Nintendo, 1985] in this case), they include tracks to
create human-like players or to generate levels [Togelius et al., 2013]. The diversity of
challenges results in a variety of AI approaches that have developed over time.

In summary, the interest of researchers in AI has evolved over the years. The in-
crease of computational power has facilitated the origin of various approaches and their
improvement and development over time. The algorithms used to create game-playing
agents can be classified into three types: tree-search, evolutionary, and learning algo-
rithms. The latter are out of the scope of my work (Section 1.1).

2.2.1 Tree-Search algorithms

Tree-search algorithms solve challenges in real-time and have a forward model available
to them that allows simulating future states by providing state-action pairs. These algo-
rithms build a tree representing feasible plans of action, called a search tree (Fig. 2.1).
Each node of this tree symbolises a simulated state and is reached by taking an action
from a previous one. The root is the current state of the game, which serves as a starting
point, and its distance to a node of the tree determines the depth of that node. The
agent can estimate how the game changes as the different actions play out. It decides
which action to take next based on the rewards obtained in the future states, calculated
by an evaluation function.

There are different ways to visit the nodes of the tree. Uninformed search looks
into the state space without information about the goal, and the basic algorithms are
Breadth-first search (BFS) and Depth-first search (DFS). BFS explores the tree transver-
sally, expanding the nodes at a certain depth before exploring the next level. DFS, on
the contrary, explores vertically, increasing and expanding from each node in depth until
a maximum one is reached.

In terms of using information about the goal (heuristics) to guide search, the various
approaches differ in the building and navigation of the tree, the existence of a depth or
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S0

Figure 2.1: Search tree: The root node S0 represents the state of the game where the
algorithm starts. The nodes represent simulated states and, the edges, the actions that
lead to them.

time limit, and the policy that leads to decide the final action.

In my work, I use three agents that belong to this group: One Step Look Ahead
(OSLA), Monte Carlo Tree Search (MCTS) and Open-Loop Expectimax Tree Search
(OLETS), presented in detail in Section 3.2.

2.2.2 Evolutionary algorithms

Evolutionary Algorithms (EA) look at optimising a problem and are based on Darwin’s
natural selection. These algorithms do not build a search tree because they consider
complete solutions and not the path followed. However, they have access to a forward
model to simulate states and calculate the rewards (fitness) corresponding to each of the
solutions, also called candidates. The group of solutions taken into consideration by the
algorithm at each point in time is called population. Evolutionary algorithms adopt a
similar template [Yannakakis and Togelius, 2018, Chapter 2] that starts with the initiali-
sation of the population. The fitness of each solution (obtained by their evaluation) and
other criteria are used to choose various candidates (parent selection) that ultimately
lead to the next generation by reproduction. The offspring may be generated through
crossover, simply duplicating the candidates, or by a combination of both. Mutation
may also be applied to the parents and new solutions to introduce variation. The new
generation is formed by selecting the parents and offspring based on a particular criterion
and strategy. These steps can be repeated until a termination condition is met, resulting
in the final population. An overview of EA is shown in Fig. 2.2

Crossover combines the parents by selecting different components of each and joining
them to create a new solution. Mutation, on the other hand, alters one or multiple ele-
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ments of a solution. Various techniques can be used for crossover and mutation [Eiben
et al., 2003].

Evolution: 
reproduction + variation

Initialisation

Population Parents

Termination

Parent
selection

Crossover

Mutation

OffspringReplacement

Figure 2.2: Evolutionary Algorithm overview; based on flowchart in [Eiben et al., 2003].

In my work, I use two agents of this type: Rolling Horizon Evolutionary Algorithm
(RHEA) and Random Search (RS), detailed in Section 3.2.

2.3 General Video Game Playing (GVGP)

The research on Artificial Intelligence and its application in games are extensive and
promising. However, all the agents developed for the challenges and competitions that
have been mentioned until this point have a definite limitation: they are created having
a specific game in mind. Having all the information about the game available helps pro-
grammers and AI designers to take advantage of that knowledge to tweak the algorithms
and guide the AI in a specific direction. For instance, when creating drivers for the
Simulated Car Racing Championship, programmers know tricks to overcome other cars
in certain circumstances, a piece of knowledge they use and include in their heuristics.
Similarly, when creating an agent for the Mario AI Championship, they are aware that
colliding with certain elements would kill them, but others would give them a boost or
points. Lastly, AlphaGo can defeat the top human Go player of the decade. However,
if the algorithm is provided with a similar interface to compete in a simpler game like
Tic-tac-toe, it would not be able to play and succeed without being previously specifi-
cally trained to do so. All these agents are developed exclusively for those games and,
although their design and implementation are still not simple, the fact mentioned above
opens the discussion on whether or not the algorithms are really ‘intelligent‘.

General Game Playing (GGP) tries to solve this problem and refers to the cre-
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ation of algorithms that are general enough to have a good performance in numerous
games instead of focusing on just one. These algorithms should be able to play a game
without having previous knowledge about it or being aware of its rules. Pitrat [1968] was
the first to propose the concept of GGP studying the use of a program with the capacity
of playing various combinatorial games. This program is informed about the moves and
win condition and, without knowing the rules of the game, must find the plan that leads
to its victory while avoiding dangerous moves. Years later, Pell [1996] created the first
practical GGP program. They also introduced the concept of Metagame [Pell, 1992]:
the idea of developing programs capable of taking the rules of any game within a well-
defined class as input and play against opponents. The start point was generalising a set
of games already studied in game-playing and transferring some game-specific methods
to a general problem. Later on, they would look at generalising to any game. They
defined a class capturing the aspects of most of the symmetric chess-like games, built a
game generator, and created a move grammar, which is a language that allows players
to communicate their moves when playing the games. The game generator was intended
to prevent the developers from focusing on specific rules, making them look at a gen-
eral representation of their knowledge instead. They used this generator to produce an
example, analyse it, and determine that complex rules can offer an interesting strategic
analysis. However, the process used to study the games and build game-playing solutions
did not work when looking for a general-purpose evaluation function. The conclusion
reached was that the generator created served as proof of the possibility of providing the
means to build and test general game-playing approaches. However, the techniques used
to build AI relied on the programmers’ capability to understand the rules of the game
and build evaluation functions accordingly. Therefore, the problem they were trying to
tackle may be beyond the possibilities of the time.

Since this first attempt in the early 90s, AI has evolved, benefiting the research in
GGP as well. In 2005, the Stanford Logic Group of Stanford University developed the
first General Game Playing framework: Gamemaster, a system capable of accepting
a formal description of a game and playing it effectively without human intervention.
They organised the AAAI GGP Competition [Genesereth et al., 2005], where partici-
pants built general agents for finite, synchronous games. These were written using a
Game Description Language (GDL), similar to Prolog in syntax, where it was possi-
ble to specify player roles, initial and goal states, legal moves, and state changes. In
Gamemaster, game-playing agents do not know the rules beforehand as they receive the
declarative descriptions of the game at runtime. The system includes a game manager
responsible for running the games, communicating with the players, and making sure
the controllers follow the rules of the game (Fig. 2.3). The competition ran for sev-
eral years, receiving between 10 to 15 general game players entries annually, becoming
more sophisticated and powerful every year [Genesereth and Björnsson, 2013]. Some
innovations were put in place during this time. The most significant ones were the intro-
duction of Monte Carlo Tree Search (MCTS) methods, described in Section 3.2.2, and
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Figure 2.3: Details of the Game Manager; from [Genesereth et al., 2005]. It is part of
the Gamemaster system used in the GGP Competition and is responsible for running
the games, communicating with the players, and ensuring the controllers follow the rules.

the use of game-independent heuristics. They created heuristics introducing mobility
(number of legal moves), inverse mobility (limiting opponents’ freedom), and goal prox-
imity. Although agents including these heuristics performed better than random, they
did not have a good performance overall. Therefore, there was still research to be done in
this area. The authors concluded that, even when some interesting technology emerged
from the competition, it was insufficient to the GGP scope, resulting in them not being
applicable to real-world problems. Thus, there was room for modernisation and progress.

During the last few years, the idea of General Game Playing has been extended to
real-time games, originating the concept of General Video Game Playing (GVGP)
[Levine et al., 2013]. Researchers of this field aim to develop algorithms capable of
playing video games without having prior knowledge about them, their rules, or the en-
vironment and where agents have mere access to the state and the actions available.

Video games come with a diverse spectrum of characteristics and genres, ranging from
2-dimensional single-player with constrained levels to 3-dimensional multi-player open-
world games. This challenge has driven the creation and existence of several platforms
and competitions available to assist the research community.

2.3.1 Frameworks for research in GVGP

General Video Game Playing (GVGP) is ongoing research applied to several areas of
games (single or multi-player, collaborative or competitive, deterministic or stochastic,
etc.), which increases the complexity of the generalisation sought. The interest in this
challenging area of research has grown over the past years. Thus, there is an active
community of researchers aiming to tackle the problem, leading to the existence of mul-
tiple open-source Frameworks to encourage its study. The most important ones are
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the Arcade Learning Environment (ALE) [Bellemare et al., 2013], General Video Game
AI (GVGAI) Framework [Perez-Liebana et al., 2019b], OpenAI Gym [Brockman et al.,
2016], Project Malmo [Johnson et al., 2016], and Unity ML-Agents [Juliani et al., 2018],
among others.

Arcade Learning Environment (ALE) It is a platform to evaluate general, domain-
independent AI agents making use of 55 Atari 2600 games, like Space Invaders and Ms
Pac-Man [Bellemare et al., 2013]. It provides an interface to work as a benchmark
for planning and learning problems, but most of the research carried out using this
framework focuses on RL. Results obtained suggested that general Atari game playing
was challenging but manageable, having the potential to help the development of general
agents. Mnih et al. [2015] used Deep Q-Networks (DQN) to play 49 of the games available
by having access only to the pixels of the screen and the score. The AI managed to
achieve a level of performance comparable to a professional human in many of the games.
Although ALE also supports planning algorithms, the research done in that area is
lacking; presumably due to the complexity of finding heuristics general enough to work
for every game [Machado et al., 2018].

General Video Game AI (GVGAI) Framework It is an open-source platform that
facilitates the research in GVGP in single or two-player 2D arcade games. It supports the
study of planning and learning approaches and has been used for several competitions,
resulting in the availability of a range of agents [Perez-Liebana et al., 2019b]. These
agents are general within the framework and can play any of its games. I use this
framework to carry out my work, and it is described in detail in Section 3.1.

OpenAI Gym It is a toolkit that provides a common interface for a collection of envi-
ronments based on pre-existent RL benchmarks to test learning approaches [Brockman
et al., 2016]. This collection is growing over time and includes, among others, ALE
and the learning track of the GVGAI Competition. In contrast with other frameworks,
OpenAI provides an abstraction for the environment instead of the agent and does not
include a hidden test set. Instead of arranging competitions, it encourages peer review
and collaboration by sharing the code and a description of the approach followed. The
framework focuses on both the performance of an algorithm and the amount of time it
takes to learn.

Project Malmo It is a platform designed to support general AI research in RL, plan-
ning, multi-agent systems, computer vision, and robotics [Johnson et al., 2016]. It is
built on top of Minecraft, so agents are exposed to a complex 3D environment. In 2017,
this environment was used to run the Malmo Collaborative AI Challenge, focused on
collaborative AI. The goal was to create agents capable of learning to achieve high scores
when working with artificial or human players. In 2018, they announced the Multi-Agent
Reinforcement Learning in MalmO (MARLO) Challenge [Perez-Liebana et al., 2019a] to
encourage research in multi-agent reinforcement learning using multiple 3D games.
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Unity ML-Agents It is a framework to use and integrate learning approaches onto
games [Juliani et al., 2018]. It includes a series of pre-existent reinforcement and im-
itation learning algorithms that allow using these techniques in environments built on
Unity or creating personalised ones with TensorFlow. A series of tutorials and existent
environments serve as an example and starting point. This platform has been used to
run the Obstacle Tower Challenge [Juliani et al., 2019] to test the capabilities of gener-
alisation of AI agents when navigating through a procedurally generated environment.

Table 2.1 summarises the critical information about each of these frameworks. Most
of the toolkits have tutorials and sample agents at the disposal of the researchers, but
in some of them, it is not possible to customise the games or update the existing ones.
It was important to use a framework that, apart from providing sample agents, would
allow me to access the games and rules to adapt them when needed. Furthermore, my
work focuses on planning algorithms, so it was essential to use a framework with support
for agents with a forward model. The GVGAI Framework covers all my needs. Although
the games it supports are simpler and more limited than the ones in other frameworks,
my research is the first step in a larger vision, and that simplicity is enough to create a
proof of concept. I believe the approaches designed and implemented could be extended
to more complex systems in the future with further research.

ALE GVGAI Framework OpenAI Gym Project Malmo Unity ML-Agents

Research Mainly RL
Planning
Learning RL

RL
Planning

Computer vision
Robotics

RL
Imitation learning
Neuroevolution

Games Atari 2600 2D arcade

Common interface
to existing research

environments Minecraft 2D, 3D, VR/AR
Players Single player Single or 2-player - Multi-player Single or multi-player

Agents interface Screen pixels
Game state,

Forward model

Abstraction of
the research
environment

Minecraft
environment +

API

Learning
environment +
Python API,
Tensorflow

Customisable games - VGDL - - Unity
Competition - GVGAI Competition - MARLO Challenge Obstacle Tower Challenge

Table 2.1: Overview of the main frameworks that are used for research in GVGP: Arcade
Learning Environment (ALE), General Video Game AI (GVGAI) Framework, OpenAI
Gym, Project Malmo, and Unity ML-Agents. It summarises the essential information
about each: the type of research they are used for, the games and number of players they
support, the interface presented to the agents, the language used for the games if they
support the creation of customisable ones, and the corresponding competition if any.

While the scope of my research is limited to GVGP, it is worth mentioning two recent
frameworks oriented to the research of GGP in card and board games. These systems
are designed to study state-of-the-art methods that could apply to video games in the
future: OpenSpiel [Lanctot et al., 2019] and Polygames [Cazenave et al., 2020].

OpenSpiel It is a framework to encourage the research on general reinforcement learn-
ing and search approaches in card and board games [Lanctot et al., 2019]. It supports
a wide range of games with different characteristics: single/multiplayer; zero-sum; coop-
erative and general-sum; one-shot and sequential; both turn-taking and simultaneous-
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move; games with perfect and imperfect information; and multi-agent environments like
grid worlds and social dilemmas. The platform provides an extensive list of games and
algorithms and supports the creation of new ones.

Polygames It is a framework focused on zero-learning techniques. It contains a compi-
lation of games and checkpoints that allow quick self-training of agents with good results
[Cazenave et al., 2020].

The existence of these (and other) platforms to study general agents implies that there
is a huge variety of algorithms with different characteristics, weaknesses, and strengths
at everyone’s disposal. The most common techniques to tackle and develop these agents
are Tree-Search, Evolutionary Algorithms and Reinforcement Learning, introduced in
Section 2.2. The level of generality of the agents depends on the heuristics included in
the algorithm, which, in most cases, are focused on winning the game and maximising
the score achieved. The idea behind the research in GVGP is the creation of high-quality
algorithms that perform well in different games, ensuring the strength comes from the
approach and not from a game tailored hand-crafted heuristic.

2.3.2 Heuristics for GVGP agents

When facing the design of players for General Video Game Playing (GVGP), it is not
possible to apply game knowledge into the algorithms, as the rules and characteristics of
the games are unknown. Therefore, the chances of writing heuristics that can success-
fully guide search in every game are significantly reduced. When designing heuristics
in the context of generality, it is essential to keep in mind that the agents would make
decisions without knowing if these put them closer to their ultimate goal. It is neces-
sary to compromise on their priorities and the information they rely on to make these
decisions. Heuristics are the basis of every general algorithm and, therefore, should be
implemented carefully.

Most of the heuristics used in GVGP solutions focus on winning and maximising
the score when a win condition is not reached. The limitation of this approach arises
when it is necessary to carry out specific actions to get to the winning states, the change
in score is not directly connected to winning, or the rewarding states are not reachable.
When the agent cannot get enough information to make the right decisions to win, their
behaviour would be erratic and their efforts unsuccessful. By looking at the agents
submitted to the GVGAI Competitions over the years [Perez-Liebana et al., 2019b], I
can attest how even with the existence of a range of controllers and approaches, the use
of alternative heuristics to winning and maximising the score is practically nonexistent.
However, some authors have looked into expanding the description of the heuristics to
search the game space more effectively and overcome the limitations.

Exploration Perez Liebana et al. [2015] implemented a nature-inspired technique
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based on pheromones that would prevent the agent from staying in the same position
too often, hence encouraging the physical exploration of the level. Each of the locations
of the grid is assigned with a number between 0 and 1, corresponding to the number of
pheromones. Every game tick, the pheromones in the proximity of the current and recent
positions of the avatar increases, creating a high concentration of them in its proximity
(Fig. 2.4). The amount of pheromones assigned to a cell decays with time. Although the
priority of the heuristic is winning with a high score, it rewards reaching those locations
where the pheromones value is small. It also penalises actions that originate blocked
movements (i.e. the position of the avatar does not change) or opposite actions (i.e. per-
forming two consecutive contrary movements like Up and Down). Nielsen et al. [2015]
created a much more straightforward exploratory heuristic that stores the information
about the visited locations of the level and simply encourages visiting new ones.

Figure 2.4: Pheromone diffusion; from [Perez Liebana et al., 2015]. Each cell is assigned
a number of pheromones. It is a value between 0 and 1 that decays over time.

The exploratory heuristic based on pheromones is used in a study that compares the
performance of Multi-Objective (MO) approaches in GVGP [Perez-Liebana et al., 2016].
Multi-Objective approaches look into optimising different objectives simultaneously to
overcome the difficulties given by using only one when not enough information may be
provided by it. In that experiment, the authors use the level exploration and score
as the two heuristics applied to their Multi-Objective implementation of Monte Carlo
Tree Search (MCTS). They created three different versions of MO-MCTS and compared
them to a single-objective MCTS. Results show an improvement in the performance
when using Multi-Objective versus the Single-Objective MCTS. However, interestingly,
these results also show that just switching between objectives uniformly at random and
one at a time obtains decent results in many games. MCTS is one of the algorithms I
use in my research, and it is detailed in Section 3.2.2.

Knowledge gain An innovative approach in GVGP is using heuristics to acquire
knowledge of the level while it is being played. This procedure was first proposed in
[Perez et al., 2014]. The motivation came from the limitations found when using the
MCTS algorithm in a general video game environment. Firstly, it is not possible to
reuse past information from the events that cause changes in the score. Secondly, some
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sprites of the game are never reached by future simulations. Lastly, the outcome of
the interactions with the sprites are unknown, and, as a result, the agent has no in-
formation about the ones that should be targeted or avoided. The Knowledge-based
Fast Evolutionary (KB Fast-Evo) MCTS is introduced to tackle these issues by taking
advantage of past experiences and using the interactions with the sprites to estimate
the value resulting from colliding with them. Two new concepts are defined: curios-
ity, which refers to discovering the effects of the agent colliding with other sprites of
the game; and experience, which refers to rewarding those events that cause a positive
change in the score. MCTS is combined with an evolutionary technique to guide the
simulations during its execution. The evaluation function prioritises the actions that
lead to a score gain, followed by those that provide more information to the knowledge
database or lead the avatar closer to sprites that provided a score gain in the past. A
series of revisions of the KB Fast-Evo MCTS have been presented. An improvement
proposes to replace the Euclidean distance employed as a feature in [Perez et al., 2014]
by a method that determines the potential of the surrounding sprites and influences the
movement of the avatar, slightly improving the victory rate of the algorithms in a similar
set [Chu et al., 2015a]. An extension combines the KB Fast-Evo MCTS with Dijkstra’s
pathfinding algorithm to take advantage of the knowledge gain while guiding the agent to
their targets in an efficient manner [Chu et al., 2015b]. The strengths and limitations of
the KB Fast-Evo MCTS are analysed in detail in [van Eeden, 2015], which also includes
and proposes further modifications to improve the performance of the algorithm. This
knowledge heuristic has not been investigated further since the work described above or
applied to other controllers, but I believe it has potential.

Search space navigation Additionally, Park and Kim [2015] propose the use of In-
fluence Maps (IM) to assist the navigation of an MCTS algorithm through the search
space more efficiently. Even when the agent cannot find rewards, the IM will guide it
to potential ones. It uses the concept of curiosity to motivate the agent and resolve the
goodness of the objects if there is no information about them. This goodness is deter-
mined with the forward model by learning the outcome of the interaction with each of
the elements of the game. The information gained is used to create the IM to be at the
disposal of the algorithm (Fig. 2.5). This solution tackles the problem of sparse rewards
present in some games and, on average, can boost the resulting score.

The motivation instigating the study of alternative heuristics to winning and max-
imising the score comes from overcoming the limitations in the scarcity of rewards given
by the baseline approaches. Still, they are ultimately created with the target of victory
in mind. The following section looks at the existence of a variety of behaviours from the
players based on their motivations. These motivations may ultimately involve winning,
but it is not necessarily their primary goal or their goal at all, so why is the focus of
GVGP agents primarily on achieving victory?
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Figure 2.5: Overview of the use of an Influence Map; from [Park and Kim, 2015].

The generality of the agents has evident potential and, although there is a large
and active community of researchers working on improving the general algorithms and
creating new ones, there is a lack of research looking for applications for them. My
work explores filling that void by looking at the possible integration of GVGP agents
into the game development process or as an alternative AI approach within it. I believe
that the path that eventually would take to finding these potential applications starts
with eliciting differentiated behaviours for the GVGP agents by providing them with
objectives beyond winning.

2.4 Gameplay Behaviour

The concept of persona is used in Software Development to identify end-users and assist
in the design of the product [Cooper, 1999]. It is also applicable to game development by
considering that players present different ways to play a game based on their motivations,
which leads to distinct behaviours and the existence of recognisable player-types.

2.4.1 Player-types

Bartle [1996] identifies the existence of four type of players in Multi-User Dungeon
(MUD) games, based on their interests: achievers, explorers, socialisers, and killers.
Players are differentiated regarding the elements they direct their attention to (the en-
vironment or other players) and how they act and interact towards them (Fig. 2.6a).
Achievers focus on game-related goals that they give to themselves, while explorers try
to find as much as possible about the virtual world. Socialisers communicate and inter-
act with other players, and killers prioritise their imposition upon other players using
elements of the game to cause an effect on them. Players generally have a primary style,
but the classification is not a strict division. There may be a cross over between the ar-
eas, and players may change their style based on their mood or motivation at the time of
playing. This information can be applied to the design of the game and balance the exis-
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tence of the different play styles by putting strategies in place to encourage or discourage
each of them. Bartle [2005] revises the initial theory due to some limitations: Firstly, it
does not explain how or why players may change over time. Secondly, it is possible to
identify sub-types in every player-type that the theory does not address. These issues
are resolved by including a third dimension that distinguishes between planned actions
to achieve an ultimate goal (explicit) and those that are done unconsciously (implicit).
This additional dimension results in a total of 8 player-types, where each of the original
types is divided into two different ones (Fig. 2.6b).

(a) Original (2D) (b) Reviewed (3D)

Figure 2.6: Bartle’s player-types; from [Bartle, 2005]

In any case, the focus of the player type theory is to explain why people play Massive
Multiplayer Online (MMO) games, and it is not supposed (or expected) to be applied
to other types of games [Bartle, 2012]. Therefore, the target audience is MMO designers
to design and create their virtual worlds.

Bartle’s player-types are well-defined, so if I used MMOs for my research, I could
take each of the player-types as a reference to design and implement heuristics that
represent similar behaviours for the agents. However, MMOs are complex, which is a
barrier to use as a starting point for a new line of research. Furthermore, my research
focuses on generality, so I look at designing an approach that can apply to different
games. The way to validate this approach is to design and implement heuristics that
can be used in different games. Using and defining a method for MMOs would limit this
vision. Therefore, I decided to use this theory merely as an inspiration to recognise that
I may assume that winning and achieving a high score are not the only motivations of
the players. Because I do not use MMOs, I cannot simply take these player-types and
assume they apply to every game, define them, and use them for testing. As a result,
I first need to identify a list of different behaviours that can be found (or not) in one
or more games. Then, I use this list to identify and implement general heuristics that
I can use in games supported by the same framework. Finally, in each of the games I
use to validate my approach, I choose and apply only the heuristics that make sense for
each particular game to generate the final behaviours of the agents. My goal is to define
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and provide the tools to designers and game developers to determine the behaviours and
heuristics that would apply to their games.

More recently, Yee [2016] has introduced a player motivation profile resulting from
survey data from more than 250, 000 players. The model results in a total of 12 player
motivations based on how players focus their interactions with the environment, game, or
other players: destruction, excitement, competition, community, challenge, strategy, com-
pletion, power, fantasy, story, design, and discovery. These motivations can be paired to
distinguish between six high-level groups, presented in Fig. 2.7a: action, social, mastery,
achievement, immersion, and creativity. Similarly, at an even higher level of granular-
ity, these can be grouped in 3 motivation clusters that facilitates the interpretation of
the profiles [Yee, 2019a]: action-social, mastery-achievement, and immersion-creativity.
Each of the motivation factors is a spectrum. The games from the data set in the top
20% and bottom 20% of each ranking are analysed in an attempt to address the blind
spot or negative space common across most motivation taxonomies [Yee, 2019b]. These
games exemplify the preferences of players with extreme motivations, so they are used
to identify those preferences and the anchors on the extremes of the spectrum. I include
the fantasy spectrum in Fig. 2.7b as an example. The profile generalises to several types
of games, and the games themselves may show peaks in some of the classifications or do
not present them at all.

Independently of the type of game under consideration, it is safe to assume that the
players’ motivation influences their goals, affecting their gameplay and reactions. I do
not apply these models but take them as a revelation to look beyond the objectives of
winning and achieving a high score to identify goals that can be used as heuristics for
agents in different games. I define this list of possible goals in Section 5.3.

The following section looks into how authors have been able to classify and group
distinct players’ behaviours and motivations based on the metrics resulting from their
gameplay.

2.4.2 Play-personas and gameplay metrics

Players display distinct behaviours that are also dependant on the game’s characteris-
tics. These behaviours can be identified by recording metrics of their gameplay. Tychsen
and Canossa [2008] make a distinction between character-bound metrics, associated with
the Player Character (PC), and event metrics, related to every element unbound to the
PCs, like NPCs or changes in the environment. PC metrics are classified in navigation,
interaction, narrative, and interface metrics. Different types of analysis of these metrics
are possible based on the requirements, so it is necessary to allow various levels of data
aggregation: play mode, referring to the behaviour of the player regarding a few metrics,
play-style, which combines multiple play modes, and play-persona, that emerges when
the player uses play-styles consistently and represents different models of how players
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(a) Motivation factors grouped by pairs to distinguish between 6 high-level groups: action, social, mastery,
achievement, immersion, and creativity.

(b) Detailed example: fantasy spectrum. Each motivation factor can be considered a spectrum, and
games are identified in their extremes (low fantasy, high fantasy) to exemplify the preferences of players
with extreme motivations. As an example of high fantasy, we encounter games like Mass Effect [BioWare,
2007], with an immersive world, rich history, and lore. On the other side of the spectrum, we find games
like Counter-Strike [Valve, 2000], where the settings are generic, and the world-building is minimal.

Figure 2.7: Gamer Motivational Model; from [Yee, 2019b]
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interact with the game. As an example, they define metrics particular to Hitman: Blood
Money [IO Interactive, 2006] and use these levels of aggregations to describe patterns
of gameplay corresponding with personas hypotheses that designers identify in the early
stages of the game design. The authors conclude that metrics can provide precise in-
formation about the behaviour of the players, so this method can be used as a tool
to develop and test a variety of gameplay styles. Alternatively, Ferguson et al. [2020]
propose to cluster different play-styles based on visual information instead of gameplay
data, as there may be cases where metrics are not available or accessible.

Play-personas are not limited to motivation profiles; they are both theoretical models,
called metaphor, and data-driven representations of the players, called lens (Fig. 2.8)
[Canossa and Drachen, 2009]. In other words, they represent identifiable behaviours
available to the players given the characteristics and composition of the game. The
designers can identify the play-personas, given the possibilities of the game rules, and
verify their hypotheses using gameplay metrics and categorising the emerging behaviours
by similarity.

Figure 2.8: Play-persona as metaphor and lens; from [Canossa and Drachen, 2009]:
"The black dots on the possibility field plane represent game mechanics; thanks to the
a-priori description of the persona-as-metaphor a certain subset is individuated. This
persona hypothesis can be checked against metric data gathered from players and inform
the creation of persona-as-lens."

Drachen et al. [2009] use high-level metrics and unsupervised ML to identify four
different types of players in Tomb Raider: Underworld (TRU) [Crystal Dynamics, 2008].
The data obtained from the gameplay of several players comprises the total number of
deaths, the causes (by opponent, environment, or failing), completion time, and help-
on-demand information. The type of player clusters identified are veterans, solvers,
pacifists, and runners. Veterans are the group with the most well-performing players.
Solvers focus on solving the puzzles of the game and do not usually ask for puzzle hints
of answers, die quite often (mainly related to failing), and it takes them a long time to
solve the game. Pacifists die mainly from active components, and both their completion

57



2. Background

time and asking for help is below average. Finally, runners complete the game quickly
and die often, mainly caused by opponents and the environment. The existence of these
differentiated behaviours proves that the players take advantage of the range of mechan-
ics of the game and its possibilities rather than using a monolithic strategy. Moreover,
being able to identify they exist can provide useful information for the designers and the
development of the game. Sifa et al. [2013] go a step further and, instead of limiting
their study to a unique picture of the behaviour overall in the game, they examine the
evolution of player behaviour across the main levels of TRU.

Melhart et al. [2019] bring together player motivation and play-personas by studying
the use of the gameplay data to predict the motivations of the players in Tom Clancy’s
The Division [Massive Entertainment, 2016]. They use ML to model different psycho-
logical constructs related to motivation, reaching a high accuracy percentage in unseen
players. They conclude that player motivation can be predicted using gameplay features.

This section shows how it is possible to identify the motivations and behaviours of
the players by looking at their gameplay results, which extends the theoretical work
introduced in the previous section. Similarly, it is an inspiration to my research. The
research presented focuses on human players, but the idea of using metrics to identify
or understand how the game is played should also apply to agents that take the place of
a player. Although I do not use ML or classification models, I look into the gameplay
results of the agents to identify different behaviours in each game.

The following section looks at work that has also been inspired by the existence of
distinct behaviours during gameplay to define game-playing agents that represent them,
called procedural personas.

2.4.3 Procedural personas

The existence of archetypes in games have inspired the creation of artificial personas
to model the decision making of players [Holmgård et al., 2014b]. A proof-of-concept
theory-based method trains a series of Q-learning agents (a particular approach in Re-
inforcement Learning described in [Watkins and Dayan, 1992]), so their reward function
simulates the utility function of different players. They present a dungeon themed puz-
zle game called Minidungeon, identify different playing styles, and train the agents by
providing rewards related to each of them: a baseline player focuses on reaching the exit,
a runner on minimising the moves, a survivalist on minimising the risk and not being
killed, a monster killer on killing the monsters, and a treasure collector on collecting
the treasures of the level. Independently of their style, all the agents are rewarded for
finishing the game by arriving at the exit. The resulting behaviour of the agents de-
pends on the level used for their training. Fig. 2.9 shows an example of the resulting
heatmaps of the agents in one of the levels. The overall statistics show different play
styles aligned with their description: the baseline and the runner show similar behaviours
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to the survivalist: reaching the exit, but the latter does not die in any of the executions.
In contrast, the runner finishes the game by visiting the least number of tiles. Similarly,
the collector gathers more treasures than any other agent, and the monster killer kills
a high percentage of the monsters while at the same time collects the most significant
number of potions to be able to do so.

(a) Agent B, R or S (b) Agent M (c) Agent T

Figure 2.9: Example of heatmaps of the agents in one of the levels of Minidungeon;
from [Holmgård et al., 2014b]. The nomenclature assigned to the agents is as follow: B
for the baseline player, R for the runner, S for the survivalist, M for the monster killer
and T for the treasure collector.

Additionally, Holmgård et al. [2014b] collect play traces from human players to com-
pare them with the decisions taken by the agents in similar situations of the game. A
random controller is also included in this study. This analysis looks for the fitting repre-
sentation of each player by replaying the games and registering the persona that relates
to the actions taken by the human. The results indicate that all the agents except ran-
dom are suitable approximations of some player, the treasure collector dominating the
data. The authors conclude that it should be possible to achieve a high-level abstraction
of human decision making.

Next, Holmgård et al. [2014a] build over the work described above to overcome some
limitations inherent to the use of Q-learning algorithms. They also introduce the concept
of procedural persona to describe evolved game-playing agents that represent archetypal
play-styles. The alternative method uses evolvable perceptrons to represent each persona
as, although structured differently, they achieve a similar decision-making style to the
first agents. Five personas with similar objectives to the ones described for the original
experiment are defined, but the baseline player is named exit instead. To assess the per-
formance of the procedural personas, they are compared with the Q-learning agents and a
series of baseline agents in experiments similar to [Holmgård et al., 2014b]. The baseline
agents defined are one random and a set of five hand-crafted agents, each of them created
to achieve the primary goals related to each persona by following the shortest path to
them. The results show that the procedural personas, which can generalise to unseen
levels, are a better solution at matching human players and optimising the rewards to
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achieve the objectives.

Lastly, Holmgård et al. [2018] describe a final method to define and generate proce-
dural personas for a reviewed version of the dungeon game called Minidungeons 2, which
is detailed in [Holmgård et al., 2015]. The simulation of the behaviour in these personas
is created by evolving a mathematical formula to replace the Upper Confidence Bound
(UCB1) equation of Monte Carlo Tree-Search (MCTS) [Browne et al., 2012]. They iden-
tify four primary objectives, leading to four differentiated behaviours: runner, monster
killer, treasure collector, and completionist. UCB1 is adapted to each of the primary
objectives related to those behaviours: reaching the exit, killing the enemies, collecting
items, and consuming any game object that it is possible to either collect or kill. Sim-
ilarly to the previous experiments, the agents are also given a secondary goal: always
finishing the game by arriving at the exit. They study the performance and behaviour
of each of these procedural personas in several levels of the game. They observe clear
distinction in the way they interact with the environment, leading to play-styles and
performance based on their own goals. They notice how the agents are sensitive to the
patterns of the levels. As a result of these observations, they propose using their proce-
dural personas to create artificial play-traces and evaluate the levels of a game, arguing
that the results can serve as feedback to the human designers.

Minidungeons 2 has a total of 11 levels, with a variety of characteristics and in-
teractive objects. Analysing the personas’ play-through across these levels shows that
each persona leads to different significant correlations between metrics related to their
properties and utility. As an example, runner obtains a significant correlation between
total computation time and shortest path between the entrance and exit. The two levels
with the most and least differences in metrics and between personas (Fig. 2.10) are fur-
ther analysed to study how the elements’ layout and disposition affect the diversity of
behaviour and gameplay across the different personas. The authors also analyse which
maps would be preferred by each persona based on the resulting metrics and conclude
that these evaluations can be executed quickly, being a feasible method to take part in an
iterative design process. Mugrai et al. [2019] apply the strategy of procedural personas
for automated testing to Match-3 games.

Similarly, Ariyurek et al. [2021] extend the portrayal of the personas in RL to the
characterisation of a dynamic model that addresses the static aspect of the personas de-
fined in [Holmgård et al., 2014b], given by their bound to the utility function. These new
goal-based personas, called developing personas, are constituted by a linked sequence of
goals instead of a unique utility function, allowing a progression of behaviours during
gameplay. It grants the designers a higher level of control and variations, as they can
choose the criteria that fulfil each goal and continues the sequence, like in the example
shown in Fig. 2.11.
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Figure 2.10: Metrics comparison between the procedural personas for the levels with the
most and least differences between them; from [Holmgård et al., 2018].

Figure 2.11: Developing personas example; from [Ariyurek et al., 2021]. The behaviour
of the persona changes when a goal is reached, allowing a progression of behaviours
during gameplay.
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My work is inspired by [Holmgård et al., 2018], but it aims to have a more general and
portable approach, capable of being applied to several different games without having to
design specific types, or utility functions, to fit the game under consideration. I believe
that extending the idea to use general agents, developed with general goals that apply to
several different games, can provide significant advantages. A team of pre-defined types
with general purposes and approaches can provide the designer with the opportunity to
choose agents to fit different properties of the game. The following section looks into
current approaches related to the use of automated testing in the games industry and
academia.

2.5 Video Game Development and Testing

Game development is an interactive process, so a game evolves and goes through con-
tinuous modifications. Even minor updates can have an impact on the game and cause
unexpected problems. Thus, when including changes to the game or integrating new
levels, it should go through a testing process to ensure the status is aligned with the
expectations. Different areas are covered to ensure the robustness of the game, both
technically and related to the players’ experience. Player Experience (PX) is a research
field that focuses on studying the perception and responses of people when playing a
game [Bernhaupt, 2015], and it is related to Games User Research (GUR) [Drachen
et al., 2018].

I overlook GUR and focus on the technical domain that ensures that no bugs break
the playability, influence the gameplay, or affect any other element or characteristic of the
game as an artefact. Play-testing is used for this purpose, and refers to playing a game,
or a portion of it, to identify potential issues in the game. It is usually carry out by going
through a series of tasks to make sure all of them fulfill the expectations. This process
of actively looking for issues in the game can also be called bug finding. This Quality
Assurance (QA) of the games is usually carried out by members of the development team
or testers. When these tests require playing the game manually, QA is time-consuming
and prone to neglect issues. An alternative is adopting automated solutions capable of
identifying problems and assisting with repetitive tasks required during the QA process.
The purpose of automated testing is to facilitate the QA by using processes that are
executed systematically and are capable of identifying issues in the game.

My work proposes a new automated approach that makes use of GVGP agents.
Play-testing involves taking the player’s role and is commonly manually carried out by
humans. I argue that it should also be possible to use game-playing agents to assist in
part of this process because these agents also play the game and, given the right set-
up, should be able to encounter bugs during their play-through. Some authors are also
looking into this idea. In this section, I present existing automated testing solutions in
the industry and academia. It is a very complex problem, so there is a wide variety of
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approaches aimed at tackling it.

2.5.1 Automated testing in the industry

Some public examples of automated testing in commercial games are the following.

Some automated tests, like the ones applied in the Call of Duty [Activision, 2003]
games, focus on validating the builds and checking if they pass or fail after every modi-
fication made to the game [van Valburg, 2018]. They also complement the manual QA
with additional nightly performance tests to ensure the game executes on a specific bud-
get. These performance tests measure the frames and the load of the CPU and GPU in
different game locations. The tools used to obtain low-level performance tests and track
execution traces to optimise the programs (including games) are called profilers. They
are commonly used in the games industry to make sure the game executes within the
resources budget.

Automated tests were also integrated into the development of Sea of Thieves [Rare,
2018]. The motivation came from the complexity of the open-world and the short length
of the release cycles to include new features addressing the feedback of the players.
Masella [2019] explains the different types of tests used, oriented to testing the robust-
ness of gameplay features after the changes, being the main ones: unit tests, integration
tests, and actor tests, which are gameplay tests but at a lower level. Incorporating these
tests addresses the necessity of manually testing repetitive tasks, reducing the number
of manual tests and time needed to verify the build. However, these tests do not align
with iterative development as they require updates to adapt to the changes.

Other automated tests include automated play-through functionality and adaptabil-
ity. In the point-and-click adventure game SoBlonde: Back to the Island [Wizarbox,
2010], they integrated testing as part of the game using dynamic tests capable of adapt-
ing to changes during the development [Marlin, 2011]. They created an engine and series
of scripts embedded in the game as modules, one per scene, that can listen to the events
generated and execute actions. In addition, they implemented a solver that searches
different states to find a way to play the game to the end; in practice, this solver can be
considered a brute-force game-playing agent. This solution resolves the need for manual
testing and the risk of corrupting the code when modified, but it requires time and re-
sources to integrate it as part of the game.

Moreover, Daedalic Entertainment, the publisher of adventure games like Deponia
[Daedalic Entertainment, 2012] and Anna’s Quest [Krams Design, 2015], uses ICARUS, a
generic "framework for autonomous video game playing, testing, and bug reporting" [Pfau
et al., 2017]. The system focuses on adventure games, completes a play-through in an
amount comparable to a human play-tester, and can detect bugs and track performance
measurements in real-time. It can identify the particular circumstance of the game
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where, for example, there is a peak in RAM usage or a drop in frame rates, while at the
same time, supports the report of general bugs in the game like crashes and blockers.

Generally, there is much secrecy in the video game industry and the strategies fol-
lowed by the studios during the development of the games, so it is challenging to assess
precisely how frequent automated testing is or its extent. However, it is likely that many
approaches, particularly those that involve executing automated play-through of the
game, are game-dependant. Therefore, it may be expected that they are heavily hand-
crafted and tailored towards the game, requiring regular updates. My work proposes
using GVGP agents to assist in the testing process as a solution that allows automated
gameplay and can adapt to different circumstances providing a more general approach.

2.5.2 Game-playing agents and automated play-testing

Automated testing and AI-assisted game design in academia is a recurring topic, and
various approaches exist to tackle it in different areas [Zarembo, 2019, Albaghajati and
Ahmed, 2020]. This section covers further research and methods proposed related to the
use of game-playing agents for automated testing and assisting the design of the game
to different extents that I consider relevant to my work. There are examples in multiple
genres of automation using heavily hand-crafted techniques that create agents to play
the game and fulfil tasks automatically [Iftikhar et al., 2015, Schatten et al., 2017]. How-
ever, I do not focus on these as I am more interested in studying the application in this
area of more advanced game-playing techniques, like the ones introduced in Section 2.2.

The existence of diverse behaviours in the game is present in some of the methods pro-
posed for automated testing. For example, the techniques and motivations of the players
to build decks in digital card games can be taken as a reference to design a heuristic and
balance a playing deck in Hearthstones [Blizzard Entertainment, 2014, García-Sánchez
et al., 2018]. This procedure allows to build competitive decks and automatically test
the design or addition of new cards without requiring to do it manually.

In the scope of dealing with player behaviour but related to game-playing agents in-
stead of deck building, I have previously introduced Holmgård et al. [2018]’s work. They
propose using procedural personas to evaluate the levels of a game and integrate them
as part of their iterative design process.

Other approaches look into human-like automated testing by using Deep Learning
to train the agents from data from human players’ play-throughs [Gudmundsson et al.,
2018]. Alternatively, some authors look at creating agents specific to play-testing instead
of resembling players. Zhao et al. [2020] propose building play-testing agents following
different gameplay objectives relevant to the designers instead of simulating players’ be-
haviours. They present two case studies that build these agents based on the factors
the designer requires to test in the games. Ariyurek et al. [2019] use and compare two
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strategies (synthetic and human-like) to generate goals related to play-testing and com-
pare the performance of each of the agents in terms of finding bugs in the game.

Although I am inspired by the existence of diverse behaviours and gameplays, I do not
look at human-like approaches. My research does not consider that play-testing requires
impersonating humans to the point that agents need to behave as they do. Instead, I
look at providing enough diversity to elicit various interactions and actions identifiable
with different types of play or tasks. I carry out all this work using general heuristics.

Next, I analyse some methods that link the use of general agents and testing.

Browne and Maire [2010] used GGP to test the validity of automatically generated
board games. Their work presents Ludi, a framework capable of creating combinatorial
games by mutating the rules of existing ones. In this system, general agents play the
games generated to evaluate and decide if they are good enough. The agents do not have
specific knowledge about the games, but their generality allows them to follow the rules
when they are well-formed and play them so that the system can assess their quality.
The ultimate goal of Ludi was to generate new compelling and publishable games, and
it succeeded. Yavalath is a strategic game with an innovative rule (winning by making
four-in-a-row but losing by making three-in-a-row) that has been the first computer-
generated game to be commercially published. Although GGP is out of the scope of my
research, this work motivates the idea of flexibility and adaptability of automated testing
using general agents to extend it to GVGP. These types of agents are transparent to the
rules, so they should be adaptable to changes on the game or the levels, applying not
only to Procedural Content Generation (PCG) but also to the game development process.

In the scope of GVGP and planning algorithms, Nielsen et al. [2015] presents the Rel-
ative Algorithm Performance Profile (RAPP) approach to estimate the quality of a game
based on the performance of various general agents. They compare the performance be-
tween known algorithms in a range of hand-designed, mutated, and random generated
VGDL games. Their premise claimed that a game that has a high skill differentiation
is likely to be a good one. Despite the results backing their hypothesis, I argue that
complexity does not necessarily infer quality and, although this approach can be use-
ful in the context of PCG, on its own, it cannot provide much information about a game.

In addition, the Computationally Intelligent Collaborative EnviROnment (CICERO)
is a general-purpose AI-assisted tool for 2D tile-based game design built on top of the
GVGAI Framework [Machado et al., 2017a]. The system assists in the creation and devel-
opment of Video Game Description Language (VGDL) games. It provides a mechanism
to add sprites and edit the rules of the game. It also includes a mechanics recommender
that suggests certain content based on the existing one. The most relevant feature of the
system is automated testing, which provides game rule statistics in real-time and a visu-
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alisation of the level. It allows playing the game manually or automatically with one of
the general agents available in the framework. In their examples, they use OLETS. Run-
ning the game with a GVGP agent provides heatmaps of the play-through and the NPCs
and information about the different rules that constitute the game. It shows a list with
these rules and includes stats for the resulting interactions related to each, highlighting
those not used during gameplay. Machado et al. [2017b] expand Cicero to incorporate
SeekWhence, a gameplay recording feature that provides forward and backwards navi-
gation of the session to analyse the sequence of events. Fig. 2.12 shows a screenshot of
the tool. The limitation of Cicero is that it is very oriented to VGDL and the GVGAI
framework, impeding its application to a broader range of games. Moreover, the system
does not take advantage of most of the inherent information that can be extracted from
the play-through, despite being possible to use any of the general algorithms available
in the framework for evaluation. Data obtained from the agents’ gameplay can provide
richer information to the users. Lastly, the ultimate goal of these agents is winning, so
the diversity and coverage are limited, and it is expected that their behaviour is consid-
erably alike.

Figure 2.12: Screenshot of Cicero. It shows the OLETS agent (adrienctx ) playing a
game to test its design; from [Machado, 2018].

Furthermore, aside from Cicero and including non-general premises, the use of agents
to assist in the design and generation of levels is a common practice, usually referred to
as co-creativity [Yannakakis et al., 2014]. Some methods focus on the playability of the
level [Shaker et al., 2013]. At the same time, others go a step further and try to make
sure that the navigation between different points of the level is possible and include an
estimation of its difficulty [Hoyt et al., 2019].
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There are a lot of different existing methods looking into automated play-testing.
Most of these methods have something in common: they define and create game-playing
agents. As a result, I have introduced and discussed a diverse range of AI solutions
specific for playing a game, i.e. taking the position of the human player. In contrast,
the following section gives a quick overview of the existing AI techniques used within
the games, being integrated into the artefact and taking a role in its environment. I
particularly highlight the applications of AI as Non-Player Characters (NPCs).

2.5.3 AI techniques within games with a focus on NPCs

NPCs are those characters in a game that the player does not control, and that can
be enemies, allies, or offer a neutral behaviour towards the player. The behaviour they
present is linked to their objective in the game and the interactions expected from them.
They can attack or run away from the player, assist by accompanying them, provide
hints, dialogue, or simply move and be part of the background of the game. In any
case, NPCs are controlled by the game and can be considered Artificial Intelligence (AI).
However, their implementation and, therefore, the characteristics of the algorithm used
in each case vary. The solutions can be simple scripts or behaviour selection algorithms
like Finite-State Machines (FSM), Behaviour Trees (BT), Utility Systems, Goal-Oriented
Action Planners (GOAP) or Hierarchical Task Networks (HTN) [Rabin, 2013, Chapter
4]. In any case, they are usually hand-designed to give specific steps and goals based on
the details of the game’s design and the purpose of the NPC.

Search algorithms are extensively used in commercial games as path planning tech-
niques, but their application for the development of the decision-making of NPCs is rare.
However, the usage of search approaches seems to be growing [Rabin, 2015, Chapter 22].
An example is the successful application of MCTS in strategic games like Total War:
Rome II [Creative Assembly, 2013, Rabin, 2015, Chapter 25]. However, their heuristics
are still heavily tailored toward the game [Thompson, 2018]. The use of GVGP agents
with heuristics that do not have specific information about the game has not yet found
its way into commercial applications. My work also includes a first attempt to integrate
GVGP agents with different goals as NPCs.

2.6 Summary and Conclusion

This chapter provides an overview of the areas related to my research and covers the
topics that have served as an inspiration for my work.

First, it introduces a brief historical overview of how games have assisted in devel-
oping and improving AI solutions because they have been a crucial benchmark for their
development. My work looks into taking advantage of the multitude of existing game-
playing agents that have come up over the years to integrate them as part of the game
development process and assist in their evaluation. Specifically, I focus on General Video
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Game Playing, so this concept is also presented. Various frameworks are used for GVGP
research, but not all of them suit the needs of my research, so I list them and summarise
their critical information. My research focuses on tree-search and evolutionary algo-
rithms, which are planning algorithms and have access to a forward model to simulate
future states. Furthermore, my experimental work is the first step in a large vision, so
it is essential to prove that the approach is generalisable to different games to validate
its potential. The GVGAI Framework covers all my needs because it supports planning
algorithms, has many 2D arcade single-player games available, and provides a diversity
of sample controllers that can be used and modified. Likewise, the games are developed
in VGDL, a very simple language that allows easily customising the existing games or
creating new ones. The following chapter includes details about this framework and its
characteristics, as well as the list of games I use in each of the experiments.

Most of the current GVGP solutions focus on winning. However, I believe that the
path that leads to finding potential applications of these agents in the game development
process starts with eliciting different behaviours. Therefore, I introduce and discuss a
few general heuristics that already exist in the literature with a goal beyond winning:
exploration, knowledge gain, and search-space navigation. All these have served as an
inspiration for my work and are referenced later in the thesis. The idea of providing
different behaviours to the agents is inspired by the existence of a diversity of gameplay
behaviours in human players. This chapter also goes through literature related to this
area. It introduces Bartle’s player-types, a well-defined theory that identifies the exis-
tence of differentiated type of players in MMOs based on their interests. If I had carried
out my work exclusively in MMOs, I could have applied this theory to my research and
base my team of agents on these player-types. However, given the complexity of these
games and my goal of defining an approach generalisable to multiple games, I take this
work simply as an inspiration and proof that winning is not only the only motivation of
the players. The Gamer Motivational Model presented also supports this statement, and
it influences the definition of some of the goals listed in my vision in Section 5.3. There
is existing work also inspired by the existence of different types of players. My research
is heavily inspired by Holmgård’s Procedural Personas, which I present and detail in this
chapter. However, my goal is to define a more general and portable approach capable
of being applied to multiple games without having to design specific utility functions or
heuristics for each. Furthermore, I look at the behaviour of the agents as the results of
their gameplay, instead of necessarily resembling human players or being based on their
traces, and I refer to them as behaviour-types. This way of identifying the behaviours is
inspired by current research that defines play-personas and looks into identifying the mo-
tivations of the players by looking at their gameplay metrics. This chapter also includes
details about this research, which is focused on human players. However, I consider that
using metrics to identify or understand how the game is played should also apply to
agents that take the place of a player.
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Lastly, this chapter provides an overview of the current techniques used for auto-
mated testing, both in the industry and academia. It clarifies the scope of my research
within testing and focuses on current approaches that use game-playing agents. Most
of the methods are heavily game-dependent, so they require regular updates given by
the iterative development process of games. My work proposes using GVGP agents to
assist in the testing process as a solution that allows automated gameplay and can adapt
to different circumstances and changes. My long-term vision contemplates integrating
GVGP agents not only to assist in the development process but within the game itself
as another AI solution at the disposal of the developers. Specifically, I visualise GVGP
agents being used as NPCs. Therefore, this chapter also covers existing AI techniques
used for this purpose as they are relevant for the case study presented in Chapter 8,
which is an exploratory experiment driven by this potential integration.

In conclusion, this chapter familiarises the reader with the areas of influence of my
research and clarifies the motivation behind my work when it is in perspective with the
existing one. The following chapter has a more specific focus on my research and provides
detailed information about the tools that I use: the GVGAI Framework (Section 3.1),
the controllers that I adapt in my experiments (Section 3.2), the evolutionary algorithm
that I employ to generate the team of agents (Section 3.3), and the VGDL games I used
in each of the experiments (Section 3.4).
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Tools

This chapter presents and describes the framework, algorithms, and games that have
been employed in my work. Their use in the experiments is detailed in the corresponding
chapter.

3.1 GVGAI Framework

I carry out my research in the General Video Game Artificial Intelligence (GVGAI)
Framework, which is an open-source tool that facilitates the research in General Video
Game Playing (GVGP), introduced in Section 2.3. The framework allows executing
game-playing agents in different games as they are independent of the specification of
the rules. In this section, I include details about the language the games are written in;
the communication between the framework, the game, and the agent; as well as the use
of the framework in several competitions over the years resulting in means available for
research.

3.1.1 The Video Game Description Language (VGDL)

Games supported by the GVGAI framework are written in the Video Game Description
Language (VGDL), which allows the implementation of 2D tile-based games. The origin
of VGDL comes from the challenge of creating a clear, human-readable, and unambigu-
ous language to develop video games, having a representation easy to parse and extend.
The purpose of the language is to use it for GVGP research and for the automatic gen-
eration of content and game design [Ebner et al., 2013]. The project was inspired by
previous work on description and high-level scripting languages for games, addressing
their limitations and targeting the application of the language specifically to video games.
Schaul [2013] created PyVGDL, a simple and high-level description language that allows
the implementation of 2D tile-based video games. PyVGDL was originally supported
by a system written in Python, and its subsequently port to Java resulted in VGDL
and the GVGAI Framework [Perez-Liebana et al., 2015]. One of the ground-breaking
approaches of the GVGAI Framework compared to previous solutions is the complete
abstraction of the game and its elements, which are hidden to the agent. Each element
of the game is represented by an entity (sprite), and collisions between them trigger the
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rules. The player (represented by an avatar) is not aware of the definition of the games,
rules, or game over conditions. The engine exposes an API that allows querying the
game status (game tick, score, and winning condition), the state of the avatar (position,
velocity, orientation, etc.), the actions available, and a complete view of the sprites of
the game via Observations. Given the generality of the framework, the sprites are not
individually identified, but it is possible to recognise their category. They can be avatar
(player) sprites; sprites generated from the avatar; sprites representing Non-Playable
Characters (NPCs); sprites generated from the NPCs; resources; immovable objects; or
spawn points. Collisions between sprites are called interactions, and those that happen
between the avatar or the sprites generated by it, cause events.

A game in VGDL is defined by two components, provided by two files written in
plain text: the definition of the game and the definition of the level. Four sets of rules
define the game: SpriteSet, outlining the entities that form the game; LevelMapping,
linking the sprites with their character representation on the level; InteractionSet, de-
scribing the results of the collisions between sprites; TerminationSet, specifying the end
of the game and its winning or losing conditions. By default, games have a maximum
number of game ticks (2000), after which the game is over. It is possible to set a different
time limit in the game definition and override that number. Details about the VGDL
language and the GVGAI framework are given in [Perez-Liebana et al., 2019c, Chapter 2].

To show the simplicity and readability of VGDL, I include the implementation of
Sokoban, a puzzle game where the goal is to push all the boxes into holes. Listing 3.1
represents the implementation of the game in VGDL, and Fig. 3.1 defines a level and
shows its corresponding representation at execution time. SpriteSet defines a total of 5
entities that constitute the game: floor, hole, avatar, box, and wall. The type MovingA-
vatar indicates that the actions available to the player are moving up, down, right, and
left. The floor, hole, and walls are static objects (Immovable) with a definite position,
while the box is an object the player can interact with (Passive). LevelMapping defines
the symbols that will represent each of the sprites in the level file. The floor is a back-
ground sprite, so it will appear in every tile of the game when not entirely covered by
the entity image. The InteractionSet defines the rules of the game and the result of the
interaction between each pair of elements: 1) The wall blocks the way of the avatar, so
every action moving towards it ends up with it in the same initial position (stepBack).
2) An interaction between the avatar and a box moves the latter (bounceForward), 3)
unless it is in the direction of the wall, in which case the box stays in its initial position
(undoAll). 4) A box interacting with a hole destroys the box sprite and increases the
score by 1. Lastly, the TerminationSet indicates a unique end of game-winning condi-
tion, which corresponds to the number of sprites of the type box reaching 0. Therefore,
the player wins when no boxes are left in the game because they have been destroyed by
being pushed into holes.
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1 BasicGame key_handler=Pulse square_size =40
2 SpriteSet
3 floor > Immovable img=newset/floor2
4 hole > Immovable img=oryx/cspell4
5 avatar > MovingAvatar img=oryx/knight1
6 box > Passive img=newset/block1
7 wall > Immovable img=oryx/wall3 autotiling=True
8 LevelMapping
9 0 > floor hole

10 1 > floor box
11 w > floor wall
12 A > floor avatar
13 . > floor
14 InteractionSet
15 avatar wall > stepBack
16 box avatar > bounceForward
17 box wall box > undoAll
18 box hole > killSprite scoreChange =1
19 TerminationSet
20 SpriteCounter stype=box limit =0 win=True

Listing 3.1: VGDL implementation of Sokoban provided by the GVGAI Framework: to
win, the goal is to push all the boxes into the holes.

Figure 3.1: Definition of a level of Sokoban and its representation during execution.
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3.1.2 The GVGAI Framework and Competition

The GVGAI Framework serves as a benchmark for both learning and planning algo-
rithms. The generality and abstraction of the framework and games encourage the
development of general controllers that can play any of the games supported by it. The
framework has been used to run several competitions since 2014, receiving the submis-
sion of hundreds of entries [Perez-Liebana et al., 2019b].

The planning engine receives the definition of the VGDL games and levels and
presents the controller (agent) with a Java object interface containing the state of the
game. Listing 3.2 shows the API interface provided to single-player controllers, which
must inherit from AbstractPlayer. Every game tick, the game makes a call to the act
method, so the agent must implement it to determine the next action carried out in the
game. The method result is non-mandatory, and it is called at the end of the game.

1 public <ClassName >( StateObservation , ElapsedCpuTimer);
2
3 Types.ACTIONS act(StateObservation , ElapsedCpuTimer);
4
5 void result(StateObservation , ElapsedCpuTimer);

Listing 3.2: API interface for single-player games, from [Perez-Liebana et al., 2019c]

The framework also provides the agent with a forward model that can be used to
simulate future states and to assist in deciding the action that should be taken next. As
stated in the previous section, the agent is not informed about the nature of the game
or its rules but can query certain information about its state to make a decision: history
of interactions and events, IDs and category of the existent sprites, score, health points,
game tick, winning or losing status, etc. The actions available depend on the rules and
the state of the game, but they are within: moving up, down, right, or left; shoot or
use an object (set on the game rules); do nothing. In the competition, the controller
is given a budget of time of 40ms to return an action. If an action is returned after
this time, the do nothing action is carried out no matter the choice, and if no action is
returned in 50ms, the controller is disqualified. Fig.3.2 presents a high-level flow chart
and the sequence diagram of the execution of the game. Although it is not indicated,
the framework also allows setting the interface of the game to be controlled by a human
player instead.

The first GVGAI Competition focused on single-player planning algorithms [Perez-
Liebana et al., 2015]. The single-player planning track provides two training sets to the
contestants to evaluate the strength of their algorithms and improve them. The con-
trollers submitted to the competition play in a final set of games and levels, unknown
beforehand, that determines the final ranking. The agent resulting with the best perfor-
mance overall on the final set of games is considered the winner. The evaluation system
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Game Execution

Java-VGDL 
Engine

VGDL Game 
Definition

VGDL Level 
Definition

Game Controller

Game State(game tick)

ACTION

Loop game tick
[NOT Game Over]

Execute ACTION → (game tick + 1)

Figure 3.2: The GVGAI Framework: single-player planning track. The engine receives
the VGDL definition of the game and level and executes it. For each game tick, the
controller is provided with the game state to run its simulations and return the selected
action. This interaction is repeated until the game is over. Inspired by [Perez-Liebana
et al., 2019c, Chapter 2]

encourages the participants to build general algorithms to maximise a good result for
any game instead of focusing on a specific one. The framework also supports two-player
games [Gaina et al., 2016], where agents have also access to the state of the opponent
and the actions taken by them. Listing 3.3 shows the API interface provided to two-
player controllers, which makes use of StateObservationMulti and includes an int that
determines the id of the player.

1 public <ClassName >( StateObservationMulti , ElapsedCpuTimer , int);
2
3 Types.ACTIONS act(StateObservationMulti , ElapsedCpuTimer);
4
5 void result(StateObservationMulti , ElapsedCpuTimer);

Listing 3.3: API interface for two-player games, from [Perez-Liebana et al., 2019c]

The 2-player planning track competition presents the controllers against each other
in complex problems, both competitive and cooperative games, forcing them to adopt
different play styles and techniques. Over the years, the GVGAI framework has been
extended, and new tracks have been included in the competition to cover other novel
areas of general AI. Outside the scope of my work, the framework also supports learning
algorithms [Perez-Liebana et al., 2019c, Chapter 5], where no forward model is provided,
and Procedural Content Generation (PCG) approaches, like the generation of game lev-
els [Khalifa et al., 2016] and rules [Khalifa et al., 2017].

Perez-Liebana et al. [2019b] give an insight into the details of the framework, its
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application to several areas of research in general agents since its release, the algorithms
implemented for it, and a complete list of the winners of the different tracks for each
edition of the GVGAI Competition. The success of the competition has resulted in
the existence of several controllers available in the framework. My work leverages the
diversity of the approaches to use some of the available algorithms, detailed in the next
section.

3.2 Agents

My work leverages the existent agents available in the GVGAI Framework. This section
lists and describes the controllers provided by the framework that I use in my experi-
ments. I use both tree-search (Section 2.2.1) and evolutionary algorithms (Section 2.2.2).
Although I carry out some modifications to adapt the algorithms to my needs, their core
does not change, so the following descriptions are relevant and applicable. Details about
the modifications and differences with the sample agents provided by the framework are
given in the corresponding chapters.

3.2.1 One Step Look Ahead (OSLA)

The OSLA is a simple tree-search algorithm (Section 2.2.1) that simulates only one state
in the future. The controller checks the reward gained in the states reached by taking
every available action and executes the one with the best rating (Fig. 3.3).

OSLA

FS0

S

FS1 FS2 FSn

R0 R1 R2 Rn

A0 A1 A2 An

Find highest reward

Best 
Action

t0

t1

Run forward model once

State evaluation
Game

Game 
State

Figure 3.3: OSLA algorithm: receives the current game state (S) from the game, executes
the forward model for each available action (A), resulting in a future game state (FS).
Each state is evaluated by the heuristic to obtain the value of its reward (R). The action
related to the highest reward is selected and returned to the game.
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Algorithm 1 OSLA algorithm.
Nomenclature: s← game state; s′ ← simulated game state; a← action; A(s)← available
actions; R(s)← reward at state s; ∆← reward value.

1: procedure OSLA(s0) ▷ current game state
2: for a ∈ A(s0) do ▷ for each available action at state s0
3: s′ ← ForwardModel(s, a) ▷ run forward model once
4: ∆← R(s′) ▷ state evaluation
5: return Best action ▷ return action resulting in state s′ with highest reward

The evaluation of the future state in the sample agent is done as follows: the heuristic
returns a high positive reward if the resulting state of the game is winning; a high negative
reward if it is losing; and the resulting score points if an end state is not reached. This
controller has been available in the framework since the first GVGAI Competition [Perez-
Liebana et al., 2015].

3.2.2 Monte Carlo Tree Search (MCTS)

MCTS is a tree-search algorithm (Section 2.2.1) that combines search and random sam-
pling. It builds the tree incrementally and asymmetrically (Fig.3.4) and balances between
the exploration and exploitation of its nodes. Exploration refers to visiting those nodes
that have not been extensively analysed, and exploitation refers to exploring those nodes
that look promising. Browne et al. [2012] created a survey detailing the basic MCTS
algorithm (vanilla implementation) and the numerous derivations and enhancements in-
cluded until then. This section focuses on the vanilla implementation and the description
of its Open-Loop version (detailed below). I refer the reader to the survey for further
information about the variants of the algorithm and its applications.

Figure 3.4: Basic MCTS algorithm process; from [Browne et al., 2012].

MCTS builds the game tree until it reaches a stop condition. More computational
power leads to better performance. However, there are usually limitations related to
the budget allocated for its computation in terms of time or memory. Four steps take
part in each iteration of the algorithm until reaching this budget: selection, expansion,
simulation, and backpropagation (Fig. 3.5).
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Figure 3.5: One iteration of the MCTS algorithm: selection, expansion, simulation, and
backpropagation steps; from [Browne et al., 2012].

For the selection and expansion steps, the MCTS uses a Tree Policy, which takes
care of navigating the tree and selecting or creating new nodes from the existent ones.
The policy used for the child node selection is the Upper Confidence Bound (UCB1),
defined at line 25 of Algorithm 2. The search tree is navigated starting from the root
node and while non-terminal nodes are reached. The navigation continues until it finds
the next expandable node. The terminal or expanded node is then simulated. According
to Browne et al. [2012], simulation in the context of this algorithm is "playing out the
task to completion according to the default policy," i.e. the sequence of actions carried out
from the node resulting from the selection and expansion steps. By default, the actions
to use in the simulation phase are selected uniformly at random until an end-of-game
state or certain pre-defined depth is reached [Perez-Liebana et al., 2019c, Chapter 3].
When the simulation ends, the state is evaluated to determine its reward. Finally, the
statistics assigned to each of the nodes that were passed through in the previous steps
are updated, applying that reward (backpropagation). When the computational budget
breaks the loop, the algorithm processes the performance obtained by each available
action and returns the one with the best final reward.

The Open-Loop MCTS (OLMCTS) introduced by Perez Liebana et al. [2015] is
a version of the vanilla MCTS that uses an open-loop approach for the nodes of the tree.
It is suitable for stochastic scenarios, where it is impossible to estimate how accurate
the simulated states stored in the nodes are. In contrast to deterministic environments,
an unknown probability takes part in the simulation. The solution given by open-loop
approaches is saving the statistics in the nodes instead, as they represent the set of states
navigated in the tree. OLMCTS requires to use the forward model every time a new
action is chosen during selection and expansion.

The sampleMCTS algorithm provided by the GVGAI framework is a vanilla im-
plementation of the OLMCTS. The heuristic used is as follows: high positive reward
for winning end-of-game states; high negative reward for losing end-of-game states; and
score of non-end-of-game states.
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Algorithm 2 MCTS algorithm; from [Browne et al., 2012].
Nomenclature: s ← state; v ← node; s0 ← initial state; a ← action; v0 ← root node;
vt ← terminal node; s(v) ← game state in node v; ∆ ← reward; N(v) ← times visited
node v; Q(v)← total simulation reward of node v; p← player; A(s)← available actions
at state s; f(s, a)← state reached after applying a to s; Cp ← arbitrary constant

1: function MctsSearch(s0)
2: create root node v0 with state s0
3: while within computational budget do
4: vt ← TreePolicy(v0)
5: ∆← DefaultPolicy(s(vt))
6: Backup(vt,∆)

7: return a(BestChild(v0, 0))

8:
9: function TreePolicy(v)

10: while v is nonterminal do
11: if v not fully expanded then
12: return Expand(v)
13: else
14: v ← BestChild(v, Cp)

15: return v
16:
17: function Expand(v)
18: choose a ∈ untried actions from A(s(v))
19: add a new child v′ to v
20: with s(v′) = f(s(v), a)
21: and a(v′) = a
22: return v′

23:
24: function BestChild(v, c)

25: return argmaxv′∈children of v

Q(v′)

N(v′)
+ c

√
2lnN(v)

N(v′)

26: function DefaultPolicy(s)
27: while s is non-terminal do
28: choose a ∈ A(s) uniformly at random
29: s← f(s, a)

30: return reward for state s
31:
32: function Backup(v,∆)
33: while v is not null do
34: N(v)← N(v) + 1
35: Q(v)← Q(v) + ∆(v, p)
36: v ← parent of v

78



3. Tools

3.2.3 Open-Loop Expectimax Tree Search (OLETS)

OLETS is a tree-search algorithm (Section 2.2.1) implemented by Adrien Couëtoux [Perez-
Liebana et al., 2015] and winner of two competition tracks: the first Single-player Com-
petition and one of the Two-player Competitions [Perez-Liebana et al., 2019b]. The
algorithm is based on the Hierarchical Open Loop Optimistic Planning (HOLOP) [We-
instein and Littman, 2012] with three key differences: 1) it is designed for finite action
spaces; 2) makes use of the Open Loop Expectimax (OLE) method to evaluate the re-
ward value; 3) does not use any roll-out. OLETS does not store the states in memory
but generates a tree where the nodes represent the sequence of actions explored. It ran-
domly chooses the actions to simulate until there are no more unexplored actions left
in a node. At that moment, the OLE method gives a score to the branches, and the
algorithm chooses to simulate the one with the best reward. The reward obtained for
each node of the tree is accumulated. When the final state is reached or the controller
is requested to end, the action with the corresponding highest value is executed. The
pseudocode is included in Algorithm 3.

The heuristic used in the algorithm provided by the GVGAI framework depends on
the status of the simulated state of the game and its score points as follows: a high value
is added to the score in a winning state; a high value is subtracted from the score in a
losing state (also dependant on the depth of the tree); the score without any modification
is returned for non-end-of-game states.

3.2.4 Rolling Horizon Evolutionary Algorithm (RHEA)

RHEA is an evolutionary algorithm (Section 2.2.2) first introduced by Perez et al. [2013]
as an alternative approach to the well-performed MCTS. The authors presented promis-
ing results when comparing its performance with MCTS in an experiment using the
Physical Travelling Salesman Problem (PTSP), focused on navigation in real-time. The
algorithm was later applied to video games and GVGP [Gaina et al., 2017].

In RHEA, a plan of action represents an individual. Therefore, each individual of
the population contains the sequence of actions to carry out in the game. To determine
the fitness of the individual, the current state of the game is simulated using the forward
model. A heuristic function is used to obtain the reward of the final state reached by
its sequence of actions. The simulation is stopped ahead of time if a terminal state is
reached, and the fitness assigned to the individual is the reward obtained in that terminal
state. In the vanilla implementation of RHEA, the population of individuals is initialised
at random. In each cycle (Fig. 3.6), the population is evolved to generate new individuals
for the next generation. This evolution is done by mutation (randomly updating actions
in the sequence) and cross-over (combining existing individuals to create new ones).
The new individuals are then evaluated to obtain their fitness as described above. The
fitness is used to sort the individuals in the population and discard the worst ones before

79



3. Tools

Algorithm 3 OLETS algorithm; from [Perez-Liebana et al., 2015].
Nomenclature: n ← node; ns(n) ← number of simulations passed through n; ne(n) ←
number of simulations ended in n; Re(n) ← accumulated reward from simulations that
ended in n; C(n)← set of children of n; P (n)← parent of n; τM (n)← empirical average
reward in n.
1: procedure OLETS(s,T )
2: τ ← root ▷ initialize the tree
3: while elapsed time < T do
4: RunSimulation(τ, s)
5: return action = argmax a∈C(root)ns(a)

6:
7: procedure RunSimulation(τ ,s0)
8: s← s0 ▷ set initial state
9: n← root(τ) ▷ start by pointing at the root

10: Exit← False
11: while ¬Final(s) ∧ ¬Exit do ▷ navigating the tree
12: if n has unexplored actions then
13: a← Random unexplored action
14: s← ForwardModel(s, a)
15: n← NewNode(a, Score(s))
16: Exit← True
17: else ▷ use node scoring to select a branch
18: a← argmax a∈C(n)OLE(n, a)
19: n← a
20: s← ForwardModel(s, a)

21: ne(n)← ne(n) + 1
22: Re(n)← Re(n) + Score(s)
23: while ¬P (n) = ∅ do ▷ update the tree
24: ns(n)← ns(n) + 1
25: τM (n)← (Re(n)/ns(n)) + ((1− ne(n))/ns(n))max c∈C(n)τM (c)
26: n← P (n)

27:
28: procedure OLE(n,a)
29: return score = τM (a) +

√
ln(ns(n))/ns(a)

80



3. Tools

creating a new generation. The end of the algorithm’s execution is given by a limit in
terms of time, memory budget, or a maximum number of iterations. When the algorithm
ends, the individual with the best fitness is selected. The action to be carried out next
in the game corresponds with the first action in the plan of this best individual.

Figure 3.6: RHEA algorithm cycle; from [Perez-Liebana et al., 2019c, Chapter 3].

The parameters that are needed to be set to execute the algorithm are the following:
elitism (E), which defines the number of individuals to be carried forward to the next
generation without being changed; mutation rate (M), which determines the probability
of a gene to be mutated; population size (P); individual length (L). Gaina et al. [2017]
proves that the performance of the RHEA algorithm is highly affected by P and L when
the rest of the parameters are fixed. A series of enhancements of RHEA are presented
and discussed in [Perez-Liebana et al., 2019c, Chapter 3].

The sampleRHEA algorithm provided in the GVGAI framework has its parameters
set to P = 10, E = 1, and M = 1. It produces as many sequences as possible in the
time provided as budget, so the number of individuals is dynamic. Its heuristic rewards
win states, heavily penalises losing states, and returns the difference of score.

3.2.5 Random Search (RS)

Random Search (RS) is a particular configuration of RHEA where P = 24 and L =

20 [Gaina et al., 2017]. Due to the time limit given by the budget, this algorithm only
has time to initialise its population at random. Therefore, its decision is based on trying
24 different random action sequences and selecting the plan with the best reward. The
first action found in this plan is carried out next in the game.

3.3 MAP-Elites

The Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is an illumination
algorithm that can search in a very high dimensional space created by all possible designs
to find the highest performance criterion for each combination of features [Mouret and
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Clune, 2015]. An example would be finding the fastest robot for each combination of
height, weight, and energy consumption per meter features. The algorithm illuminates
the relationship between performance and dimensions of interest solutions and returns a
set of high-performance and diverse solutions. It requires defining the following elements:

Genome/genotype x Candidate solution.

Search space All possible values of x.

Phenotype px Assessment of the characteristics of x.

Fitness function fx Measures the performance to evaluate each candidate x.

Feature space N-dimensions of variation of interests defining the area of the MAP-
Elites.

Feature/behaviour function bx Defines the features that correspond to each x, de-
termining the values that should be assigned to the N-dimensional vector of the map.

The relationship between genotypes, phenotypes, and the behaviour and performance
of a candidate goes as follows:

x→ px → bx, fx

It is possible that a direct encoding exists between a characteristic of the candidates
and a phenotypical feature, but it is also viable that there is an indirect encoding, where
a complex process maps the elements of the candidates with components of the pheno-
type [Mouret and Clune, 2015].

Figure 3.7: MAP-Elites graphic representation; from [Mouret and Clune, 2015].

The original version of the MAP-Elites algorithm, introduced by Mouret and Clune
[2015] is presented in Algorithm 4. It starts with the creation of an N-dimensional map
of elites and its initialisation by generating random candidate solutions. In each new
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iteration of the algorithm, until the stop condition is reached, one of the current solutions
of the map (elite) is randomly chosen and evolved to create a new candidate solution.
This evolution is done via mutation and/or crossover. The new candidate generated is
then simulated to obtain its feature description, which defines its position on the map,
and its performance. The new elite is automatically assigned to its correspondent cell if
this is empty. If there is a current elite occupying it, the performances are compared.
The new elite replaces the previous solution only if it has a better performance. When
the algorithm finishes, the map contains the elites obtained with the resulting highest
performance found for their corresponding cell.

Algorithm 4 Simple, default version of the MAP-Elites algorithm; from [Mouret and
Clune, 2015].
Nomenclature: X ← solutions (map of elites); P ← solutions’ performances; x ← elite;
x′ ← candidate solution; b′ ← feature descriptor of x′; p′ ← performance of x′.
1: procedure MAP-Elites
2: (P ← ∅, X ← ∅) ▷ create an empty, N-dimensional map of elites
3: for iter = 1→ I do ▷ repeat for I iterations
4: if iter < G then ▷ initialise by generating G random solutions
5: x′ ← random_solution()
6: else ▷ all subsequent solutions are generated from elites in the map
7: x← random_selection(X) ▷ randomly select an elite x from X
8: x′ ← random_variation(x) ▷ create a randomly modified copy of x
9: b′ ← feature_descriptor(x′) ▷ simulate x′ and record its b′

10: p′ ← performance(x′) ▷ record the performance p′ of x′

11: if P (b′) = ∅ or P (b′) < p′ then
12: P (b′)← p′

13: X(b′)← x′

return feature-performance map (P and X)

3.3.1 Application in games

The simplicity of the MAP-Elites algorithm allows its application to different disciplines,
including the field of games.

Khalifa et al. [2018] introduced a constrained version of the MAP-Elites to generate
levels for bullet hell games. This constrained version combines MAP-Elites with a Fea-
sible Infeasible 2 Population (FI2Pop) genetic algorithm. It emerged given the necessity
of searching and identifying the optima in multiple sub-spaces, useful in the context of
Procedural Content Generation (PCG). Each cell of the map contains two populations,
representing two intentions: a) maximise its fitness (feasible population); b) satisfy a
set of constraints (unfeasible population). Therefore, each chromosome is identified by
the pair (cell, population). It can move between cells when its properties change and
between populations based on the feasibility of its constraints. The dimensions of the
MAP-Elites represent some aspects of the difficulty of the game. In the particular case of
the bullet hell games considered, the authors distinguish between entropy (the amount
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of input required from the player), risk (the presence of bullets close to the player), and
distribution (the amount of space the bullets occupy). Alvarez et al. [2019] applied a
constrained MAP-Elites to assist a mixed-initiative design of levels in the Evolution-
ary Dungeon Designer (EDD) and named it Interactive Constrained MAP-Elites (IC
MAP-Elites). This continuous version of the algorithm allows the users to influence the
evolutionary algorithm that generates the levels in real-time and suggests customised
and diverse solutions.

Another application of MAP-Elites in games is to influence gameplay. Fontaine et al.
[2019] present the MAP-Elites with Sliding Boundaries (MESB), a modification of the
MAP-Elites that recalculates the boundaries of the map every certain number of itera-
tions. They use this algorithm to design and balance Hearthstone [Blizzard Entertain-
ment, 2014] decks, discovering high-performance solutions with a diversity of strategies,
given by the resulting illumination of the space. Previous work also includes a relation-
ship between game-playing agents and the MAP-Elites algorithm: Balla et al. [2021] use
the illuminated space resulting with MAP-Elites to examine the relationship between
the parameters of a game and the behaviour of a well-performed agent. Bravi and Lucas
[2021] study the behavioural space of the board game Splendor [André, 2014] by illumi-
nating the search space with the hyper-parameters of a configurable play-testing agent.
Last but not least, regarding agent generation, Canaan et al. [2019] use MAP-Elites to
generate a pool of agents to play and perform in the card game Hanabi [Bauza, 2014].

I apply the MAP-Elites algorithm in the work described in Chapter 6, and the solu-
tion, out of the scope of the thesis, has also been adapted to achieve different play-styles
while keeping a competitive level of play in a strategy game [Perez-Liebana et al., 2021].

3.4 Games

I have used different games throughout the experiments carried out in this work. All of
them are implemented in VGDL and run in the GVGAI Framework. The games I use in
my experiments have mostly been taken from the vast available collection provided by the
GVGAI Framework. There are hundreds of games available, and they are very diverse,
so it is possible to find games with different characteristics. For each of my experiments,
I need to make a selection from these games based on what the work requires. Some of
these games have been used without modifications, but others have been adapted to the
needs of the experiment. A new game has also been created from scratch. This section
includes details about the selection of games and the motivation for creating a new game.

3.4.1 Game selection for Chapter 4

In Chapter 4, the games are used as a benchmark to study and compare the performance
of different algorithms. Therefore, the primary motivation behind the game selection
for those experiments comes from having a diverse collection of games with various

84



3. Tools

characteristics so the results can be generalised. Previous authors carrying out research
in the GVGAI Framework have faced a similar problem, so I base my selection of games
on such previous research. [Gaina et al., 2017] combined two classifications of games
present in previous work and uniformly sampled the games to come up with a new subset
constituted by a total of 20 games, split equally between deterministic and stochastic
properties (Table 3.1).

Deterministic games Stochastic games
Bait Camel Race Aliens Butterflies

Chase Escape Chopper Crossfire
Hungry Birds Lemmings Digdug Infection

Missile Command Modality Intersection Roguelike
Plaque Attack Wait for Breakfast Seaquest Survive Zombies

Table 3.1: List of the 20 games from the GVGAI framework used in the experiments in
Chapter 4. This sub-set is based on the selection carried out by [Gaina et al., 2017]

These games have been used in the experiments without modifications, so I introduce
and briefly describe them in this section. The timeout of each game, unless otherwise
stated, is 2000. Details about their rules, elements and a screenshot of the levels are
provided in Appendix A.

Aliens The player controls a ship, and the goal is to kill all the aliens before they
reach the bottom of the screen. Details and a screenshot are given in Appendix A.1.

Bait Puzzle game where the goal is to collect a key and reach the exit. Details and a
screenshot are given in Appendix A.2.

Butterflies The goal is to capture all the butterflies before the time runs out or all the
cocoons transform into butterflies. Details and a screenshot are given in Appendix A.3.

Camel Race The objective is to be the first camel to reach the goal banner. Details
and a screenshot are given in Appendix A.4.

Chase The goal is to kill all the white birds by colliding with them. Details and a
screenshot are given in Appendix A.5.

Chopper The goal is to destroy the tanks while avoiding the missiles before the time
runs out or all the satellites are destroyed. Details and a screenshot are given in Ap-
pendix A.6.

Crossfire The goal is to reach the door without being hit by the bombs. Details and
a screenshot are given in Appendix A.7.
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Digdug The player can break walls to achieve the goal: kill all the monsters and collect
all the gems and gold pieces scattered around the level. Details and a screenshot are
given in Appendix A.8.

Escape Puzzle game where the objective is to reach the cheese by pushing away and
throwing into holes the boxes blocking the path. The timeout is 1000 game ticks. Details
and a screenshot are given in Appendix A.9.

Hungry Birds The aim is to reach the goal and exit the maze before the health points,
which are reduced every game tick, are entirely depleted. Details and a screenshot are
given in Appendix A.10.

Infection The goal is to carry a virus and infect all the healthy people before the time
runs out. Details and a screenshot are given in Appendix A.11.

Intersection The objective is to avoid the cars and reach the goal sign as many times
as possible before the time runs out. The timeout is 1000 game ticks. Details and a
screenshot are given in Appendix A.12.

Lemmings The goal is to help the lemmings to reach the door by breaking the walls.
Details and a screenshot are given in Appendix A.13.

Missile Command The goal is to eliminate the missiles directed to the cities before
they reach them. Details and a screenshot are given in Appendix A.14.

Modality The goal is to push the bush into the hole. The player can walk over two
types of surfaces, but they can only cross from one to the other by a specific point in
the map. Details and a screenshot are given in Appendix A.15.

Plaque Attack The goal is to destroy all the food by shooting at it before they damage
the teeth. Details and a screenshot are given in Appendix A.16.

Roguelike The objective of the game is to reach the goal sign without being killed by
the enemies. Locked doors block the path of the player, but they can be opened with
keys. Details and a screenshot are given in Appendix A.17.

Seaquest The goal is to rescue divers by bringing them to the surface and stay alive
until the time runs out. The timeout is 1000 game ticks. Details and a screenshot are
given in Appendix A.18.

Survive Zombies The goal is to survive until the time runs out. The player has
health points that lower every time they collide with a zombie. The timeout for this
game is 1000 game ticks. Details and a screenshot are given in Appendix A.19.
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Wait For Breakfast The goal is to go to the empty table and wait for the waiter to
serve the food. The timeout for this game is 1000 game ticks. Details and a screenshot
are given in Appendix A.20.

3.4.2 Game selection for Chapters 6 and 7

The experiments included in Chapters 6 and 7 require four games with different char-
acteristics. One of them should have simple rules and be able to reach goals related to
winning while trying to achieve a high score, exploring the level, and interacting with
different elements of the game. The other three games should be more complex and
allow, in addition, having goals related to killing enemies, collecting items, or both. I
look into having at least a game where the player kills the enemies by hitting them and
another one where they are killed by shooting at them instead. I am also interested on
the end of game being triggered by different rules or achievements. The final selection
of games is formed by Butterflies, Digdug, Sheriff, and Zelda.

The experiments require that the rules of the game fulfil some constraints given by
the heuristics implemented and used by the agents. I have reviewed the VGDL imple-
mentation of the games selected and updated their taxonomy when necessary to ensure
the experiments are carried out successfully. Butterflies fits the restrictions without any
modifications. However, Digdug, Sheriff, and Zelda have required updates in their rules,
elements, or sprites. I include the details about the reviewed versions of these three
games. The timeout of each game, unless otherwise stated, is 2000.

Butterflies The goal is to capture all the butterflies before the time runs out or all the
cocoons transform into butterflies. Details and a screenshot are given in Appendix A.3.

Digdug This personalised version of Digdug (A.8) addresses the rule issues that did
not follow the constraints detailed in Chapter 6, and includes new elements and sprites.
The game is formed by an avatar that can move up, down, right, and left and use a
shovel; monsters that move randomly; gems; gold; and breakable walls. In contrast
to the original game, it defines the monsters as NPCs, the gem and gold as resources,
removes the boulder as an element, and introduces the gold block (G block), which
becomes gold when hit with a shovel. Similarly to the original Digdug, the goal of the
game is to collect all the resources and kill all the monsters before the time runs out.
If the player is killed by a monster when colliding with it, the score decreases by 1 and
the game ends. The wall and G blocks limit the path of the avatar, but the shovel can
destroy them. The avatar can collect the resources (gem and gold) when colliding with
them, but only collecting the gem increases the score by 1. The monsters, generated in
a monster spawner, can be killed when hit with the shovel, increasing the score by 2.
Fig 3.8 shows the screenshot of the level used in the experiments, which is similar to the
one presented in A.8 but uses the G block instead of the gold element.
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Figure 3.8: Screenshot of Digdug at time t = 0: 20 gems, 7 gold blocks, 2 monster
spawners, 2 initial monsters (12 total possible), 267 breakable walls, 405 locations.

Sheriff This version of the game has similar rules than the original, but uses alter-
native sprites to the ones provided by the framework. It is constituted by an avatar
that can move up, down, left, and right and shoot red bullets; bandits that are NPCs
that can shoot blue bullets and move anti-clockwise inside the prison; barrels that
are Immovable objects that breaks when hit by a bullet; and walls that define the limits
of the map. The goal is to kill the bandits by shooting at them (+1 score change) and
surviving until the time runs out. The player cannot access the prison but can shoot
into it, and dies when hit by an enemy’s bullet, which decreases the score by 1. The
timeout for this game is 1000 game ticks, and a screenshot of the main level is included
in Fig. 3.9.

Figure 3.9: Screenshot of Sheriff at time t = 0: 55 barrels, 8 bandits, 80 blocks of prison,
88 walls, 280 locations.
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Zelda The game and level used are personalised in relation to the one provided by the
framework. It includes modifications of the rules in order to solve the issues found in the
original game. The description included here refers to the updated version. The game
is formed by an avatar that can move up, down, right, and left and use a sword; three
types of monsters that are NPCs and move randomly; a key that is a resource, a door
that is an immutable element the player can interact with after collecting the key; and
walls that shape the limits of the map. The goal of the game is to collect the key and
use it to open the door before the time runs out or the player gets killed by the monsters.
The three different types of monsters are differentiated by the sprite assigned to them:
slow (scorpion), normal (spider), and quick (bat). The player can kill the monsters by
hitting them with the sword, which increases the score by 2 independently of the type of
monster. The player can also be killed by the monsters when colliding with them, which
reduces the score by 1 and ends the game. The player collects the key by colliding with
it, increasing the score by 1. If the player collides with the door without the key, nothing
happens, and the door blocks its path. Fig 3.10 shows the screenshot of the main level
used.

Figure 3.10: Screenshot of Zelda at t = 0: 1 key, 1 door, 6 monsters, 90 walls, 126
locations.

3.4.3 Original game for Chapter 8: Skulls and Tombstones

Skulls and Tombstones is an original game created from scratch for the case study pre-
sented in Chapter 8. Like every game in the GVGAI framework, it is implemented in
VGDL and can be played by any of the algorithms supported by it. The case study
looks at Player Experience constructs, so the game is expected to be played by humans.
The games in the GVGAI Framework have not been implemented with human players in
mind, so we decided to design and develop a game from scratch instead of using an ex-
isting one. Going through this process would allow us to iterate over the game to ensure
it is easy to understand and provides enough feedback to the players during gameplay.

It is a 2-player competitive collect the flag type of game and consists of the following
elements: two avatars, one assigned to each player; trees, shaping the limits of the
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map; and various skulls and tombstones scattered around. Player 0 is assigned the
colour blue and Player 1 red, used to differentiate the tombstones acquired by each of
them. Initially, the tombstones do not belong to any player, so they have no colour
assigned. The players need to collect the skulls, one at a time, and bring them to a tomb
to turn it into the corresponding colour. A player collects a skull or turns a tombstone by
colliding with them. It is possible to turn a tombstone already owned by the other player.
The score is updated every time a player acquires a tombstone and represents the num-
ber of tombstones owned by each, multiplied by 10. The game runs for 30 seconds (400
game ticks), and when the end of the game is reached, the player controlling the highest
number of tombstones wins. In the case study, the game is used as a player-vs-NPC game.

The level (Fig. 3.11) is designed with the idea of distributing the elements around
the map, so the layout is aligned with an exploratory behaviour.

Figure 3.11: Screenshot of Skulls and Tombstones
at t = 289, showing three tombs controlled by Player 0 (blue) and two tombs by Player

1 (red). There are 12 uncollected skulls, and both players are carrying one.

3.5 Summary

This chapter has introduced the tools pertinent to my research so the reader can be
familiar with them. It has described the GVGAI Framework, where I carry out all
my experiments. It has provided details about its characteristics, the language used to
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implement the games supported by it (VGDL), and the competitions in which the frame-
work is used. It has also included an overview of the GVGP agents I use in my research:
OSLA, MCTS, OLETS, RHEA, and RS; the MAP-Elites algorithm, which is relevant for
Chapter 6, and the games used in each block of experiments. The information provided
in this chapter is helpful in the following chapters, where my research is presented in
detail.
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Chapter 4

Foundation: Heuristic Diversification in General Game-Playing

This chapter presents the foundation of the work. I introduce the term of heuristic
diversification, define a series of game-playing goals, and implement the corresponding
heuristics to apply to different controllers for comparison in terms of both performance
and behaviour. The heuristics are general within the GVGAI Framework and can be
used in any game supported by it. Most of the material presented has been published in
the paper [Guerrero-Romero et al., 2017].

4.1 Introduction

Building game-playing agents can be a simple or a complicated task, depending on the
approach followed. However, one aspect is common: the programmer typically knows
how the game works. Therefore, concepts related to the game are usually included as
heuristics, allowing the algorithm to explore the search space in a certain way. On
the other hand, when building agents for General Video Game Playing (GVGP), intro-
duced in Section 2.3, these heuristics are less clear, especially if the game being played
is unknown a priori. In the particular case of the GVGAI Framework and Competition
(Section 3.1), the possibilities of writing heuristics that can guide the search in all games
(over 150 in total) are significantly reduced. After years of the GVGAI Competition,
there has not been a single approach that has achieved more than 65% of victories across
the different game sets, and, in most cases, winners achieve a win rate below 50% [Perez-
Liebana et al., 2019c, Chapter 2]. These algorithms, and GVGP algorithms in general,
are mainly focused on winning and maximising the score. However, as discussed in
Section 2.4, these are not the only motivations driving the players and shaping their
gameplay. Thus, why are the goals of these agents being limited to those two?

Procedural personas [Holmgård et al., 2014a, 2018] are the example of successfully
applying the concept of existing differentiated archetypes to game-playing AI to provide
agents with distinct behaviours. I argue that making use of several agents with different
goals (and their pertinent heuristics) is a feasible approach to follow in GVGP. General
agents are implemented with various methods and techniques, but their heuristics can-
not apply specific information about the rules of the game or environment. However, as
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presented in Section 2.3.2, these heuristics can contain general goals unrelated to the fact
of achieving a victory or increasing the score. Therefore, general agents can potentially
be designed to elicit different behaviours to respond and adapt to the diverse situations
presented in the games and accomplish particular tasks. I believe this line of research is
promising and can enrich current approaches. Several applications can be given to these
agents, being possible to extend the field in different ways. As a first step, I need to find
a method to diversify the heuristics in GVGP and study the general agents when pro-
vided with goals beyond winning. The purpose is to understand how the agents respond
and act in the game when driven by each of these goals. Therefore, the first question
(RQ1) I look to answer in the research is: Which general heuristics can be defined and
implemented beyond the goal of winning the game, and how does each of these affect the
performance and behaviour of existing GVGP agents when it is the only variation in the
algorithm?

I employ five General Video Game Playing (GVGP) algorithms to play a series of
games in the GVGAI framework using four heuristics with differentiated objectives: 1)
winning and maximising the score; 2) exploring the map; 3) discovering and interacting
with the different elements of the game; 4) acquiring knowledge about the game and its
rules. For each of these heuristics, I set performance criteria related to their objectives
and run experiments to compare the strength of each algorithm. I am also interested in
the agents’ behaviour when provided by each of the heuristics, so I include an analysis and
discussion about it. The use of the GVGAI Framework allows running the experiments
in several games without having to adapt the controllers or heuristics for each of them,
making it possible to extend the research to as many games as intended. The execution
and actions taken by the controllers depend not only on the rules of the game but also
on the characteristics of the level. As a result, in some games or levels, the agents may
not be able to reach the specific goal. This limitation is expected because generality and
adaptability are preferred.

4.2 Definitions

I define the concepts used in this chapter as follows:

Heuristic value Result of the evaluation of a game state, given in relative terms of
an arbitrarily high value denoted as H. High and low rewards values are indicated with
H+ and H− respectively. For the experiments included in this chapter, H = 106.

Event/Interaction Effect of two sprites being in contact during the execution of the
game, being one of the entities involved the avatar (player) or an element generated from
it. I differentiate between two types: Collision and Action-onto.

Collision A particular case of event where the entity involved is the player. An example
of this kind of interaction is the player collecting a coin.

94



4. Foundation: Heuristic Diversification in General Game-Playing

Action-onto A particular case of event where the entity involved is an item generated
by the player. The item has typically been previously generated as a result of the
execution of an action of type ACTION. An example of this kind of interaction is a
bullet shot by the player hitting an enemy.

Curiosity An interaction between sprites that happens in a position of the map where
it has not taken place before.

4.3 Goals and Heuristics Implementation

I define four goals that can be applied to several games, describing four heuristics:
Winning Maximisation Heuristic (WMH), Exploration Maximisation Heuristic (EMH),
Knowledge Discovery Heuristic (KDH), and Knowledge Estimation Heuristic (KEH).
Their respective goals are: winning the game and maximising the score when a winning
state is not immediately reachable; maximising the exploration of the level; interacting
with the game as much as possible; predicting the outcome of the interaction with the
different elements of the game, related with both the victory status and score modifica-
tions. I describe and present the implementation of these heuristics, which are general
within the GVGAI Framework. The evaluation works with the information provided
by the Framework API (Section 3.1). Therefore, the calculations of the final reward
belonging to a particular state do not consider the specifics of the games or their rules.
The heuristics affect the way a state of the game is evaluated, so they guide the search
and policies of the agents.

4.3.1 Winning Maximisation Heuristic (WMH)

The goal of the Winning Maximisation Heuristic (WMH) is to win the game while
achieving the highest score possible.

WMH penalises the end states where the player loses and rewards those where the
player wins. In non-game-over states, the heuristic value is the difference between the
final score and the score in the previous state. Algorithm 5 presents the pseudocode of
the implementation of this heuristic.

Algorithm 5 Winning Maximisation Heuristic (WMH).
Nomenclature: S′ ← simulated game state; H ← arbitrary high value; lastScore ←
score of the game in the previous state.
1: function WMH(S′)
2: if isGameOver(S′) and isLoser(S′) then
3: return H−

4: if isGameOver(S′) and isWinner(S′) then
5: return H+

6: score← getScore(S′)
7: return score− lastScore
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Heuristics focused on winning and maximising the score are very common in GVGP,
and most of the sample agents provided in the GVGAI Framework implement a version
of them. My research looks at using goals that go beyond these two. However, they
represent the basis of my work, so I need to include them for comparison and as a
starting point.

4.3.2 Exploration Maximisation Heuristic (EMH)

The goal of the Exploration Maximisation Heuristic (EMH) is to maximise the physical
exploration of the level.

EMH rewards the agent that visits as many different available locations of the level
as possible. At the beginning of the game, an empty exploration matrix is initialised.
The exploration matrix corresponds to the 2D map of the level, mapping each of its tiles.
Every time step, the information in the matrix is updated to mark the current position of
the player as visited. The heuristic refers to this data when evaluating subsequent states.
The heuristic value is given a positive reward when the player reaches a new position.
Negative rewards are given if the agent does not move and remains in the same location
in consecutive states. Algorithm 6 presents the pseudocode of the implementation of
this heuristic.

Algorithm 6 Exploration Maximisation Heuristic (EMH).
Nomenclature: S′ ← simulated game state; H ← arbitrary high value; lastPosition ←
position of the avatar in the previous state.
1: function EMH(S′)
2: if isGameOver(S′) then
3: return H−

4: position← getAvatarPosition(S′)
5: if isOutOfBounds(position) then ▷ the position reached is outside the map
6: return H−

7: if ¬hasBeenBefore(position) then ▷ the position reached is new
8: return H+/100

9: if position == lastPosition then ▷ the player has not moved
10: return H−/200

11: return H−/400 ▷ no new position but the player has moved

Previous work related to the use of exploration as a goal in GVGP presented in
Section 2.3.2, particularly the simple exploratory heuristic implemented by Nielsen et al.
[2015], served as an inspiration to design EMH.

4.3.3 Knowledge Discovery Heuristic (KDH)

The goal of the Knowledge Discovery Heuristic (KDH) is to interact with the game as
much as possible, triggering sprite spawns and interactions with the different elements
that constitute the game.
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KDH maximises the discovery of the different sprites of the game and encourages
to perform interactions with them. It rewards those states where new sprites are ac-
knowledged. I say that the agent acknowledges a sprite when its type has been observed
during gameplay or the simulations reached with the forward model. At the beginning
of the game, the acknowledgement of the sprites is initialised with the information avail-
able (i.e. what sprites are visible right before the game starts). Every interaction with
sprites is recorded in an interaction table, distinguishing between two types: collisions
and actions-onto. When no new sprites emerge, the heuristic prioritises carrying out
new interactions. Lastly, the heuristic rewards curiosity, defined as those interactions
that take place in new locations on the map. Algorithm 7 presents the pseudocode of
the implementation of this heuristic.

Algorithm 7 Knowledge Discovery Heuristic (KDH).
Nomenclature: S′ ← simulated game state; H ← arbitrary high value.
1: function KDH(S′)
2: if isGameOver(S′) and isLoser(S′) then
3: return H−

4: if isGameOver(S′) and isWinner(S′) then
5: return H−/2

6: position← getAvatarPosition(S′)
7: if isOutOfBounds(position) then ▷ the position reached is outside the map
8: return H−

9: if newSpriteAcknowledge(S′) then ▷ new sprite appeared in the game
10: return H+

11: events← getLastGameTickEvents(S′) ▷ events in the last simulated game tick
12: if events ̸= ∅ then
13: if newInteraction(events) then ▷ interaction with a new sprite
14: return H+/10

15: if newCollisionCuriosity(events) then ▷ collision in a new position
16: return H+/200

17: if newActionOntoCuriosity(events) then ▷ hit in a new position
18: return H+/400

19: return H−/400

4.3.4 Knowledge Estimation Heuristic (KEH)

The goal of the Knowledge Estimation Heuristic (KEH) is to predict the outcome of
interacting with sprites, looking at changes in the victory status and score modifiers.

KEH acquires the best possible knowledge of the game dynamics to estimate the
advantages and disadvantages of each possible interaction. The goal is to provide an
estimation of the winning/losing conditions and score change when interacting with each
element of the game. During the gameplay, the following information for the interaction
type (collisions and actions-onto) with every sprite is gathered:

• Score change. Some interactions trigger a modification in the score of the game.
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KEH accumulates the change in the score presumably derived from each interaction
to calculate their average and estimate the score change at the end of the game.
Ideally, the resulting prediction would be 0.0 if the interaction does not affect the
score or a value (positive or negative) if it does.

• Win condition. The interactions between sprites can trigger a termination con-
dition. After an interaction has been detected, the game may finish as a result
of that particular interaction meeting a termination requirement. Consequently,
KEH collects the total number of wins and defeats encountered for each interac-
tion. This information is used to predict the win condition at the end of the game
by simply calculating the average. Ideally, the resulting estimated value would be
0.0 if a specific interaction never produces a game over, or 1.0 or −1.0, in the case it
triggers a termination condition that causes the player to win or lose, respectively.

Some sprites in the game may not be subjects of interactions by the avatar or the
elements derived from it. As a result, a default value of 0.0 is given for both win condition
and score change. Effectively, this initialisation assumes that, upon lack of interactions
with a given sprite, no score or changes on game termination are triggered by this sprite.
Rather than maximising the number of interactions with the same sprites, KEH attempts
to interact uniformly with all the available ones to estimate the effects of these collisions
better and improve upon the default estimations. Algorithm 8 presents the pseudocode
of the implementation of this heuristic.

4.4 Controllers

I use five of the single-player algorithms provided by the sample pool of the GVGAI
Framework: OSLA (Section 3.2.1), OLMCTS (Section 3.2.2), OLETS (Section 3.2.3),
RHEA (Section 3.2.4), and RS (Section 3.2.5). The details about each of them are in-
cluded in the corresponding sections.

All sample controllers use a heuristic to win and maximise the score by default. I
modify the sample agents to isolate the evaluation function, so the heuristic can be
assigned externally and be easily interchangeable. These adjustments do not affect the
core of the algorithm (presented and described in detail in Section 3.2) but allow a fair
comparison when using different heuristics and a quick experimental setup. The heuristic
diversification I propose makes it possible to provide the goals externally. As a result, it
is not required to hard-code or alter the agent’s code to update them. The adjustments
made are as follows:

1. All sample controllers extend from a newly created AbstractHeuristicPlayer, ex-
tending from the existent AbstractPlayer and replacing it. This class provides the
heuristic when instantiating the controller. As a result, the goal and evaluation
function are independent of the algorithm.

98



4. Foundation: Heuristic Diversification in General Game-Playing

Algorithm 8 Knowledge Estimation Heuristic (KEH).
Nomenclature: S′ ← simulated game state; interactionHistory ← all previous inter-
actions before S’; H ← arbitrary high value; rewardLeast ← calculates the reward
based on the number of times a certain interaction has happened compared to the total
of interactions: the fewer times an interaction has happened, the highest the reward
is; balanceInteractionsReward ← balances the penalisation of the reward returning a
value between H−/200 and 0.

1: function KEH(S′)
2: events← getLastGameTickEvents(S′) ▷ events in the last simulated game tick
3: updateInteractionStats(events) ▷ gather win condition and score change
4: if isGameOver(S′) and isLoser(S′) then
5: return H−

6: if isGameOver(S′) and isWinner(S′) then
7: return H−/2

8: position← getAvatarPosition(S′)
9: if isOutOfBounds(position) then ▷ the position reached is outside the map

10: return H−

11: if newSpriteAcknowledge(S′) then ▷ new sprite appeared in the game
12: return H+

13: if events ̸= ∅ then
14: if newInteraction(events) then ▷ interaction with a new sprite
15: return H+/10
16: else
17: return rewardLeast(events, interactionsHistory) ▷ ∈ [0, H+/100]

18: return balanceInteractionsReward(interactionsHistory) ▷ ∈ [H−/200, 0]
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2. A form of cumulative reward is put in place for all algorithms. It allows algorithms
with a long look-ahead (OLETS, OLMCTS, RHEA and RS) to keep track of the
simulated states of the game at every step during the evaluation process. It also
grants using rewards more accurately as algorithms have more information at their
disposal than just the one provided at the termination state. Note that this is
already in place by default in OSLA, as this agent only simulates one step ahead
in the search.

3. Controllers make calls to the heuristic object to update its internal data, handle
the heuristic accumulation and make a call to evaluateState to obtain the heuristic
value in a particular state.

4. New methods are included in ArcadeMachine, the core of the GVGAI Framework.
These methods adapt the existent ones to support the use of AbstractHeuristic-
Player. I instantiate the heuristic and provide it to the controller, create a player,
and run a a single-player game with it.

I also set a common ground for a fair comparison between the algorithms and heuris-
tics, as follows:

1. The search depth of the algorithms is set to 10. In some cases, this modification is
not possible, given that the algorithm or the time provided prevents search from
reaching this depth. The depth does not change for OLETS or OSLA.

Each of the five agents (OSLA, OLETS, OLMCTS, RHEA, and RS) is set to run with
the four different heuristics presented in Section 4.3: WMH, EMH, KDH, and KEH, for
a total of 20 different algorithm-heuristics configurations. The following section presents
the games used for these experiments.

4.5 Games

There are hundreds of games available in the GVGAI Framework with different proper-
ties and characteristics. It is prohibitively expensive to use all to run the experiments, so
I need to select a subset of them in a way that best represents the variety of games avail-
able. Previous authors have analysed and made a diverse selection of those games for
their research, so I use a similar subset rooted in such selections. To carry out a selection
of games from the GVGAI Framework, Gaina et al. [2017] combined two classifications
presented in previous work and uniformly sampled them to come up with a diverse sub-
set constituted by 20 games. Their final selection is formed by 10 deterministic and 10

stochastic games, and it was used for their experiments on Rolling Horizon evolution-
ary methods. I use the same subset of games in the experiments described in this chapter.

Tables 4.1 and 4.2 list the games used. They provide information about their type
(deterministic or stochastic), timeout, available open locations accessible to the player,
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and details about the sprites of the game. These details include the number of initial
sprites of that kind present in the level at t = 0 and their type:

• From-avatar. Sprite generated as a result of an ACTION of the player.

• NPC. Non-Player Character.

• From-NPC. Sprite generated as a result of an ACTION of an NPC.

• Immovable. Static element.

• Movable. Dynamic element.

• Object. Element the player can interact with.

• Resource. Element the player can collect.

• Spawner. Portal that generates sprites.

For some of the elements, I include more details: invisible (does not appear in the
level), goal (an objective of the player involves reaching that particular sprite), or no
collision, which means that interactions of the player with that element do not trigger
any rule. Appendix A contains complete information about the games. It details the
rules and includes screenshots of the level used for each.

4.6 Performance Comparison

The goal of the experiments is to compare the performance of the algorithms when given
distinct behaviours. The performance when using each heuristic is measured based on
parameters related to their corresponding goals. These experiments are constituted by
five algorithms, four heuristics, and twenty games. Each of the 20 algorithm-heuristics
configurations is set to play the level of each of the 20 games a total of 20 times. It
results in 400 play-throughs for each agent with a particular heuristic, and, hence, the
experiments execute a total of 8, 000 gameplays.

The average of the results obtained by the agents after playing each game several
times is used to create rankings. These rankings are generated with the Formula 1 (F1)
point system used in the GVGAI single-player competition [Perez-Liebana et al., 2015].
Five controllers are used in this experiment, so each receives 25, 18, 15, 12, or 10 points
depending on their performance in each of the games. The final ranking of each heuristic
is determined by the total sum of the scores received across the 20 games. This point
system has been previously adopted by authors using the GVGAI framework for perfor-
mance benchmarking [Pérez-Liébana et al., 2016], as it allows a fair perspective on the
general performance of the agents when considering a set of different games.

I collect a series of game-playing stats to provide an overview of the overall per-
formance of the agents, detailed for each heuristics in its corresponding section. The
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Game Type Timeout Locations Sprites
Name Type n at t=0 Details

Aliens Stochastic 2000 30

missile from-avatar 0
alien NPC 1
bomb from-NPC 0

meteorite immovable 47
portal spawner 1 invisible

Bait Deterministic 2000 9

door immovable 1 goal
key object 1
box object 2
wall immovable 21

Butterflies Stochastic 2000 206
butterfly NPC 6
cocoon immovable 27 no collision

wall (tree) immovable 102

Camel race Deterministic 2000 322
camel NPC 6 no collision
goal immovable 7 goal
wall immovable 110

Chase Deterministic 2000 135

white bird NPC 7
black bird NPC 0
carcass immovable 0 no collision

wall (tree) immovable 129

Chopper Stochastic 2000 184

bomb from-avatar 0
tank NPC 1

missile from-NPC 0
satellite NPC 18
cloud movable 36 no collision
supply resource 1

supply portal spawner 2
base spawner 1

Crossfire Stochastic 2000 333

turret NPC 8
bomb from-NPC 3
door immovable 1 goal
wall immovable 132

Digdug Stochastic 2000 405

shovel from-avatar 0
monster NPC 2

gem immovable 20
gold immovable 7
wall immovable 267 breakable

boulder movable 0
falling rock movable 0
entrance spawner 2 no collision

Escape Deterministic 1000 74

hole immovable 3
box object 27

cheese immovable 1 goal
wall immovable 45

Hungry birds Deterministic 2000 79
worm immovable 1
goal immovable 1 goal

wall (tree) immovable 97

Infection Stochastic 2000 187

sword from-avatar 0
doctor NPC 4

healthy person NPC 17
infected person NPC 0

virus immovable 6
entrance spawner 2 no collision

wall immovable 121

Intersection Stochastic 1000 243

car NPC 13
goal immovable 1 goal
tree immovable 32
wall immovable 76

Table 4.1: List of games used in the experiments (1/2). It includes the name, type,
timeout, number of available locations, and information about the non-avatar sprites:
type, initial number in the level at t = 0, and other details if any.
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Game Type Timeout Locations Sprites
Name Type n at t=0 Details

Lemmings Deterministic 2000 222

shovel from-avatar 0
lemming NPC 1
entrance spawner 1 no collision

door immovable 1 no collision
hole immovable 9
wall immovable 121 breakable

Missile Command Deterministic 2000 242

explosive from-avatar 0
fire NPC 4
city immovable 3 no collision
wall immovable 46

Modality Deterministic 2000 15

hole object 1
bush object 1

terrain 1 immovable 7 no collision
terrain 2 immovable 7 no collision

crossing point immovable 1
wall immovable 20

Plaque Attack Deterministic 2000 310

toothpase from-avatar 0
clean tooth immovable 5 no collision

damaged tooth immovable 0
hamburger NPC 1

hot-dog NPC 0
trolley spawner 5 no collision
wall immovable 218

Roguelike Stochastic 2000 266

sword from-avatar 0
spider NPC 14
ghost NPC 5
heart resource 10
gold resource 14

weapon resource 1
city immovable 3
key resource 1

locked door immovable 1
goal immovable 1 goal
wall immovable 196

Seaquest Stochastic 1000 189

torpedo from-avatar 0
whale NPC 0
shark NPC 0

piranha NPC 0
diver NPC 0

whirlpool spawner 8 no collision
ocean immovable 168 no collision
surface immovable 22

Survive Zombies Stochastic 1000 121

zombie NPC 1
priest NPC 0 no collision
tomb spawner 3 no collision
cloak spawner 3
heart object 14
wall immovable 85

Wait for breakfast Deterministic 1000 50

chair immovable 11 no collision
table immovable 5
waiter NPC 0
door spawner 1 no collision
exit immovable 1

Table 4.2: List of games used in the experiments (2/2). It includes the name, type,
timeout, number of available locations, and information about the non-avatar sprites:
type, initial number in the level at t = 0, and other details if any.
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purpose of some of the criteria used for the benchmark is to break ties. As a result,
these criteria are not summarised in the stats table (e.g. game-ticks). Other data re-
trieved is highly dependent on the games and cannot be summarised in a unique table
per heuristic (e.g. score for WMH). The stats that cannot be generalised between games
are not included unless I have established a way to compare them. In some of the cases,
this comparison is game-relative.

For each heuristic, the controllers are sorted according to their results in the games,
based on the criteria tailored to the heuristic employed. Therefore, the final results
present four rankings, one per heuristic (WMH, EMH, KDH, KEH), determining the best
algorithms for each goal. After introducing and discussing all these individual rankings,
I include a table that summarises the results of all the rankings for easy comparison
between them.

4.6.1 WMH

Data gathered The gameplay data collected for the Winning Maximisation Heuristic
includes three values:

• win condition: 1 or 0, determined by the game finishing with a victory for the
agent or not, respectively.

• final score: number of points achieved at the end of the game.

• timesteps to End of the Game (EoG): number of game-ticks played.

Performance criteria Given the results of different controllers in a game, the agent
with a higher number of victories is considered better. In the case of a tie, higher scores
are better. A lower average of game-ticks to victory is preferred (indicative that the
game is won faster), while a higher value is preferred for games lost (which suggests a
longer survival time). This ranking system is similar to the one used in the GVGAI
Competition.

Results Based on the performance criteria detailed above, each controller is awarded
25, 18, 15, 12 or 10 points per game based on the results of their gameplay. The points
received from each game are summed to obtain the total, which is used to get the final
ranking. Table 4.3 presents the final ranking for the Winning Maximisation Heuristic
detailing the number of points awarded per game to each of the controllers. Table 4.4
summarises the final ranking including the total number of victories achieved by each
controller overall games as a reference. Tables and graphs with detailed information
per game including the final stats used to distribute the F1 points are included in Ap-
pendix C.1.

The performance of RHEA is notably poor compared with the rest of the algorithms,
being last in the ranking with a mere 10.00% rate of wins across the games. Its results
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Controller G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 G-11 G-12 G-13 G-14 G-15 G-16 G-17 G-18 G-19 G-20 Total
1 OLETS 25 25 15 25 25 25 25 25 18 25 25 25 18 15 25 15 25 25 18 25 449
2 RS 15 15 25 25 18 15 15 18 25 12 15 15 12 18 15 25 18 15 25 15 356
3 OLMCTS 18 18 18 25 15 18 12 15 12 18 18 12 15 25 18 18 15 18 15 10 333
4 OSLA 12 12 12 25 12 10 18 12 15 10 12 18 25 12 12 12 12 12 12 18 283
5 RHEA 10 10 10 25 10 12 10 10 10 15 10 10 10 10 10 10 10 10 10 12 224

Table 4.3: WMH results: Final ranking and F1 points awarded per game. G-1: Aliens,
G-2: Bait, G-3: Butterflies, G-4: Camel Race, G-5: Chase, G-6: Chopper, G-7: Crossfire,
G-8: Digdug, G-9: Escape, G-10: Hungry Birds, G-11: Infection, G-12: Intersection, G-
13: Lemmings, G-14: Missile Command, G-15: Modality, G-16: Plaque Attack, G-17:
Roguelike, G-18: Seaquest, G-19: Survive Zombies, G-20: Wait for Breakfast.

WMH Ranking
Controller F1 points Total victories

1 OLETS 449 236/400
2 RS 356 204/400
3 OLMCTS 333 166/400
4 OSLA 283 136/400
5 RHEA 224 40/400

Table 4.4: WMH ranking summary. For reference, it shows the total number of
victories across games achieved by each controller.

contrast with the 34.00% rate of wins obtained by OSLA (ranked in 4th position) and
the 59.00% achieved by OLETS, ranked 1st and with the best stats for the WMH. It is
worth mentioning that, specifically for the game Intersection (Table 4.5, Fig. 4.1), the
difference between RHEA and the other algorithms is evident, as it reaches no victories
when the rest of controllers achieve a rate of 100.00% wins in the game. Unlike RHEA,
RS performs well, finishing in the 2nd position of the ranking with the second-best
numbers. It is interesting that these two algorithms, while following a similar approach,
have different performances. This suggests that further tweaking of the default RHEA
parameters could land better results.

WMH: Intersection
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 100.00% 34.50 (3.20) 1000.00 (0) -
18 OSLA 100.00% 4.70 (1.39) 1000.00 (0) -
15 RS 100.00% 4.15 (0.96) 1000.00 (0) -
12 OLMCTS 100.00% 1.00 (0) 1000.00 (0) -
10 RHEA 0.00% -25.00 (0) - 347.45 (32.89)

Table 4.5: Results for the game Intersection showing: points received, controller, rate
of wins (% Wins), average of score achieved, average of game-ticks when winning (EoG
victories), and average of game-ticks when losing (EoG defeats). The values in paren-
thesis represent the corresponding Std. Deviation.

The resulting tables with performance on a game-per-game basis, as well as the
graphs showing the stats of the 20 gameplays, are included in Appendix C.1. This sec-
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure 4.1: WMH results: Intersection. The graphs show the stats of 20 gameplays
achieved by each agent, in order: OLETS (blue), OLMCTS (red), OSLA (green), RHEA
(purple), and RS (orange).

tion only discusses some interesting results that I have observed.

The controllers achieved no victories in Camel Race, Digdug, Lemmings, or Roguelike,
meaning that none of the agents managed to win these games. The last three corresponds
to games with big levels (Figs. A.8, A.13, and A.17) where the agent must carry out
accurate actions to trigger the winning condition. Because of the limited resources em-
ployed in this heuristic, it is understandable that none of them managed to find the
solution. However, it is interesting that Camel Race has not been solved, given that to
win this game the player just needs to move in a straight line to the right, where the
goal is located (Fig. A.4). This suggests that even the simplest game poses a challenge
to the agents when the information about the dynamics of the game is restricted.

Hungry Birds (Table 4.6, Fig. 4.2) is very close to falling onto the category of un-
solvable games, as most agents obtain a 0.00% rate of wins. However, OLETS managed
to win it with an outstanding 65.00% rate of victories. Similarly, Crossfire (Table 4.7,
Fig. 4.3) was only solved by three of the algorithms (OLETS, OSLA, and RS) with a
55.00% rate of wins for OLETS and a comparably low percentage achieved by the other
two (5.00%).

Regarding games with an overall high rate of victories, I can refer to Aliens, Infection,
Intersection, and Modality (Fig. 4.4). The average between the final rate of wins of the
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WMH: Hungry Birds
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 65.00% 65.00 (10.67) 176.38 (22.77) 60.00 (0)
18 OLMCTS 0.00% 4.00 (2.68) - 465.00 (64.82)
15 RHEA 0.00% 0.00 (0) - 341.25 (50.00)
12 RS 0.00% 0.00 (0) - 318.75 (24.00)
10 OSLA 0.00% 0.00 (0) - 307.50 (47.46)

Table 4.6: Results for the game Hungry Birds showing: points received, controller,
rate of wins (% Wins), average of score achieved, average of game-ticks when winning
(EoG victories), and average of game-ticks when losing (EoG defeats). The values in
parenthesis represent the corresponding Std. Deviation.

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure 4.2: WMH results: Hungry Birds. The graphs show the stats of 20 gameplays
achieved by each agent, in order: OLETS, OLMCTS, OSLA, RHEA, and RS.

WMH: Crossfire
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 55.00% 2.70 (0.57) 735.27 (103.56) 1465.89 (32.16)
18 OSLA 5.00% -0.70 (0.29) 726.00 (0) 381.00 (66.57)
15 RS 5.00% -0.70 (0.29) 1197.00 (0) 491.84 (96.77)
12 OLMCTS 0.0% 0.00 (0) - 1500.00 (0)
10 RHEA 0.00% -1.00 (0) - 84.25 (13.59)

Table 4.7: Results for the game Crossfire showing: points received, controller, rate of wins
(% Wins), average of score achieved, average of game-ticks when winning (EoG victories),
and average of game-ticks when losing (EoG defeats). The values in parenthesis represent
the corresponding Std. Deviation.
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure 4.3: WMH results: Crossfire. The graphs show the stats of 20 gameplays achieved
by each agent, in order: OLETS, OLMCTS, OSLA, RHEA, and RS.

agents in these games results in more than 80%. Still, RHEA does not achieve more
than a 55% rate of victories in any of them.

In summary, I conclude that OLETS works well when provided with the Winning
Maximisation Heuristic, while RHEA shows an overall low performance.

4.6.2 EMH

Data gathered The gameplay data collected for the Exploration Maximisation Heuris-
tic includes the following values:

• different positions visited : total number of different locations of the map the agent
explores. It corresponds to the number of positions of the exploration matrix
marked as visited (Section 4.3.2).

• timesteps to the last visit : the latter game-tick when the player reached a new
location (i.e. last time a new exploration happened).

I calculate the final exploration percentage of the level using the total of available
positions. This information is not provided with the agent’s interface, so I have extracted
the number of total possible locations corresponding to each game and level by hand.
This total is detailed in Tables 4.1 and 4.2.
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(a) Aliens (b) Infection

(c) Intersection (d) Modality

Figure 4.4: WMH results: games with resulting (overall) high rate of victories. The
graphs show the number of victories of 20 gameplays achieved by each agent, in order:
OLETS, OLMCTS, OSLA, RHEA, and RS.

Performance criteria The agent with a higher exploration percentage average is
considered better. On ties, a lower game-tick for the last new visited position is preferred,
as it rewards a faster exploration.

Results Based on the performance criteria detailed above, each controller is awarded
25, 18, 15, 12 or 10 points per game based on the results of their gameplay. The points
received from each game are summed to obtain the total, which is used to get the final
ranking. Table 4.8 presents the final ranking for the Exploration Maximisation Heuristic
detailing the number of points awarded per game to each of the controllers. Table 4.9
summarises the final ranking including the average percentage of exploration overall
games as a reference. Tables and graphs with detailed information per game including
the final stats used to distribute the F1 points are included in Appendix C.2.

Controller G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 G-11 G-12 G-13 G-14 G-15 G-16 G-17 G-18 G-19 G-20 Total
1 RS 25 18 15 25 15 18 18 25 25 18 25 25 25 25 18 25 18 25 25 15 428
2 OLETS 18 25 25 12 25 15 25 18 18 15 18 18 18 15 15 18 25 18 18 18 377
3 OLMCTS 15 12 18 18 18 25 12 15 10 12 15 12 15 18 12 15 15 15 12 25 309
4 OSLA 12 15 12 15 12 12 15 12 15 25 10 15 12 12 25 12 12 12 15 12 282
5 RHEA 10 10 10 10 10 10 10 10 12 10 12 10 10 10 10 10 10 10 10 10 204

Table 4.8: EMH results: Final ranking and F1 points awarded per game. G-1: Aliens,
G-2: Bait, G-3: Butterflies, G-4: Camel Race, G-5: Chase, G-6: Chopper, G-7: Crossfire,
G-8: Digdug, G-9: Escape, G-10: Hungry Birds, G-11: Infection, G-12: Intersection, G-
13: Lemmings, G-14: Missile Command, G-15: Modality, G-16: Plaque Attack, G-17:
Roguelike, G-18: Seaquest, G-19: Survive Zombies, G-20: Wait for Breakfast.
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EMH Results
Controller F1 Points Total average % explored

1 RS 428 74.94%
2 OLETS 377 76.86%
3 OLMCTS 309 65.60%
4 OSLA 282 54.14%
5 RHEA 204 27.56%

Table 4.9: EMH ranking, presenting the overall games stats. Shows the overall average
of percentage explored obtained by each of the controllers.

The overall average of the percentage of exploration for RS and OLETS is almost the
same, being slightly higher for OLETS (74.94% and 76.86%, respectively). However, RS
achieves 1st position with a total of 428 points, being OLETS second with 377. OLM-
CTS ranks third with 309 points and an exploration percentage performance of 65.60%.
RHEA has notably poor performance compared with the rest of the algorithms (27.56%)
and ranks last, headed by OSLA, in 4th place with an overall exploration of 54.14%.

The resulting tables with performance on a game-per-game basis, as well as the
graphs showing the stats of the 20 gameplays, are included in Appendix C.2. This sec-
tion only discusses some interesting results that I have observed.

Only in Aliens (Table 4.10, Fig 4.5) some of the agents (RS, OLETS, and OLMCTS)
achieve an average of 100.00% of exploration of the level, followed closely by OSLA with
97.33%. In comparison, RHEA achieves a 64%. The movement of the player in this
game is horizontally (left and right only), and the level has only a few fully accessible
available positions (30), which is a very low value compared with most of the games used
in the experiments. RHEA achieving such a little performance in exploration in this
game hints about the performance to expect from this agent when applying the EMH.

EMH: Aliens
Points Controller % Explored Game-ticks last exploration

25 RS 100.00% (0) 98.10 (12.11)
18 OLETS 100.00% (0) 184.35 (24.35)
15 OLMCTS 100.00% (0) 202.45 (28.23)
12 OSLA 97.33% (2.60) 216.25 (42.62)
10 RHEA 64.00% (4.37) 395.00 (61.09)

Table 4.10: Results for the game Aliens showing: points received, controller, average of
percentage explored, average of game-ticks to last exploration. The values in parenthesis
represent the corresponding Std. Deviation.

Games like Butterflies, Chase, Chopper, Modality, and Survive Zombies (Fig. 4.6)
show a high exploration performance from the agents overall. Calculating the average
of the final exploration rate of the agents results in more than 80%. In all these games,
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(a) Map exploration % (b) Game-ticks last new exploration

Figure 4.5: EMH results: Aliens. The graphs show the stats of 20 gameplays achieved
by each agent, in order: OLETS, OLMCTS, OSLA, RHEA, and RS.

the level played is completely accessible, meaning that the agent does not have to make
an action or interact with other sprites to be able to reach the locations available.

Only two of the games result in a significant mediocre performance (less than 25%)
when calculating the average of the final percentage of exploration of all the controllers:
Camel Race and Roguelike. Camel Race (Table 4.11, Fig 4.7) has a quick game over
because the NPC wins the game rapidly and it probably did not give the agents enough
time to explore. The maximum average of exploration percentage achieved for this
game is obtained by RS with a 23.71%, closely followed by OLMCTS (22.87%), OSLA
(20.61%), and OLETS (19.83%). RHEA obtains an average of 7.83%.

EMH: Camel Race
Points Controller % Explored Game-ticks last exploration

25 RS 23.71% (0.27) 78.90 (0.10)
18 OLMCTS 22.87% (0.34) 78.80 (0.19)
15 OSLA 20.61% (0.67) 76.45 (1.27)
12 OLETS 19.83% (0.42) 77.95 (0.80)
10 RHEA 7.83% (0.34) 65.15 (2.30)

Table 4.11: Results for the game Camel Race showing: points received, controller, av-
erage of percentage explored, average of game-ticks to last exploration. The values in
parenthesis represent the corresponding Std. Deviation.

Roguelike (Table 4.12, Fig 4.8) has a big map with two separate zones (Fig. A.17),
and the player needs to carry out a specific task (collect a key) to gain access to the
second part of the map (73 of the 266 locations). The accessible area covers 72.55% of
the whole level. Given that the highest average percentage of exploration achieved by
the best performer controller, OLETS, is 42.22%, I speculate that none of the agents
managed to gain access to the second area. In addition, the game and this specific level
have several enemies that kill the player, so it is quite probable that the agents were
killed early in their gameplays, not being able to explore the level enough.

111



4. Foundation: Heuristic Diversification in General Game-Playing

(a) Butterflies (b) Chase

(c) Chopper (d) Modality

(e) Survive Zombies

Figure 4.6: EMH results: games with resulting (overall) high exploration performance.
The graphs show the Map exploration % of 20 gameplays achieved by each agent, in
order: OLETS, OLMCTS, OSLA, RHEA, and RS.

(a) Map exploration % (b) Game-ticks last new exploration

Figure 4.7: EMH results: Camel Race. The graphs show the stats of 20 gameplays
achieved by each agent, in order: OLETS, OLMCTS, OSLA, RHEA, and RS.
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EMH: Roguelike
Points Controller % Explored Game-ticks last exploration

25 OLETS 42.22% (5.50) 551.70 (116.54)
18 RS 20.71% (1.77) 109.90 (14.47)
15 OLMCTS 17.61% (2.86) 268.20 (73.45)
12 OSLA 14.12% (1.15) 112.70 (21.89)
10 RHEA 4.51% (0.67) 343.90 (73.38)

Table 4.12: Results for the game Roguelike showing: points received, controller, average
of percentage explored, average of game-ticks to last exploration. The values in paren-
thesis represent the corresponding Std. Deviation.

(a) Map exploration % (b) Game-ticks last new exploration

Figure 4.8: EMH results: Roguelike. The graphs show the stats of 20 gameplays achieved
by each agent, in order: OLETS, OLMCTS, OSLA, RHEA, and RS.

I conclude that for the Exploration Maximisation Heuristic, most agents have a simi-
lar overall performance except for RHEA, who shows a poor performance in comparison.

4.6.3 KDH

Data gathered The gameplay data collected for the Knowledge Discovery Heuristic
includes the following values:

• sprites acknowledged : sprites with different IDs observed during gameplay or the
forward model simulations.

• interactions: unique interactions with sprites of each type. A distinction between
collisions and actions-onto interactions is made.

• curiosity : interactions with sprites in different locations of the map. A distinction
between collisions and actions-onto interactions is made.

• timesteps to the last acknowledgement : the latter game-tick when a new sprite was
acknowledged (i.e. last time a new acknowledgement happened).

• timesteps to the last interaction: the latter game-tick when a new event between
two sprites happened (i.e. last time a new interaction took place).
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• timesteps to the last curiosity : the latter game-tick when an interaction with a
sprite in a new location happened (i.e. last time a new curiosity took place).

The total number of known sprites per game and level is undefined, so instead of
using a set total, the percentage used as benchmark is based on the relative data of the
agents per game. Therefore, in the results, the controller with the highest number of
acknowledged sprites is assigned with a 100% performance on the ‘acknowledged sprites‘
category. That total number achieved by that agent is the one taken as reference as the
total number of sprites. Therefore, the final percentage obtained in the results and stats
are relative and dependant on the best value obtained during gameplay.

Performance criteria The agent has better performance when obtaining, in order:
a higher number of acknowledged sprites, a higher number of unique interactions, a
higher curiosity, and a lower game-ticks to last acknowledgement, last interaction and
last curiosity.

Results Based on the performance criteria detailed above, each controller is awarded
25, 18, 15, 12 or 10 points per game based on the results of their gameplay. The
points received from each game are summed to obtain the total, which is used to get
the final ranking. Table 4.13 presents the final ranking for the Knowledge Discovery
Heuristic detailing the number of points awarded per game to each of the controllers.
Table 4.14 summarises the final ranking including the game-relative percentage of sprites
acknowledged, interactions, curiosity collisions and curiosity actions-onto. Tables and
graphs with detailed information per game including the final stats used to distribute
the F1 points are included in Appendix C.3.

Controller G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 G-11 G-12 G-13 G-14 G-15 G-16 G-17 G-18 G-19 G-20 Total
1 RS 25 15 18 15 25 25 25 18 18 18 18 25 18 18 25 25 18 25 15 25 414
2 RHEA 15 25 12 12 18 12 12 25 25 25 25 12 25 12 15 12 15 10 25 10 342
3 OLMCTS 18 18 25 18 15 10 15 15 15 15 15 10 15 25 18 10 25 18 18 12 330
4 OLETS 12 12 15 25 12 18 10 12 10 12 12 18 12 15 12 15 12 15 12 18 279
5 OSLA 10 10 10 10 10 15 18 10 12 10 10 15 10 10 10 18 10 12 10 15 235

Table 4.13: KDH results: Final ranking and F1 points awarded per game. G-1: Aliens,
G-2: Bait, G-3: Butterflies, G-4: Camel Race, G-5: Chase, G-6: Chopper, G-7: Crossfire,
G-8: Digdug, G-9: Escape, G-10: Hungry Birds, G-11: Infection, G-12: Intersection, G-
13: Lemmings, G-14: Missile Command, G-15: Modality, G-16: Plaque Attack, G-17:
Roguelike, G-18: Seaquest, G-19: Survive Zombies, G-20: Wait for Breakfast.

RS obtains the first position achieving a total of 414 points, followed by RHEA (342
points), OLMCTS (330 points), OLETS (279 points), and OSLA (235 points). RS is the
best performing agent, achieving a 100% of performance in acknowledgement, meaning
that it is the controller that has acknowledged the highest number of sprites in every
game. It achieves the highest or second-highest performance for all the stats, which is a
remarkable result. The best performance for collision curiosity is achieved by OLETS
with a total of 90.72%. The algorithm that performs the worst and ranks last is OSLA.
Although its performance acknowledging the elements and interacting with them is over
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KDH Results
Controller F1 Points % Ack (Rel.) % Int. (Rel.) % CC (Rel.) % CA (Rel.)

1 RS 414 100.00% 96.18% 85.46% 87.42%
2 RHEA 342 99.66% 95.48% 62.48% 54.44%
3 OLMCTS 330 99.79% 93.53% 84.75% 84.06%
4 OLETS 279 99.86% 88.97% 90.72% 77.55%
5 OSLA 235 98.48% 84.99% 56.37% 51.75%

Table 4.14: KDH ranking and overall games stats. The stats show game-relative (Rel.)
percentages for sprites acknowledged (Ack.), interactions (Int.), Curiosity Collisions (CC)
and Curiosity Actions-onto (CA)

84.99%, its curiosity performance is just 56.37% and 51.75%.

The resulting tables with performance on a game-per-game basis, as well as the
graphs showing the stats of the 20 gameplays, are included in Appendix C.3. Only in
three of the games, all controllers have interacted with more than 75% of the sprites
they acknowledged during gameplay: Bait (Fig 4.9), Digdug (Fig 4.10), and Intersection
(Fig 4.11).

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure 4.9: KDH results: Bait. The graphs show the stats of 20 gameplays achieved by
each agent, in order: OLETS, OLMCTS, OSLA, RHEA, and RS.

In Camel Race, on the other hand, they only interact with 1 of the 7 acknowledged
(Fig 4.12).

The number of unique interactions with the sprites gives an idea of the number of
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(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure 4.10: KDH results: Digdug. The graphs show the stats of 20 gameplays achieved
by each agent, in order: OLETS, OLMCTS, OSLA, RHEA, and RS.

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure 4.11: KDH results: Intersection. The graphs show the stats of 20 gameplays
achieved by each agent, in order: OLETS, OLMCTS, OSLA, RHEA, and RS.
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(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure 4.12: KDH results: Camel Race. The graphs show the stats of 20 gameplays
achieved by each agent, in order: OLETS, OLMCTS, OSLA, RHEA, and RS.

interactive elements in the game. In contrast, the rate of each type of interaction informs
how it is possible to interact with them. It can also provide some information about the
rules. For example, if the number of sprites interacted with is high but the resulting
number of actions-onto curiosity is 0, it may be possible that the agent cannot carry out
actions.

4.6.4 KEH

Data gathered The gameplay data collected for the Knowledge Estimation Heuristic
reflects how well the agent can estimate the dynamics of the game in terms of changes
on the victory status and score awarded from interactions with the elements. Therefore,
estimations of the outcomes of each interaction type (collisions and actions-onto) are
obtained and provided at the end of the game. These estimations must be compared
with the true outcome to determine how accurate the predictions are. To determine the
level of accuracy, for every game, I have extracted manually the ground truth regarding
sprites that cause score change or winning/losing states. For every prediction given by
the agent, the square error to the ground truth is calculated. The mean of square errors
determines the total prediction error incurred by the agent in a game. The interaction
percentage is game-relative, considering the highest value given by a controller for each
game as a benchmark to obtain the performance for that game. The value displayed in
the table has been obtained with the average of these values for all games.
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Performance criteria An agent is considered better based on the quality of their
predictions: the best controller is the one with the smallest average of square errors. In
the (rare) case of a tie, the number of events that the controller can give a prediction for
is used as a tie-breaker, considering the higher, the better.

Results Based on the performance criteria detailed above, each controller is awarded
25, 18, 15, 12 or 10 points per game based on the results of their gameplay. The points
received from each game are summed to obtain the total, which is used to get the final
ranking. Table 4.15 presents the final ranking for the Knowledge Estimation Heuristic
detailing the number of points awarded per game to each of the controllers. Table 4.16
summarises the final ranking including the average of square error accross games and
the game-relative percentage of interactions estimated. Tables with detailed informa-
tion per game including the final stats used to distribute the F1 points are included in
Appendix C.4.

Controller G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 G-11 G-12 G-13 G-14 G-15 G-16 G-17 G-18 G-19 G-20 Total
1 OLMCTS 18 15 10 10 25 18 25 15 12 18 25 15 15 18 15 25 15 10 18 25 347
2 RHEA 15 25 18 15 15 25 12 10 25 12 15 12 18 15 10 18 12 18 25 15 330
3 OSLA 12 10 12 18 10 10 18 25 10 10 10 25 25 12 25 10 18 25 10 18 313
4 RS 25 18 25 12 18 12 15 12 15 15 12 18 12 25 12 15 10 15 12 12 310
5 OLETS 10 12 15 25 12 15 10 18 18 25 18 10 10 10 18 12 25 12 15 10 300

Table 4.15: KEH results: Final ranking and F1 points awarded per game. G-1: Aliens,
G-2: Bait, G-3: Butterflies, G-4: Camel Race, G-5: Chase, G-6: Chopper, G-7: Crossfire,
G-8: Digdug, G-9: Escape, G-10: Hungry Birds, G-11: Infection, G-12: Intersection, G-
13: Lemmings, G-14: Missile Command, G-15: Modality, G-16: Plaque Attack, G-17:
Roguelike, G-18: Seaquest, G-19: Survive Zombies, G-20: Wait for Breakfast.

KEH Results
Controller F1 Points Avg. square error % Int. estimated

1 OLMCTS 347 0.338 97.92%
2 RHEA 330 0.505 97.50%
3 OSLA 313 0.617 73.19%
4 RS 310 0.528 98.33%
5 OLETS 300 1.086 87.92%

Table 4.16: KEH ranking and overall games stats. The stats show the overall average
of the square error average and the game-relative (Rel.) percentage for the interactions
estimated (Int. estimated).

OLMCTS ranks first with a total of 347 points, closely followed by RHEA with 330.
The last three positions (OSLA, RS, and OLETS) are very close to each other in the
number of points achieved: 313, 310 and 300, respectively. In addition, when looking
at the overall average square error, results are not very satisfactory, as the average for
the agent with best performance overall games (OLMCTS) is 0.338. Overall, none of
the agents has a remarkably better performance than the others, as the difference of
points between OLMCTS and OLETS is just 47. However, it is worth mentioning that,
unless there is a poor overall performance, the estimations for some of the interactions
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in certain games are very accurate. There are a few cases where the outcome of the
interaction with a sprite has been estimated by all the controllers with an average square
error of 0.00. Most of these cases are related with estimations for the interactions of the
type collision.

The resulting tables with performance on a game-per-game basis are included in
Appendix C.4. Individual resulting predictions per agent and game are provided in Ap-
pendix C.5. This section only discusses some interesting results that I have observed.

In Aliens, all five controllers achieved an accurate estimation for the collisions with
both the bomb (stype 6) and the alien (stype 9), predicting an inarguable defeat when the
player interacts with any of them. These results are presented in Appendix tables C.81,
C.82, C.83, C.84, and C.85. As a result, none of the controllers stand out in the final
ranking of this game as the average square error obtained is quite similar between them
(Table 4.17).

KEH: Aliens
Points Controller Avg. Square Error Interactions Estimated

25 RS 1.11E-01 4
18 OLMCTS 1.18E-01 4
15 RHEA 1.20E-01 4
12 OSLA 1.21E-01 4
10 OLETS 1.25E-01 4

Table 4.17: Results for the game Aliens showing: average of the square error obtained
and total interactions estimated.

Another example of great accuracy in the predictions is found in Chase, where a sprite
of type angry bird can (or not) emerge at some point during the game (Section A.5).
The angry bird kills the avatar when colliding with it and decreases the score by one
point. OLMCTS, RHEA, and RS discovered this element of the game (stype 5) and
predicted both the winning condition and score change with an average square error of
0.00 (Table 4.18). See Appendix tables C.103, C.104, and C.105 for all the predictions
of those agents for this game.

Finally, RHEA predicted every outcome of every sprite interaction for the game
Escape with an average square error of 0.00 (Table 4.19), which is a remarkable achieve-
ment. The rest of the controllers also achieved accurate predictions, as the final square
errors obtained are very small (Table 4.20).

The examples described above show good performance when analysing the data ob-
tained. However, I also encounter less than optimal performance in many of the games
studied. In overall terms, the results show the challenge of predicting and understanding
a game when its information is limited. None of the controllers has a remarkably bet-
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KEH: Predictions Stype 5 (angry bird) in Chase
Controller Ground Truth Estimations Accuracy Square Error

CW CS CW CS CW CS
OSLA -1 -1 - - - -
OLETS -1 -1 - - - -

OLMCTS -1 -1 -1.00 (0.00) -1.00 (0.00) 0.00E+00 0.00E+00
RHEA -1 -1 -1.00 (0.00) -1.00 (0.00) 0.00E+00 0.00E+00

RS -1 -1 -1.00 (0.00) -1.00 (0.00) 0.00E+00 0.00E+00

Table 4.18: Summary predictions of stype 5 (angry bird) for the game Chase. Shows the
ground truth of every collision, as well as the estimations and square error obtained by
each agent for every collision win (CW) and collision score (CS). The values in parenthesis
represent the corresponding Std. Deviation.

RHEA Predictions: Escape
Stype Ground Truth Estimations Accuracy Square Error

CW CS AW AS CW CS AW AS CW CS AW AS
0 0 0 - - 0.00 (0.00) 0.00 (0.00) - - 0.00E+00 0.00E+00 - -
3 0 0 - - 0.00 (0.00) 0.00 (0.00) - - 0.00E+00 0.00E+00 - -
4 1 1 - - 1.00 (0.00) 1.00 (0.00) - - 0.00E+00 0.00E+00 - -
5 -1 -1 - - -1.00 (0.00) -1.00 (0.00) - - 0.00E+00 0.00E+00 - -

Table 4.19: KEH predictions of RHEA for the game Escape. Shows the id of the sprite
(Stype), the ground truth of every interaction, as well as the estimations and square
error obtained by the agent for every type of interaction: collision win (CW), collision
score (CS), action-onto win (AW) and action-onto score (AS). The values in parenthesis
represent the corresponding Std. Deviation.

KEH: Escape
Points Controller Avg. Square Error Interactions Estimated

25 RHEA 0.00E+00 4
18 OLETS 6.71E-08 4
15 RS 5.81E-07 4
12 OLMCTS 2.50E-01 3
10 OSLA 5.00E-01 1

Table 4.20: Results for the game Escape showing: average of the square error obtained
and total interactions estimated.

ter performance than the others. However, RHEA performs better with the KEH than
with any of the previous heuristics, being able to achieve in some cases more accurate
predictions than the rest of the controllers.

4.6.5 Results summary and discussion

The experiments confirm that the performances of the agents are different, so the ex-
ternal heuristic has an effect on the efficiency of the GVGP agents. By analysing the
results per game, I have noticed that the performance is influenced by its characteristics
and the level considered.
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Taking the RS algorithm with EMH as an example, there are clear distinctions in
the performance depending on the size of the map, the obstacles, and the rules of the
game (Fig. 4.13).

Figure 4.13: EMH results per game: RS. The graphs show the Map exploration % of 20
gameplays achieved by RS in each game.

In small or easy accessible maps as the ones presented in Aliens, Butterflies, Chase,
Chopper, Digdug, Hungry Birds, Infection, Intersection, Lemmings, Modality, Seaquest,
and Survive Zombies, the agent presents an average performance higher than 85%, being
higher than 90% for most of them. On the contrary, those games that present obstacles
that block the path (Bait and Escape), have large or not easy accessible maps (Crossfire
and Roguelike), or where the agent plays against time (Camel Race and Wait for Break-
fast), their performance drops.

These observations are interesting. They show how even the most performing agent
for a particular goal can be affected by the characteristics of the game and level, attest-
ing to the difficulty of developing general heuristics. However, they are also inspiring.
The existence of differences in the resulting performance based on the type of game (or
characteristics of the level) could be used to assist in the development and testing of
games. I explore this idea in detail in Chapter 5.

Table 4.21 provides an overview of the rankings obtained for each of the heuristics. It
displays the position and the total number of points achieved by each controller in each
set of experiments. The number of points scored by the controllers in the first position
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for WMH, EMH, KDH, and KEH is, respectively, 449, 428, 414, and 347. Note that
the difference between the points achieved by the agents in the first and last positions is
higher for WMH, EMH, and KDH than for KEH. Overall, KEH shows a more uniform
distribution of points. This result suggests that the performance of the algorithms using
KEH is very similar, with no algorithm showing a clear dominance.

Rankings
WMH EMH KDH KEH

1st 449 OLETS 428 RS 414 RS 347 OLMCTS
2nd 356 RS 377 OLETS 342 RHEA 330 RHEA
3rd 333 OLMCTS 309 OLMCTS 330 OLMCTS 313 OSLA
4th 283 OSLA 282 OSLA 279 OLETS 310 RS
5th 224 RHEA 204 RHEA 235 OSLA 300 OLETS

Table 4.21: Final ranking for each heuristic showing the total number of F1-points
achieved by each controller in each independent set of experiments: WMH, EMH, KDH,
and KEH.

The results obtained are very heterogeneous. First, three different controllers (OLETS,
RS, and OLMCTS) reach the first position, and three (RHEA, OSLA, and OLETS) rank
last in at least one of the experiments. In addition, there is a noticeable difference in the
rankings and order of the controllers for each heuristic. RHEA performs poorly for both
WMH and EMH, being last and with a significant difference in scores with OSLA, in 4th

place. However, it appears on the top of the ranking for KDH and KEH, reaching the
2nd position in both of them with 342 and 330 points. OLETS performs very well for
WMH and EMH, but ranks 4th and last in both heuristics involving knowledge. OSLA
maintains a similar position over all the heuristics (4th for WMH and EMH, last for
KDH, and 3rd for KEH). OLMCTS obtains a medium performance for WMH, EMH,
and KDH and reaches the first position for KEH. Finally, RS has generally good perfor-
mance, being second for WMH, first for EMH and KDH. In its fourth position achieved
for KEH, the difference of points in the rank is not as high as in the other rankings.

Heuristic diversification provides GVGP agents with goals beyond winning, but the
results demonstrate how it would not be enough just to design and implement the heuris-
tic. It is necessary to understand the impact of the heuristic on the performance of the
agent that uses it. Carrying out a similar experiment to the ones presented in this Chap-
ter should help to identify the best choice based on the needs. It would be reasonable to
choose the agent with the best results based on the heuristic chosen, or if more than one
heuristic is brought together, the agent with steady results in overall experiments. In my
case, if combining WMH and EMH, the choice would be between using RS or OLETS,
but if knowledge is also included, it would be preferable to use RS or OLMCTS. The
heuristics have been presented as independent entities, but it is sensible to think that
they can all be helpful in different circumstances. For example, it sounds reasonable to
use KDH and KEH at the first stage of play to achieve a better understanding of the
game. Once certain conditions have been met, these discoveries can influence the usage
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of WMH and EMH. It should be possible to design a high-level meta-heuristic algorithm
to combine and select different agents and heuristics during gameplay. Having available
a set of general algorithms with a variety of objectives (provided by the pertinent heuris-
tic) would allow accommodating to different situations that emerge during gameplay
and switching behaviour in response to the environment. I do not look into this in my
research, but it is an interesting open future work.

The core of the agents is the same in every experiment, so I conclude that the
discrepant rankings are influenced by the heuristic provided and, therefore, the goal
assigned to the algorithms. I have been able to confirm that the performances are
different, but what about their behaviour? Next, I examine the agents playing the
games with each heuristic to study the differences in how they act and react to the
game.

4.7 Analysing the Distinct Behaviour

This section provides an extension of the work described in this chapter and serves as an
inspiration for the following chapters. I take the algorithms with each of the heuristics
implemented and analyse their behaviour when playing the same game. The goal is to
identify distinct behaviours during gameplay when exposing the algorithms to different
general objectives without modifying their core.

For the analysis included in this section, I only use RS, as it maintains a generally
good performance across heuristics (Table 4.21). It resulted in second place for WMH,
first for both EMH and KDH, and fourth for KEH, where the difference in points in
the ranking is not as high as in the other cases. I consider two games of different
characteristics: Butterflies and Digdug. My objective is to show the disparity between
the behaviours of the agent across games when using each of the heuristics.

4.7.1 Behaviour in Butterflies

To win the game Butterflies (Section A.3), the player must capture all the butterflies
before the time runs out or all the cocoons open. Catching a butterfly increases the score
by 2, so the more captured, the higher the final score is. The behaviour of the agent
based on the goal and heuristic that I have observed when studying each gameplay in
real-time is as follows:

• WMH: At the start of the game, the agent stays around the same area and moves
randomly. This is probably because the butterflies are out of reach, so the agent is
not receiving any reward when looking at future states. The moment the butterflies
are close enough to be noticed by the agent, it moves to catch them. When the
agent gets close enough to the butterflies to capture them all, it wins the game.
On the contrary, if during gameplay, the random movement of the agent and the
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butterflies causes them to stay afar, the agent cannot catch all the butterflies to
win the game.

• EMH: The agent continuously moves until the map is completely visited. When
all its surrounding locations have been visited, it moves randomly. The agent is
not interested in the score or winning, so it does not care about the butterflies
and ignores them. It is possible that during the exploration, the agent catches
butterflies by moving to a new location. By looking at its behaviour, I can assert
that the agent does not pursue the butterflies and catches them by chance.

• KDH: In Butterflies, there are only two interactive elements: the tree and the
butterfly. I have noticed that the agent moves around the map close to the trees,
interacting with them in different positions. It rarely covers the big spaces in the
middle of the map unless there are butterflies around, as it tends to interact with
them as well.

• KEH: Unlike in KDH, the agent does not interact with the elements based on their
position. In contrast, it aims for a uniform interaction with all the elements in the
game (i.e. trees and butterflies). It tends to stay in the same spot near a tree until
it notices a butterfly to catch.

The demo available online at [Guerrero Romero, 2018] represents an example of
gameplay of the game Butterflies by the RS agent with each of the heuristics. It attests
to the distinctions in the agent’s behaviour. At the end of the demo, the estimations of
KEH for each of the elements are also shown. It predicts the score change resulted for
each of them and the possible outcome (win/lose) of the game. For the trees (ID 0), it
predicts no score change at all (and there is none in the game), while for the butterflies
(ID 5), it predicts a score increase of 2, which is accurate.

4.7.2 Behaviour in Digdug

The goal of Digdug (Section A.8) is to collect all the items (gems and gold coins) and
kill the monsters before the time runs out or the player dies. Walls are breakable, and
the start point of the player is on the bottom left of the map. Figure 4.14 shows the
final states of the same level of the game after the RS agent has played with each of
the heuristics. By looking at them, I have noticed the existence of a difference in the
behaviour. My interpretation of the behaviour of the agent by analysing the resulting
final states of the game is as follows:

• WMH: The winning state is not immediately reachable, so the agent focuses on
the area where the score is maximised (by the existence of gems to pick up) and
cleans it. The enemies move around, and the rest of the gems are further away on
the map. Therefore, states where the agent is rewarded by an increase in the score
(collecting a gem or killing a monster) are out of reach. As a result, it is not able
to cover the entirety of the map.
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Figure 4.14: . Screenshot of the final state of the Digdug level (top) after RS’s gameplay
using each of the heuristics (in order, up to the right): WMH, EMH, KDH, and KEH.
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• EMH: The agent moves around the whole map, managing to cover it almost en-
tirely.

• KDH and KEH: The interaction with different elements (in different locations for
the first heuristic) is encouraged. As a result, the agent covers the map slightly
more than WMH, driven by the need to interact with the elements scattered around
the map.

4.8 Conclusions

This chapter introduces the concept of heuristic diversification, which isolates the eval-
uation function from the core of the planning algorithms so the heuristic can be pro-
vided externally and be easily interchangeable. The objective of the work presented
is to analyse the performance and behaviour of General Video Game Playing (GVGP)
agents when the only difference between them comes from their goals (heuristics). Four
different heuristics have been designed and implemented. As a result, in each set of
experiments, the goal given to each of the search methods is to explore, interact, or
predict rather than win the game. However, the latter is also included in one of the
sets as a baseline and point of comparison. Five different controllers are employed for
this study (OSLA, OLETS, OLMCTS, RHEA, and RS), and four heuristics are defined:
Winning Maximisation Heuristic (WMH), Exploration Maximisation Heuristic (EMH),
Knowledge Discovery Heuristic (KHD), and Knowledge Estimation Heuristic (KEH).

The essence of the search algorithms is the same, but the results of the experiments
show differences based on the heuristic used. First, the performance and final ranking
between the group of different agents changes depending on the heuristic assigned. Plus,
the behaviour and interactions in the game for each of the given heuristics are consid-
erably different to each other. From the heterogeneous results shown in the rankings, I
deduce two important things. First, how challenging is the task of achieving a goal with
a good performance for every game, independently of which this goal is, when the char-
acteristics are unknown and generalised. Second, how the performance of a particular
agent is also affected and changes depending on the heuristic used, a very interesting
and thought-inspiring result.

These observations motivate different lines of research. On the one hand, this work
can be taken as a first step in the possibility of enlarging GVGP techniques. These
could use and combine different heuristics to gain useful knowledge about the dynamics
of the game and improve the performance of the general algorithms. In addition, these
agents and heuristics can obtain a relatively good understanding of the game when they
play, although there is still room for improvement. This information could assist to play
games better but also aid the general Procedural Content Generation (PCG) of levels
and games. It could be an option for generators used, for example, in the Level and Rule
Generation GVGAI competition. Last but not least, research could look deeper into the
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application and study of diverse behaviours. The gameplay of the agents presenting dif-
ferent behaviours results in stats that could resemble various types of players and show
the achievement of particular tasks. These results could be used to put into practice a
general evaluation of levels and games.

Enlarging and improving the winning strength of GVGP techniques by applying
heuristic diversification is an interesting line of research. The only work I have car-
ried out in this direction is the collaboration with Anderson et al. [2019]. The general
heuristics designed were integrated (with modifications) as part of an Ensemble Decision
System (EDS) created for GVGP, with successful results.

My main line of work, included in the following chapters, focuses on studying the dif-
ferent behaviours and looking at potential applications in games. I present an approach
to elicit differentiated behaviours, identify tasks and agents’ proficiency in the game
and, ultimately, use the agents to assist in the game development and testing processes.
GVGP agents are general and can be used with no modifications in more than one game
or when changes are carried out on them, having significant potential. The first step
taken, included in the next chapter and inspired by the work presented in this one, is
defining a methodology that uses a team of general agents with different behaviours. The
ultimately objective of my work is to define this team and use it to assist in the develop-
ment and testing processes of games by playing the game automatically and facilitating
the generation of various reports. The following chapters introduce proof of concept of
the proposed methodology, implemented in the GVGAI Framework and applied to four
games with different characteristics. The final chapter extends the application of general
agents even further, proposing to use GVGP agents within games. With this objective,
I include an exploratory case study that analyses the effect that general agents have on
the experience of the players when they are used as NPCs in a player-vs-AI game.
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Chapter 5

Vision: Use a Team of Agents for Game Development and Testing

This chapter presents the long-term vision of my research: to use a team of general
agents with different behaviours to assist in game development and testing. Most of the
material presented has been published in the paper [Guerrero-Romero et al., 2018].

5.1 Introduction

The work presented in this chapter is influenced by the results presented in Chapter 4,
where I noticed apparent differences in the performance and behaviour of the same agent
when provided with distinct goals and motivations. It is also inspired by the literature
covered in Chapter 2, which analyses the existence of different types of players and mo-
tivations and proposes using simulations of distinct gameplay behaviours for play-testing.

The ultimate goal of my work is to assist in the game development and testing pro-
cesses by facilitating developers with a method to automatically trigger tests and tools
during the development of the game. In this chapter, I present the long-term vision
of my research. I propose a methodology consisting of a team of GVGP agents with
differentiated goals and behaviours to facilitate the evaluation of a game and assist in
its development. In the following chapters, I will explore the first steps towards reaching
this vision by defining and implementing a technical solution to generate a team of these
characteristics and presenting a proof of concept. I use the term team to refer to the pool
of agents because they serve the same purpose, similarly to sports, where it describes
a group of people (or athletes) that train together and compete, representing the same
club. While in some sports, the competition can involve the athletes playing simulta-
neously and collaborating (e.g. basketball); in others like fencing, the team members
compete individually while still representing the club. I base my perception of the team
on the latter, meaning that the agents of this team are not expected to play the game
simultaneously or collaborate between them.

Games evolve during their development process, both in terms of implementation
and design. New ideas are put into practice and need to be tested quickly and efficiently.
Using human play-testing is a broad practice, but there is no denying that it impacts
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resources (human and technological), time, and money. Agent-based testing is a suitable
alternative for automating the process, and there is a prolific body of work that looks
at using game-playing agents to evaluate the game content, detailed in Section 2.5.2.
These approaches can provide some advantages for fast and reliable testing. However,
the design and implementation of these agents in some cases is very game-dependant
and may not be adaptable enough to the changes designers and developers are regularly
introducing. The use of general algorithms, on the other hand, provides a level of gener-
alisation, portability, and flexibility that cannot be matched by game-specific ones. This
generality, in this context, does not refer to agents that can play every kind of game in
every framework, but agents that are general within a particular engine and can play
any game or level supported by it. For example, the controllers and heuristics described
in Chapter 4 do not use specific information about the rules of the game and, therefore,
can play any of the games supported by the GVGAI Framework.

Thus, the research question (RQ2) I am looking at answering now is: How to define,
create, and use a team of GVGP agents with distinct behaviours to assist in the develop-
ment and evaluation of games?

I propose a methodology to assist in game development by facilitating the evaluation
of any game using a team of GVGP agents with differentiated goals. It is rooted in the
idea that it is possible to distinguish between different play-styles in the same game based
on the motivations of the player, leading to multiple ways to explore and interact with
the game. Each of the agents forming the team has a specific objective and skill level,
which provides a flexibility that would not be possible using just one. The designer or
game developer can choose the agents to run based on expected targets of performance
and tasks required to accomplish. Each of the specialist agents selected plays the game
under evaluation by focusing on their own goals. As a result, a logging system and two
types of reports are generated. One of the reports gives information by comparing the
performance of the agent with expected results. The other one provides visual feedback
by producing graphs illustrating the retrieval of data during gameplay.

This chapter defines the methodology and proposes a list of agents with general ob-
jectives that can be present (or not) in a game to constitute the team. It also describes
a possible logging system and suggests two types of reports to provide to the designer
(visual and performance-target based) that can be used to validate the game and level
under evaluation. The following chapters will look into defining and implementing par-
ticular pieces of this methodology as a proof of concept with the ultimate purpose of
making this long-term vision a reality.
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5.2 Methodology Description

I propose a methodology to assist in game development by using a team constituted by
a series of General Video Game Playing (GVGP) algorithms with differentiated goals.
Each agent plays and behaves differently within the same game. Game developers and
designers can use their automated unique play-through to extract information and check
whether they are on the right path or a change is needed to align with the expected
outcome. In meta-heuristic approaches, a high-level heuristic is involved in deciding
which agent is executed based on the state of the game [Mendes et al., 2016]. In this
case, on the other hand, I intend that each of the agents of the team plays the game
independently.

Methodology

User

Logging System

Game

Target Reports

Visual Reports

Team of Agents

Speed-runner

Others

Winner

Explorer

Killer

Collector

...

Figure 5.1: . Overview of the envisioned methodology. It requires two inputs: Game and
User to generate: Logging System, Target Reports, and Visual Reports. These outputs
are generated from the game-play of a team of agents.

The methodology requires a series of entities to work (Fig. 5.1): The User is the one
responsible for the game (it can be a designer, game developer or any other interested
party). They want to make sure that the content (game or level) under development
fits the expectations. These expectations can refer to the design, performance, or any
other characteristic of the game. The user provides the Game and sets up the processes
required for its evaluation. Different outputs can be generated during the evaluation
of the game. I propose three, two of which are a series of reports. Firstly, the Tar-
get Reports provide the results of evaluating the game based on the behaviours of the
agents, compared to expected targets. These targets should be set before running the
tests. Next, the Visual Reports provide visual information about the evolution of the
data retrieved by the agents during their play-through. This information is presented
in a series of graphs. Lastly, the Logging System records the logs resulting from the
play-through of the agents to provide support for testing and debugging.

The main steps covered by the methodology (Fig. 5.2) are the following:

1. Team set-up. It is expected to have a range of agents of different types, range of
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Methodology
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Figure 5.2: . Details of the methodology envisioned.

skills, and ways to interact and react to the game. The user can choose and optimise
the ones they believe fit the characteristics of the game and the expectations of the
design.

2. Game integration. The methodology focuses on being portable and flexible
enough to apply to different games from a particular engine. However, it is needed
to set the game up to run the algorithms, extract information from their play-
through, and record the metrics in the logging system.

3. Evaluation. The agents selected by the user play the game a certain number of
times. The automated gameplay of these agents logs a series of metrics and errors
triggered to have detailed information about the play-through.

4. Reports generation. The information extracted from the gameplay of each of the
agents is processed to generate reports. I propose two different types, presented
in Section 5.4.2. One describes the performance of each of the agents based on
their specific goals. If an expected result extracted from the gameplay is set, the
error between the expected and real values obtained is calculated and reported.
The other report generated is a graph that shows the evolution of the information
provided by each of the agents per game-tick.

The team of general agents is meant to respond to changes and updates across mul-
tiple dimensions of the game:

Rules The base of every game. Making a change to the rules can trigger unexpected
outcomes and affect the game in unanticipated ways. General agents are independent
of the rules, so they do not need to be adjusted when a change happens to check that
everything is working as it should be. It grants the possibility of carrying out imme-
diate testing to detect anomalies as soon as they appear. It provides flexibility to the
methodology, and it is one of the core ideas of the approach proposed.
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Levels They shape how the game is presented to the player and where the action takes
place. Changes in levels include increasing the difficulty, extending or reducing reachable
areas, and modifying the distribution of the elements of the game, like, for example, the
proportion of enemies by stages or collectable items dispersed uniformly. Reports from
each of the general agents after they have played a level can provide the information
needed to check that the design of the level fits the expectations. An example would
be analysing the evolution of the number of Non-Player Characters (NPCs) eliminated
by the killer, introduced in Section 5.3.6. The user should notice peaks and an abrupt
increase in the numbers in those stages where a big confrontation is expected. If the
play-through graph does not present those peaks, the level should be reviewed and fixed
to work as desired.

Non-Player Characters (NPCs) The performance of NPCs and their interactions
with the player has an immense impact on the experience. Therefore, any update on
their implementation should be tested. Analysing the reports and resulting behaviour of
the agents can provide an insight into the effect the changes have on the game. Examples
are comparing the number of deaths versus kills obtained by the killer (Section 5.3.6) or
the difference in the results between two killers with a known disparate level of mastery
after a change is done to the NPCs. Similar information to the one measured for the
team can also be logged to track the whereabouts and actions of the NPCs.

Game Parameters Even small updates in the parameters can have a substantial im-
pact on the game. An example is updating the height of player’s jump: if set to a low
value, they might not be able to reach some areas of the game, affecting the exploration.
Analysing the information provided by the agents can hint whether the parameters are
set properly. As an example, the percentage of the exploration reached by the map ex-
plorer, introduced in Section 5.3.7, could increase or decrease abruptly when the height
of the jump is modified.

One of the biggest strengths of the methodology I propose is that the general al-
gorithms do not need to be modified every time any of the dimensions listed above
change. If agents specific to the game are used instead, every time an element of the
game changes, the controllers or heuristics may need to be updated. Another benefit is
being able to use the same algorithms, without modifications, in different levels of the
same game as they are created. As a result of using the general goals, the heuristics
do not need to be updated to fit the specifications of a new level. It allows checking if
a new level fulfils the expectations almost immediately after including it in the game.
Finally, as Section 2.3 states, there are many types of GVGP algorithms, providing a
wide range of options depending on the engine, technology, characteristics, and imple-
mentation of the game considered. An example is the availability of a forward model or
not. Yet, if the circumstances change during the development of the game, the heuristics
used could be easily transferred to another algorithm that fits the new characteristics.
The use of GVGP agents does not mean that some game-specific tweaks should not be
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added to improve the performance of the heuristics, as long as the main general goals
are not changed. The strength of the approach is based on the generality, flexibility, and
robustness concepts of using General Video Game Playing, as it can adapt to significant
changes in the game and its design.

Various pieces and areas of research constitute the methodology. It is impossible to
cover all of them in my research and reach a final working solution. However, I develop
a technical proof of concept and present an exploratory work to study the viability of
the idea (Fig. 5.3). I focus on the generation of the team and its potential use for the
evaluation of games. This work is described in the following Chapters 6 and 7, where I
present an approach to generate the team by using heuristic diversification and MAP-
Elites. The solution generates the heuristics for the controllers and places each agent
in a behavioural space, from which it is possible to identify their proficiency. As the
heuristics and controllers employed are general, they are able to play the game even if
there are changes in the level or rules. However, as the ultimate goal is to use these kinds
of agents for automated testing, I also include an experiment to test the portability of
their strengths to unknown working levels. Finally, I include exploratory work to analyse
what happens when they play ‘broken‘ levels instead. My research is carried out in the
GVGAI Framework, so it would require further research to apply the proposed approach
as a tool for the games industry, but I believe it introduces a step towards tackling such
a complex topic.
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Figure 5.3: . Highlighted the areas that my research focuses on and that I cover in the
following chapters. I present a technical proof of concept based on the long-term vision
proposed.

5.3 The Team

The methodology proposes using a series of general agents with differentiated goals capa-
ble of playing a game focusing on their objectives. Each of the agents of the team focuses
on distinct goals and excels in different tasks. This diversity provides flexibility that is
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not possible using just one. This section presents a series of general objectives that cover
different aspects, which could be present, or not, in a game. The user can accommodate
the methodology to adapt their intentions and needs by including the behaviours that fit
the particular characteristics of the game. Some of the members of the suggested team
have been inspired by the work described in Chapter 4, and others by the player-types
and motivations present in the literature covered in Section 2.4.

The following is a non-exclusive list of agents proposed to constitute the team. I
describe their goals and the data from the game that can be gathered for each of them.
I use this list in my research as a reference and inspiration to either define heuristics or
identify behaviours within the team.

5.3.1 Winner

The goal is to win the game and to maximise the score when a winning state is not
immediately reachable. This is the most common goal in GVGP solutions.

The data gathered by an agent of this type can be the number of wins, the game
ticks to victory, and the strategy followed when there is more than one option available.

I implement this objective as a heuristic in Chapter 6 and assign it as one of the
Member Goals for the team generation.

5.3.2 Speed-runner

The goal is to finish and win the game as fast as possible.

The data gathered by an agent of this type can be the number of wins and the game
ticks to reach the victory.

This proposed agent serves as an inspiration when identifying behaviours from the
generated team in Chapter 7.

5.3.3 Survivor

The goal is to stay alive as much time as possible.

The data gathered by an agent of this type can be the number of wins and loses, the
cause of death each time, and the game ticks to game over in each case.

This proposed agent serves as an inspiration when identifying behaviours from the
generated team in Chapter 7.
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5.3.4 Record breaker

The goal is to maximise the score and solve puzzles without paying attention to the
chances of winning the game.

The data gathered by an agent of this type can be the number of points achieved,
puzzles solved, and the game ticks required for each of these tasks.

This proposed agent serves as an inspiration when identifying behaviours from the
generated team in Chapter 7.

5.3.5 Collector

The goal is to assemble the items available in the game.

The data gathered by an agent of this type can be the total number of items col-
lected, the counts per individual type of item, and the game ticks required to collect the
different objects present in the game.

I implement this objective as a heuristic in Chapter 6 and assign it as one of the
Member Goals for the team generation. This proposed agent also serves as an inspiration
when identifying behaviours from the generated team in Chapter 7.

5.3.6 Killer

The goal is to remove from the game as many Non-Player Characters (NPCs) as possible.

The data gathered by an agent of this type can be the number of NPCs killed, the
number of times the player was killed by an NPC, counts per individual type of NPC
encountered, and the game ticks required to kill all the enemies present in the game.

I implement this objective as a heuristic in Chapter 6 and assign it as one of the
Member Goals for the team generation. This proposed agent also serves as an inspiration
when identifying behaviours from the generated team in Chapter 7.

5.3.7 Map explorer

The goal is to physically cover the reachable areas of the level as much as possible.

The data gathered by an agent of this type can be the number of different positions
of the map visited, the number of visits to each of these locations, the total percentage
of the map explored, and the game ticks required to finish the exploration.

The existent work that includes the implementation of an exploratory heuristic in
planning can be used as an example or inspiration to create an agent of this type [Perez Liebana
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et al., 2015, Nielsen et al., 2015], as well as the EMH implemented in Chapter 4.

I implement this objective as a heuristic in Chapter 6 and assign it as one of the
Member Goals for the team generation. This proposed agent also serves as an inspiration
when identifying behaviours from the generated team in Chapter 7.

5.3.8 Novelty explorer

The goal is to go through as many different game states as possible and to provide this
number as a result. It is an alternative for an exploratory agent that considers states
instead of locations.

The data gathered by an agent of this type can be the number of different states
visited.

This type of agent is related to the novelty appraisal frequent in intrinsic motivation
[Roohi et al., 2018]. The inspiration for this kind of agent also comes from the work
done by Bellemare et al. [2016]. The authors proposed connecting the information gained
through the learning process and count-based exploration, which guides the behaviour of
the agents to reduce uncertainty. This approach is designed to explore the environments
more practically and efficiently.

5.3.9 Competence seeker

The goal is related to the amount of information the agent is capable of collecting when
a series of actions are performed.

An agent of this type can provide information about the level of expertise gained
during its play-through.

It is based on the model of empowerment of intrinsic agents, which denotes the degree
of control the agent feels having over the environment [Roohi et al., 2018].

5.3.10 Curious

The goal is to interact as much as possible with the elements of the game. The agent
prioritises those elements that have not been interacted with before and in different lo-
cations.

The data gathered by an agent of this type can be the number of elements interacted
with, the events triggered when these interactions happened, the locations of the map
where the interactions happened, and the number of game ticks required to interact with
the different elements of the game.
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This type of agent is inspired by the concept of curiosity introduced in the devel-
opment of the Knowledge-based MCTS [Perez et al., 2014], and applied in the design
of the KDH and KEH for the heuristic diversification experiments described in Chapter 4.

I implement this objective as a heuristic in Chapter 6 and assign it as one of the
Member Goals for the team generation. This proposed agent also serves as an inspiration
when identifying behaviours from the generated team in Chapter 7.

5.3.11 Scholar

The goal is to learn the outcome of the actions available and to obtain as much knowl-
edge about the game as possible.

The data provided by an agent of this type can be the percentage of accuracy of the
knowledge gained during gameplay. The generality of this type of agent is improbable
because it is needed to have concrete information about the rules and outcomes of the
interactions with the game to be able to check the quality of the predictions. However, an
agent with this kind of objective is an interesting addition to the team as it can be used
to detect anomalies during gameplay. There is a high chance that an agent focused on
this kind of task finds unexpected rules or bugs on the existent ones that need to be fixed.

This kind of agent is based on the KEH designed and implemented in Chapter 4.

5.3.12 Search space scholar

The goal is to learn how to get rewards from the game by building a graph containing
this information. So, ultimately, the agent is able to navigate the search space and effi-
ciently move from one state to another based on its motivation.

The data provided by an agent of this type can be the map of states created during
its execution, detailed information about the learning graph built, and the strategies
followed to go through different states.

This agent is inspired by the use of Influence Maps in GVGP [Park and Kim, 2015].
Although an agent of these characteristics seems to have similarities with Scholar, there
are key differences between them. The goal of Scholar is to mainly learn the outcome of
the actions to get information about the rules of the game and obtain accurate predictions
of the different events at the end of the game. Search space scholar, on the other hand,
uses the knowledge to build a learning graph while playing the game, which, at the same
time, is used to explore the search space profitably.
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5.3.13 Risk analyst

The goal is to analyse the level of risk during the play-through and take actions to
maintain it at a certain level chosen by the user. A low-risk agent would tend to avoid
situations where the chances of losing the game are high, like bumping into a hoard of
enemies or complex areas. A high-risk agent would gravitate towards the opposite and
jump into dangerous situations.

The data gathered by an agent of this type can be the risk percentage predicted at
every moment, the number of deaths, NPCs killed, obstacles overcame, and the game
ticks until losing the game.

5.3.14 Semantic

The goal is to focus on tasks related to linguistics, as coaching the dialogue of the game
or making sure the narrative flows and is consistent.

The data gathered by an agent of this type can be the estimated quality of the
dialogues, the number of possible outcomes depending on the choices, and the level of
consistency of the story.

5.4 Game Evaluation

The agents selected by the user are employed to trigger automated gameplays of the
game or level for its evaluation. These gameplays allow to extract information about
the game and gather stats related to the behaviour of the agents, producing high-level
reports and raw logs provided by a logging system.

5.4.1 Logging system

The Logging system keeps track of the information resulting from running each of the
agents: location in the map per game tick, list of the actions carried out, elements inter-
acted with, responses triggered, etc. These logs can help to detect anomalies and broken
states of the game, even when the development is at an early stage.

As described in Section 2.4.2, in games, it is common to collect metrics from the
players. Thus, it should be possible to define a similar approach for the GVGP agents
and gather data from their play-through. There is an active line of research looking into
defining agent metrics that can be applied to the methodology. Firstly, Nelson [2011]
introduces seven strategies to extract information from the game artefact that could be
included in the logging system. In addition, Volz et al. [2018] propose the creation of
a framework to log games information by gathering general measures previously used
to describe gameplay by extracting information from it. They differentiate between the
following types of loggable measures: agent-based, interpreted features, direct logging
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features, and general indirect features. Lastly, the guidelines for a framework of these
characteristics are formalised and presented in [Volz and Naujoks, 2020]. The authors
detail different benchmarks to use to understand the behaviour of game-playing agents
across different games. This generality makes it possible to apply to different environ-
ments and general video game playing solutions, and, therefore, it is applicable to this
methodology as well. I argue that having a logging system gathering the metrics of
game-playing agents and a team of agents with contrasting behaviours allow for covering
several game states, extracting very diverse information from the game. This diver-
sity grants the ability to trigger and detect errors in the game that may be overlooked
otherwise.

5.4.2 Reports

I propose the generation of different types of reports to check the validity of the design
of the game. These reports are directed to give detailed information and highlight issues
by using the data gathered during gameplay.

Performance-target based reports These reports assist in the evaluation of the
game based on expected performances in the resulting stats of the agents.

In the experiments presented in Chapter 4, the results for a similar controller-heuristic
pair showed a clear distinction depending on the type of game. I take as an example
the results obtained using the Exploration Maximization Heuristic (EMH), focused on
maximising the exploration of the level and detailed in Section 4.3.2. In completely ac-
cessible levels in games like Butterflies and Chopper, most of the agents using the EMH
obtained an average percentage of performance higher than 90% (Tables C.23 and C.26).
Whereas, in games with large maps or where a series of steps are needed to unlock the
access to the different areas, the exploration was lower. In Roguelike, none of the agents
got an average higher than 42.22% (Table C.37). The existence of differences in the
resulting performance of particular tasks in the game can be used to the developer’s
benefit by employing an estimation of the performance that agents should achieve based
on the type of game and level under consideration. Before starting the evaluation of
the game, the user can choose the agents of the team that are considered appropriate
and set an estimated desired performance for each of them. The results obtained during
gameplay inform whether there is an agreement between the expected values and the
reported ones. The recommendation is to play the game several times to avoid outliers
in the data and assure the result is a valid representation of the behaviour of the agent.
The errors can be calculated by the difference between the targets and the real values.
This information makes it possible to check if the design matches the expectations or
how distant the values are.

For example, suppose a level is designed to be easily accessible but challenging to
win. In that case, the user could assign a high desired value to the exploration reported
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by the map explorer and a low value to the percentage of wins reported by the winner.
Any discrepancy in the results would inform that there is a mistake in the design and
that it should be reviewed.

Visual reports These reports are intended to be easily interpreted by the user in the
form of graphs. These graphs are meant to provide an analysis of how the information
retrieved by the agents evolves during their play-through. This information can be the
number of different positions or states visited, the number of elements interacted with,
the number of enemies killed, etc. The user can deduce and conclude interesting infor-
mation about their game and level by analysing the shape and evolution of the plotted
values. A continuous trend means that the agent is capable of getting information with-
out impediments, improving uniformly. On the other hand, if the growth is stuck for a
period of time, it means that either there is nothing more to be discovered, all the goals
of the agent have been reached, or there is an obstacle (or a series of barriers) preventing
the agent from achieving them.

Fig. 5.4 represents a fictional (simplified) play-through graph obtained for the Map
explorer as an example. The report shows a constant growth to a certain point, where
it keeps still for a while, and ends up increasing uniformly again. This shape could be
interpreted as follows: the level is divided into two areas, and a particular action from
the player is required to progress in the game.

Figure 5.4: Example of a potential visual report generated for a play-through of the Map
Explorer.

These visual reports can also be used to analyse the distribution of different elements
in the level. Fig. 5.5 shows a potential simplified play-through for Collector as an exam-
ple. The growth of the chart shows peaks when the agent visits those areas where there
are several items to be collected.

5.5 Variations

The methodology proposed is flexible and open to extensions, so I include some possible
variations that are worth considering:
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Figure 5.5: Example of a potential visual report generated for a play-through of the
Collector.

Diversity in skill levels The same algorithms with different parameters have differ-
ent strengths. The team can include several versions of the algorithms with the same
objectives but different levels of mastery, based on those parameters.

Granularity Another possible extension is considering the information retrieved by all
the agents as a whole and studying the correlations between them. The user can choose
and combine data provided by the agents to obtain even greater levels of granularity.

5.6 Limitations

The methodology proposed has an evident strength. However, there are a series of
limitations related to the technique, GVGP, and the algorithms themselves that I discuss
in this section.

Game complexity The time required to evaluate the game needs to be considered to
arrange enough time to analyse the reports and plan the necessary actions to be taken
based on the results. The higher the complexity of the game, the longer the evaluation
takes, as the agents need more time to run and finish the play-through and provide
feedback. A feasible solution would be presenting the game split into stages or levels
and analysing small pieces at a time. Moreover, the complexity of the game affects the
performance of the algorithms. The use of general objectives come with some limitations
when facing complex environments.

Optimisation of the team The team should be well-tuned to allow the agents to
recognise and carry out the actions to reach their goals and obtain results that fit the
expectations. This tuning lets the user interpret the feedback accordingly.

Reinforcement Learning (RL) The main limitation of Reinforcement Learning (RL)
algorithms is their requirement of computer power, which increases with the complexity
of the problem. These algorithms require offline training, and their performance depends
on the size and intricacy of the system. The higher the game’s complexity, the longer
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time is needed to train the agents, which translates to higher computational power that
is not within everyone’s reach. Nevertheless, a long training time does not mean that the
learning process is successful, and it is possible that even if having infinite computational
power, the agents’ performance is not as expected. This statement is especially true for
games and environments with large branching factors, games that require multiple levels
of abstraction and reasoning, or those that include real-world features that limit the
application of these techniques. Examples of these are the existence of a continuous
state and action space, stochasticity, partial observability (e.g. the fog of war present in
multiple strategy games), and multi-agent systems.

Search algorithms Planning algorithms require a forward model to simulate possible
future states and take the best action available. Hence, the limitation lies in the challenge
of creating a forward model from scratch to include it in the game or the engine used
for development. When a forward model is not available, the agents need to work with
abstract ones or approximations instead, impacting their performance. Moreover, the
budget of processing time and resources impact the performance of these algorithms. The
allocated time affects the number of roll-outs available per turn for tree-search algorithms
and the number of individuals for genetic algorithms [Perez et al., 2013, Nelson, 2016].
The higher the number of simulations, the more information they get to make decisions.

Parameter optimisation Tree-search and evolutionary algorithms use a series of pa-
rameters that have a big impact on their performance and behaviour and, in most cases,
need to be optimised. It is especially important in GVGP, where the robustness of the
algorithm can benefit its overall performance. As mentioned above, if the number of
roll-outs available to the search algorithm is modified, the number of predictions will be
reduced or extended. As a result, the information available to make a decision will be
affected, influencing their actions and outcomes. In evolutionary algorithms, the size of
the population and other parameters present in their definition impact the performance.
Therefore, the user needs to find the best set of parameters for the characteristics of
the game under evaluation, which can take time. If not enough time is allowed for this
optimisation, the expected performance of the agents can suffer a decline.

There is an active body of research looking into the limitations given by parame-
ter optimisation. This optimisation is usually done offline to provide enough time to
reach the desired level of performance. However, there has been some recent progress
in the area. An example is the implementation of an online adaptive parameter tuning
mechanism in GVGP, with promising results [Sironi et al., 2018]. Moreover, the N-Tuple
Bandit Evolutionary Algorithm (NTBEA) shows ways to mitigate some of the limita-
tions. Lucas et al. [2018] define NTBEA as a simple, informative, and efficient model
capable of being applied to numerous optimisation-related problems. In their research,
they use it to optimise the parameters of RHEA.
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The challenge of GVGP The task of developing algorithms capable of working
through different games is challenging, as it is not possible to use game-specific informa-
tion to guide them. Given the difficulties of the problem, several approaches have been
created and are being investigated to tackle it, so GVGP is still ongoing research. Even
considering the latest improvements, the results of the GVGAI Competition show how
none of the algorithms is yet good enough to generalise to every kind of game [Perez-
Liebana et al., 2019b]. No controller performs uniformly well across all games, as even
when the agents perform well in some games, they still show a low percentage of success
in others. Furthermore, the variety of the problems increases the complexity of the gen-
eralisation, as general algorithms can be applied to several areas in games: from simple
single-player games to multi-player collaborative ones, where they need to work together
to achieve a common objective. The game’s complexity also affects the performance
of the algorithms, as general AI has limitations in solving complicated environments.
The methodology presented in this chapter would be strengthened if the limitations re-
lated to the area of GVGP should be minimised and, therefore, I encourage the research
community to tackle them.

5.7 Conclusions

This chapter proposes a new methodology to use General Video Game Playing (GVGP)
agents to assist in the game design and testing processes and describes its features. It
presents a series of differentiated goals that can be applied to the general agents to play
a game in different ways. Having agents focusing on targets beyond simply winning
the game leads to specialists with distinct gameplay styles that achieve different sorts
of tasks, being able to extract varied information from the game. I propose generating
two types of reports and a logging system using the data and metrics gathered from the
agents’ play-through. These can help to review if the game fulfils its expectations and
to identify issues in the early stages of the development. The information retrieved can
be used to detect bugs, balance the game, or tweak its parameters. The independence of
the rules given by the generality of the agents allows an early integration of the method
in the game development process. The approach does not require major modifications
when the game is extended, modified, or when new levels are integrated into the game.

The proposal is rooted in previous work in GVGP, automatic play-testing, and AI-
assisted game design. It considers the needs of the video game industry for efficient
and accurate game testing and highlights interesting areas of open research. Several ex-
tensions in the methodology are possible: including agents with different levels of skill,
players tackling multiple objectives, or adding collaborative and social-oriented profiles
that can fit multi-player games. Moreover, the reports generated can be extended to
consider the objectives of the different specialists at once. It should be possible to com-
bine the results obtained to analyse the information produced by multiple agents, study
their correlations, and provide a greater level of granularity. I believe that integrating
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general algorithms in the game development process provides portability that is non-
existent in the current approaches. The methodology presents the developers with the
option to choose between several algorithms with differentiated behaviours and skills. It
provides the flexibility to adapt to the characteristics of the game under evaluation and
its modifications.

The methodology proposed is constituted by separate pieces that cover diverse re-
search areas and open different lines of work. In the following chapters, I focus on a
portion of it: the area related to eliciting diverse behaviour and automated gameplay
(Fig. 5.3). My work does not look into formalising and detailing the metrics obtained
from the agents’ play-through, so it does not cover the logging system or the generation
of the reports. In the following chapters, I investigate the definition of the team and the
identification of different types of behaviours and tasks within it. I present an approach
to generate general agents with differentiated behaviours and implement it in the GV-
GAI Framework. I apply the procedure to numerous games with different characteristics
to verify its flexibility and adaptability. I also determine how to identify various types
of agents that accomplish particular tasks and analyse the portability of their strength
to levels with different characteristics. Lastly, I discuss the strength of the methodology
and its application in game development and testing with a preliminary work that ex-
plores the employment of the agents identified to test ‘broken‘ levels. In summary, the
following chapters present a technical approach as a proof of concept of the vision, with
the ultimately objective of making this methodology applicable in the future.
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Chapter 6

Approach: Generate the Team and Elicit a Diverse Gameplay

This chapter presents an approach to generate a team of GVGP agents with distinct
behaviours. The role of each of these agents is identified by their location in a behavioural
space. The agents generated can be used for automated gameplay and have several
applications in game development and testing. Most of the material presented has been
published in the paper [Guerrero-Romero and Perez-Liebana, 2021] and included in a
journal paper submitted to IEEE Transactions on Games that is currently under review.

6.1 Introduction

The work presented in this chapter builds from my previous one presented in Chapters 4
and 5. In Chapter 4, I introduced the concept of heuristic diversification in General
Video Game Playing (GVGP). I provided GVGP agents with four heuristics that elicit
different goals: winning, exploration, knowledge discovery, and knowledge estimation and
compared their performance when taking as reference features related to each of them.
The core of the algorithms was unchanged as the evaluation function was isolated and
provided externally. The results showed how 1) the performance between a set of con-
trollers changed depending on the heuristic assigned to them, and 2) the behaviour and
interactions in the game for each of these given heuristics were considerably different
to each other. These observations inspired me to outline a methodology that uses a
team of GVGP agents with distinct behaviours to assist in game development and test-
ing (Chapter 5). The generation of a team of these characteristics is the focus of the work
presented in this chapter. I define and implement an approach to generate the proposed
diversity of behaviours for the agents and integrate it into a framework to assemble a
team of agents in different games (Fig. 6.1).

I am still looking at answering RQ2: How to define, create, and use a team of GVGP
agents with distinct behaviours to assist in the development and evaluation of games?
However, in order to answer this question, I first need to go through a series of steps in
detail and resolve them:

1. Which general approach, applicable between games of different types, allows to cre-
ate and provide a team as the one envisioned?
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Figure 6.1: Highlighted the areas covered in this chapter from the long-term vision. I
present an approach to set up (generate) the team and integrate it within the framework
and games used.

My proposal requires a diverse range of game-playing agents based on their be-
haviour and ways to interact with the game. The MAP-Elites (Section 3.3) allows
to generate elements in a feature space and, therefore, can provide the diversity of
behaviours needed.

2. How can I define the behaviour of each of the agents so it is easy to describe and
generate?

For the MAP-Elites, it is necessary to define a series of elements, including the
candidate to generate and evolve. This candidate needs to represent the behaviour
while being easy to evolve and assign to an agent. The solution lies in applying
heuristic diversification and defining a heuristic that allows combining a list of
different goals with a set-up that fulfils these requirements.

3. How do I generate these agents using the MAP-Elites?

I need to define the distinct elements required for the MAP-Elites and integrate
the algorithm in the GVGAI Framework so it can be used for my experiments.
The algorithm may require some tweaks to adapt to my needs, so I describe these
in detail.

4. Is this solution general and applicable to games with different characteristics?

Once the implementation and integration with the GVGAI Framework are com-
pleted, I set up the approach to generate a team of agents for several games with
different characteristics. I then analyse and discuss the results.

This chapter covers each of the steps listed above. It details the approach and
presents the experiments I carry out to apply it in the GVGAI Framework to four games
with different characteristics. It also includes a discussion about the results obtained,
limitations, extensions, and future steps.
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6.2 Definitions

I define the concepts used in this chapter as follows:

Team I use this term to refer to the pool of agents.

Goal The ultimate objective(s) of one of the agents in the team when playing the
game. Examples of goals are exploring the level, collecting items, or killing enemies.

Heuristic value Result of the evaluation of a game state. It is given in relative terms
of an arbitrarily high value denoted as H. High and low rewards values are indicated
with H+ and H− respectively. For the experiments included in this chapter, the value
of H is assigned independently by each of the heuristics, so it varies.

Behaviour The way the agent ultimately reacts and interacts with the game. I con-
sider the agents’ behaviour as the results of their play (gameplay stats and features).

Event Effect of two sprites being in contact during the execution of the game, being
one of the entities involved the avatar (player) or an element generated from it. I also
refer to it as Interaction, and I differentiate between two types: Collision and Hit.

Collision A particular case of interaction where the entity involved is the player. An
example of this kind of interaction is the player collecting a coin.

Hit A particular case of interaction where the entity involved is an item generated by
the player. The item has typically been previously generated as a result of the execution
of an action of type ACTION. An example of this kind of interaction is a bullet shot by
the player hitting an enemy.

Curiosity An interaction between sprites that happens in a position of the map where
it has not taken place before.

6.3 Overview of the Approach

I present a procedure to generate a team of agents for a game so they are available
to the developer to choose from and that can be used for automated gameplay. My
solution applies the MAP-Elites algorithm to generate agents with distinct behaviours.
The resulting agents are distributed in the space of features based on the result of their
actions when playing a game: wins, score, % explored, interactions, kills, items collected,
etc. The criteria used as the performance of the elites does not come from how well an
agent plays a game, but by the time it takes to reach the End of Game (EoG). Thus,
given two agents with similar resulting stats, one is considered better than the other
if it manages to reach a game over faster. I present and implement the solution and
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include details about the agent used, as well as the list of heuristics created to represent
differentiated goals within the game: Winning and score, Exploration, Curiosity, Killing,
and Collection. I integrate the algorithm with the GVGAI Framework and execute it
for four games and a variety of pairs of features. The final team of agents is assembled
from the collection of maps generated for each game. The size and diversity of the
pool of agents generated allow running automated gameplays eliciting different expected
behaviours. The options are limited by the distribution of the team within the space,
given by the pair of features or the characteristics of the game. The methodology gives
the flexibility to extend the features or modify the range of existing ones to have control
over the behavioural space and, therefore, the characteristics of the team generated.

6.4 Defining Agents with Behaviours Easy to Generate

The objective is to create and have available a range of agents with differentiated be-
haviours and identifiable tasks. These behaviours should be provided by their heuristics
and not the parameters of the controller, so they can easily vary without having to make
updates to their core. I introduce: 1) an agent with interchangeable heuristics; 2) a
heuristic called MemberBehaviour designed to be plugged into the agent externally and
that allows combining different goals; 3) the use of the MAP-Elites algorithm to generate
the distinct behaviours of the agents.

6.4.1 Agent: OLMCTS with an interchangeable heuristic

The work presented in this chapter uses a unique controller: the sampleMCTS algorithm
(Section 3.2.2) provided by the GVGAI Framework, but modified and extended so that
the heuristic can be assigned externally. I chose to use OLMCTS because it had a stable
mid-range performance with all different heuristics (Table 4.21).

I follow a similar idea to the heuristic diversification presented in Chapter 4 in terms
of isolating and extracting the evaluation function so it is not tight to the core of the
single-player search algorithm. However, in this case, I do not use an accumulation of the
heuristic to obtain the final reward. The evaluation of a state comes from comparing the
information of the game in the current state and the final state reached with the forward
model. Therefore, it is necessary to keep track of the data in each of the future states
to use it in the calculation of the reward (Fig. 6.2). The temporary information stored
about the future states visited with the forward model depends on the heuristic and
its characteristics. For example, the positions visited by the avatar, the number of ene-
mies killed, or the events triggered in each of the states simulated with the forward model.

In this case, the solution cannot simply define a heuristic per goal and swap between
them as in Chapter 4. I need to find a solution that combines various goals to produce
and have a diverse range of behaviours at my disposal. Hence, I define a parent heuristic
called MemberBehaviour. It is the external heuristic I provide to the controller (OLMCTS
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Figure 6.2: Agent with interchangeable heuristic: by heuristic diversification, the eval-
uation function is provided externally. It stores data from the simulated states reached
with the forward model and uses it to obtain the heuristic value.
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{H0, H1, …, HN} {W0, W1, …, WN}

Figure 6.3: OLMCTS agent with MemberBehaviour, which allows to provide a list of
goals (heuristics) externally and assign a weight to each of them.
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in this case) and that can receive a list of heuristics and weights (Fig. 6.3). It is described
in detail in the section below.

6.4.2 MemberBehaviour

I need to provide more diversity to the agent than the one given by simply using one
static heuristic or swapping between them. As a result, I create and describe a parent
heuristic that allows combining different independent goals, called MemberBehaviour.

Member goals {t0, ..., tm} being m the total number of goals available to gather
stats about the gameplay of the agent. Each goal collects information related to its
characteristics.

Enabled heuristics {h0, ..., hn} n <= m is the total number of enabled goals, taken
from the available ones. Only the enabled goals take part in the evaluation of the state
and, therefore, in the calculation of the final heuristic.

Weights W = {w0, ..., wn} n is the number of enabled heuristics, as each weight is as-
signed to one of them. The weight gets a value between [0.0, 1.0]. This value determines
the importance that the corresponding goal is given in the final calculation. Therefore,
W ultimately describes the final behaviour of the agent. It is easy to define, generate,
and evolve, so it can be used as a candidate in MAP-Elites.

The list of enabled heuristics and the weights assigned to each of them define the
behaviour of the agent as they ultimately drive its actions. The final value of the heuristic
resulting from evaluating a particular state comes from combining all the enabled ones.
The result of each independent heuristic can be in different ranges, so they must be
normalised to make sure they are within the same bounds ([0.0, 1.0]). The heuristic
obtained for each goal is multiplied by its corresponding weight. I get the final heuristic
by adding all of these results:

H(S) = h0w0 + ...+ hnwn

Fig. 6.4 shows an example of the MemberBehaviour with 5 goals available but only
4 of them set as enabled heuristics.

6.4.3 Using MAP-Elites to generate the team

In my approach, I identify the elements required for the MAP-Elites algorithm (Sec-
tion 3.3) as follows:

Genotype x Vector of weights W = {w0, ..., wn}. The description of this vector is
easy to define and, therefore, to generate and evolve. It represents the presence of each
of the enabled heuristics when assigned to the agent, defining its behaviour, and can be
used as a candidate.
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Figure 6.4: Example of MemberBehaviour. There are 5 goals but only 4 of them are
enabled and take part in the calculation of the heuristic H.

Phenotype px Stats generated when providing the agent with W and playing the
game several times.

Feature function bx Characteristics of the gameplay of the agent, taken from the
stats: wins, score, exploration percentage, interactions, etc. These illustrate the results
from the behaviour of the agent when playing the game, and it is the information I am
interested in to get a diverse team. These features are defined by the members and
are dependent on the game and its characteristics. Although MAP-Elites supports an
N-dimensional feature space, I focus on two-dimensional maps. I consider only pairs of
features for simplicity in the setup and readability of the results.

Fitness function fx The performance of an agent is measured by how quickly the end
of the game (EoG) is reached. I establish that between two agents with a similar set of
features (stats), one is better than the other if the game ends earlier; i.e. they managed
to reach similar results in less time.

Therefore, the relationship between genotypes, phenotypes, features, and performance
of a candidate existing in the MAP-Elites, applied to my approach, is as follows:

W → stats→ features, EoG

The pseudocode of this application of the MAP-Elites is included in Algorithm 9.

The initialisation of the MAP-Elites is done in two steps. First, I get a series of
candidates eliciting just one of the goals enabled, i.e. the weight assigned to the corre-
sponding heuristic is set to 1.0 while the rest are assigned to 0.0. After this, the second
initialisation step generates a series of random candidates (weights are given random
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Algorithm 9 Use of the MAP-Elites algorithm to generate the team.
Nomenclature: X ← solutions (map of elites); P ← solutions’ performances; x ← elite;
W ← agent description; x′ ← candidate solution; b′ ← feature descriptor of x′; p′ ←
performance of x′; α ← nEnabledHeuristics, β ← nRandomInitialisations.
1: procedure MAP-Elites-Team
2: X ←MAPElitesInitialisation()
3: ▷ add to the map α elites with only each of the goals enabled
4: ▷ generate β elites with random weights and add them to the map
5: for iter = 1← nAlgorithmIterations do
6: x← random_selection(X)
7: W ← behaviourWeights(x)
8: W ′ ← evolution(W ) ▷ evolve elite’s weights to generate a new candidate
9: x′ ← createGameplayElite(W ′) ▷ the agent plays the game nGameRuns

10: b′ ← x′.featureStats() ▷ candidate’s stats of the map features
11: p′ ← x′.performanceStats() ▷ candidate’s stats of the performance criteria
12: if X(b′) = ∅ or p′ > P (b′) then
13: P (b′)← p′

14: X(b′)← x′

return X, P

values between [0.0, 1.0]). In both cases, the agents are assigned to their corresponding
cells. These two steps expect to 1) provide a baseline of behaviours by using each goal
independently, and 2) provide a baseline of diversity given by the random assignments.
The algorithm then starts its iterations until a certain number is reached, provided as an
algorithm parameter in the configuration. In each iteration, a cell is selected uniformly at
random. The weights of the elite occupying the cell are evolved with a simple mutation
hill climber: one of the weights is randomly selected and updated to a new value between
[0.0, 1.0]. This mutation generates the behaviour description of a new candidate, which
is assigned to its corresponding cell. This simple evolutionary method proved enough to
generate a good range of different behaviours.

The assignment, both during initialisation and during the main execution of the
algorithm, works as follows. First, the weights are assigned to the agent and it plays
the game several times to obtain its stats. Then, these stats are used to get the features
that constitute the map and assign the candidate to its corresponding cell. The map is
divided into a fixed number of cells given by the two feature dimensions. Each of the
features is assigned a minimum, maximum and bucket size value, so the resulting value
obtained by the agent is assigned to the bucket that contains the range it belongs to. If
the corresponding cell is empty, the agent is directly assigned to it, and the algorithm
moves to the next iteration. However, if the cell is occupied by an elite, the performance
of both candidates are compared. If the new candidate has better performance than the
existing one, it replaces the latter. When the algorithm concludes, the map contains a
set of descriptions (W vectors) of a diverse range of agents. Their behaviour is implied
by their location and set of features assigned in the aforesaid map. This group of agents
is what I call a team. An example of the map generated is included in Fig. 6.5. If various
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maps are generated for the same game and enabled goals, the team is constituted by the
ensemble of the different maps.

FE
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FEATURE X

E(6,3) = {w0, w1 … wN}

EoG

Figure 6.5: Example of a resulting MAP-Elites for a two-dimensional map with Features
X and Y. These features are in different ranges and have buckets of different sizes. The
map represents a team of 23 agents, and each cell contains the description (W ) of each
of them.

The features that form the map depend on the stats obtained from the gameplay,
which are related to the goals defined for the agents. The implementation of the heuristic
corresponding to each of these goals is dependent on the framework and games under
consideration. I use the GVGAI Framework to carry out my experiments, so I imple-
ment and integrate the MAP-Elites algorithm described in this section within it. The
next section describes the list of goals identified in different games and their particular
implementation in this framework.

6.5 Goals and Heuristics Implementation

I identify 5 goals (heuristics) that can be used to elicit different ways to drive the actions
of the agents. These are based on player-types goals and inspired by the list of general
goals presented in Section 5.3. The heuristics implemented gather information related to
their particular objectives. This data is used to obtain the stats required to assist during
the generation of the team. These heuristics are general within the GVGAI Framework
and can be used in any of its games. Although some of these heuristics may look
similar to the ones presented in Chapter 4, their implementation has changed. The key
differences result from 1) the variations in the application of the heuristic diversification
(storing information related to the simulations of future states), and 2) addressing some
limitations found in the initial implementation (e.g. only considering the visit to each
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location once).

Winning and score It prioritises winning the game while maximising the score differ-
ence. The heuristic is detailed in Algorithm 10. It is designed to heavily penalise states
where the game is lost and reward those where it is won.

Algorithm 10 Winning and score heuristic.
Nomenclature: S′ ← simulated game state; reward ← result of the evaluation of the
state; H ← high value; currentScore← current score of the game.
1: function WinningAndScore(S′)
2: reward = 0
3: if isGameOver(S′) and isLoser(S′) then
4: reward = H−

5: if isGameOver(S′) and isWinner(S′) then
6: reward = H+

7: score← getScore(S′)
8: reward += (score− currentScore)
9: return reward

This goal is inspired by the Winner and Record breaker defined in Sections 5.3.1 and
5.3.4, respectively. It collects the following data: winning status (1 for win and 0 for
lose), final score, game tick when the score changed last, and game tick when the last
positive score change occurred.

Exploration It maximises the physical exploration of the map, which is divided into
tiles. In contrast to the Exploration Maximisation Heuristic (EMH) described in Sec-
tion 4.3.2, which just indicates if a position has been visited or not, Exploration takes
into consideration the number of times each position has been visited. This heuristic pri-
oritises visiting those positions that have not been visited before. Once they have been
visited, it prioritises the ones visited the least number of times. It favours exploring as
much as possible, so reaching an EoG state is heavily penalised. Algorithm 11 includes
details about this heuristic.

It is necessary to make two clarifications on the design of this heuristic: 1) The
number of visits of a location, nVisits, is subtracted from the reward. It is calculated
by multiplying the total number of visits in the future simulated states by the total
number of current visits. Another solution would be adding them instead, but the ex-
ponential penalisation given by the multiplication is preferred in this case. 2) At the
end of the calculations, I need to adjust the reward when the number of future states
simulated is not the maximum one. It is possible that an EoG state has been reached
during the simulation and, therefore, the value of the reward obtained is not comparable
with other ‘full simulations‘. I solve this problem by giving the ‘missing‘ future simulated
states a penalty corresponding to the maximum number of visits encountered in the map.

This goal is inspired by the Map explorer defined in Section 5.3.7. It collects the
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Algorithm 11 Exploration heuristic.
Nomenclature: S′ ← simulated game state; reward ← result of the evaluation of the
state; H ← high value; futureExploredLocations[]← record of the locations visited in
the simulation.
1: function Exploration(S′)
2: reward = 0
3: if isGameOver(S′) then
4: reward = H−

5: for position in futureExploredLocations[] do
6: if isNewLocation(position) then
7: reward += H+ ▷ Reward highly each non-visited position encountered
8: else
9: nV isits = futureNV isits(position) ∗ currentNV isits(position)

10: reward −= nV isits ▷ Reward those visited less frequently
11: adjustment← calculateRewardAdjustment()
12: return reward− adjustment

following data: the number of different locations visited, the final exploration matrix
obtained with details about the number of visits on each position, and the game tick
when the last exploration happened.

Curiosity It maximises the discovery and interaction with sprites in the game, priori-
tising interactions with new sprites. Interactions are defined as the avatar or any sprite
generated from the player getting in contact with elements of the game (collisions and
hits, respectively). When no new interactions are possible, it prioritises interactions in
new locations of the game, what I define as curiosity. The details of the heuristic are
included in Algorithm 12.

Algorithm 12 Curiosity heuristic.
Nomenclature: S′ ← simulated game state; reward ← result of the evaluation of the
state; H ← high value; H1, H2, H3, H4, H5 ← modifiers applied to each of the elements
considered for the reward; futureInteractions[]← record of the events triggered during
the simulation
1: function Curiosity(S′)
2: reward = 0
3: if isGameOver(S′) then
4: reward = H−

5: reward += H1 ∗ nNewSpritesDiscovered(futureInteractions[])
6: reward += H2 ∗ nNewInteractions(futureInteractions[])
7: reward += H3 ∗ nNewCuriosityInteractions(futureInteractions[])
8: reward += H4 ∗ nTotalNewCuriosityInteractions(futureInteractions[])
9: reward += H5 ∗ nTotalInteraction(futureInteractions[])

10: return reward

The heuristic considers and gives different rewards (from high to low value) to the
following cases: a) new sprites discovered and new interactions; b) new curiosity interac-
tions; c) the total of different curiosity interactions; d) the number of total interactions.
It tries to investigate and interact with the game as much as possible so it penalises
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reaching EoG states.

This goal is inspired by the Curious defined in Section 5.3.10. It collects data related
to sprites discovery: total number of different sprites discovered during gameplay, the
list of their IDs, and the game-tick when the last discovery happened. It also gathers
data related to the interactions in the game: number of unique interactions with sprites,
number of curiosity interactions, number of total collisions, number of total hits, and the
last game-tick when each of these last three interactions occurred.

Killing It maximises destroying Non-Player Characters (NPCs) and penalises End of
Game states. The heuristic considers ‘kills‘ those interactions between sprites generated
from the avatar (hits) and sprites of the type NPC. VGDL rules can represent killing
enemies in different ways. Therefore, when using this heuristic in the GVGAI framework,
the following assumptions are made about the rules of the game: a) enemies are killed in
one hit; b) enemies are only killed by sprites generated from the avatar; c) the avatar is
not able to kill an enemy by colliding with it or by using elements of the terrain. Details
about the heuristic are included in Algorithm 13.

Algorithm 13 Killing heuristic.
Nomenclature: S′ ← simulated game state; reward ← result of the evaluation of the
state; H ← high value; futureInteractions[] ← record of the events triggered during
the simulation
1: function Killing(S′)
2: reward = 0
3: if isGameOver(S′) then
4: reward = H−

5: nKills = nTotalNPCHits(futureInteractions[])
6: reward += nKills
7: return reward

This goal is related to the type of player defined as Killer (Section 5.3.6). It collects
the following data: the total number of enemies killed, their sprite id, and the game-tick
when the last kill happened.

Collection It maximises the collection of items and penalises EoG states. The heuris-
tic considers ‘collections‘ those interactions between the avatar (collisions) and sprites of
the type Resource. VGDL rules can represent collecting items in different ways. There-
fore, when using this heuristic in the GVGAI Framework, the following assumptions are
made about the game rules: a) Items are of the Resource type; b) Items can only be
collected by the avatar by colliding with them. Details about the heuristic are included
in Algorithm 14.

This goal is related to the type of player defined as Collector (Section 5.3.5). It
gathers the following information: the total number of items collected, their sprite id,
and the game-tick of the last collection.
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Algorithm 14 Collection heuristic.
Nomenclature: S′ ← simulated game state; reward ← result of the evaluation of the
state; H ← high value; futureInteractions[] ← record of the events triggered during
the simulation
1: function Collection(S′)
2: reward = 0
3: if isGameOver(S′) then
4: reward = H−

5: nItems = nTotalResourceCollisions(futureInteractions[])
6: reward += nItems
7: return reward

Given the generality of the heuristics within the GVGAI Framework, it is my respon-
sibility to ensure the VGDL rules of the games are consistent and well-formed to fulfil
the assumptions described. Not all of the goals apply to every game, as they depend
on its characteristics (e.g. there is no point in guiding the agent to collect resources
when the game does not include collectable items). Section 6.6.2 presents the games and
establishes which heuristics are included in the experiments for each of them.

6.6 Experiment: Team Generation for Different Games

I run a series of experiments to test the approach in games with different characteristics
by generating a team of agents with distinct behaviours for each of them. The team is
obtained by assembling the resulting execution of distinct configurations of the MAP-
Elites, with different pairs of features. In this section, I describe the games used, the
enabled goals, the configurations of the MAP-Elites set, and the resulting maps. The
code is in Github [Guerrero Romero, 2021a], while the jar executables, configuration
files, and resulting JSON data can be found in an OSF repository [Guerrero Romero,
2021d]. All the resulting graphs corresponding to the set of MAP-Elites generated for
each game are included in Appendix D.

6.6.1 Experiments configuration

For an easy experimental set-up, each execution of the algorithm is dynamically con-
figurable with an external file; being able to choose the controller (OLMCTS) and the
following attributes:

gameName, level Game and ID of the level the experiments are executed for.

nGameRuns Number of times the agent (candidate) plays the game with a certain
behaviour description (W ) to obtain its stats. I use 100 gameplays in every game and
experiment. I consider that the most important characteristic to take into consideration
for these experiments is the consistency of the stats obtained for the gameplay of the
agents generated. It is required that the agents are assigned to the right cell of the
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map. This consistency is achieved by making the agent play the game a high number of
times so the outliers do not skew the resulting average. A low number of data samples
per game run (< 100) was not representative enough, while 1, 000 repetitions made the
execution time too long.

nRandomInitialisations Number of random candidates generated during the second
initialisation step. Set to 10 for every experiment.

nIterations Number of iterations of the MAP-Elites. We have a limited allocated
time to run each experiment, so the value set depends on the complexity of the game
and the number of heuristics provided. The number used for each game is defined in the
following section.

feature X, feature Y I generate 2-dimensional maps for simplicity in the processing
and display of the results. For each game, I execute the MAP-Elites with different pairs
of features to obtain several maps that, together, assemble the resulting team. The list
of available features used in my experiments are:

• Wins Rate of victories.

• Score Total amount of points at the end of the game.

• Exploration Different positions of the map visited.

• Exploration percentage Percentage of the map visited.

• Discovery Different types of sprites discovered.

• Sprite interactions Unique interactions with sprites of different types.

• Curiosity Unique interactions with sprites of different types in different locations
of the map.

• Collisions Total avatar interaction with other sprites.

• Hits Total from-avatar sprites interactions with sprites.

• Interactions Total number of interactions of any type.

• Kills Total number of NPCs hit.

• Items Total number of resources collected.

6.6.2 Games, levels, and experiments codification

I apply the approach to four GVGAI games with different characteristics: Butterflies,
Zelda, Digdug, and Sheriff. I have reviewed and updated the VGDL implementation
of the games to make sure the rules are well-formed and the assumptions described in
the heuristics are met. I have carried out this process to ensure the games can be used
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successfully with the heuristics designed. The games selected have different complexities
in terms of winning conditions, number of sprites, and characteristics. They also define
different types of players, allowing a range of goals and generated behaviours. The
objective is to study how the methodology works when applied to distinct games and
show its flexibility, being able to adapt to different games and goals. All the experiments
are conducted on the same level of each game, shown in Fig. 6.6.

(a) Butterflies (b) Zelda

(c) Digdug (d) Sheriff

Figure 6.6: Games and levels used to test the approach. I generate MAP-Elites with
different pair of features for each to create a diverse team of agents.

Butterflies The rules of the game provided by the framework do not require changes,
so they are detailed in Section A.3. This game does not allow killing NPCs or collecting
items, so the corresponding heuristics are not enabled during the experiments. For this
game, I run two sets of experiments with two sets of goals to compare the distribution
and diversity of the agents when different heuristics are enabled. In both cases, the
number of iterations of the MAP-Elites used to generate the agents is 200.

Zelda The rules of the game are detailed in Section 3.4.2. All heuristics are enabled for
this game. This game is considered more complex than Butterflies, so initially, I set the
number of iterations of the MAP-Elites to 250. However, given that the time required
to execute the algorithm was higher than the maximum time allowed, the results are
obtained after 125 iterations instead.

Digdug The rules of the game are detailed in Section 3.4.2. All heuristics are enabled
for this game. Similarly to Zelda, the initial number of iterations of the MAP-Elites was
250, but for similar reasons, the results for this game are obtained after 100 iterations
instead.
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Sheriff The rules of the game are detailed in Section 3.4.2. In contrast to the games
listed above, this one is a shooter and the avatar does not have access to the area where
the enemies are (the jail), as they surround the player. There are barrels dispersed in
the map that protect the player from the enemies’ bullets. Although these barrels can
be destroyed when hit, they are not collectable items. Therefore, in this case, only four
heuristics are enabled. The number of iterations of the MAP-Elites used to generate the
agents for this game is 200.

As previously stated, I run various executions of the MAP-Elites with different pairs
of features for each game to assemble the corresponding team. For simplicity in the
tables and results, I give a unique code to each set of experiments carried out, as follows:

B2 Butterflies with 2 heuristics enabled: Winning and score and Exploration.

B3 Butterflies with 3 heuristics enabled: Winning and score, Exploration and Curios-
ity.

Z5 Zelda with all 5 heuristics enabled: Winning and score, Exploration, Curiosity,
Killing and Collection.

D5 Digdug with all 5 heuristics enabled: Winning and score, Exploration, Curiosity,
Killing and Collection.

S4 Sheriff with 4 heuristics enabled: Winning and score, Exploration, Curiosity and
Killing.

The selection of pairs of features used in each game depends on its characteristics.
Table 6.1 shows the full set of experiments and the pair of features used in each of them,
generating a total of 68 maps: 10 for B2, 10 for B3, 14 for Z5, 19 for D5, and 15 for
S4. The range of the values and bucket size assigned to the features that determine
the space of the MAP-Elites varies. It depends on the properties of the level related
to the pair of features that form the map. I do not give details about each of them
in this chapter, but they can be looked up in the Features_GAMELVL.java file in the
repository [Guerrero Romero, 2021a].

6.6.3 Resulting teams

The nGameRuns value is high (100), so each iteration of MAP-Elites takes a long time.
The execution time also depends on the complexity of the game, the average time the
game over is reached by the agents, and the number of heuristics enabled (as each of
them requires their own calculations). The nIterations value is set at 200 for B2, B3,
and S4. For Z5 and D5, the time spent on each iteration of the algorithm is higher. The
total time required for the executions was higher than the maximum allocated time for
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X
Y Score Exploration Curiosity Collisions (B2,B3) Kills Items

Percentage Interactions (D5,Z5,S4)
D5 D5

Wins All All All All Z5
S4

Exploration D5 D5
Percentage All All All Z5

S4
D5 D5

Curiosity All All Z5
S4

Collisions (B2, B3) D5 D5
Interactions (D5,Z5,S4) All Z5

S4
Kills S4 D5

Table 6.1: Combinations of feature pairs used for each set of experiments: B2 (10 con-
figurations), B3 (10 configurations), Z5 (14 configurations), D5 (19 configurations), and
S4 (15 configurations); for a total of 68 executions of MAP-Elites.

each experiment, so I obtain the team after 125 and 100 iterations of the MAP-Elites,
respectively.

Running the experiments results in 68 maps for the five sets of experiments: B2,
B3, Z5, D5, and S4. A total of 124, 302, 486, 293, and 352 agents are generated for
each game and set of goals, respectively (Fig. 6.7). The group of elites generated in each
map forms part of the team of available agents for future automated gameplay. Going
through every map and game is prohibited for the sake of space. Thus, I include overall
observations that stand out when going through the teams generated and a particular
example for each game. All the resulting maps are included in Appendix D.
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Figure 6.7: Total number of agents generated per experiment: B2 (nIterations = 200),
B3 (nIterations = 200), Z5 (nIterations = 125), D5 (nIterations = 100), and S4
(nIterations = 200).
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Agents performance The performance is given by how fast the agent reaches the
End of Game (EoG). Not all the agents in the resulting MAP-Elites have a final good
performance as, in some cases, they are very slow and obtain an average of EoG ticks
very close to the maximum allowed. An example of the heterogeneous performance of the
agents generated is shown in Fig. 6.8. My approach does not focus on the performance
of the agents, as it merely serves as assistance to replace the agents when there is a
collision. The interest comes from the diversity of the solutions generated and, thus,
the location of the agents in the space of features. It serves as a reference to identify
different behaviours, play-styles, and tasks. However, the final performance value of the
elite gives a hint about the length of its average execution time.

Figure 6.8: Sheriff (S4): Resulting MAP-Elites for features Exploration percentage and
Score.

Team size The size of the MAP-Elites generated varies both between games and the
pair of features used (Fig. 6.9). For B2, the number of agents generated in each map is
found between 4 and 24, for B3, between 16 and 49, for Z5, between 22 and 44, for D5,
between 7 and 28, and for S4, between 13 and 44.

As an example, I look at the number of elites generated for the MAP-Elites with pair
of features Exploration percentage and Score in each of the games (Figs. 6.8 and 6.10). In
Butterflies, B2 generates 15 elites while B3 results in a total of 20. In Zelda, the number
of agents generated is 42, a higher number than the ones generated for Sheriff (26) and
Digdug (19). The results for D5 are provided after 100 iterations. For a fair comparison,
I look at the number of elites generated for Z5 at 100 iterations, which is 39. This result
is still significantly higher than 19. Overall, the size of the MAP-Elites generated for B2
and D5 is the smallest. For B2, only two of the three possible goals are applied to the
agents, resulting in less diversity of final behaviours. Digdug is a game comparably more
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Figure 6.9: Number of agents generated in each MAP-Elites per experiment: B2 (10
maps), B3 (10 maps), Z5 (14 maps), D5 (19 maps), and S4 (15 maps).
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complex than the others. I speculate that in this game, either the MAP-Elites requires
more iterations to reach diversity, or it is not possible to elicit further behaviours. As a
result, the pool of agents available is smaller.

(a) Butterflies (B2) (b) Butterflies (B3)

(c) Zelda (Z5) (d) Digdug (D5)

Figure 6.10: Resulting MAP-Elites for features Exploration percentage and Score.

Agents distribution The distribution of the agents in the feature space is different
between games for similar pair of features. This disposition provides information about
the expected behaviour of the agents based on their location and the values obtained for
each feature. However, their alignment also gives hints about the games themselves. I
include two examples:

First, when looking at the set of MAP-Elites generated for Exploration percentage
and Score features in B2, B3, Z5, and D5 (Fig. 6.10), all the agents generated achieve
an average exploration percentage higher than 21% and, within the dimensions of the
game, are found in a certain range of scores. However, the alignment of the agents is
very different between games. While in Butterflies (Figs. 6.10a and 6.10b) and Sheriff
(Fig. 6.8) there is a continuity in the occupied cells, the agents are clustered in blocks
in Zelda and Digdug (Figs. 6.10c and 6.10d), having no coverage for certain exploration
ranges. This aggregation is even more noticeable for the latter, where just a few explo-
ration ranges (21− 30%, 61− 65%, 71− 75%, and >= 96%) are included.
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Second, I look at the maps generated for the Exploration percentage and Kills features
for S4, Z5, and D5 (Fig. 6.11). For S4 (Fig. 6.11a) it is possible to identify agents with
different behaviours: from an agent that does not move much but gets a high number
of kills, to another that gets its kills while moving around the map achieving a high
exploration rate. There is not much diversity on agents with a different number of kills
for low exploration rates, as they achieve a minimum average of 5. On the contrary,
the resulting map for Z5 (Fig. 6.11b) and D5 (Fig. 6.11c) shows different ranges of kills
along different exploration rates. There are also differences in the alignments of the
agents generated: for Z5, the distribution of the agents is almost linear and diverse (just
missing agents in the 50 − 65% exploration rate), while the ones generated for D5 are
gathered in clusters. Each of these results makes sense when looking at the rules of the
games: in Sheriff the agent kills the bandits by shooting bullets, so it does not need to
move around to hit them. Mobility grants the agent the ability to get cover, go closer to
the enemies to kill them, or dodge the bullets when it tends not to kill them, allowing
more diversity in the range of kills achieved in that case. In both Zelda and Digdug, the
enemies are killed by hitting them close range, so it is necessary to reach them on the
map to kill them. In Zelda, all enemies move freely, being able to kill different numbers
of them while reaching various levels of exploration. In Digdug, on the contrary, the
enemies are also limited by the wall, so the agent needs to explore it (and break walls) to
reach them. The clusters give an idea of the disposition of the enemies in located areas.

(a) Sheriff (S4)

(b) Zelda (Z5) (c) Digdug (D5)

Figure 6.11: Resulting MAP-Elites for features Exploration percentage and Kills.
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Diverse goals results in a more diverse team When comparing the size of the
MAP-Elites generated for B2 and B3 (Fig. 6.12), I can infer that the inclusion of the
new goal (Curiosity) in B3 results in a more diverse team of agents for a similar setup
and number of iterations of the MAP-Elites (200). A total number of 124 agents are
generated for B2 and 302 for B3.
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Figure 6.12: Butterflies: Total number of agents generated per MAP-Elites for B2 and
B3 (nIterations = 200). Exploration percentage appears as Exploration in the graph.

This diversity is clear in the maps generated for the pair of features related to curiosity
and interactions: Exploration percentage x Collisions results in 10 final elites for B2 and
49 for B3; and Curiosity x Score in 4 and 16 respectively. However, this increased
diversity is true even for pair of features not directly related to the new goal, as shown in
the MAP-Elites for Wins and Exploration percentage (Fig. 6.13). Including Curiosity, in
this case, allows generating agents that obtain different rates of exploration for a higher
range of winning rates, providing more diversity and flexibility on the selection of agents
to suit different needs. Another example is the map resulting for the pair of features
Exploration percentage and Score (Fig. 6.10a and 6.10b). Including the additional goal
increases the choices of agents when looking for a high score (41−50): B2 only produces
an agent capable of reaching this high score, tight to a high exploration percentage
(91 − 99%). B3, in contrast, generates a total of 5 agents related to this high score,
each of them achieving different ranges of exploration (31 − 40%, 61 − 70%, 71 − 80%,
91 − 99%, and 100%). I conclude that by having more heuristics enabled in a game, it
is possible to generate more behaviours and create a more diverse team.

Particular example of B3 Fig. 6.14 presents the resulting 49 agents for B3 when
the feature pair is Exploration Percentage and Collisions. The figure shows how the
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(a) B2 (b) B3

Figure 6.13: Butterflies: Resulting MAP-Elites for features Wins and Exploration Per-
centage.

higher the number of collisions, the higher the exploration percentage and the average
EoG time of the agents. It is possible to select agents to cover different rates of the
map. However, when looking for agents able to obtain more than 300 collisions, this
selection gets reduced to agents that also attain a very high exploration (> 90%). Yet,
if the target is to obtain more than 1, 000 collisions, two additional agents are found in
a lower exploration range. Their curiosity value average is 100.64 and 103.76. There are
102 trees and 33 butterflies in the game. Therefore, the behaviour I expect from these
two agents is interacting with the trees, sticking to the borders of the map, and avoiding
getting into the open areas, unless they get the chance to interact with a butterfly at
reach.

Figure 6.14: Butterflies (B3): Resulting MAP-Elites for features Exploration percentage
and Collisions.
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Particular example of Z5 Fig. 6.15 shows the resulting MAP-Elites for Z5 when
the feature pair is Interactions and Kills. The solution generates 35 agents capable of
killing at least 2 monsters while interacting with the elements of the game in different
capacities. The range of the average of iterations elicit by this team goes from [1− 100]

to [1401−1500]. The pool of agents with the most diverse proficiency at killing monsters
is tight to the lowest number of iterations ([1− 200]). When requiring an agent to reach
higher iterations, it is expected that the agent ends up killing at least 4 or 5 monsters
when playing the game. If it is desired that an agent kills all monsters when playing, the
pool is reduced to 5 agents, none of them able to reach an average of interactions higher
than 800.

Table 6.2 gives details about five of the agents in this map (highlighted in Fig. 6.15).
The features in the MAP-Elites work as guidance on diversifying the behavioural space.
The resulting stats of these agents are different, exhibiting diversity in the way each of
them relates to the game. This information helps to have a better understanding of what
to expect from their gameplay. While E1 is expected to win and E5 to lose, the latter
would achieve a slightly higher score than the former and would interact with elements
of the game much more. Given this information, plus E5’s low exploration skills and the
fact that it rarely picks the key (the only item in the game), I speculate that this agent
rarely reaches the area where the key is. It probably stays at the left and bottom zones
of the map.

Figure 6.15: Zelda (Z5): Resulting MAP-Elites for features Interactions and Kills. Ta-
ble 6.2 includes details about the agents highlighted in the graph (En).

Particular example of D5 Fig. 6.16 shows the resulting MAP-Elites for D5 for the
feature pair Kills and Items. Only one of the 18 agents available in the pool has a
comparably low average of game ticks (1400). This particular agent is in the range of
[22− 24] items and [7− 9] kills, so it is on the top tier of the agents encountered in this
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E1 E2 E3 E4 E5

Weights
[0.66, 0.13, 0.01, [0.23, 0.13, 0.01, [1.0, 0.13, 0.68, [0.52, 0.13, 0.68, [0.0, 0.0, 0.8,

0.04, 0.16] 0.64, 0.16] 0.58, 0.16] 0.64, 0.16] 0.0, 0.77]

X: Interactions 37.91 150.07 314.52 713.64 1411.24
Y: Kills 1.95 5.53 3.62 5.38 3.32

EoG ticks 544.32 1905.71 1023.71 1912.60 1970.68

Gameplay stats (average of 100 plays)
Win rate 91.99% 6.00% 70.00% 8.00% 0.00%
Score 5.72 12.12 8.8 11.81 7.18
Exploration percentage 70.35% 95.80% 78.00% 96.01% 34.61%
Sprite interactions 3.33 4.99 4.46 5.07 3.75
Curiosity 25.70 80.65 61.82 90.95 37.61
Collisions 35.96 144.54 310.90 708.26 1407.92
Hits 1.95 5.53 3.62 5.38 3.32
Kills 1.95 5.53 3.62 5.38 3.32
Items 0.97 0.98 0.98 0.99 0.60

Table 6.2: Zelda (Z5): Details of agents highlighted (En) in Fig 6.15 resulting from the
MAP-Elites generated for the pair of features Interactions and Kills. It includes the
description of the weights of each heuristic (Winning and score, Exploration, Curiosity,
Killing, Collection) as well as the associated value of their features, End of Game (EoG)
ticks and average stats resulting when an agent with this description plays the game 100
times.

space, although it is not the one that reaches the most number of monster kills and items
collected. All the agents can collect at least 7 items and kill between 7 and 12 monsters,
but they rarely win the game (the highest win rate find in the team is 0.05%); so they are
either killed by a monster or play for its whole duration. In general, most of the solutions
of the MAP-Elites generated for Digdug show an average of EoG ticks very close to the
maximum allowed (2000), the lowest value being 1200. Therefore, automated gameplays
for this game are expected to be slow, independently of the behavioural description of
the agent chosen.

Figure 6.16: Digdug (D5): Resulting MAP-Elites for features Kills and Items.
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Particular example of S4 Fig. 6.17 shows the resulting MAP-Elites for the features
Wins and Kills for S4. The solutions generate the description of 20 agents with different
rates of wins. One of the agents loses most of the time (1− 10% of wins) and kills only
1 bandit on average, while the rest of them have different rates of wins and average of
kills. There are a total of 8 bandits in the level, and the game finishes when all of them
are killed or by surviving for 1000 game ticks. None of the agents averages 8 kills, which
is an odd result, as many of them win the game 100% of the time with a low average
of EoG ticks, which imply that they win by killing the enemies and not by surviving.
Therefore, there may be an issue with the implementation of the Killing heuristic. This
problem is probably related to failing to log the information about the events in the
last game tick. However, I do not believe this is a critical problem, and I consider that
the pool of agents generated can still be used with the expected purpose. In the case of
extending the work or carrying out new experiments to generate further MAP-Elites, the
heuristic should be reviewed to fix this issue. Nevertheless, I can identify different types
of agents: those that win the game by either being proficient at killing the bandits or by
surviving and avoiding being shot, with varying ranges of rates of kills. There are also
some agents that, having an average win rate (21 − 70%), can kill most of the bandits
and survive for a while. This kind of behaviour can become useful in some aspects of
testing or tasks achievement, where the agent is not expected to win but manages to
survive for a long time and kill most of the enemies.

Figure 6.17: Sheriff (S4): Resulting MAP-Elites for features Wins and Kills.

In summary, the collection of MAP-Elites generated shows a variety of agents dis-
persed in a behavioural space, leading to the existence of agents with different behaviours
to run automated gameplay. It is possible to identify different play styles and tasks in
the team to fit various needs and requirements.
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6.6.4 Summary and discussion

The motivation of the experiment described in this section was to generate agents in
games with different characteristics to prove the generality of the approach proposed in
Section 6.4. The results provide a team of agents, which is assembled from the group of
maps generated with MAP-Elites and available to play each game automatically. Each
agent of the pool is expected to interact and behave differently in the game. However,
not all of them would be useful for developers or designers if this approach were to
be applied in the game development process. They would not be expected to run all
the agents generated to test the game but a selection from the ones available based
on their needs. Therefore, for the approach to be applicable in the future as a design
tool, it is first needed to find a way to find those agents that may be of interest based
on the game under development. The agents are located in behavioural spaces based
on the outcomes of their gameplay, so this distribution should allow identifying agents
with target abilities based on their location in the corresponding two-dimensional map.
The following chapter describes such identification by selecting 6 agents of different
characteristics for each game.

6.7 Interactive Tool: Automated Gameplay Visualisation

I am interested in the characteristics of each of the agents and studying their behaviour
when playing the game. The graphs generated give information about the distribution
of the agents in the feature space, and it is possible to identify what to expect from them
by looking at their correspondent cells. However, static images have a limitation when
looking at a more extensive analysis. Moreover, the results are produced in JSON files,
so going through the data of the agents assigned to each cell of the map to get detailed
information about them is a tedious process. To make the processing and reading of
the results easy, I have created an interactive tool, accessible online [Guerrero Romero,
2021e].

This interactive tool complements and extends my work. It makes it possible to
access the results of the experiments in real-time. It generates interactive maps to
retrieve detailed information about each of the agents: resulting stats, performance, and
an example of their gameplay. It contains the following features:

Welcome page Includes an overview of the demo, definitions, and step-by-step in-
structions on how to use the tool. It provides details about the goals, games, and
features used to generate the MAP-Elites.

Data selection Choose the game and pair of features to load and visualise the cor-
responding MAP-Elites generated. The data is stored in JSON files, and the user can
choose between the available files, displayed in a dropdown field.
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Team visualisation Presents an overview of the game, the heuristics enabled for
the agents, the features used, and a heatmap graph that represents the MAP-Elites
generated. This graph is interactive, and each cell is given a colour based on the agent’s
performance (EoG time). The user can hover over each of the elements presented on the
screen to get detailed information about them.

Agent details and gameplay Selecting a cell from the map gives details about the
corresponding agent. It shows its behavioural description (weights assigned to each of its
heuristics), the stats resulting from the 100 gameplays of the level, and a pre-recorded
video exemplifying its gameplay. A screenshot of this component of the tool is displayed
in Fig. 6.18.

Figure 6.18: Screenshot of the interactive tool showing the information and gameplay of
one of the agents generated for Sheriff. It is accessible online [Guerrero Romero, 2021e].

Download files to run the agents locally I provide a standalone executable to run
the agents locally. I have generated a JSON for each agent description that serves as its
configuration and allows triggering automated gameplay of it. The files and instructions
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are available to download.

This tool is considered relevant for both academics and a more general audience.
It provides an interactive visualisation of the results and allows witnessing the distinct
behaviours of the agents first-hand. I use it to navigate the maps generated for each
game and identify behaviours corresponding to different players and tasks, presented in
the following chapter.

6.8 Conclusions

The work presented in this chapter applies MAP-Elites to generate and assemble a team
of agents with distinct behaviours so they can be used for automated gameplay. The
solution provides a pool of agents in a feature space and their location gives an idea of
what to expect when they play the game. The features of the map are defined by the
results of the actions of the agents: wins, score, exploration, kills, items collected, etc.
The performance of the agents is not defined by how well they perform on the game in
terms of score or wins. It is based on the time it takes the agents to play the game when
obtaining a similar range of values for the features that define their location on the map.

I implement and integrate the approach in the GVGAI Framework and use the OLM-
CTS as the controller to play the games. The sampleMCTS provided by the framework
has been modified by heuristic diversification to provide a list of heuristics and corre-
sponding weights externally. The heuristics implemented are based on objectives that
can be found on different games: Winning and score, Exploration, Curiosity, Killing,
and Collection. The list of features and heuristics used in this work can be adapted
and extended based on the game under consideration and the needs of the user. The
generality of the algorithm and heuristics within the framework allows to execute the
methodology in different games. The MAP-Elites is applied to generate agents for 4

games of different characteristics and complexity. In one of the games, two different sets
of heuristics are enabled, distinguishing between 5 blocks of experiments: B2, B3, Z5,
D5, and S4. For simplicity in the codification and presentation of the results, I use a
2-dimensional feature space, so several independent executions of the MAP-Elites are re-
quired to cover different behavioural spaces. A total of 68 different configurations of the
MAP-Elites have been executed. These executions result in a pool of agents of various
sizes per game and set of experiments: 124 (B2), 302 (B3), 486 (Z5), 293 (D4), and 352

(S4). The size and diversity of the agents generated by the MAP-Elites should make it
possible to find agents in each of the games fulfiling different needs. The options are
limited by the distribution of the agents within the space, caused by the pair of features,
the characteristics of the game, and the enabled heuristics set for the agent. These agents
could be used for automated gameplay with different objectives. The resulting stats of
the agents used as reference refer to the level of the game used for their generation.
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The generality of the heuristics in the solution allows running the agents generated
at any level of the game. However, whether the behaviour identified to those agents is
portable to new levels is an open question that needs to be answered if I ultimately want
to use the team of agents to assist in the development and testing of games. Chapter 7
focuses on answering this question by identifying different behaviour-type agents in each
of the games and comparing the tendency of their stats in alternative levels.
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Chapter 7

Application: Team Portability and Level Testing

This chapter applies the team of GVGP agents generated. It identifies behaviour-type
agents that reach certain targets, assess their portability to new levels, and presents
exploratory work to use them to test levels and spot issues in them. Most of the mate-
rial presented in this chapter has been included in a journal paper submitted to IEEE
Transactions on Games that is currently under review.

7.1 Introduction

This chapter is an immediate continuation of Chapter 6, where I presented an approach
to generate a team of GVGP agents with differentiated behaviours. I created a pool of
agents distributed in various feature spaces, assembling such a team for four different
games. However, I still need to address how to identify distinct behaviours and accom-
plishments to ultimately use those agents to assist in the game development and testing
processes. Therefore, I am still looking at answering RQ2: How to define, create, and
use a team of GVGP agents with distinct behaviours to assist in the development and
evaluation of games?

Within the methodology envisioned in Chapter 5, this chapter focuses on the team
of agents and on finding an approach to use them to assist in the evaluation of the game
(Fig. 7.1). Following the MAP-Elites procedure described in Chapter 6, the team of
agents has been generated at a particular level of the game. Before proposing a method
to use the agents for its evaluation, I need to make sure that each of those agents gen-
erated is actually portable to other levels of the game. The generality of the GVGP
agents allows them to play any level, but the question is if their strength and expected
behaviour are transferred as well. This work first identifies a series of agents for each
game, characterised by particular aspects and resulting features that I find interesting.
Then, I apply these agents in an experiment to test their portability to new levels. Lastly,
I introduce an exploratory work that envisions the use of the agents to test the design
and validity of new levels. I use those same agents to test a ‘broken‘ level in each of the
games as proof of concept.
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Figure 7.1: Highlighted the areas that I cover in this chapter from the long-term vision.
It presents an approach to identify different members of the team, use them to play a
level automatically, and, ultimately, assist on its evaluation.

I take advantage of my previous work and carry out these experiments in the GVGAI
Framework using the same four games as in Chapter 6: Butterflies, Zelda, Digdug, and
Sheriff. Fig. 7.2 shows the particular levels that I have previously used to generate the
agents. I utilise the interactive tool described in Section 6.7 to navigate through the
different maps that assemble the team to find different behaviour-type agents to use in
my experiments. As a reference, the full pool of agents available for each game is included
in Appendix D. For the portability and level testing experiments, I define new levels for
each game. Their details and screenshot are included in the corresponding sections.

(a) Butterflies (b) Zelda

(c) Digdug (d) Sheriff

Figure 7.2: Screenshot of the levels used to generate the agents for each game.
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7.2 Identification of Behaviour-type Agents from the Team

I identify 6 agents for each game that correspond to behaviours and tasks that interest
me. These agents are used in both the portability and testing experiments included in
this chapter. These behaviour-types agents have been selected from the resulting maps
that assemble the team for each game (Section 6.6.3). I use the concept of behaviour-type
agents instead of player-types or personas as in the existent literature (Sections 2.4.1,
2.4.2, and 2.4.3) because those concepts are either related to game design or with agents
mimicking or modelling human behaviour. I look at the behaviour of the agents as the
results (stats and features) of their gameplay, without necessarily resembling players
when playing the game. I have used the interactive tool described in Section 6.7 to
navigate the collection of maps generated and identify different agents based on their
features and location in the space.

The description of the different behaviour-type agents identified across the games, in
alphabetical order, are the following.

Barrels shooter It only applies to Sheriff. Agent with a high rate of interactions and
hits but a low rate of kills, so it targets the barrels instead of the bandits. It is identified
in the map with the corresponding features.

Collector (high/low) Agent that gathers a high or low number of items. It is iden-
tified in one of the maps with the corresponding feature.

Curiosity (high/low) Agent with a high or low resulting curiosity. It is identified
from one of the maps with the corresponding feature.

Explorer (high/low) Agent with a high or low resulting physical exploration of the
level. It is identified from one of the maps with the corresponding feature.

Interactions (high/low) Agent with a high or low resulting interactions with ele-
ments of the game. It is identified from one of the maps with the corresponding feature.

Killer (high/low) Agent with a high or low resulting kills of enemies. It is identified
from one of the maps with the corresponding feature.

Scorer (High/Low) It is identified from one of the maps with the corresponding
feature.

Speed-runner Agent with a high victory rate that tends to finish the game fast. It
is identified by looking through the agents with a very high win rate in the maps with
such a feature to find one with one of the lowest EoG ticks.
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Survivor It only applies to Sheriff. Agent that survives until the time runs out,
winning the game. It is identified in the map with the corresponding feature by looking
at a resulting high EoG ticks.

Walls breaker It only applies to Digdug. Agent that focuses on breaking the walls and
tends to follow them instead of moving through open areas. It is identified by having
a high curiosity but a mid-range exploration rate in the map with the corresponding
features. In contrast to the Walls interaction, introduced below, this agent is expected
to break the walls, so although the hits are not used for its identification, they are also
a relevant gameplay result.

Walls interaction It only applies to Butterflies. Agent that focuses on interacting
with the trees and butterflies. It is expected to move close to the walls bypassing open
areas. It is identified by having high curiosity but average exploration features in the
map with the corresponding features, and confirmed by observing its gameplay.

Some of the agents identified are a combination of two of these behaviour-types. The
group of agents chosen is different between games (Table 7.1), but each of the final
6 agents per game is given a similar nomenclatures to facilitate the readability of the
results: E1, E2, E3, E4, E5, and E6. The selection is different in each game because
the tasks and goals I want the agents to elicit depends on its characteristics and rules.
For each game, I include the MAP-Elites from the team where the agents are identified
from. I also include a table showing an overview of the behaviour-type agents for each
game and corresponding nomenclature given in it. This table gives details about their
behaviour attributes, the weights that describe their heuristic and drive their actions,
and information about where to find them. This information includes the pair of features
that created the map and cell they are assigned to, as well as the resulting values of the
corresponding stats and end of game (EoG) ticks.

7.2.1 Butterflies

All the agents selected for Butterflies are taken from the results of B3, as I have pre-
viously determined that the diversity of behaviour in the team is richer than the one
resulting for B2.

The rules in Butterflies are pretty simple compared with the rest of the games, as
there are no items to collect or enemies to kill. Given the rules’ simplicity, there were
few possible behaviours. It is quite an interesting game, given that a higher score does
not imply victory, as the game is won as soon as all the butterflies are captured. It is
possible to finish it before all the available butterflies in the level are spawned. Therefore,
two of the agents in the selection of this game are related to the score feature. There
are two different interactive game elements: butterflies and trees (the walls), so I also
considered the interactions an interesting behaviour for the agents. Related to this, I
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Behaviour-type Butterflies Zelda Digdug Sheriff
Barrels Shooter X
High collector X
Low collector X
High curiosity X X
High explorer X X X X
Low explorer X X X
Low interactions X
High killer X X X
Low killer X X X
High scorer X X X
Low scorer X
Speed-runner X X X
Survivor X
Walls breaker X
Walls interaction X
High collector + high killer X
High collector + low killer X
Low collector + high killer X
High curiosity + low interactions X
Low explorer + high scorer X
High killer + high explorer X X
High killer + low explorer X X
Survivor + low killer X

Table 7.1: Behaviour-type agents overview per game. Some of the agents identified are
a combination of two individual behaviour-type agents (highlighted in the table), so they
are expected to show both traits. The table includes both the individual and combined
behaviour-type agents for reference.
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made a distinction between two different types of agents: one that interacts with the
elements of the game in different locations (curiosity trait), and another that will mainly
focus on interacting with the walls, avoiding open areas of the level. Finally, I was also
interested in an agent capable of finishing the game as quickly as possible or exploring the
level instead of looking at capturing butterflies. I list the behaviour-type agents identified
for this game with the corresponding nomenclature that is used for each of them in this
chapter, detailed them in Table 7.2, and include the corresponding map and cell they
are located at.

• E1: Low scorer (Fig. 7.3).

• E2: High scorer (Fig. 7.3).

• E3: High curiosity (Fig. 7.4).

• E4: Speed-runner (Fig. 7.5).

• E5: High explorer (Fig. 7.6a).

• E6: Walls interaction This agent should focus on interacting with the trees and
butterflies, so it is expected to move close to the walls bypassing open areas. I look
into curiosity and exploration to identify it (Fig. 7.6b).

Butterflies (B3)
E1 E2 E3 E4 E5 E6

Behaviour-type Low scorer High scorer High curiosity Speed-runner High explorer Walls interaction

Map features Collisions Collisions Curiosity Wins Exploration % Exploration %
Score Score Collisions Exploration % Collisions Curiosity

Cell id [1, 2] [8, 6] [7, 21] [11, 4] [11, 11] [7, 6]

Features value 8.09 370.36 121.92 100% 99.92% 65.63%
19.18 50.72 1398.23 37.72% 540.19 108.15

EoG 95.69 1860.99 1675.32 87.93 1939.34 1479.75

Weights W {0.92, 0.52, 0} {0.1, 0.45, 0.67} {0, 0, 0.21} {0.94, 0.08, 0.02} {0.02, 0.29, 0.68} {0.04, 0, 0.9}

Table 7.2: Full selection of agents from the team for Butterflies identified based on their
behaviour. It includes their attribute, the MAP-Elites and cell assigned to, the values
for each feature, and the corresponding End of Game (EoG) ticks. It also presents the
weights that describe the heuristic assigned to the agents.
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E1

E2

Figure 7.3: Butterflies behaviour-type agents identification: Low scorer (E1), with the
lowest score feature across the maps, and High scorer (E2), with the highest score feature
across the maps.

E3

Figure 7.4: Butterflies behaviour-type agent identification: High curiosity (E3), with the
highest pair of collisions and curiosity values.
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E4

Figure 7.5: Butterflies behaviour-type agent identification: Speed-runner (E4), with ≃
100% win rate and one of the lowest EoG ticks.

E5

(a) High explorer (E5)

E6

(b) Walls interaction (E6)

Figure 7.6: Butterflies behaviour-type agents identification: High explorer, with a high
exploration rate (≃ 100%), and Walls interaction, with high curiosity but mid-range
exploration rate.
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7.2.2 Zelda

Zelda is a dungeon game where the objective is collecting a key and opening the door
to escape. There are enemies, but it is the choice of the player to engage with them or
not. Therefore, I was interested in finding agents that would focus on killing enemies in
different ways: one that would barely engage with the monsters, and another two that
would engage with them and kill them, but in two different ways, either exploring the
level and finding them or by covering less part of the level but killing them when they
appear in their path. As the score is also given by the key and finishing the level, it was
another interesting behaviour (only a high score in this case). Similarly to the previous
game, finishing the game fast or exploring the level instead were behaviours I wanted to
see in the agents. The only collectable item in the game is the key, so I did not find it
very interesting to find agents focused on collection. Even if it was possible to choose an
agent with this kind of behaviour, I did not find it important for my experiments.

I list the behaviour-type agents identified for this game with the corresponding nomen-
clature that is used for each of them in this chapter, detailed them in Table 7.3, and
include the corresponding map and cell they are located at.

• E1: High scorer (Fig. 7.7).

• E2: Speed-runner (Fig. 7.7).

• E3: High explorer (Fig. 7.8).

• E4: Low killer (Fig. 7.9).

• E5: High killer and explorer (Fig. 7.10).

• E6: High killer and low explorer. This agent is expected to kill the monsters when
they approach, instead of ‘finding them‘ (Fig. 7.10).

Zelda (Z5)
E1 E2 E3 E4 E5 E6

Behaviour-type High scorer Speed-runner High explorer Low killer High killer + High killer +
high explorer low explorer

Map features Wins Wins Exploration % Interactions Exploration % Exploration %
Score Score Curiosity Kills Kills Kills

Cell id [0, 13] [10, 6] [20, 7] [1, 2] [20, 6] [10, 5]

Features value 0.00% 99.00% 97.00% 37.91 95.64% 46.92%
12.85 6.37 62.66 1.95 5.50 4.64

EoG 1966.42 450.05 1902.58 544.32 1849.54 1951.38

Weights W
{0, 0.62, 0, {0.96, 0.54, {0.92, 0.61, 0.01, {0.66, 0.13, 0.01, {0.08, 0.55, 0.04, {0, 0, 0, 1, 0}
0.59, 0} 0.61, 0, 0} 0.93, 0.36} 0.04, 0.16} 0.84, 0.51}

Table 7.3: Full selection of agents from the team for Zelda identified based on their
behaviour. It includes their attribute, the MAP-Elites and cell assigned to, the values
for each feature, and the corresponding End of Game (EoG) ticks. It also presents the
weights that describe the heuristic assigned to the agents.
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E1

E2

Figure 7.7: Zelda behaviour-type agents identification: High scorer (E1), with the highest
score feature across the maps, and Speed-runner (E2), with one of the highest win rate
and lowest EoG ticks.

E3

Figure 7.8: Zelda behaviour-type agents identification: High explorer (E3), with one of
the highest exploration rate across the maps.
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E4

Figure 7.9: Zelda behaviour-type agents identification: Low killer (E4), with one of the
lowest average of kills across the maps.

E5

E6

Figure 7.10: Zelda behaviour-type agents identification: High killer and explorer (E5),
with a high average of kills and exploration rate, and High killer and low explorer (E6),
with a high number of kills but low exploration rate, not being able to cover on average
even half of the map

185



7. Application: Team Portability and Level Testing

7.2.3 Digdug

Digdug is the only game from the set with (various) collectable items. Therefore, most
of the agents I identify for this game are related to this behaviour. Killing monsters is
also a big part of the game, so I thought it would be interesting contrasting these two
behaviours and see what would happen when an agent would either focus on both or,
on the contrary, only on one over the other. Similarly to the previous games, I consider
exploration a necessary behaviour. The score is given by the collection and kills. Both
items and enemies are dispersed in the level, so I found it interesting to look for an agent
capable of achieving a high score without having to cover a big part of the map. Finally,
the walls in this game are breakable, so they are an essential element, and I wanted to
find an agent that mainly focuses on breaking them. It was possible to find agents with
other behaviours or further combinations of the ones identified, but I considered those
were the most relevant for my experiments.

I list the behaviour-type agents identified for this game with the corresponding nomen-
clature that is used for each of them in this chapter, detailed them in Table 7.4, and
include the corresponding map and cell they are located at.

• E1: High collector and killer (Fig. 7.11).

• E2: High collector and low killer (Fig. 7.11).

• E3: Low collector and high killer (Fig. 7.11).

• E4: Walls breaker (Fig. 7.12). This agent should focus on breaking the walls, so
it is expected to follow them instead of moving through open areas. I look into
curiosity and exploration. Although the resulting number of hits is not used for
the identification, it is also relevant information, as the walls break when the agent
hits them.

• E5: High explorer (Fig. 7.12).

• E6: Low explorer and high scorer (Fig. 7.13).
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Digdug (D5)
E1 E2 E3 E4 E5 E6

Behaviour-type High collector High collector Low collector Walls breaker High explorer Low explorer
+ high killer + low killer + high killer + high scorer

Map features Kills Kills Kills Exploration % Exploration % Exploration %
Items Items Items Curiosity Curiosity Score

Cell id [4, 10] [1, 10] [4, 4] [14, 19] [21, 13] [6, 8]

Features value 10.55 2.84 9.91 67.14% 100.00% 29.77%
26.90 26.98 9.83 450.88 324.97 35.77

EoG 1995.89 1989.92 1999.99 1783.33 1999.01 1999.93

Weights W
{0, 0, 0.7, 0.92, 1} {0, 1, 0, 0, 1} {0, 0, 0, 1, 0} {0, 0, 0.69, {0, 0.7, 0.86, {0, 0, 0,

0, 0.01} 0, 0.01} 0.49, 0.33}

Table 7.4: Full selection of agents from the team for Digdug identified based on their
behaviour. It includes their attribute, the MAP-Elites and cell assigned to, the values
for each feature, and the corresponding End of Game (EoG) ticks. It also presents the
weights that describe the heuristic assigned to the agents.

E2 E1

E3

Figure 7.11: Digdug behaviour-type agents identification: High collector and killer (E1),
with a high number of items collected and enemies killed, High collector and low killer
(E2), with a high number of items collected but a low number of enemies killed, and Low
collector and high killer (E3), with a low number of items collected but a high number
of enemies killed.
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E4

E5

Figure 7.12: Digdug behaviour-type agents identification: Walls breaker (E4), with a
high curiosity but a mid-range exploration rate, and High explorer (E5), with one of the
highest exploration rate (100%).

E6

Figure 7.13: Digdug behaviour-type agent identification: Low explorer and high scorer
(E6), with a low exploration rate but a high score.
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7.2.4 Sheriff

Sheriff, in contrast to the previous games, is a shooter, so the enemies and items are
destroyed by hitting them from a distance. Therefore, most of the agents I identified
for this game are related to killing enemies or shooting at different game elements. Fur-
thermore, there are two ways of winning the game: killing all the enemies or surviving
until the time runs out. I chose to find one agent related to each one of these possibilities.

I list the behaviour-type agents identified for this game with the corresponding nomen-
clature that is used for each of them in this chapter, detailed them in Table 7.5, and
include the corresponding map and cell they are located at.

• E1: Survivor and low killer. This agent wins the game by reaching the EoG, so
it avoids being killed by the enemies and does not focus on killing them either.
(Fig. 7.14).

• E2: High killer and explorer. This agent kills a lot of enemies while moving a lot
around the map (Fig. 7.15).

• E3: High killer and low explorer This agent kills a lot of enemies but stays in a
small area of the level, so it could be considered a ‘Sharp shooter‘ (Fig. 7.15).

• E4: Speed-runner (Fig. 7.16).

• E5: Barrels shooter (Fig. 7.17).

• E6: High curiosity and low interactions (Fig. 7.18).

Sheriff (S4)
E1 E2 E3 E4 E5 E6

Behaviour-type Survivor + High killer + High killer + Speed-runner Barrels shooter High curiosity +
low killer high explorer low explorer low interactions

Map features Wins Exploration % Exploration % Wins Interactions Curiosity
Kills Kills Kills Score Kills Interactions

Cell id [11, 3] [11, 7] [2, 7] [11, 9] [8, 5] [6, 3]

Features value 100% 99.50% 14.04% 100.00% 350.80 (33.18 hits) 101.29
3.19 7.00 6.99 7.99 5.03 127.83

EoG 999.00 966.77 412.30 359.17 549.71 819.76

Weights W {0.84, 1, 0, 0} {0, 0.26, 0, 0.46} {0.09, 0, 0, 1} {0.57, 0.05, 0.03, 0.92} {0, 0, 0.19, 0} {0.28, 0.25, 0.9, 0.46}

Table 7.5: Full selection of agents from the team for Sheriff identified based on their
behaviour. It includes their attribute, the MAP-Elites and cell assigned to, the values
for each feature, and the corresponding End of Game (EoG) ticks. It also presents the
weights that describe the heuristic assigned to the agents.
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E1

Figure 7.14: Sheriff behaviour-type agent identification: Survivor and low killer (E1),
with a low number of enemies killed but high win rate (100%), achieved by reaching the
timeout without dying (EoG ≃ 1000).

E2E3

Figure 7.15: Sheriff behaviour-type agents identification: High killer and explorer, with
the highest value pair of exploration rate and average of kills, (E2) and High killer and
low explorer (E3), with the highest number of kills and lowest exploration rate.
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E4

Figure 7.16: Sheriff behaviour-type agent identification: Speed-runner (E4), with 100%
win rate and one of the lowest EoG ticks.

E5

Figure 7.17: Sheriff behaviour-type agent identification: Barrels shooter (E5), with a
high rate of interactions and hits but a mid-range rate of kills, so should target the
barrels instead of the bandits.
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E6

Figure 7.18: Sheriff behaviour-type agent identification: High curiosity and low inter-
actions (E6), with many interactions but a high curiosity, so when it interacts with
elements, it should do so in different positions and move on.
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7.3 Experiment: Portability of the Agents

I carry out an experiment in each game to determine the portability of the behaviour-
type agents identified and detailed in Section 7.2. I propose that if an agent presents
similar stats or a similar tendency across different levels, it suggests that their strength
is carried between them. Therefore, that agent can be used with similar expectations
independently of the level used to generate it.

The experiments I have carried out in each game to determine the portability of
the agents identified are covered in separate sections. I present four new levels for each
game that have a similar size to the original one. The idea behind creating these new
levels is not to modify the game or its rules but to present different characteristics and
distribution of the elements to study how each of the agents behaves in them. I run
each of the agents a total of 100 times in each of the levels to obtain the gameplay stats
and compare them to their corresponding features. I also run the agents in the original
level (Fig. 7.2) again to obtain the stats that serve as guidance. The corresponding code
can be found in a secondary branch of the Github repository [Guerrero Romero, 2021a]
and the config files, executables, and results can be found in an OSF repository [Guer-
rero Romero, 2021c].

Appendix E includes the tables with all the resulting averages of stats per game,
agent, and level. The following sections include a unique table per game that summarises
the results relevant to each behaviour-type agent. The table also provides pertinent
information about each of the levels as a reference. This information helps to put the
resulting values into perspective. For each feature I have used to identify agents in each
game, a graph detailing the results per level of the 100 play-throughs of the corresponding
agent (or agents) is included. The scripts used to generate these graphs can be found in
a Github repository [Guerrero Romero, 2021b].

7.3.1 Portability experiment in Butterflies

New levels description The four new levels have the same size but a different number
of butterflies, cocoons, and trees. They present different distributions of the elements
and shapes of the areas. The two main game elements that can affect how it is played
are the butterflies and cocoons. The distance between the butterflies, cocoons, and the
player is relevant for the gameplay, as it can influence how quickly the game is won (or
lost). Therefore, I design these levels by providing different distributions between these
elements. Some of the levels are more open than the original one (7.19a and 7.19c),
provided by the distribution of the trees (walls), which also affect how the player or
NPCs can move around and access the distinct elements. Level 7.19b is horizontally
symmetric; the butterflies are in the central area, most of the cocoons on the left side,
and the player on the right side. Level 7.19d is designed to have the player and butterflies
and cocoons in differentiated areas, with only one access point between them. As a result,
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the characteristics of this level are very different from the rest of them. While I expect to
observe some discrepancies in the stats of this level, the overall tendency between agents
should still uphold and the agents should still show traces of their proficiency.

(a) (b)

(c) (d)

Figure 7.19: New levels used for the team portability experiments in Butterflies.

Portability results All the resulting average of stats of the play-through of the agents,
classified into level and agent, are included in Appendix E.1. The results are summarised
in Table 7.6. A graph is included for each of the features relevant to the agents and
their selection: collisions (Fig. 7.20), curiosity (Fig. 7.21), EoG (Fig. 7.22), exploration
(Fig. 7.23), score (Fig. 7.24), and wins, represented as the total number of victories
(Fig. 7.25). It shows the results of the 100 play-throughs per level of the corresponding
agent (or agents).

By analysing the data, I notice a trend on the stats confirming that most of the
agents are portable between levels. This trend is quite clear for the agents related to
exploration (E5 and E6), curiosity (E3 and E6) and winning (E4). For the latter, the
win rate and exploration drops in level 7.19d compared to the other ones. However, by
looking at the overall winning stats across the agents in this level (Table 7.7, Fig 7.26),
E4 does indeed achieves the highest rate of wins (89%), compared to the rest: 85% (E1),
9% (E2), 4% (E3), 8% (E5), and 5% (E6). E4 also shows the lowest average of EoG ticks
(61.13), vs 78.68, 959.46, 862.94, 793.78, and 860.37, respectively. Similarly, E5 show-
cases one of the highest average of exploration rates (74.56%) compared to the rest of
the agents (Table 7.7, Fig 7.27): 32.25% (E1), 78.05% (E2), 42.82% (E3), 25.60% (E4),
and 43.25% (E6). Therefore, the strength of these agents (winning the game quickly and
achieving high exploration, respectively) is still transferred to level 7.19d, even when the
portability is not noticeable at first sight. Level 7.19d is also the most different one, as
there are two differentiated areas with a unique point of access between them. There-
fore, the agents need to find that access point to be able to collect the butterflies and
win. There are only 3 cocoons, and the butterflies are close to these, so in this level,
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the game may end before the agent can even reach the area to win the game or explore it.

Regarding the agents related to score, either high (E1) or low (E2), the resulting
stats implies that they are not as easily transferable between levels as the other agents
(Fig 7.24). In Butterflies, the score depends on the disposition of the butterflies (clustered
or dispersed) and their distance to the player. I believe it is hard to get a fair comparison
between levels when the score is on different scales and depends on factors tight to the
game rules and the distribution of the elements.

Butterflies
Features 7.2a 7.19a 7.19b 7.19c 7.19d
Max. score 64 38 58 38 18
Total walls 102 93 91 83 99

E1: Low scorer
Score 20.44 (8.70) 29.58 (1.99) 43.56 (10.54) 21.2 (1.42) 12.64 (4.12)

E2: High scorer
Score 47.76 (16.60) 30.78 (1.90) 51.1 (6.21) 22.58 (1.24) 11.86 (3.99)

E3: High curiosity
Curiosity 116.53 (25.03) 98.99 (8.81) 116.38 (18.25) 82.13 (7.66) 76.38 (30.97)
Collisions 1436.82 (500.53) 1754.85 (160.49) 1362.33 (603.94) 1780.46 (133.97) 715.56 (708.63)

E4: Speed-runner
Victories 100/100 100/100 99/100 100/100 89/100

EoG 102.15 (47.83) 103.49 (34.69) 114.38 (42.03) 73.61 (35.66) 61.13 (30.34)
E5: High explorer

Exploration 99.29% (4.78) 99.30% (5.18) 99.33% (5.77) 99.77% (1.87) 74.56% (27.15)
E6: Walls interaction

Exploration 67.43% (16.16) 60.28% (8.26) 68.15% (10.06) 44.60% (5.74) 43.25% (15.00)
Curiosity 114.59 (27.54) 96.53 (11.28) 120.46 (17.41) 79.86 (9.37) 75.16 (28.25)

Table 7.6: Overview of the portability results for Butterflies. Victories are the total
number of wins in the 100 play-throughs. The other dimensions are the average of the
resulting gameplay stats and the corresponding Std. Deviation. The stats shown per
agent are the ones related to their proficiency. EoG is 2000.
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Figure 7.20: Butterflies: Resulting collisions per level, from 100 gameplays. E3: High
Curiosity.
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Figure 7.21: Butterflies: Resulting curiosity per level, from 100 gameplays. E3: High
curiosity, E6: Walls interaction.
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Figure 7.22: Butterflies: Resulting EoG per level, from 100 gameplays. E4: Speed-
runner.

7.2a 7.19a 7.19b 7.19c 7.19d
0

20

40

60

80

100
E5
E6

B3 Resulting Exploration per level

Level

Ex
pl
or
at
io
n

Figure 7.23: Butterflies: Resulting exploration per level, from 100 gameplays. E5: High
explorer, E6: Walls interaction (with mid-range exploration).
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Figure 7.24: Butterflies: Resulting score per level, from 100 gameplays. E1: Low scorer,
E2: High scorer.
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Figure 7.25: Butterflies: Resulting total number of victories per level, from 100 game-
plays. E4: Speed-runner.
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Level 7.19d
Info

Butterflies 7
Cocoons 3
Open locations 209
Walls (trees) 99

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 78.68 959.46 862.94 61.13 793.78 860.37
Win rate - 85% 9% 4% 89% 8% 5%
Score 18 12.64 11.86 11.22 13.28 12.54 11.24
Exploration % - 32.25% 78.05% 42.82% 25.60% 74.56% 43.25%
Unique interactions - 1.48 1.94 1.91 1.8 1.97 1.96
Curiosity - 5.89 74.79 76.38 6.66 73.98 75.16
Collisions - 6.25 254.69 715.56 6.97 258.09 708.53
Interactions - 6.25 254.69 715.56 6.97 258.09 708.53

Table 7.7: Butterflies: Per-agent portability results for Level 7.19d. E1: Low scorer,
E2: High scorer, E3: High curiosity, E4: Speed-runner, E5: High explorer, E6: Walls
interaction.
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Figure 7.26: Butterflies: Resulting total number of victories per level, from 100 game-
plays. Comparison between all agents. E1: Low scorer, E2: High scorer, E3: High
curiosity, E4: Speed-runner , E5: High explorer, E6: Walls interaction. Although the
rate of victories drops in Level 7.19d for E4, it still achieves a significantly higher rate
of wins in comparison.
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Figure 7.27: Butterflies: Resulting exploration per level, from 100 gameplays. Com-
parison between all agents. E1: Low scorer, E2: High scorer, E3: High curiosity, E4:
Speed-runner, E5: High explorer , E6: Walls interaction. Although the exploration
drops in Level 7.19d and is more variable for E5, it still achieves a significantly overall
higher percentage in comparison.
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7.3.2 Portability experiment in Zelda

New levels description The four new levels have a similar size to the original one
and maintain the number of monsters (except 7.28c, where I include two additional
ones). The primary motivation behind the creation of each of these levels is to study
the behaviour of the agents when the characteristics of the dungeon and the size of the
rooms that comprise it changes. The main difference between these levels comes from
their shape given by the distribution of the walls. Levels 7.28a and 7.28c show wide open
spaces, the latter representing a unique room with dispersed blocks in the middle and
in the area surrounding the key. Levels 7.28b and 7.28d, on the other hand, have a lot
of walls. The former has narrow corridors and the latter three big rooms connected by
one access point between them. In all the levels, the key is accessible but at different
distances from the player and the exit door. It is required for the player to move around
the map to finish the game. It is expected that each of the agents, independently of how
the rooms are shaped, can play the game and carry out their expected behaviour.

(a) (b)

(c) (d)

Figure 7.28: New levels used for the team portability experiments in Zelda.

Portability results All the resulting average of stats of the play-through of the agents,
classified into level and agent, are included in Appendix E.2. The results are summarised
in Table 7.8. A graph is included for each of the features relevant to the agents and their
selection: EoG (Fig. 7.29), exploration (Fig. 7.30), kills (Fig. 7.31), score (Fig. 7.32),
and wins, represented as the total number of victories (Fig. 7.33). It shows the results
of the 100 play-throughs per level of the corresponding agent (or agents).

Looking at the results, all the agents selected for this game seem to be transferable
between levels. For the High scorer (E1), the final score seems to be similar through
all levels, increasing accordingly to the additional monsters in level 7.28c. I believe
these results come from the characteristics of the game and the fact that I use a similar
number of the elements involved in its calculation. The number of kills increase and
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decrease relative to the characteristics of the agents related to that feature: E5 and
E6 achieve a high number of kills across all levels, and E4, on the other hand, obtains
a comparably low number. I observe similar results for exploration, where agents ex-
pected to obtain a high percentage (E3 and E5) achieve, in average, more than 93.33%

in every level. In comparison, the Low explorer (E6) does not achieve more than 54.79%.

Taking a look at the Speed-runner (E2), it is unclear at first sight if the tendency is
maintained throughout the levels. However, when comparing the overall wins and EoG
ticks with the rest of the agents, I observe that it actually does. Regarding the number
of victories achieved by the agents (Fig.7.34), most of them achieve a rate of wins less
than 13%, while E2 achieves >= 65% in all games. Therefore, I can conclude that, even
in those levels where it seems to be more challenging to win, the agent is showcasing
its proficiency in achieving victory. Similarly, looking at the results for the EoG ticks
(Fig. 7.35), E2 obtains significantly lower EoG ticks across levels than the other agents,
even when these are objectively high, like in levels 7.28a and 7.28b.

Zelda
Features 7.2b 7.28a 7.28b 7.28c 7.28d
Max score 14 14 14 18 14

Total enemies 6 6 6 8 6
E1: High scorer

Score 12.25 (2.64) 12.11 (2.71) 11.7 (3.21) 16.44 (2.73) 11.55 (3.40)
E2: Speed-runner

Victories 90/100 76/100 65/100 89/100 96/100
EoG 617.18 (487.03) 1187.98 (566.51) 1242.26 (652.64) 689.03 (526.05) 450.86 (331.35)

E3: High explorer
Exploration 98.03% (7.80) 95.36% (15.00) 95.25% (14.70) 98.31% (6.93) 93.33% (17.73)

E4: Low killer
Kills 1.62 (1.37) 3.25 (1.44) 2.97 (1.51) 3.53 (2.03) 1.79 (1.34)

E5: High killer and explorer
Kills 5.68 (0.98) 5.66 (0.85) 5.44 (1.18) 7.71 (0.75) 5.41 (1.23)

Exploration 97.19% (10.81) 97.93% (7.04) 94.71% (15.07) 98.61% (5.93) 94.00% (15.27)
E6: High killer and low explorer

Kills 4.78 (1.04) 5.17 (0.80) 4.21 (1.19) 7.26 (1.30) 3.77 (1.33)
Exploration 48.38% (11.54) 50.66% (13.73) 42.25% (15.96) 54.79% (15.34) 35.73% (14.71)

Table 7.8: Portability results for Zelda. Victories are the total number of wins in the
100 play-throughs. The other dimensions are the average of the resulting gameplay stats
and the corresponding Std. Deviation. The stats shown per agent are the ones related
to their proficiency. EoG is 2000.
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Figure 7.29: Zelda: Resulting EoG per level, from 100 gameplays. E2: Speed-runner.
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Figure 7.30: Zelda: Resulting exploration per level, from 100 gameplays. E3: High
explorer, E5: High killer and explorer, E6: High killer and low explorer.
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Figure 7.31: Zelda: Resulting kills per level, from 100 gameplays. E4: Low killer, E5:
High killer and explorer, E6: High killer and low explorer.
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Figure 7.32: Zelda: Resulting score per level, from 100 gameplays. E1: High scorer.
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Figure 7.33: Zelda: Resulting total number of victories per level, from 100 gameplays.
E2: Speed-runner.
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Figure 7.34: Zelda: Resulting total number of victories per level, from 100 gameplays.
Comparison between all agents. E1: High scorer, E2: Speed-runner , E3: High ex-
plorer, E4: Low killer, E5: High killer and explorer, E6: High killer and low explorer.
Although the rate of wins drops below 80% in some levels, E2 still achieves a significantly
high number of victories in comparison to most of the other agents.
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Figure 7.35: Zelda: Resulting total number of EoG per level, from 100 gameplays. Com-
parison between all agents. E1: High scorer, E2: Speed-runner , E3: High explorer, E4:
Low killer, E5: High killer and explorer, E6: High killer and low explorer. Although the
EoG ticks obtained by E2 is, in average, higher that we would expect for this behaviour-
type agent, it is still lower when compared to the other agents.
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7.3.3 Portability experiment in Digdug

New levels description The size of the four new levels is the same, but all the
elements that constitute the game provide differences between them. Level 7.36a contains
breakable walls covering most of the level and three spawners. However, it does have very
few items. Most of the items and monsters are reachable without having to break the
walls. Level 7.36b contains a high density of walls but with an open area in the middle
that separates them. In this level, the player is trapped in the walls so it needs to break
them to access the open area and most of the items. Level 7.36c has a heterogeneous
distribution of walls and open spaces, with a few monsters and items. Without breaking
any walls, the player is only able to kill the monsters. Although there are no many items,
it is required to break thin walls to reach them. Level 7.36d is the most different one,
as the walls surround the level and separate two big open areas. One of these areas is
where the player starts the game, while the other contains a high number of items and
monsters. The player does not need to break walls to access the big open area. The
motivation behind the characteristics of these new levels was providing a diversity of
possibilities that are brought by the rules of the game. At the same time, we expect the
agents and their behaviour to still work across them.

(a) (b)

(c) (d)

Figure 7.36: New levels used for the team portability experiments in Digdug.

Portability results All the resulting average of stats of the play-through of the agents,
classified into level and agent, are included in Appendix E.3. The results are summarised
in Table 7.9. A graph is included for each of the features relevant to the agents and their
selection: curiosity (Fig. 7.37), exploration (Fig. 7.38), hits (Fig. 7.39), items (Fig. 7.40),
kills (Fig. 7.41), and score (Fig. 7.42). It shows the results of the 100 play-throughs per
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level of the corresponding agent (or agents).

For this game, all the agents identified seem to be transferable between levels. Those
agents expected to collect a high number of items (E1 and E2) manage to do so, achiev-
ing an average very close to the maximum number of resources available. On the other
hand, the agent selected for being a Low collector (E3) gathers at most a third of those
resources. The stats of these agents also match with the corresponding number of kills
expected of each of them. While E1 and E3 achieve a high number of kills, E2 does not.
Therefore, these three agents with different skills in collecting items and killing enemies
are transferable, and the trend of their results is maintained between the different levels.

I observe a similar tendency in the agents with features related to exploration: The
Walls breaker (E4) is expected to achieve a mid-average exploration (<= 70.12%) and
high curiosity, and it gets similar resulting stats in the new levels. The High explorer
(E5) achieves between 98.51% and 100% exploration across the levels, and E6, on the
other hand, reaches a maximum of 37.98% while achieving a high score, as expected.

Digdug
Features 7.2c 7.36a 7.36b 7.36c 7.36d
Max score 44 48 61 14 53

Total enemies 12 16 13 5 14
Total items 27 19 41 8 50

Breakable walls 267 292 247 196 103
E1: High collector and killer

Kills 10.64 (0.73) 13.74 (1.50) 11.56 (0.86) 3.88 (0.35) 12.68 (0.69)
Items 26.92 (0.30) 18.91 (0.28) 40.76 (0.83) 7.95 (0.41) 49.90 (0.62)

E2: High collector and low killer
Kills 2.81 (1.50) 3.19 (1.70) 3.05 (1.65) 0.60 (0.68) 4.69 (1.59)
Items 27.00 (0.00) 19.00 (0.00) 40.99 (0.10) 8.00 (0.00) 50.00 (0.00)

E3: Low collector and high killer
Kills 9.64 (1.77) 12.62 (3.57) 12.53 (0.77) 4.7 (0.87) 13.31 (0.97)
Items 9.14 (3.10) 5.05 (3.08) 11.36 (3.48) 1.72 (1.08) 9.74 (8.02)

E4: Walls breaker
Exploration 70.12% (11.21) 67.66% (13.90) 67.70% (12.66) 64.73% (06.65) 46.98% (17.62)
Curiosity 464.6 (68.09) 463.77 (87.06) 434.05 (67.64) 358.54 (28.05) 249.87 (77.28)

Hits 269.65 (38.97) 282.32 (51.86) 245.53 (37.10) 197.70 (14.77) 120.67 (36.05)
E5: High explorer

Exploration 99.98% (0.12) 100% (0.00) 99.99% (0.07) 100% (0.00) 98.51% (10.47)
E6: Low explorer and high scorer

Exploration 30.92% (5.29) 26.49% (5.13) 36.32% (4.12) 26.96% (5.96) 37.98% (5.83)
Score 35.49 (5.60) 35.46 (6.04) 51.3 (4.25) 11.02 (2.51) 47.71 (9.44)

Table 7.9: Portability results for Digdug. The results are the average of the gameplay
stats obtained in the 100 play-throughs. The values in parenthesis represent the cor-
responding Std. Deviation. The stats shown per agent are the ones related to their
proficiency. EoG is 2000.
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Figure 7.37: Digdug : Resulting curiosity per level, from 100 gameplays. E4: Walls
breaker.
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Figure 7.38: Digdug : Resulting exploration per level, from 100 gameplays. E4: Walls
breaker, E5: High explorer, E6: Low explorer and high scorer.
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Figure 7.39: Digdug : Resulting hits per level, from 100 gameplays. E4: Walls breaker.
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Figure 7.40: Digdug : Resulting items per level, from 100 gameplays. E1: High collector
and killer, E2: High collector and low killer, E3: Low collector and high killer.
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Figure 7.41: Digdug : Resulting kills per level, from 100 gameplays. E1: High collector
and killer, E2: High collector and low killer, E3: Low collector and high killer.
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Figure 7.42: Digdug : Resulting score per level, from 100 gameplays. E6: Low explorer
and high scorer.
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7.3.4 Portability experiment in Sheriff

New levels description The shape of the game is similar on the four new levels, and
the number of bandits varies between 9 and 11. Given the rules of the game and its
mechanics, not many elements can be changed in the new levels. The main difference
comes from the number and distribution of the barrels that serve as cover for the player.
In levels 7.43a and 7.43b, the barrels are distributed around the borders. The difference
between these two levels is the number of overall barrels. While the former has 65 barrels,
the latter barely has any (27). In levels 7.43c and 7.43d, the barrels are also distributed
in the middle of the map instead of only around the borders. The agents are expected to
present their behaviour still, even when the number or distribution of the barrels varies.

(a) (b)

(c) (d)

Figure 7.43: New levels used for the team portability experiments in Sheriff.

Portability results All the resulting average of stats of the play-through of the agents,
classified into level and agent, are included in Appendix E.4. Table 7.10 presents a sum-
mary of those results. A graph is included for each of the features relevant to the agents
and their selection: curiosity (Fig 7.44), EoG (Fig 7.45), exploration (Fig 7.46), hits
(Fig 7.47), interactions (Fig 7.48), kills (Fig 7.49), and wins, represented as the total
number of victories (Fig 7.50). It shows the results of the 100 play-throughs per level of
the corresponding agent (or agents).

All the agents seem to display the characteristics they were selected for across the
different levels. E1 and E4 are agents related to winning the game but in different
ways. E1 is a Survivor that wins the game by reaching the end of the game while
avoiding killing many enemies. Its behaviour is shown on the overall stats across levels:
>= 98% win rate, less than half of the bandits kill on average, and EoG ticks close to
the maximum (1, 000). E4, on the contrary, achieves a low average of EoG ticks across
levels (<= 418.7) while still achieving a high rate of wins (>= 97%). E2 and E3 are
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both High killers and achieve similar killing stats through the levels. However, they have
different skills related to exploration: E2 is a High explorer and reaches high exploration
overall levels (>= 97.89%), while E3’s exploration is low (<= 17.81%). Similarly, stats
for E5 and E6 follow a similar trend across the levels.

Sheriff
Features 7.2d 7.43a 7.43b 7.43c 7.43d

Total enemies 8 9 9 11 11
Total barrels 55 65 27 71 51

E1: Survivor and low killer
Victories 98/100 99/100 100/100 99/100 100/100

Kills 3.28 (1.17) 4.02 (1.39) 3.89 (1.49) 4.78 (1.73) 4.87 (1.64)
EoG 992.58 (67.67) 990.32 (96.80) 1000 (0.00) 991.82 (81.80) 1000 (0.00)

E2: High killer and explorer
Exploration 97.89% (10.65) 98.97% (9.13) 99.01% (8.22) 98.20% (9.86) 99.55% (3.08)

Kills 6.96 (0.31) 7.95 (0.50) 7.96 (0.40) 9.91 (0.71) 10.00 (0.0)
E3: High killer and low explorer

Exploration 15.33% (4.06) 16.36% (5.15) 15.26% (6.03) 17.81% (5.46) 15.96% (4.72)
Kills 6.95 (0.50) 7.93 (0.70) 8.00 (0.00) 9.95 (0.50) 10.00 (0.00)

E4: Speed-runner
Victories 100/100 97/100 98/100 99/100 100/100

EoG 364.75 (134.56) 360.53 (127.35) 363.59 (162.99) 417.71 (141.44) 418.7 (154.96)
E5: Barrels shooter

Interactions 439.42 (343.26) 372.63 (311.24) 344.74 (305.19) 385.54 (314.72) 310.89 (275.01)
Kills 5.83 (1.86) 5.89 (2.47) 6.22 (2.36) 7.46 (3.30) 6.65 (3.22)
Hits 35.96 (10.31) 38.19 (13.63) 17.49 (7.81) 39.86 (12.58) 29.28 (9.06)

E6: High curiosity and low interactions
Curiosity 95.77 (22.26) 101.81 (25.46) 73.46 (18.53) 99.92 (26.57) 89.47 (18.41)

Interactions 122.52 (66.51) 127.46 (68.56) 106.28 (64.33) 125.93 (67.61) 116.98 (64.28)

Table 7.10: Portability results for Sheriff. Victories are the total number of wins in the
100 play-throughs. The other dimensions are the average of the resulting gameplay stats
and the corresponding Std. Deviation. The stats shown per agent are the ones related
to their proficiency. EoG is 1000.
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Figure 7.44: Sheriff : Resulting curiosity per level, from 100 gameplays. E6: High
curiosity and low interactions.
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Figure 7.45: Sheriff : Resulting EoG per level, from 100 gameplays. E1: Survivor and
low killer, E4: Speed-runner.
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Figure 7.46: Sheriff : Resulting exploration per level, from 100 gameplays. E2: High
killer and explorer, E3: High killer and low explorer.
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Figure 7.47: Sheriff : Resulting hits per level, from 100 gameplays. E5: Barrels shooter.
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Figure 7.48: Sheriff : Resulting interactions per level, from 100 gameplays. E5: Barrels
shooter, E6: High curiosity and low interactions.
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Figure 7.49: Sheriff : Resulting kills per level, from 100 gameplays. E1: Survivor and
low killer, E2: High killer and explorer, E3: High killer and low explorer, E5: Barrels
shooter.
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Figure 7.50: Sheriff : Resulting number of victories per level, from 100 gameplays. E1:
Survivor and low killer, E4: Speed-runner.
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7.3.5 Results overview

The generality of the heuristics allows running the behaviour-type agents at any level of
the game. However, whether the proficiency identified in each of those agents is portable
to new levels was an open question that I was looking to answer with this experiment.

The results show that the tendency of the resulting gameplay stats related to their
behaviour-type is generally maintained between levels. In most cases, it is straightforward
to confirm this portability by just looking at the results of the agent. However, there are
cases where it is also necessary to consider the global stats between agents at a particular
level to reach this conclusion. It is also possible that the characteristics of a game impede
a particular behaviour-type agent from being portable to new levels. For example, the
score in Butterflies is very dependent on the distribution of the elements at the start
of the game, so the agents related to it, E1 and E2, are not capable of porting their
proficiency when they play new ones. Therefore, a limitation of the approach appears
when the feature relevant to the agent is very tight to the rules of the game. To mitigate
the problem, I recommend running similar portability experiments after identifying the
agents to ensure they can generalise to new levels before they are employed for testing.

These results support the theory that virtually all the agents generated are portable
between levels. Therefore, they could be used to test new or updated levels to help find
potential design flaws. These design flaws could be detected by highlighting those cases
where the stats obtained by the agents do not fit the expectations. In the next section,
I introduce preliminary work that experiments with this idea.

7.4 Exploratory Work: Using the Team for Level Testing

This section showcases work towards using the team of behaviour-type agents for testing
the design and validity of new levels. I modify the original levels of each game used to
generate the team to 1) be impossible to win, 2) remove a crucial element, or 3) increase
its difficulty. Similarly to the MAP-Elites application and the portability experiments
described in the previous section, each of the agents identified plays the level 100 times
to gather the resulting stats. In each experiment, I describe the characteristics of the
‘broken‘ level used and include a table with the resulting stats from each agent, high-
lighting those related to its behaviour-type.

Similarly to the portability experiments, the code can be found in a secondary branch
of the Github repository [Guerrero Romero, 2021a] and the config files, executables, and
results can be found in an OSF repository [Guerrero Romero, 2021c]. The scripts used
to generate the graphs can be found in Github [Guerrero Romero, 2021b].
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7.4.1 Testing a ‘broken‘ level in Butterflies

The structure of the new level (Fig. 7.51) is similar to the original one, but all the
butterflies are cocoons instead. An isolated butterfly is included so the game does not
end immediately. This butterfly does not have access to the area where the player is.
Therefore, the player cannot win as they are unable to catch any butterflies, and cacoons
cannot be transformed. As a result, the time always runs out.

Figure 7.51: New ‘broken‘ level of Butterflies used for the exploratory work.

Table 7.11 presents the resulting stats for each behaviour-type agent from playing
the new level, and Table 7.12 compares the results of the pertinent agents to the ones
obtained in the previous levels. I include a graph for each of the features relevant to the
agents and their selection: collisions (Fig. 7.52), curiosity (Fig. 7.53), EoG (Fig. 7.54),
exploration (Fig. 7.55), score (Fig. 7.56), and wins, represented as the total number of
victories (Fig. 7.57). It displays the results of the 100 play-throughs of the corresponding
agents in the ‘broken‘ level compared to the portability experiment.

The resulting score, victories, and EoG ticks; related to agents E1, E2, and E4 raise
a suspicion that something in the level does not work as expected. The average of the
score for both high and low Scorers (E1 and E2, respectively) is 0, and although I have
previously discerned that these agents may not be portable between levels, these results
are intriguing. Furthermore, in this level, the Speed-runner (E4) never wins the game
and averages an EoG ticks similar to the maximum allowed (2,000). Looking at these
results, I can speculate that the level is not winnable and that the butterflies are not at
a reachable distance to the player, as the score does not increase. These assumptions
match with and issues introduced in the level.

On the contrary, the High curiosity (E3), High explorer (E5), and Walls interaction
(E6) agents still achieve the expected results and the final average does not raise any
areas of concern. The modifications in the level do not impede fulfilling their tasks.
However, it is worth mentioning that looking at the graphs for collisions, curiosity, and
exploration, the data from the 100 play-throughs seems to be less variable than in the
previous levels.
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Butterflies ‘broken‘ level
E1 E2 E3 E4 E5 E6

EoG 2000 (0.00) 2000 (0.00) 2000 (0.00) 2000 (0.00) 2000 (0.00) 2000 (0.00)
Victories 0/100 0/100 0/100 0/100 0/100 0/100

Score 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Exploration 100.00% (0.00) 100.00% (0.00) 59.49% (5.54) 100.00% (0.00) 100.00% (0.00) 59.40% (5.76)
Curiosity 25.30 (3.22) 111.00 (0.00) 103.74 (9.26) 111.00 (0.00) 111.00 (0.00) 103.72 (9.08)
Collisions 37.65 (4.24) 570.15 (48.72) 1858.56 (17.68) 183.83 (9.98) 810.07 (73.53) 1858.29 (17.11)

Table 7.11: Experimental level testing results overview. Victories are the total number
of wins in the 100 play-throughs. The other dimensions are the average of the resulting
gameplay stats and the corresponding Std. Deviation. Shaded cells are related to the
behaviour-type of the agent. Those highlighted are directly or indirectly affected by the
changes in the level. E1: Low scorer ; E2: High scorer ; E3: High curiosity ; E4: Speed-
runner ; E5: High explorer ; E6: Walls interaction. EoG: 2000; Max Score: 64.

Butterflies
7.2a 7.19a 7.19b 7.19c 7.19d ‘Broken‘

Max. score 64 38 58 38 18 64
Total walls 102 93 91 83 99 102

E1: Low scorer
Score 20.44 (8.70) 29.58 (1.99) 43.56 (10.54) 21.2 (1.42) 12.64 (4.12) 0.00 (0.00)

E2: High scorer
Score 47.76 (16.60) 30.78 (1.90) 51.1 (6.21) 22.58 (1.24) 11.86 (3.99) 0.00 (0.00)

E3: High curiosity
Curiosity 116.53 (25.03) 98.99 (8.81) 116.38 (18.25) 82.13 (7.66) 76.38 (30.97) 103.74 (9.26)
Collisions 1436.82 (500.53) 1754.85 (160.49) 1362.33 (603.94) 1780.46 (133.97) 715.56 (708.63) 1858.56 (17.68)

E4: Speed-runner
Victories 100/100 100/100 99/100 100/100 89/100 0/100

EoG 102.15 (47.83) 103.49 (34.69) 114.38 (42.03) 73.61 (35.66) 61.13 (30.34) 2000.00 (0.00)
E5: High explorer

Exploration 99.29% (4.78) 99.30% (5.18) 99.33% (5.77) 99.77% (1.87) 74.56% (27.15) 100.00% (0.00)
E6: Walls interaction

Exploration 67.43% (16.16) 60.28% (8.26) 68.15% (10.06) 44.60% (5.74) 43.25% (15.00) 59.40% (5.76)
Curiosity 114.59 (27.54) 96.53 (11.28) 120.46 (17.41) 79.86 (9.37) 75.16 (28.25) 103.72 (9.08)

Table 7.12: Butterflies: Portability and experimental level testing results comparison.
Victories are the total number of wins in the 100 play-throughs. The other dimensions
are the average of the resulting gameplay stats and the corresponding Std. Deviation.
The stats shown per agent are the ones related to their proficiency. The dimensions
highlighted are the ones directly or indirectly impacted by the changes in the ‘broken‘
level. EoG is 2000.
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Figure 7.52: Experimental level testing in Butterflies: Resulting collisions in the ‘broken‘
level compared to the portability results, from 100 gameplays. E3: High curiosity.
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Figure 7.53: Experimental level testing in Butterflies: Resulting curiosity in the ‘broken‘
level compared to the portability results, from 100 gameplays. E3: High curiosity, E6:
Walls interaction.
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Figure 7.54: Experimental level testing in Butterflies: Resulting EoG in the ‘broken‘
level compared to the portability results, from 100 gameplays. E4: Speed-runner.
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Figure 7.55: Experimental level testing in Butterflies: Resulting exploration in the ‘bro-
ken‘ level compared to the portability results, from 100 gameplays. E5: High explorer,
E6: Walls interaction (with mid-range exploration).
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Figure 7.56: Experimental level testing in Butterflies: Resulting score in the ‘broken‘
level compared to the portability results, from 100 gameplays. E1: Low scorer, E2: High
scorer.

Figure 7.57: Experimental level testing in Butterflies: Resulting total number of victories
in the ‘broken‘ level compared to the portability results, from 100 gameplays. E4: Speed-
runner.

223



7. Application: Team Portability and Level Testing

7.4.2 Testing a ‘broken‘ level in Zelda

The new level has the same number of monsters in the same locations as the original
level. However, an area of the map is inaccessible and contains one of the monsters and
the key. Therefore, this level has the following issues: not all locations are reachable,
and the player cannot collect the key or win.

Figure 7.58: New ‘broken‘ level of Zelda used for the exploratory work.

Table 7.13 shows the resulting stats for each behaviour-type agent from playing this
new level, and Table 7.14 compares the results of the pertinent agents to the ones ob-
tained in the previous levels. I include a graph for each of the features relevant to the
agents and their selection: EoG (Fig. 7.59), exploration (Fig. 7.60), kills (Fig. 7.61),
score (Fig. 7.62), and wins, represented as the total number of victories (Fig. 7.63). It
displays the results of the 100 play-throughs of the corresponding agents in the ‘broken‘
level compared to the portability experiment.

The agents whose gameplay results suffer significant changes are E2, E3, and E5.
The win rate for the Speed-runner (E2) drops to 0%, while the average of EoG ticks in-
creases to 1897.65. This value is higher than any result previously obtained by this agent
in the portability experiments (<= 1242.26). In addition, the exploration for the High
explorer agents (E3 and E5) drops, from an average higher than 90% in the previous
levels, to lower than 70% in the ‘broken‘ one. These results hint that part of the level
is not accessible. Coincidentally, all these agents relate to either winning or achieving
a high exploration, so they are directly impacted by the issues introduced to the level.
There is also a difference in the results when the agents are indirectly affected. E4 (Low
killer) achieves a higher average of kills than in the previous cases (4.06). The number
of enemies does not increase, but not being able to finish the game provides more time
for this agent to kill enemies, indirectly impacting its resulting stats. Similarly, the final
score of E1 drops to 9.72 because it is not possible to get the key, win, or kill the enemy
that is out of reach.

Stats related to E6 (High killer and low explorer) does not seem to be impacted.
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Zelda ‘broken‘ level
E1 E2 E3 E4 E5 E6

EoG 1932.56 (338.70) 1897.65 (386.29) 1972.76 (200.47) 1884.8 (407.23) 1861.88 (462.20) 1983.32 (166.80)
Victories 0/100 0/100 0/100 0/100 0/100 0/100

Score 9.72 (1.46) 8.21 (2.54) 9.56 (1.05) 8.04 (2.48) 9.22 (2.00) 9.01 (1.50)
Exploration 67.61% (6.47) 66.89% (8.57) 68.25% (3.38) 67.23% (7.16) 66.47% (9.18) 44.28% (9.16)

Kills 4.88 (0.64) 4.16 (1.15) 4.76 (0.57) 4.06 (1.17) 4.63 (0.92) 4.48 (0.74)

Table 7.13: Experimental level testing results overview. Victories are the total number
of wins in the 100 play-throughs. The other dimensions are the average of the resulting
gameplay stats and the corresponding Std. Deviation. Shaded cells are related to the
behaviour-type of the agent. Those highlighted are directly or indirectly affected by the
changes in the level. E1: High scorer ; E2: Speed-runner ; E3: High explorer ; E4: Low
killer ; E5: High killer and explorer ; E6: High killer and low explorer. EoG: 2000; Max.
Score: 14; Number of enemies: 6.

Zelda
7.2b 7.28a 7.28b 7.28c 7.28d ‘Broken‘

Max. score 14 14 14 18 14 14
Total enemies 6 6 6 8 6 6

E1: High scorer
Score 12.25 (2.64) 12.11 (2.71) 11.7 (3.21) 16.44 (2.73) 11.55 (3.40) 9.72 (1.46)

E2: Speed-runner
Victories 90/100 76/100 65/100 89/100 96/100 0/100

EoG 617.18 (487.03) 1187.98 (566.51) 1242.26 (652.64) 689.03 (526.05) 450.86 (331.35) 1897.65 (386.29)
E3: High explorer

Exploration 98.03% (7.80) 95.36% (15.00) 95.25% (14.70) 98.31% (6.93) 93.33% (17.73) 68.25% (3.38)
E4: Low killer

Kills 1.62 (1.37) 3.25 (1.44) 2.97 (1.51) 3.53 (2.03) 1.79 (1.34) 4.06 (1.17)
E5: High killer and explorer

Kills 5.68 (0.98) 5.66 (0.85) 5.44 (1.18) 7.71 (0.75) 5.41 (1.23) 4.63 (0.92)
Exploration 97.19% (10.81) 97.93% (7.04) 94.71% (15.07) 98.61% (5.93) 94.00% (15.27) 66.47% (9.18)

E6: High killer and low explorer
Kills 4.78 (1.04) 5.17 (0.80) 4.21 (1.19) 7.26 (1.30) 3.77 (1.33) 4.48 (0.74)

Exploration 48.38% (11.54) 50.66% (13.73) 42.25% (15.96) 54.79% (15.34) 35.73% (14.71) 44.28% (9.16)

Table 7.14: Zelda: Portability and experimental level testing results comparison. Victo-
ries are the total number of wins in the 100 play-throughs. The other dimensions are the
average of the resulting gameplay stats and the corresponding Std. Deviation. The stats
shown per agent are the ones related to their proficiency. The dimensions highlighted
are the ones directly or indirectly impacted by the changes in the ‘broken‘ level. EoG is
2000.
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Figure 7.59: Experimental level testing in Zelda: Resulting EoG in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E2: Speed-runner.
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Figure 7.60: Experimental level testing in Zelda: Resulting exploration in the ‘broken‘
level compared to the portability results, from 100 gameplays. E3: High explorer, E5:
High killer and explorer, E6: High killer and low explorer.
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Figure 7.61: Experimental level testing in Zelda: Resulting kills in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E4: Low killer, E5: High killer
and explorer, E6: High killer and low explorer.
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Figure 7.62: Experimental level testing in Zelda: Resulting score in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E1: High scorer.
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Figure 7.63: Experimental level testing in Zelda: Resulting total number of victories in
the ‘broken‘ level compared to the portability results, from 100 gameplays. E2: Speed-
runner.
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7.4.3 Testing a ‘broken‘ level in Digdug

This level is similar to the original in terms of gems, gold, and monsters. The main
difference is that all the breakable walls have been removed. These are a crucial element
of the game as they can be used as guidance or protection from enemies. As a result, it
is expected that removing them affects playability.

Figure 7.64: New ‘broken‘ level of Digdug used for the exploratory work.

Table 7.15 presents the resulting stats for each behaviour-type agent when playing
this level, and Table 7.16 compares the results of the pertinent agents to the ones ob-
tained in the previous levels. I include a graph for each of the features relevant to the
agents and their selection: curiosity (Fig. 7.65), exploration (Fig. 7.66), hits (Fig. 7.67),
items (Fig. 7.68), kills (Fig. 7.69), and score (Fig. 7.70). It displays the results of the
100 play-throughs of the corresponding agents in the ‘broken‘ level compared to the
portability experiment.

The tweaked level has the walls removed, so the agent expected to break them (E4)
is the one directly impacted by the change. This hypothesis is confirmed by looking at
its results: the curiosity and hits drop drastically, from an average of 464.6 and 269.65,
respectively, on the original level to 47.58 and 18.31 on the new one. The exploration of
this agent also is impacted and drops to 45.53% because it is likely that this agent makes
use of its ability to break walls to cover the map. On the other hand, the exploration
for the Low explorer (E6) increases (slightly) to 44.32%, while in the rest of the levels
it is between 30 − 37%. By analysing this agent on its own, this result could be taken
as an outlier. However, when analysed in conjunction with the rest, I can assume that
this change could also be linked to the nonexistence of walls. The agent is indirectly
impacted because it does not use actions or game-ticks to break the walls, being able to
move instead, covering more physical space in the level.

Neither the items, kills, or high exploration features hint that there may be an issue,
as these stats maintain the expected trend.
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Digdug ‘broken‘ level
E1 E2 E3 E4 E5 E6

Score 40.21 (2.76) 25.30 (2.74) 31.95 (2.7) 41.78 (1.99) 32.41 (3.41) 40.26 (3.13)
Exploration 45.90% (5.18) 100.00% (0.00) 32.61% (6.03) 45.53% (6.06) 100.00% (0.00) 44.32% (5.42)

Kills 10.34 (1.31) 2.61 (1.34) 11.54 (0.74) 11.47 (0.67) 6.25 (1.64) 10.67 (1.48)
Items 26.01 (1.32) 27.00 (0.00) 10.33 (2.82) 25.53 (2.28) 27.00 (0.00) 25.08 (2.62)

Curiosity 42.83 (2.17) 36.57 (1.29) 24.19 (4.63) 47.58 (2.96) 41.32 (1.70) 40.67 (3.37)
Hits 17.07 (1.30) 9.61 (1.34) 14.03 (1.68) 18.31 (0.74) 13.25 (1.64) 17.03 (1.54)

Table 7.15: Experimental level testing results overview. The results are the average of the
gameplay stats obtained in the 100 play-throughs. The values in parenthesis represent
the corresponding Std. Deviation. Shaded cells are related to the behaviour-type of the
agent. Those highlighted are directly or indirectly affected by the changes in the level.
E1: High collector and killer ; E2: High collector and low killer ; E3: Low collector and
high killer ; E4: Walls breaker ; E5: High explorer ; E6: Low explorer and high scorer.
Max. Score: 44; Number of enemies: 12; Number of items: 27.

Digdug
7.2c 7.36a 7.36b 7.36c 7.36d ‘Broken‘

Max. score 44 48 61 14 53 44
Total enemies 12 16 13 5 14 12
Total items 27 19 41 8 50 27

Breakable walls 267 292 247 196 103 0
E1: High collector and killer

Kills 10.64 (0.73) 13.74 (1.50) 11.56 (0.86) 3.88 (0.35) 12.68 (0.69) 10.34 (1.31)
Items 26.92 (0.30) 18.91 (0.28) 40.76 (0.83) 7.95 (0.41) 49.90 (0.62) 26.01 (1.32)

E2: High collector and low killer
Kills 2.81 (1.50) 3.19 (1.70) 3.05 (1.65) 0.60 (0.68) 4.69 (1.59) 2.61 (1.34)
Items 27.00 (0.00) 19.00 (0.00) 40.99 (0.10) 8.00 (0.00) 50.00 (0.00) 27.00 (0.00)

E3: Low collector and high killer
Kills 9.64 (1.77) 12.62 (3.57) 12.53 (0.77) 4.7 (0.87) 13.31 (0.97) 11.54 (0.74)
Items 9.14 (3.10) 5.05 (3.08) 11.36 (3.48) 1.72 (1.08) 9.74 (8.02) 10.33 (2.82)

E4: Walls breaker
Exploration 70.12% (11.21) 67.66% (13.90) 67.70% (12.66) 64.73% (06.65) 46.98% (17.62) 45.53% (6.06)
Curiosity 464.6 (68.09) 463.77 (87.06) 434.05 (67.64) 358.54 (28.05) 249.87 (77.28) 47.58 (2.96)

Hits 269.65 (38.97) 282.32 (51.86) 245.53 (37.10) 197.70 (14.77) 120.67 (36.05) 18.31 (0.74)
E5: High explorer

Exploration 99.98% (0.12) 100% (0.00) 99.99% (0.07) 100% (0.00) 98.51% (10.47) 100.00% (0.00)
E6: Low explorer and high scorer

Exploration 30.92% (5.29) 26.49% (5.13) 36.32% (4.12) 26.96% (5.96) 37.98% (5.83) 44.32% (5.42)
Score 35.49 (5.60) 35.46 (6.04) 51.3 (4.25) 11.02 (2.51) 47.71 (9.44) 40.26 (3.13)

Table 7.16: Digdug : Portability and experimental level testing results comparison. The
results are the average of the gameplay stats obtained in the 100 play-throughs. The
values in parenthesis represent the corresponding Std. Deviation. The stats shown per
agent are the ones related to their proficiency. The dimensions highlighted are the ones
directly or indirectly impacted by the changes in the ‘broken‘ level. EoG is 2000.
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Figure 7.65: Experimental level testing in Digdug : Resulting curiosity in the ‘broken‘
level compared to the portability results, from 100 gameplays. E4: Walls breaker.
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Figure 7.66: Experimental level testing in Digdug : Resulting exploration in the ‘broken‘
level compared to the portability results, from 100 gameplays. E4: Walls breaker, E5:
High explorer, E6: Low explorer and high scorer.

231



7. Application: Team Portability and Level Testing

7.2c 7.36a 7.36b 7.36c 7.36d `Broken`
0

50

100

150

200

250

300
E4
E4

D5 Resulting Hits comparison with `Broken` level

Level

H
it
s

Figure 7.67: Experimental level testing in Digdug : Resulting hits in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E4: Walls breaker.
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Figure 7.68: Experimental level testing in Digdug : Resulting items in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E1: High collector and killer,
E2: High collector and low killer, E3: Low collector and high killer.
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Figure 7.69: Experimental level testing in Digdug : Resulting kills in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E1: High collector and killer,
E2: High collector and low killer, E3: Low collector and high killer.
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Figure 7.70: Experimental level testing in Digdug : Resulting score in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E6: Low explorer and high
scorer.
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7.4.4 Testing a ‘broken‘ level in Sheriff

The structure of the level and distribution of the barrels are similar to the original.
However, I have increased the number of bandits from 8 to 35. I hypothesise that by al-
most quadrupling the number of enemies, the difficulty would increase drastically, being
unmanageable for some players.

Figure 7.71: New ‘broken‘ level of Sheriff used for the exploratory work.

Table 7.17 presents the resulting stats for each behaviour-type agent when playing
the new level, and Table 7.18 compares the results of the pertinent agents to the ones
obtained in the previous levels. I include a graph for each of the features relevant to the
agents and their selection: curiosity (Fig 7.72), EoG (Fig 7.73), exploration (Fig 7.74),
hits (Fig 7.75), interactions (Fig 7.76), kills (Fig 7.77), and wins, represented as the
total number of victories (Fig 7.78). It displays the results of the 100 play-throughs of
the corresponding agents in the ‘broken‘ level compared to the portability experiment.

Quadrupling the number of bandits has less effect on the difficulty of the level than
expected, but it still has an influence on the results. The resulting gameplay stats of the
Barrel shooter (E5) are the ones impacted the most, as the average of interactions drops
drastically, from 439.42 to 70.21. This agent dies quickly (149.38 EoG ticks) and often
(1% win rate), not having enough time to destroy the barrels or interact with them.
I believe that the main cause of this change is the indifference of the agent to killing
enemies and, given the high number of these, it is unable to dodge the bullets. The
average of EoG ticks doubles for the Speed-runner (E4) from 364.75 to 650.2, taking it
longer to kill all the enemies and win the game. However, the win rate decreases only
slightly (95% vs 100%), so, despite the drastic increase in the number of enemies, this
agent can still win the game most of the time.

There is a slight change in the trend of the stats for the rest of the agents, but these
are not radically different.
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Sheriff ‘broken‘ level
E1 E2 E3 E4 E5 E6

EoG 971.60 (140.36) 938.61 (209.22) 655.09 (207.90) 650.20 (200.11) 149.38 (125.43) 909.34 (240.75)
Victories 96/100 93/100 90/100 95/100 1/100 90/100

Exploration 90.71% (10.75) 94.86% (18.47) 20.61% (6.11) 71.21% (23.55) 6.49% (3.37) 88.47% (22.78)
Kills 16.51 (3.74) 32.73 (5.15) 32.11 (6.36) 32.71 (6.07) 9.18 (6.73) 32.02 (7.10)

Curiosity 32.61 (6.01) 38.68 (6.92) 26.75 (6.36) 42.56 (12.51) 30.96 (13.95) 75.2 (18.59)
Interactions 39.95 (20.85) 49.91 (29.66) 51.86 (29.47) 61.99 (33.81) 70.21 (65.98) 118.84 (64.57)

Hits 23.15 (4.50) 40.05 (6.45) 37.44 (7.05) 39.81 (7.53) 20.86 (9.08) 42.74 (9.29)

Table 7.17: Experimental level testing results overview. Victories are the total number
of wins in the 100 play-throughs. The other dimensions are the average of the resulting
gameplay stats and the corresponding Std. Deviation. Shaded cells are related to the
behaviour-type of the agent. Those highlighted are directly or indirectly affected by the
changes in the level. E1: Survivor and low killer ; E2: High killer and explorer ; E3: High
killer and low explorer ; E4: Speed-runner ; E5: Barrels shooter ; E6: High curiosity and
low interactions. EoG: 1000; Number of enemies: 35.

Sheriff
7.2d 7.43a 7.43b 7.43c 7.43d ‘Broken‘

Total enemies 8 9 9 11 11 35
Total barrels 55 65 27 71 51 55

E1: Survivor and low killer
Victories 98/100 99/100 100/100 99/100 100/100 96/100

Kills 3.28 (1.17) 4.02 (1.39) 3.89 (1.49) 4.78 (1.73) 4.87 (1.64) 16.51 (3.74)
EoG 992.58 (67.67) 990.32 (96.80) 1000 (0.00) 991.82 (81.80) 1000 (0.00) 971.60 (140.36)

E2: High killer and explorer
Exploration 97.89% (10.65) 98.97% (9.13) 99.01% (8.22) 98.20% (9.86) 99.55% (3.08) 94.86% (18.47)

Kills 6.96 (0.31) 7.95 (0.50) 7.96 (0.40) 9.91 (0.71) 10.00 (0.0) 32.73 (5.15)
E3: High killer and low explorer

Exploration 15.33% (4.06) 16.36% (5.15) 15.26% (6.03) 17.81% (5.46) 15.96% (4.72) 20.61% (6.11)
Kills 6.95 (0.50) 7.93 (0.70) 8.00 (0.00) 9.95 (0.50) 10.00 (0.00) 32.11 (6.36)

E4: Speed-runner
Victories 100/100 97/100 98/100 99/100 100/100 95/100

EoG 364.75 (134.56) 360.53 (127.35) 363.59 (162.99) 417.71 (141.44) 418.7 (154.96) 650.20 (200.11)
E5: Barrels shooter

Interactions 439.42 (343.26) 372.63 (311.24) 344.74 (305.19) 385.54 (314.72) 310.89 (275.01) 70.21 (65.98)
Kills 5.83 (1.86) 5.89 (2.47) 6.22 (2.36) 7.46 (3.30) 6.65 (3.22) 9.18 (6.73)
Hits 35.96 (10.31) 38.19 (13.63) 17.49 (7.81) 39.86 (12.58) 29.28 (9.06) 20.86 (9.08)

E6: High curiosity and low interactions
Curiosity 95.77 (22.26) 101.81 (25.46) 73.46 (18.53) 99.92 (26.57) 89.47 (18.41) 75.20 (18.59)

Interactions 122.52 (66.51) 127.46 (68.56) 106.28 (64.33) 125.93 (67.61) 116.98 (64.28) 118.84 (64.57)

Table 7.18: Sheriff : Portability and experimental level testing results comparison. Vic-
tories are the total number of wins in the 100 play-throughs. The other dimensions are
the average of the resulting gameplay stats and the corresponding Std. Deviation. The
stats shown per agent are the ones related to their proficiency. The dimensions high-
lighted are the ones directly or indirectly impacted by the changes in the ‘broken‘ level.
EoG is 1000.
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Figure 7.72: Experimental level testing in Sheriff : Resulting curiosity in the ‘broken‘
level compared to the portability results, from 100 gameplays. E6: High curiosity and
low interactions.
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Figure 7.73: Experimental level testing in Sheriff : Resulting EoG in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E1: Survivor and low killer,
E4: Speed-runner.
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Figure 7.74: Experimental level testing in Sheriff : Resulting exploration in the ‘broken‘
level compared to the portability results, from 100 gameplays. E2: High killer and
explorer, E3: High killer and low explorer.
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Figure 7.75: Experimental level testing in Sheriff : Resulting hits in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E5: Barrels shooter.

237



7. Application: Team Portability and Level Testing

7.2d 7.43a 7.43b 7.43c 7.43d `Broken`

0

200

400

600

800

E5
E6
E5
E6

S4 Resulting Interactions comparison with `Broken` level

Level

In
te
ra

ct
io
ns

Figure 7.76: Experimental level testing in Sheriff : Resulting interactions in the ‘broken‘
level compared to the portability results, from 100 gameplays. E5: Barrels shooter, E6:
High curiosity and low interactions.
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Figure 7.77: Experimental level testing in Sheriff : Resulting kills in the ‘broken‘ level
compared to the portability results, from 100 gameplays. E1: Survivor and low killer,
E2: High killer and explorer, E3: High killer and low explorer, E5: Barrels shooter.
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Figure 7.78: Experimental level testing in Sheriff : Resulting number of victories in the
‘broken‘ level compared to the portability results, from 100 gameplays. E1: Survivor
and low killer, E4: Speed-runner.
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7.4.5 Results overview

There is a discrepancy in the resulting stats in agents that have a direct or indirect
connection to the features affected by the problem introduced in the level. At the same
time, unrelated agents still achieve similar results that fit the expectations. Therefore,
having available a range of diverse agents (a team) can help to identify issues in different
aspects of the level.

7.5 Conclusion

This chapter concludes the work carried out to answer RQ2: How to define, create, and
use a team of GVGP agents with distinct behaviours to assist in the development and
evaluation of games?

I previously presented a methodology to use a team of GVGP agents to assist in the
development and testing of games, and implemented an approach to generate this team.
In this chapter, I have selected various agents from the available pool created for four
different games to verify they can be applied as proposed. This selection is made based
on their individual behaviour and achievements, which can be identified by their location
in the feature space where the agents are generated. I speculate that these behaviour-
type agents could be used for automated gameplay to achieve and react to the game in
expected ways, find bugs, debug code, obtain game analysis, or check its performance
with profiling tools.

I include an experiment to test the portability to different levels that would allow
using this approach on newly created levels or after modifications have been made on
existing ones. For this experiment, I include 4 new levels for each game with different
characteristics. The final stats obtained after playing each of the levels follow a similar
tendency for most of the agents. These results support that virtually all the agents
identified are portable between levels and carry the strength identified in the original
level when applied to new ones. Therefore, the agents from the team could ultimately
be used to highlight issues in the design of new levels or on modifications applied to
them when the resulting stats do not match the expectations. I include a preliminary
work exploring this idea and use the behaviour-type agents to test a ‘broken‘ level in
each of the games. The resulting stats of those agents whose proficiency is directly or
indirectly related to the problem in the level are impacted, breaking the tendency found
in the portability experiments. At the same time, those agents unrelated to the feature
affected still achieve expected stats. Given these results, I infer that not every type of
agent could identify issues in the levels. Only those whose behaviour is linked to the
features affected by the problem suffer a variation in their stats. Therefore, having a
team with a range of behaviours and proficiency related to various features in the game
allows covering different type of cases and issues.
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Consequently, the team of agents proposed could ultimately be used for testing. The
approach can be enriched by defining and implementing a further selection of heuris-
tics that enable further behaviour combinations for agent selection. A limitation to this
approach is that, even when I have shown that is possible for these agents to operate
properly when there is changes in the levels, modifications in the core dynamics of the
game would require the heuristics to be adjusted. Similarly, if new goals come up as
part of the iterative design process, new heuristics will need to be defined. All my ex-
periments have been carried out in the GVGAI Framework, so the proof of concept has
been implemented with a search algorithm in a general environment. Not every GVGP
approach makes use of a forward model, so integrating the methodology proposed into a
system without a forward model would require further investigation. First, it would be
needed to define and provide a new diversification of behaviours adapted to its character-
istics. Once the heuristic diversification is defined for the new scope, a similar approach
followed for the generation of the agents using the MAP-Elites could be followed, as it
simply requires a vector of weights that encode the behaviour. I believe that following
the line of research started by my work to fit different areas and types of GVGP agents
would allow adopting the approach in a more diverse range of games and frameworks,
ultimately being applicable to the games industry and assisting on game development
and testing processes.

The next chapter also looks into applying GVGP agents to games. However, in-
stead of using behaviour-type agents to assist in its development process, I present an
exploratory experiment that applies these GVGP agents within the game, taking the
place of NPCs. To investigate this potential integration, I introduce a case study to
analyse the effect that general agents have on the experience of the players when used in
a player-vs-AI game. This work proposes a new line of research that I believe has great
potential.
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Chapter 8

Prospect: Take a Player Experience Perspective

This chapter presents an exploratory experiment that proposes studying the quality of
general agents with distinct behaviours from a player experience perspective. The objec-
tive is to ultimately integrate GVGP agents as NPCs in video games. The material pre-
sented has been published in collaboration with Shringi Kumari in the paper [Guerrero-
Romero et al., 2020].

8.1 Introduction and Motivation

Chapters 5, 6, and 7 looked at using General Video Game Playing (GVGP) agents as
part of the game development process to ultimately be used to test games and levels
automatically. I first proposed a methodology that applies general agents with different
behaviours for this objective. Then, I presented the design and implementation of an
approach to generate those agents and behaviours to form a team. Finally, I assessed
the portability of the agents and presented a proof of concept that could ultimately use
behaviour-type agents from the team to test levels. The agents and heuristics used are
general within the GVGAI Framework to easily validate the approach in different games,
but I envision its usage in other systems and games. This chapter also extends the re-
search in GVGP by looking for applications for these agents in games. However, this
work introduces using general agents within a game as Non-Player Characters (NPCs).
It proposes making this integration possible by studying the quality of the agents from a
Player Experience (PX) perspective instead of their performance. Inspired by the results
from Chapter 4, it looks at answering the following research question (RQ3): Can GVGP
agents with distinct behaviours potentially be integrated into commercial video games as
an alternative AI approach when these agents are studied from a Player Experience (PX)
point of view?

As pointed out extensively in this thesis, there is an active body of research creating
and exploring the improvement of General Video Game Playing (GVGP) agents. These
agents have been proven to play a wide range of video games at competitive strength
without specific knowledge about them. However, their performance evaluation is usually
limited to winning rates and scores. Put simply: research is concerned with how strongly
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agents play, assuming that higher play strength is better. This leaves little knowledge
about how different agents uniquely impact Player Experience (PX): is playing against
them actually enjoyable? Often, game designers want to elicit a specific player experi-
ence or emotion that has nothing to do with the strength of play. For example, the game
Journey [Thatgamecompany, 2012] was designed around the player experience arc that
the designers wanted [Chen, 2013]. I include this chapter as an addition to the rest of
my research to investigate how GVGP agents can be designed keeping Player Experience
in mind. I consider this an important initial step towards making GVGP agents viable
for commercial use, as research towards such integration is practically non-existent. I
present a brief exploratory case study that we carried out to encourage the research
community to start looking into this unexplored line of research.

The connection between AI and PX is not new, but previous approaches link these
areas from different perspectives than the one described in this chapter. A considerable
part of the research in this area is related to assessing and improving the quality of Pro-
cedural Content Generation (PCG) techniques in games, called Experience-Driven PCG
(EDPCG) [Yannakakis and Togelius, 2011]. The idea is modelling player experience to
support its evaluation and dynamically influence the design of the generated content.
Additionally, Guckelsberger et al. [2017] propose using computational models of intrinsic
motivation to predict PX. Our preliminary work looks at the relationship between AI
and PX from the opposite direction. Instead of using AI to influence or evaluate PX, it
proposes assessing the GVGP agents from a PX point of view, for the particular case of
using them as NPCs.

As introduced in Section 2.5.3, Non-Player Characters (NPCs) are usually hand-
designed to give specific steps and goals based on the details of the game’s design and
purpose of the NPC. And, even when more advanced techniques are applied, as the use of
MCTS in Total War: Rome II [Rabin, 2015, Chapter 25], their heuristics are still heavily
tailored towards the game [Thompson, 2018]. Despite the research interest, the use of
GVGP agents with heuristics that do not have specific information about the game has
not yet found its way into commercial applications. As a first attempt to address this
gap, we integrate two GVGP agents with different general goals as NPCs to create two
versions of a player-vs-NPC competitive game and compare their effect on the experience
of the player.

8.2 Definitions

The concepts used in this chapter are defined as follows::

Commercial-like games Games eventually meant to face players, opposite to games
primarily used for research.
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Capture the flag Type of game where the goal is to take control of an area, element
or group of elements for a prolonged period of time than the opposing player or team.
The symbol of what is being controlled is called the flag.

Player Experience (PX) Research field that focuses on studying the perception
and responses of the people when playing a game [Bernhaupt, 2015]. It is based on a
series of constructs that look at different experiences and feelings of the player, such as
enjoyment, engagement, fun, presence, flow, and immersion, among others [Mekler et al.,
2014, Caroux et al., 2015].

Intrinsic Motivation Psychological processes that energise and direct behaviour to-
wards an activity and are generated by the activity itself [Ryan and Deci, 2017]. In terms
of games, it refers to the belief that people play games for the sake of the experience
that playing them provides.

Self-Determination Theory (SDT) It is the most well-established theory for intrin-
sic motivation. It states that people have innate psychological needs for certain experi-
ences (competence, autonomy, and relatedness) that are satisfied during gameplay [Ryan
and Deci, 2017].

Tension (pressure) Player Experience construct that measures the feeling of suspense
when playing a game.

Perceived competence Player Experience construct that measures how capable the
user feels while playing a game. The considerations to measure competence depends on
the survey.

Enjoyment Player Experience construct that measures the interest and gratification
while playing a game.

8.3 Exploratory Case Study Overview

This chapter presents an exploratory case study for a novel approach to study the rela-
tionship between General Video Game Playing (GVGP) agents and Player Experience
(PX). The objective is to present a plausible line of research to achieve a successful in-
tegration of GVGP agents, with general goals, in commercial games. This is a complex
problem to solve, as games come in myriad genres and designs that offer very different
experiences for the players. With our case study, we take a first step in this direction
by choosing a popular game type: capture the flag, which is representative of a large
number of existing game features across genres.

We design an implement a new game called Skulls and Tombstones. The elements of
the game, rules, and screenshot are detailed in Section 3.4.3. This game is implemented
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in the GVGAI Framework (Section 3.1) because it allows a quick set up of game-playing
agents. We create two versions of the game, both assigning a general agent to take the
place of Player1 as a Non-Player Character (NPC), resulting in a player-versus-NPC
competitive game. The goal of each agent is different: In version A, the NPC agent is
driven by the need of winning and maximising its score; while in version B, the agent is
also driven by the need of physically exploring the map, covering as many locations as
possible. Details about each agent are given in Section 8.4. From casual play-tests of the
two versions of the game, we discovered that playing against the exploring-encouraged
NPC made the players feel more under pressure while still enjoying the game. On cer-
tain instances, the players actually preferred the tenser game experience. To formalise
and confirm these relationships, we measure tension/pressure and enjoyment as Player
Experience constructs, and hypothesise that 1) tension should be significantly higher for
the version with the exploring-encouraged NPC; 2) there should not be significant dif-
ference in enjoyment between the two. Since the two agents present different behaviors
when playing the game, we also include an open examination on their impact on player’s
perceived competence, with no specific hypothesis regarding this construct.

We conducted a preliminary study with 38 participants formulating the same hy-
pothesis with promising results: pressure/tension was significantly higher when players
played the version B of the game, and players felt significantly more competent when
playing version A. However, the experimental settings were not good enough and the
demographic data was lost, so we have decided to conduct the study again with a more
rigorous approach, as I present in this chapter.

8.4 The General Agents (NPCs)

The GVGAI Framework provides the tools to set an agent as one of the players (Player 1
in this case), so the players face the agent as a Non-Player Character (NPC). Skulls and
Tombstones is a two-player game, so we can benefit from the search algorithms created
as a result of the 2-player GVGAI Competition [Gaina et al., 2016]. Specifically, we use
the sampleMCTS, a vanilla implementation of Monte-Carlo Tree Search (Section 3.2.2),
as it shows a good performance in the competition. The two versions of the controller
that lead to two versions of the game are:

8.4.1 Version A: Std. NPC

In version A, the sampleMCTS is assigned as NPC without modifications, as provided by
the GVGAI Framework. Its heuristic is general and drives the agent intending to win by
maximising the score. The pseudo-code of the value function is shown in Algorithm 15.

8.4.2 Version B: Exp. NPC

In version B, the sampleMCTS is modified following the heuristic diversification idea
presented in Chapter 4. The value function of the agent is isolated and provided exter-
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Algorithm 15 Value function for the Std. NPC, corresponding to sampleMCTS pro-
vided by the GVGAI Framework.
Nomenclature: S′ ← simulated game state; H ← arbitrary high value.
1: function StdValue(S′)
2: rawScore← getScore(S′, player1)
3: if isGameOver(S′) and isLoser(S′) then
4: rawScore += H−

5: if isGameOver(S′) and isWinner(S′) then
6: rawScore += H+

7: return rawScore

nally. Although the agent is for a 2-player game, the steps followed are similar, so the
core of the algorithm and design parameters have not been modified. The main differ-
ence between Std. and Exp. comes from the goal (heuristic), which allows the agent to
get rewards by visiting new positions on the map. The Exp. agent is also rewarded by
the conventional rewards (winning and score), but it is encouraged to visit those tiles of
the map where the agent has been fewer number of times. The reward takes the score as
the difference between the current score of the game and the one obtained in the state
reached by the forward model, while in Std. is just considered the latter. For balancing
the Exp. heuristic, the final tuning is reached by trial and error analysing the trace
of the rewards. We give high priority to exploring the map and visiting new positions
while allowing the agent to score or win if it gets the chance. Algorithm 16 shows the
pseudocode of the value function implemented. C = 10 is a constant that scales the
heuristic value.

Algorithm 16 Value function for the Exp. NPC.
Nomenclature: S′ ← simulated game state; lastScore← score of the game in the previ-
ous state; H ← arbitrary high value; C ← constant to scale the heuristic value.
1: function ExpValue(S′)
2: rawScore← getScore(S′, player1)
3: scoreDifference = rawScore− lastScore
4: if isGameOver(S′) and isLoser(S′) then
5: return H−

6: if isGameOver(S′) and isWinner(S′) then
7: return H+

8: position← getAvatarPosition(S′, player1)
9: if isOutOfBounds(position) then

10: return H−

11: if nTimesV isited(position) > 0 then
12: reward = −C ∗ nTimesV isited(position)
13: else
14: reward = C
15: return reward += (scoreDifference ∗ C)
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8.4.3 NPC’s behaviour comparison

Increasing the score in Skulls and Tombstones requires performing two actions: 1) get a
skull (which does not affect the score); 2) carry the skull to the tombs. Std. exclusively
focuses on winning and maximising score. When the forward model is not executed
enough times, the agent cannot discover the potential score rewards, facing a large, flat
reward landscape. As a result, the NPC’s decision-making becomes highly arbitrary,
resulting in static behaviour or circling randomly around the map.

On the other hand, although Exp. takes winning and maximising the score into
consideration, this agent is also driven by an exploratory heuristic. This heuristic causes
the agent to move all over the map and visit new locations (tiles) or those that it has
previously visited the least number of times. Therefore, the agent is likely to collect the
skulls scattered around the map and see the reward given by the score change. As a
result, it displays a more dynamic and competitive behaviour than Std..

8.5 Participants

We recruited 50 participants in person by advertisement in the University and snowball
sampling. We had to exclude 15, ending up with a total of 35 participants - 15 female and
20 male. All participants were 18 or above years old (20 between 18 to 24; 13 between
25 to 34; 1 between 35 to 44; and one older than 45). Players were picked from a diverse
pool and were not limited to just students or any one category. They were spread across
demographics and gaming abilities. None of the participants had played Skulls and
Tombstones, but all of them had played games before and were familiar with the studied
game genre and controls. 12 participants used to play digital games at least once per
day; 13 at least once per week; 8 at least once per month; 1 at least once per year; and
one less often. 34 had played platformers before, and 27 had played shooters before. We
provided all the players with the game information sheet before they consented to take
part in the study.

8.6 Material

The jar executable corresponding to each version of the game and the original VGDL
code are available in an OSF repository [Guerrero Romero and Kumari, 2020]. Ap-
pendix F includes the consent form, information sheet, and list of questions provided to
the participants.

Games The two versions of Skulls and Tombstones, featuring each of the NPCs de-
scribed, are exported as an executable standalone to be played on an iMac using the
keyboard. The game has no music or sound effects and is played with the four arrows
where only corresponding directional actions are allowed (←, →, ↑, and ↓). The aim
of the game is simple and visual enough for players to have clarity about the goals and

247



8. Prospect: Take a Player Experience Perspective

rewards. Game sessions quit after 30 seconds each. Players play the entire game for 3

rounds, 90 seconds in total.

Questionnaires We use the Intrinsic Motivation Inventory (IMI) [Deci and Ryan,
2003] and Player Experience of Need Satisfaction (PENS) [Ryan et al., 2006] (7 point
Likert) scales. These are frequently used and validated questionnaires for Player Expe-
rience and are most directly related to the motivational model we use. IMI is based on
the Self-Determination Theory (SDT) and comprises of seven sub-scales: interest/en-
joyment, perceived competence, effort, value/usefulness, pressure/tension, and perceived
choice. The interest/enjoyment sub-scale is considered the self-report measure of intrinsic
motivation, while the pressure/tension sub-scale captures outer pressures to perform an
activity. PENS is designed to capture SDT components in players and has sub-scales for
the three basic needs (competence, autonomy, and relatedness), as well as presence and
intuitive controls. PENS is specifically designed for video games, while IMI is general.
We have decided to utilise both because the former does not have all the components
we are interested in, like enjoyment and tension. We choose particular sub-scales from
each of these scales to assess specific Player Experience constructs to suit the design of
our study. We adopt three IMI sub-scales: pressure/tension (5 questions), perceived/in-
trinsic competence (6 questions), and enjoyment (7 questions); in addition to the PENS’
competence (3 questions) sub-scale. Consequently, our questionnaire is comprised by a
total of 21 questions to assess the experience of the players in each version of Skulls and
Tombstones. These questions are included in Table F.1.

Logs Gameplay data is logged from each session containing: name of the AI integrated
into the game, human and NPC score per game tick, number of total game ticks (400),
final scores achieved by each, and winner (human, AI or draw).

8.7 Experimental Set-Up

We examine whether the difference in the general NPCs’ behaviour impacts the following
Player Experience constructs: pressure/tension, perceived competence, and enjoyment.
Our primary hypothesis is that the Exp. NPC, whose behaviour fits the exploratory
characteristics of the game created, would feel harder to beat, leading to players experi-
encing a higher pressure/tension when playing against it. We further hypothesise that
Exp. would not be less enjoyable than Std., even if players feel higher tension against
this NPC. Lastly, we want to explore in which version of the game players perceive them-
selves as more competent.

The study carried out is a between participant set-up [Shaughnessy et al., 2000],
where two different groups of participants play the two different versions of the game
(with Std. NPC and with Exp. NPC). The participants recruited alternate between the
conditions and the researchers are present throughout the process. Participants are given
an information sheet along with instructions about how to play the game. They are also
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asked for their consent and demographic details (age, gender, and gaming experience).
Players are in a quiet zone for the duration of the study, play the game three times, and
answer some questions. These steps are explained in the information sheet provided at
the start of the experiment. Their gameplay is logged and stored in real-time, while the
chosen sub-scales of the IMI and PENS questionnaires are filled out after finishing the
game, one after the other. Players are debriefed at the end.

We carried out play-tests during the development of the game, and we learned that
the game and its controls were simple enough to understand in one play-through. There-
fore, playing three times gives players enough gameplay experience to answer PX related
questions.

8.8 Results

This section presents the results obtained for each Player Experience construct (tension,
enjoyment, and perceived competence) in each version of the game (Std. and Exp.).

Tension The players feel more tense while competing against the Exp. NPC (Fig. 8.1a).
This is demonstrated by a nearly significant two tailed t-test (t=2.02, df=33, p=0.051)
in support of the hypothesis with an effect size of Cohen’s d=0.68. The effect size lying
between a medium (0.5) and large (0.8) based on Cohen’s suggestions makes us consider
the results in the direction of the hypothesis. The higher tension is expected for players
to feel more nervous while competing against the NPC that can explore the game map
better. This result follows a tendency similar to the one we observed in the pre-study.
However, in that case, we found the result to be significant.

Enjoyment There is no significant difference between how enjoyable players find the
two versions of the game (t=0.99, df=33, p=0.329). We expected that the version with
the Exp. NPC would not be less enjoyable than the one featuring the Std. NPC.

Competence We had no particular hypothesis regarding competence, yet we wanted
to explore this component as well. As measured by IMI’s perceived competence, players
feel significantly more competent when competing against the Std. NPC (Fig. 8.1b),
demonstrated by a two tailed t-test (t=−3.93, df=33, p< 0.001) with a large effect size
of Cohen’s d=−1.33. Interestingly, competence as measured by the PENS sub-scale does
not show a significant difference between the two conditions (t=−1.7, df=33, p=0.099).

We have used a quantitative method to evaluate Player Experience. Our sample size
(35) could have been larger. There are non-aligning results between the two measures
of competence provided by IMI and PENS, and the pre-study results suggest that a
larger-scale replication of the study would make this measure clearer. Tension from
IMI is not designed to capture game-like pleasurable tenseness, but the item has faced
validity for capturing data to test our hypothesis. Given these initial results, we advise
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(a) IMI: Tension (b) IMI: Perceived Competence

Figure 8.1: Most relevant results for Skulls and Tombstones with Exp. and Std. NPCs.

using other research methods to complement the quantitative analysis for more diverse
investigations; like qualitative methods for an in-depth analysis, and eye-tracking if the
researchers or designers are interested in real-time reactions.

8.9 Discussion

The experimental study described in this chapter has not been conducted to show if one
agent (NPC) was better than the other. The objective is to study how two general agents
with different behaviour affect specific components of Player Experience (PX) when in-
tegrated as NPCs in a game. We found that playing against the Exp. NPC creates
more tension in comparison to the Std. NPC. While IMI considers tension as a negative
indicator of intrinsic motivation, it still can constitute an important experiential factor
in games [Seif El-Nasr et al., 2007]. Some games, for example, horror games or arcade-
style games like Super Meat Boy [Team Meat, 2010], are designed to make the players
feel tension. Moreover, tension does not necessarily equal a better or worse experience,
supported by the results obtained in enjoyment, which do not show any significant dif-
ference between the two conditions. A specific degree of experienced tension is often an
important design goal for game designers. From the IMI perceived competence results,
we found that the players felt more competent when playing against the Std. NPC.
However, according to PENS, we found no significant difference in perceived competence
of the players whether they played against the Std. or Exp. NPC. The competence sub-
scale of PENS entails items that assess whether the game’s challenge was perceived to
match the player’s skills. The underlying rationale here is that a better match should
result in higher perceived competence, as players perceive successes as ’well-earned’ and
failure as ’near-miss’. In contrast, the IMI items of perceived competence sub-scale focus
on how well a person can perform the given task regardless of the difficulty match. Based
on PENS results, the two versions do not differ significantly in perceived competence in
terms of difficulty-skill match. As a result, designers and researchers need to choose what
they are interested in, as there is a large range in which challenges can be presented to
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players. For some games, an interaction-difficulty match could be an important aspect,
while it could be inconsequential for games that do not pose interaction challenges but
focus on emotional ones.

The approach proposed allows inspecting general agents as NPCs in terms of the
experience that the designers want their players to have. For instance, if a designer
wanted the game to have more tension they could use the Exp. NPC, while if they
wanted the players to feel more competent (in IMI sense) they could use the Std. NPC
instead. It is possible to reduce the skill level of the AI by reducing the number of the
iterations of the algorithm, as this is directly proportional to the playing skill up to a
certain degree [Nelson, 2016]. This kind of tweaking becomes possible if the designers
know what experience they want the players to have. They could then evaluate the agent
for that experience or adjust the heuristics to fine-tune the player’s journey. Furthermore,
if AI researchers also adopt this approach of evaluating agents using player reactions,
the field could be broaden in terms of diversely behaved general AI. I believe that this
extension suits the currently growing landscape of games.

8.10 Conclusions

The preliminary work presented in this chapter attempts to build a bridge between
General Video Game Playing (GVGP) agents and Player Experience (PX). Our exper-
imental case study aspires to make it possible for game designers to look at PX to
integrate GVGP agents in their games. To this end, we evaluate GVGP agents in how
they impact player motivation rather than their ’raw’ performance measured in scores
or winning rates. This work presents a novel approach where we apply PX measures
to games with GVGP agents. As a first step, we use the GVGAI framework, propose
the use of general agents as NPCs, and focus on a particular search algorithm: MCTS.
The GVGAI Framework was originally created to compare general agents, not as a video
game creation tool. Hence, the game controllers and interface are not ideal and could
have an impact on the experience. It should be possible to replicate the approach with
more polished game prototypes built in other frameworks more suitable for game devel-
opment. The work demonstrated can be extended to use other search algorithms or even
learning algorithms. As a next step, a similar study could be conducted using Unity,
which provides the ML-agents toolkit that can be used to train agents with learning
techniques [Juliani et al., 2018]. The general heuristics showcased in this chapter are
quite favourable to the type of game under consideration. I would like to encourage
researchers to create more nuanced and diverse general heuristics that can be evaluated
for different experiences and emotions when they are accommodated to the needs of the
type of game under consideration. Some examples of such general heuristics have been
proposed in Chapter 5.

Existing work is primarily looking at GVGP agents from the perspective of the game
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and how well they perform in it, excluding the player out of the equation. However,
assessing the behaviour of the AI from the perspective of the player is likely to succeed.
We have demonstrated how in a short time, it is possible to make general agents with
varying heuristics, integrate them in small games, and then test how each of them affects
the experience of the player. Using GVGAI has allowed us to make a simple game, but
visual feedback for players is limited. We iterated over the game design and ran casual
play-tests until it was considered self-explanatory and engaging. We assigned colours on
the tombs to inform about changes in score to overcome the User Interface (UI) limits
of the framework. We have chosen specific PX measures like tension because the Exp.
NPC is expected to behave in a fashion that would be perceived as more purposeful
and make the gameplay tenser. We expected that, in this case, such suspenseful tension
would not make the game less enjoyable than playing against the Std. NPC, measured
with enjoyment. Researchers could pick PX constructs based on the kind of game they
choose and the experiences they are interested in studying. Using PX questionnaires is
only one of the methods available; it should be possible to carry out more open-ended
investigations with qualitative research. I believe that our proposed line of research would
eventually extend the option for game designers to use general agents, particularly as
NPCs, for successfully eliciting desired Player Experience (PX) in commercial games.
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Chapter 9

Conclusions

This thesis is driven by the ultimate goal of finding applications to existent General Video
Game Playing (GVGP) agents instead of creating new solutions or improving current
ones. It is inspired by the existence of a variety of behaviours based on the motivations
of the player and changes in the way they act and react to the game. It looks at
applying this diversity to GVGP by providing the agents with goals that go beyond
winning the game without changing the core of the algorithms. The objective is to elicit
different behaviours and, ultimately, integrate GVGP agents in games by assisting in
their development and testing or by replacing existing AI techniques used within them.
An example explored of the latter is using agents with general heuristics to take the place
of Non-Player Characters (NPCs). The experiments, focused on planning algorithms and
carried out in the GVGAI Framework, are structured in three differentiated blocks, each
of them looking at answering a research question and conclude as describe below:

RQ1 Which general heuristics can be defined and implemented beyond the goal of win-
ning the game, and how does each of these affect the performance and behaviour of
existing GVGP agents when it is the only variation in the algorithm?

Both the performance and the behaviour of GVGP agents vary when algorithms are
provided with differentiated goals by heuristic diversification. This concept, introduced
in Chapter 4, refers to the isolation of the value function in search algorithms to provide
the heuristics externally without having to modify their foundation. I define and imple-
ment four general heuristics that elicit different goals: winning, exploration, knowledge
discovery, and knowledge estimation and provide them to GVGP agents to compare their
performance. I use a group of controllers of different characteristics: OSLA, OLMCTS,
OLETS, RHEA, and RS. When measured by criteria related to the goals provided to the
controllers (e.g. final exploration of the level), the performance of the group of agents
changes depending on the heuristic. Therefore, the strength of an algorithm depends
not only on its characteristics but also on its heuristic and motivations. Therefore, these
should be considered when developing GVGP solutions. This conclusion opens a new
line of research to apply the GVGP agents in tasks beyond just playing the game and
ultimately assist in their development. I investigate this idea further in the thesis.
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RQ2 How to define, create, and use a team of GVGP agents with distinct behaviours
to assist in the development and evaluation of games?

The methodology introduced in Chapter 5 proposes the use of use General Video
Game Playing (GVGP) agents for assisting in the game development and testing pro-
cesses. It presents a series of goals to be applied to the general agents to play the game
in different ways. It is argued that having agents focusing on targets that go beyond
simply winning the game leads to specialists with distinct gameplay styles that can be
used to extract diverse information from the game. Each automated play-through of the
agents can be leveraged to generate reports and a logging system to check if the game
under evaluation fulfills the expectations. The information retrieved can assist to detect
bugs, balance the game, or tweak its parameters. Because of the independence of the
rules given by the generality of the agents, the approach allows an early integration in
a game under development without requiring major modifications when new levels are
included or when existent ones are extended or modified. Using general algorithms for
automated game testing provides portability and flexibility non-existent in the current
approaches.

I present and implement a method in Chapter 6 that allows creating a team of GVGP
agents, as the one proposed above, and is general. This generality enables the technique
to be applicable and extended outside the scope of my work. By using heuristic diversifi-
cation, I define the characteristics of a GVGP agent and a heuristic that allows assigning a
list of goals externally with a description that is easy to define and evolve. The approach
presented applies the MAP-Elites algorithm to generate diverse behaviours for the agents
by generating and locating their description defined in a feature space constituted by the
resulting stats from the play-through of the agents. I define and use five goals (heuris-
tics) that can be applied (or not) to various games, from which I derive a list of features
to use to form these spaces. However, the flexibility of the procedure allows providing
different goals and features to adapt to the characteristics of the game and apply in dif-
ferent circumstances. The approach has been implemented in the GVGAI Framework to
generate a team of GVGP agents to four games with different characteristics. This team
is assembled by the collection of resulting maps, and it is possible to identify behaviour-
type agents based on their location on the maps and the resulting range of features. This
solution, in contrast to previous ones, proposes to make the selection of the agents based
on the behaviours needed after the execution of the algorithm. It allows having at the
disposal of the user a diverse pool of agents at all times, in case the requirements change.

In Chapter 7, I illustrate guidelines that can be followed to identify different behaviour-
type agents, independently of the map generated or the game used. When the GVGP
agent plays the game using the selected description, it is expected to achieve specific
objectives related to its location in the feature space. Fulfilling these tasks cause to
elicit a particular behaviour in the agent that is reflected in the resulting stats from its
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play-through. The generality of the GVGP agents allows them to play levels different
to the one they were generated at. I confirm that these agents also carry their strengths
and characteristics when used in new ones. The demonstration is executed in the four
games I generated the team for, by using the agents in new levels with different properties
and distribution of the elements. The resulting stats related to the features of the be-
havioural space of the agent follow the same trend across the levels. Therefore, it would
be expected that the agents can ultimately detect issues and design flaws in new levels
integrated into the game or after modifications in the existent ones when the resulting
stats do not meet the expectations. This theory is also investigated in Chapter 7, where
I design a faulty level in each of the games based on the original one used to generate
the pool of agents. The stats of the agents whose identified behaviour is directly or
indirectly related to the issue in the level are affected, while those unrelated still fit the
expectations. Therefore, these results support the argument that a team of agents can
be used to assist in the development and testing of video games. The approach proposes
looking at the resulting stats of identified behaviour-type agents to highlight flaws in the
design or problems resulting from the modification of the game or levels. Having a range
of behaviours related to various features allows covering different types of instances and
potential issues. The extension and portability of the approach to other frameworks and
games are possible given its generality and flexibility. I conclude that GVGP agents
can be employed to assist in the game development process by following this approach.
Ultimately, I believe that these agents can be used by running automated gameplay to
find bugs, flaws in the design, debug code, or even check the performance by triggering
profiling tools. I include details about these expectations in Section 9.1.2.

RQ3 Can GVGP agents with distinct behaviours potentially be integrated into com-
mercial video games as an alternative AI approach when these agents are studied from a
Player Experience (PX) point of view?

The novelty work explored in Chapter 8 encourages starting looking at General Video
Game Playing (GVGP) agents from the perspective of the player instead of the perfor-
mance of the algorithms. The exploratory experiment carried out in the GVGAI Frame-
work is considered a first step into tackling this line of research to ultimately being able
to integrate GVGP agents within games as an alternative AI approach. We use the IMI
and PENS questionnaires to measure the Player Experience (PX) constructs of tension,
competence, and enjoyment in a player-vs-NPC capture the flag type of game created
for the study. Two versions of the game are developed, and their variation comes from
the GVGP agent assigned as NPC, with a difference in heuristic between the two: win-
ning and score (Std. NPC) vs exploring-encouraged (Exp. NPC). We analyse the PX
constructs in both versions. These PX constructs are related to the players’ perception
when playing against each of these general NPCs. The results observed are related to
the characteristics of the game and the behaviours elicit on the agents by the general
heuristics. We focus on those particular PX constructs because they are related to our
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hypothesis. However, a similar procedure can be used with further or alternative re-
search methods to suit the needs and expectations of the game. The work demonstrates
that, in a short period of time, it is possible to integrate agents with general and diverse
heuristics into a game and study how each of them affects the experience of the player.
Given the results for the two versions of the game implemented, we can identify two
distinct scenarios. If a designer expects the game to have more tension, they can use the
Exp. NPC, while if they want the players to feel more competent from an IMI point of
view, they can use the Std. NPC instead. By making a collaboration of GVGP and PX
part of the development process it may be possible to, for example, see general agents
take the role of Non-Player Characters (NPCs) in games. However, further investigation
is still required, as it is currently very lacking.

In summary, this thesis demonstrates that it is possible to extend the research and
application of General Video Game Playing (GVGP) agents when the existent solutions
are driven by goals that go beyond just winning the game. The generality of the GVGP
agents allows them to be independent of the rules and parameters of the game. This
generality provides the agents with flexibility and adaptation to changes, being transpar-
ent to the addition of new levels, elements, or modifications on existent ones. Therefore,
GVGP agents can be incorporated in the early stages of the game cycle to assist in its
development and testing processes or integrated into the game itself. The possibilities
are endless, and I encourage the research community to extend and continue this work
and the different lines of research opened by it. I discuss future work in the next section.

9.1 Future Work

To conclude the thesis, I discuss future work related to each of the areas investigated and
invite the continuation of the various lines of research emerging from my work. I have
used the GVGAI Framework because it provides the support to run general agents and
includes a variety of sample search controllers that can be easily modified. It facilitates
executing the experiments and validating the approaches in several games with different
characteristics. However, I believe the strategies defined should apply to GVGP outside
the limitation of this framework. It should be possible to transfer the methods defined
to other systems and game engines, and I encourage doing so.

9.1.1 Heuristic diversification in GVGP

The heterogeneous results in Chapter 4 are promising and open different lines of research,
from improving existing General Video Game Playing (GVGP) by applying heuristic di-
versification, to extending the understanding and study of alternative heuristics and
behaviours of general agents. The thesis focuses on the latter by investigating the be-
haviour driven by the different heuristics and looking for applications for the agents to
integrate them in the game development process.
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The heuristic diversification approach presented applies to search algorithms, corre-
sponding to a specific part of GVGP. A similar concept should be defined to other related
areas, but this extension was out of the scope of the thesis. Interestingly, a comparable
technique has been recently introduced in Reinforcement Learning (RL) [de Woillemont
et al., 2021]. The procedure provides a diverse range of play styles to a configurable
agent by making the rewards external and agnostic to the algorithm.

Heuristic diversification can be applied to enlarge GVGP techniques by providing
heuristics different from merely winning and maximising the score to improve the over-
all performance of the general algorithms. These heuristics can, for example, drive the
agent to cover the level or gain practical knowledge about the dynamics of the game. It
is sensible to think that all the heuristics presented in Chapter 4 may come in handy
at different stages of game-playing. An option would be to design a high-level meta-
heuristic algorithm that could combine or choose between different agents and heuristics
in-game. Having an available set of general algorithms with different objectives (pro-
vided by the pertinent heuristic) would allow to accommodate to different situations that
emerge during gameplay, and to switch behaviour in response to the environment. For
instance, at the first stages of the gameplay, agents could use KDH and KEH to achieve
a better understanding of the game. These heuristics penalise losing the game, so it is a
safe search until certain conditions have been met during the play-through. At this time,
the agents could use WMH or EMH; or even a combination of both in a multi-objective
setting [Perez-Liebana et al., 2016]. Following this approach, the GVGP agent could
achieve victory and maximise the score, while being influenced by the discoveries found
and encouraged by exploring the level. In terms of using the right controller, it would be
reasonable to run experiments as the one presented in Chapter 4. The user could choose
the agent based on the resulting performances: when using just one heuristic, it could
pick the controller with the best results for that particular heuristic. On the contrary,
if several heuristics are brought together, the reasonable choice would be to select the
agent with steady results for the heuristics involved. For example, in this particular case
and based on the results discussed in Section 4.6, if I were looking to combine WMH
and EMH, the choice for the controller would be between using RS or OLETS. However,
if knowledge were also included, it would be preferable to use RS or OLMCTS. Future
work could combine the idea of exploring and exploiting the level, making the most from
the knowledge acquired to improve the performance in terms of winning.

Above, I described a potential line of research that looks at the application of heuris-
tic diversification to improve the strength of GVGP agents from a winning point of view.
Some work related to this proposal has been carried out in collaboration with Ander-
son et al. [2019]. We applied an Ensemble Decision System (EDS) for General Video
Game Playing (GVGP) by comparing different variations constituted by particular com-
binations of the controllers and heuristics employed in the experiments of Chapter 4.
The heuristics described in Section 4.3 were adapted to the experiment and modified to,
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among other changes, reward the winning EoG states. Two components constitute an
EDS: the voices, which are the different algorithms used to play the game and involved in
suggesting the following action, and the arbitrator, which ultimately decides the action
to take based on a policy. Six different EDS variations were defined and implemented,
one of them including all the heuristics as voices (OLETS with WMH, RS with EMH,
RS with KDH, and OLETS with KEH), and the others with different combinations of
selection policy, controllers, and WMH or EMH as heuristics. Each of these solutions was
compared between them and to the individual controllers (OLMCTS, OLETS, RHEA,
and RS) by playing a selection of games from the GVGAI Framework. One of the vari-
ations of the EDS was able to reach a win rate of 53.59%, very close to OLETS’ 55.69%
(first in the final ranking), while winning 2 more games than the rest of the solutions.
Although the EDS solution was not able to outperform the individual algorithm, we
concluded that it maintained its strength. The use of different general behaviours pro-
vided that particular EDS with the flexibility to succeed at more games. The results
were promising, but it was concluded that further experimentation was required to reach
the potential on flexibility and strength of the EDS solutions. Future work could look
at developing further variations of the system, including selection policies or types of
arbitration, and compare EDS to portfolio approaches. Since the work was carried out,
new potential general heuristics have been identified and listed (Section 5.3), resulting in
the implementation of some of them (Section 6.5). These behaviours extend or improve
the ones applied to the EDS (WMH, EMH, KDH, and KEH), so future work could also
explore the usage of alternative general heuristics. This extension could provide a richer
diversity of behaviours and reactions to the game.

Last but not least, although there is still room for improvement, combining the agents
provided with different heuristics could gain a relatively good understanding of the game.
As discussed above, this information could help improve the agents, but it could also
assist in the PCG of levels and games. Similarly to general game-playing agents being
used to validate the rules generated for board games [Browne and Maire, 2010], an
approach could incorporate GVGP agents to evaluate the strength of the generators in
the domain of video games.

9.1.2 Using a Team of GVGP agents: extensions and applications

Part of the methodology envisioned in Chapter 5 has been defined and implemented in
Chapters 6 and 7. However, there is still considerable open work that I encourage the
research community to continue. I believe this line of research can potentially benefit
the video games industry and facilitate the game development process.

In this thesis, I present a solution that allows defining and creating a team consti-
tuted by the assemble of agents distributed in several behavioural spaces. I describe a
procedure to identify the skills and expectations required from each of them. In sports, a
team refers to the group of people that compete in the same club, regardless of the activ-
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ity involving collaboration or being carried out individually or in parallel. The concept
of team in my case is related to each member independently serving the same purpose:
ultimately assisting the game development and testing processes. However, it should be
possible to extend the use and start considering the team as a collaboration between
the agents as well. In this sense, agents with differentiated behaviours and achievements
could gather information of their play-through and share it with the other members of
the team. It should be possible to have several agents playing the game simultaneously
and communicating their findings in real-time to consider them for their actions. These
plausible extensions of the methodology were out of the scope of my work, so the exper-
iments only focused on having the agents play independently.

I have focused on particular areas of the methodology envisioned, to define a solution
to generate the team of agents that has been implemented and integrated with the
GVGAI Framework. This tool is practical for research and to validate the approach
in several games, but it is not intended for actual game development. The next step
would be to transfer the idea to a framework or engine designed with that purpose. The
MAP-Elites algorithm is quite simple, so its implementation in a new system should be
straightforward. Although the approach, agents, and heuristics are general within the
GVGAI framework, no implementation is actually independent and directly transferable
between systems. The idea is valid and the code can serve as a reference, but it is still
required to revise the existent implementation to adapt it to work on a new system. The
definition and integration of the GVGP agents and heuristics depend on several factors.
First, the availability of a forward model is crucial to facilitate the use of the same
algorithm (OLMCTS) and heuristic diversification. Both the agent and heuristics would
still need to be adapted to fit the characteristics of the platform and its interface so it
can communicate with the games, execute the forward model, and get the information
required for the heuristics to work: state information, score, NPCs description, resources,
etc. The strength of the approach defined comes from its generality and flexibility. Once
a successful integration into a system, the process of generating agents would be available
at every moment for any of the games supported. Therefore, a team could be at the
disposal of game developers to run executions of the game automatically whenever they
require it. As discussed in the corresponding chapters of the thesis, the automated
gameplay of different behaviour-type agents can provide information about the games
and levels to identify issues and design flaws on them. I argue that their purpose does
not stop there. The solution provides means to play a game without a human player
while achieving diverse gameplay. Automated gameplay also allows running the external
tools that are only triggered during the execution of the game and retrieving information
relevant to its development without having to play the game manually. An example is the
execution of profiling tools that measure the game performance by tracing its execution.
They allow quantifying the load of the CPU, memory, detecting bugs, and obtaining
the frame rate of the game, among others. Therefore, the reports I propose as outputs
of the methodology do not necessarily need to be generated by the game or created
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from scratch. They could also include the information resulting from external tools
triggered during the automated gameplay of the agents, as presented in Fig. 9.1. Future
work should facilitate the processing and analysis of the results derived from the agents’
play-through and look into the generation of the reports proposed.

Methodology

User

Logging System

Game

Target Reports

Visual Reports

Team of Agents

Speed-runner

Others

Winner

Explorer

Killer

Collector

...

Tool (e.g. profiler) External Reports

Figure 9.1: . Methodology extension. In addition to the inputs and outputs presented
in Chapter 5, automated gameplay could trigger external tools like profilers that assist
in the development of the game. These tools create their own reports.

Not every GVGP approach makes use of a forward model. However, the heuristic
diversification and solution defined and presented for the methodology defined in this
thesis do, as they refer to search algorithms. If a forward model is not available in the
framework used to develop the game, it would be required to define and implement new
GVGP agents that actually fit into the characteristics of the system. Therefore, inte-
grating the methodology proposed into a system without a forward model would require
further investigation. First, it would be needed to define and provide a new diversification
of behaviours adapted to its characteristics. Once the heuristic diversification is defined
for the new scope, a similar approach followed for the generation of the agents using
the MAP-Elites could be followed. Therefore, the idea presented and developed in this
thesis for search algorithms could be translated to Reinforcement Learning by following
similar steps. The work mentioned in the previous section carried out by de Woillemont
et al. [2021] can be considered the first step, as their approach resembles the heuristic
diversification in search controllers but applied to Reinforcement Learning algorithms. I
believe that implementing the line of research defined in this thesis to fit different areas
and GVGP agents would allow adopting the approach in a more diverse range of games
and frameworks.

Lastly, a game engine may be focused on the development of a unique game. The ap-
proach could also be specialised to use non-general heuristics and accommodate a specific
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game. In this case, the diversification of heuristics would not apply to GVGP agents, and
the solution would only work on this particular game. However, it would still allow exe-
cuting automated gameplay of different levels and triggering external tools automatically.

In summary, the approach defined to generate the team of agents has been imple-
mented with a search algorithm in a general environment. I believe it could be easily
extended to use multi-dimensional feature spaces. It could also be applied to more com-
plex games (3D), to other types of games not based on avatars (e.g. strategy games),
and to specific ones, with heuristics well-tuned to them. Future work could transfer the
idea to other frameworks and solutions, like Reinforcement Learning. It could even look
further than the manual design of levels of a game to integrate the approach with Pro-
cedural Content Generation (PCG) techniques to assist in their automated generation.

9.1.3 Integrating GVGP agents in games

The exploratory work presented in Chapter 8 is merely a first step looking at the po-
tential use of GVGP agents as an alternative AI technique in games. It analyses the
GVGP agents from a Player Experience (PX) point of view and studies the impact their
behaviour have on the players. The objective is to ultimately make the integration of
GVGP agents within the game possible. However, it is still required further investigation
and case studies to see a successful collaboration between these very differentiated areas.

First, focusing on possible extensions of our case study, it could include a third ver-
sion of the game featuring an NPC with a hand-crafted heuristic. The agent could be
programmed to collect the skulls and taking them to the tomb while interfering with the
player’s map control. This new version could serve as a new baseline about the experi-
ence of the players in the game and as a point of comparison to the results found when
general agents and heuristics are used instead. However, the limitation of the GVGAI
Framework in terms of not being designed as a game development tool with end-users
in mind would still be true when merely making this extension to the existing work. An
alternative solution would be conducting a similar case study in a framework or game
engine directed to the creation of games instead of research. This new study could in-
clude the additional version of the game as well. The simplicity of the rules of Skulls
and Tombstones should allow easy replication of the game in a new framework that,
ideally, would provide a forward model so the controllers could also be ported. Another
option would be creating new GVGP agents based on similar behaviours used in our
experiment but built from scratch, so they are suitable for the new setting. A possible
solution would be implementing the game in Unity, which is used to develop 2D and 3D
games and supports ML-agents [Juliani et al., 2018]. This toolkit allows to train agents
with reinforcement learning techniques and integrate them into the Unity environment.

We used a quantitative method to evaluate particular Player Experience (PX) con-
structs related to the game we created. When applying this kind of study, the constructs
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should be updated to fit the expectations and hypothesis of the game under evaluation.
Similarly, the objectives of the general heuristics could change based on the charac-
teristics of the game and the expected behaviours of the agents. The list included in
Section 5.3 can serve as inspiration for alternative heuristics to provide to the NPCs.
Given the initial results obtained in the case study, it is suggested to use other research
methods in addition to quantitative analysis to have a more diverse investigation into
the relationship between the behaviour of the agents and the experience of the play-
ers. Qualitative methods could provide in-depth analysis and eye tracking could be used
when the interest falls back in real-time reactions of the players. Similar AI could also
be tested in different games to demonstrate if the PX patterns carry across them.

In general, research looking at integrating GVGP agents in the game as an alternative
to existent AI techniques is non-existent. I believe this integration should be possible
by studying the effects the agents have on the player’s experience. The methods used
in game development related to Player Experience are very diverse and depend on the
study’s objectives and expected outcomes. As a result, building an effective relationship
between those methods and GVGP agents is expected to take time. However, I believe
it is a line of research with grand potential.

9.2 Concluding Remarks

The research presented in this thesis is the first step in a quite complex area. There is
still much open work so that the long-term vision of having General Video Game Playing
agents integrated into games and their development process can be a reality. However,
I am hopeful. The research in AI has evolved and improved quickly in the past years.
What a few years back was simply an idea: machines being capable of playing games like
Chess; it is now the reality. There are still a lot of exciting challenges emerging every
day, and a very active research community is coming up with compelling solutions. I
hope this research community sees the potential line of research proposed by my work
and gets inspired to investigate further the possibilities brought by merely extending the
goals of the general agents beyond winning. I believe that following this path, in the
following years, having GVGP agents as part of the tools available for game developers
can also be normalised and not a mere dream.
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Appendix A

GVGAI Framework Games: Details and Screenshots

This appendix contains details about the games from the GVGAI Framework used in
the experiments without modifications, listed in Section 3.4.1. These details include the
player’s movement, rules, elements, and a screenshot of the level used.

A.1 Aliens

The game (Fig. A.1) is formed by the avatar, which is a ship located at the bottom
of the screen that can move right or left and shoot missiles; aliens, NPCs that spawn
from the top and drop bombs; and immovable meteorites that disappear when hit by
a missile or a bomb. The objective is to kill all the aliens before they reach the bottom
of the screen. Hitting a meteorite with a missile increases the score by 1, killing an alien
by 2, and being killed by a bomb ends the game and decreases the score by 1.

Figure A.1: Screenshot of Aliens at t = 0: 1 initial alien, 47 meteorites, 30 locations.

A.2 Bait

It is a puzzle game, and its goal is to reach the door having collected the key first. The
avatar can move up, down, right, and left; and push the boxes scattered around the
map. The map is shaped by walls. Reaching the goal with the key increases the score
by 5. Some levels have holes and mushrooms, but the level used in the experiments
(Fig. A.2) does not include any of these.
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Figure A.2: Screenshot of Bait at t = 0: 1 door, 1 key, 2 boxes, 21 walls, 9 locations.

A.3 Butterflies

The game (Fig. A.3) is formed by an avatar that can move up, down, right, and left;
butterflies, that are random NPCs; cocoons that are immutable elements the player
can’t interact with; and trees shaping the limits of the map. The goal is to capture
all butterflies before the time runs out or the cocoons have disappeared. Butterflies
move randomly, and when they collide with the cocoons scattered around the map,
these cocoons vanish and become new butterflies. The player captures the butterflies by
colliding with them, an action that increases the score by 2.

Figure A.3: Screenshot of Butterflies at t = 0: 6 butterflies, 27 cocoons, 102 trees, 206
locations.

A.4 Camel Race

The game (Fig. A.4) consists of a race, so the objective is to be the first one to reach
the goal. The avatar and NPCs are a camel and can move up, down, right, and left.
The score is increased or decreased by 1 when a camel reaches a goal. If the player is
the winner of the race, the score is increased. The map is limited by walls.
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Figure A.4: Screenshot of Camel Race at t = 0: 6 camel opponents, 7 goals, 110 walls,
322 locations.

A.5 Chase

The game (Fig. A.5) is formed by an avatar that can move up, down, right, and left;
white birds, that are NPCs that run away from the player; and trees that outline the
map. The objective is to kill all the birds by colliding with them. When the player
collides with a white bird, the score is increased by 1, and the bird is transformed into
its carcass. When a white bird walks into a carcass, it becomes a black bird, which
is an NPC that chases the player. If it collides with the avatar, the game ends, and the
score decreases by 1.

Figure A.5: Screenshot of Chase at t = 0: 7 white birds, 129 trees, 135 locations.

A.6 Chopper

The avatar is a helicopter that can move up, down, right, and left in a designated area
of the map and shoots bombs to destroy tanks located in the ground. The tanks are
NPCs that shoot missiles to destroy the satellites floating in space. The objective is to
destroy the tanks without being hit by the missiles before the time runs out or all the
satellites are destroyed. The clouds serve as a protective barrier for the satellites and
can also be destroyed by the tanks. Supplies are resources that need to be collected to
be able to shoot, increasing the score by 5. There are two spawners: ammo portal, for
supplies, and base, for tanks. Destroying tanks increases the score by 1; losing satellites
or being killed decreases the score by 1. Fig. A.6 shows a screenshot of the game.
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Figure A.6: Screenshot of Chopper at t = 0: 18 satellites, 1 initial tank, 1 initial supply,
36 clouds, 2 ammo portals, 1 base, 184 locations.

A.7 Crossfire

The game (Fig. A.7) is formed by an avatar that can move up, down, right, and left;
turrets, that are NPCs that shoot bombs randomly; a door; and walls outlining the
map. The objective is to reach the door without being hit by the bombs, which kills the
player. Reaching the goal increases the score by 5, and being killed decreases it by 1.

Figure A.7: Screenshot of Crossfire at t = 0: 8 turrets, 1 door, 3 initial bombs, 132
walls, 333 locations.

A.8 Digdug

The game (Fig. A.8) is formed by an avatar that can move up, down, right, and left
and use a shovel; monsters that move randomly; gems; gold; and breakable walls.
The goal is to kill all the monsters and collect all the gems and gold pieces. The player
can use the shovel to break walls, collect gold or shoot a boulder. Gems are collected
by colliding with them, an action that increases the score by 1. The gold disappears
when hit with the shovel, which does not increase the score but creates a falling rock
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that can kill the player and monsters. Monsters are generated every 200 game ticks from
monster spawners and are killed when hit with a boulder, which increases the score by
2. The player also dies if colliding with a monster, which decreases the score by 1.

Figure A.8: Screenshot of Digdug at t = 0: 20 gems, 7 gold pieces, 2 initial monsters, 2
monster spawners, 267 breakable walls, 405 locations.

A.9 Escape

The game (Fig. A.9) is formed by an avatar, which is a mouse that can move up, down,
right, and left; holes in the ground; boxes and cheese. The objective is to reach the
cheese by pushing away the boxes that are blocking the path. These can be destroyed
by pushing them into the holes. The player dies if they step on the hole, which also
decreases the score by 1. When the player reaches the cheese, the score increases by 1.
The timeout for this game is 1000 game ticks.

Figure A.9: Screenshot of Escape at t = 0: 1 cheese, 3 holes, 27 boxes, 45 walls, 74
locations.
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A.10 Hungry Birds

The game (Fig. A.10) is formed by an avatar, which is a bird that can move up, down,
right, and left; worms; a goal sign; and trees that shape the map. Every game tick,
the health of the player decreases. The aim is to reach the goal to exit the maze before
the health points are completely depleted, which kills the player. Colliding with the
worms increases health points, and reaching the goal increases the score by 100.

Figure A.10: Screenshot of Hungry Birds at t = 0: 1 worm, 1 goal, 97 trees, 79 locations.

A.11 Infection

The game (Fig. A.11) is formed by an avatar that can move up, down, right, and left and
use a sword; 3 types of random NPCs: doctors, healthy people and infected people;
virus containers that are immovable objects; entrances that spawn doctors every 100

game ticks; and walls that outline the map. The goal is to infect all healthy people
before the time runs out. The player becomes a carrier of the virus by colliding with
its containers, infecting healthy people when entering in contact with them (+2 score
change). The doctors can cure the player and the infected people (−1 score change) but
can be killed with the sword, which increases the score by 2.

A.12 Intersection

The game (Fig. A.12) is formed by an avatar that can move up, down, right, and left;
cars that move horizontally or vertically based on the predetermined road direction; a
goal sign; and trees blocking the path. The objective of the game is to reach the goal
as many times as possible before the time runs out. When the goal is reached, it is
re-spawned in a different map location and the score increases by 10. If the player is hit
by a car, they lose a life, the avatar is transported back to the start point, and the score
decreases by 5. Losing 5 lives kills the avatar and ends the game. The timeout is 1000

game ticks.
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A. GVGAI Framework Games: Details and Screenshots

Figure A.11: Screenshot of Infection at t = 0: 17 healthy people, 6 virus containers, 4
initial doctors, 2 doctor entrances, 121 walls, 187 locations.

Figure A.12: Screenshot of Intersection at t = 0: 1 goal, 13 initial cars, 32 trees, 76
walls, 243 locations.
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A.13 Lemmings

The game (Fig. A.13) is formed by an avatar that can move up, down, right, and left and
use a shovel; lemmings that are NPCs moving towards a door; holes in the ground;
and breakable walls. Lemmings are spawned into the level through the entrances.
The goal is to help the lemmings to reach the door by breaking the walls with the shovel.
Lemmings die if they fall into a hole (−2 score points), and breaking a wall decreases
the score by 1. The player can also die by falling into a hole, which decreases the score
by 5 and ends the game. For each lemming able to reach the door, the score is increased
by 2.

Figure A.13: Screenshot of Lemmings at t = 0: 1 door, 1 initial lemming, 1 entrance, 9
holes, 121 breakable walls, 222 locations.

A.14 Missile Command

The game (Fig. A.14) is formed by an avatar, which is a spaceship that can move up,
down, right, and left and shoot explosives; fire missiles that are NPCs; and cities.
The fire missiles are directed to the cities, which are destroyed when colliding with them,
decreasing the score by 1. The goal is to eliminate the missiles by hitting them with
explosives (+2 score change) before the cities disappear. The map is limited by walls.

A.15 Modality

The game (Fig. A.15) is formed by an avatar that can move up, down, right, and left;
a hole; a bush; and two types of terrain. The goal is to push the bush into the hole.
The player can walk over the two types of surfaces, but they can only cross from one to
the other by a specific point in the map. There are walls shaping the level. The bush
can be pushed through the different surfaces freely.
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A. GVGAI Framework Games: Details and Screenshots

Figure A.14: Screenshot of Missile Command at t = 0: 3 cities, 4 fire missiles, 46 walls,
242 locations.

Figure A.15: Screenshot of Modality at t = 0: 1 hole, 1 bush, 7 tiles of surface type 1, 7
tiles of surface type 2, 1 crossing point, 20 walls, 15 locations.

273



A. GVGAI Framework Games: Details and Screenshots

A.16 Plaque Attack

The game (Fig. A.16) is formed by an avatar that can move up, down, right, and left
and shoot blue toothpaste; teeth that can be clean or damaged ; two types of food:
hamburgers and hot-dogs; trolleys that spawn the food; and walls that shape the
map. The goal is to destroy all the food by shooting at it (+2 score change) before they
damage the teeth. A tooth is damaged when colliding with the food (−3 score change)
but the player can clean it back by colliding with it, increasing the score by 1.

Figure A.16: Screenshot of Plaque Attack at t = 0: 5 teeth (initially clean), 5 trolleys, 1
initial hamburger, 218 walls, 310 locations.

A.17 Roguelike

The game (Fig. A.17) is formed by an avatar that can move up, down, right, and left
and use a sword; two types of enemies: spiders that are random NPCs and ghosts
that chase the player; hearts; gold pieces; weapons; cities; keys; locked doors and
a goal sign. The map is shaped by walls. The objective of the game is to reach the
goal, which increases the score by 10. The locked doors block the path of the player,
but they can be opened by collecting the keys scattered around the map. The player
has a certain number of health points that get reduced every time they collide with an
enemy. If they lose all the health points, the game is over. It is possible to increase the
number of health points by collecting hearts or exchanging gold in the city. It is required
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to collect weapons (+2 score change) to use the sword to kill enemies. Killing a spider
increases the score by 2 and a ghost by 1. Collecting a key or gold increases the score
by 1.

Figure A.17: Screenshot of Roguelike at t = 0: 1 goal, 1 locked door, 1 key, 3 cities, 14
pieces of gold, 10 hearts, 1 weapon, 14 spiders, 5 ghosts, 196 walls, 266 locations.

A.18 Seaquest

The game (Fig. A.18) is formed by and avatar that is a submarine that can move up,
down, right, and left and shoot torpedos; three types of enemies: whales, sharks and
piranhas; divers that are random NPCs; whirlpools that spawn the NPCs; and two
types of environments: ocean and surface. The goal is to rescue divers and stay alive
until the time runs out. The divers are rescued by colliding with them and bringing them
to the surface, which increases the score by 1000. The player can carry only a maximum
of 4 divers at the same time. The submarine has a limited capacity of oxygen to stay in
the ocean, so it needs to refill it by going to the surface. If the oxygen level falls to 0 or
the player collides with an enemy, the game ends. Enemies can be killed with a torpedo,
increasing the score by 1. The timeout is 1000 game ticks.
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Figure A.18: Screenshot of Seaquest at t = 0: 22 tiles of surface, 168 tiles of ocean, 8
whirlpools, 189 locations.

A.19 Survive Zombies

The game (Fig. A.19) is formed by an avatar that can move up, down, right, and left;
two type of NPCs: zombies that chase the player and priests that move randomly; two
NPCs spawners: tombs for zombies and cloaks for priests; hearts and walls that shape
the map. The goal is to survive until the time runs out. The player has some health
points that lower every time they collide with a zombie, which also decreases the score
by 1. Zombies disappear after hurting the player or by colliding with the priests, who
transform them into hearts. The player can recover health points by collecting hearts
(+1 score change), but they should avoid the tombs as colliding with them decreases the
score by 1. The timeout for this game is 1000 game ticks.

Figure A.19: Screenshot of Survive Zombies at t = 0: 3 tombs, 3 cloaks, 14 initial hearts,
1 initial zombie, 85 walls, 121 locations.
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A.20 Wait For Breakfast

The game (Fig. A.20) is formed by an avatar that can move up, down, right, and left;
chairs, tables; a waiter; a kitchen door and an exit. It is not possible to collide or
interact with the chairs or tables. The goal is to go to the empty table and wait for the
waiter to serve the food. If the player leaves, the game is lost. The timeout for this game
is 1000 game ticks.

Figure A.20: Screenshot of Wait for Breakfast at t = 0: 11 chairs, 5 tables, 1 kitchen
door, 1 exit door, 50 locations.
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Appendix B

List of Research Resources

This appendix gathers a list of the resources related to each of the experiments executed,
including links to the repositories containing the code and results, demos and references
to the relevant appendix.

B.1 Heuristic Diversification

Resources for the heuristic diversification experiments described in Chapter 4:

• [Guerrero Romero, 2017]. Github repository that contains the code, raw results,
and the scripts that generate the tables and graphs.

• Appendix C gathers the tables and graphs displaying the final results per game for
each of the heuristics.

• [Guerrero Romero, 2018]. Demo showing an example of gameplay of Butterflies
when an RS agent is provided with each of the heuristics.

B.2 Generation of the Team of Agents

Resources for the experiments described in Chapter 6:

• [Guerrero Romero, 2021a, main branch]. Github repository that contains the code
corresponding to the agents, heuristics, and MAP-Elites implementation.

• [Guerrero Romero, 2021b]. Github repository that contains the scripts used to
process the results of the experiments.

• [Guerrero Romero, 2021d]. OSF repository that contains the jar executable and
configuration files used for each game and set of experiments: B2, B3, Z5, D5 and
S4.

• Appendix D gathers all the graphs that represent the resulting MAP-Elites for
each game and set of experiments: B2, B3, Z5, D5 and S4.
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B. List of Research Resources

• [Guerrero Romero, 2021e]. Interactive demo that allows going through the resulting
maps and selecting the agents generated for each to inspect details about them and
their gameplay. It is also possible to download a standalone and the files required
to run them locally.

B.3 Team Portability and Level Testing

Resources for the portability and level testing experiments included in Chapter 7:

• [Guerrero Romero, 2021a, secondary branch]. Github repository that contains the
code of the executable created to run the portability and level testing experiments
and the definition of the maps used.

• [Guerrero Romero, 2021b]. Github repository that contains the script used to
generate the graphs included in the chapter.

• [Guerrero Romero, 2021c]. OSF repository that contains the config file, executa-
bles, and results.

• Appendix E gathers the tables containing the resulting portability stats for each
agent and level. For each game, two types of tables are provided: one containing the
resulting stats of each behaviour-type agent across all levels and another including
the collective resulting stats of every agent in each level. The tables with the
resulting stats for the exploratory level testing experiments fit in the corresponding
Section 7.4, so they are not included in the appendix.

B.4 Case study

Resources for the exploratory case study described in Chapter 8.

• [Guerrero Romero and Kumari, 2020]. OSF repository that contains the standalone
jar executable of each version of the game and their VGDL source code.

• Appendix F gathers the Information Sheet and Consent Form provided to the
participants; as well as the list of questions used, taken from the IMI and PENS
questionnaires. PENS is not open source, so I merely mention the number of the
question used, while in IMI I include the questions used and their adaptation to
our questionnaire.
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Appendix C

Full Results: Heuristic Diversification in GVGAI

This appendix contains the full results of the heuristic diversification experiments de-
scribed in Chapter 4. The tables and graphs included are organised by heuristics, as
follows:

• WMH results per game (C.1)

• EMH results per game (C.2)

• KDH results per game (C.3)

• KEH results per game (C.4)

• KEH individual resulting predictions per agent and game (C.5)

The details and nomenclature of the data displayed in the tables and graphs are
provided in each corresponding section.
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C. Full Results: Heuristic Diversification in GVGAI

C.1 Per Game Results: WMH

Each table contains the WMH results of one of the games displaying the information
listed below. The data is the final average resulting from the 20 gameplays of each agent.
The values in parenthesis in the table represent the corresponding Std. Deviation.

• Total number of points received in the game (Points)

• Agent (Controller)

• Rate of wins (% Wins)

• Average of score achieved (Score)

• Average of End of Game (EoG) ticks for winning play-throughs (EoG victories)

• Average of End of Game (EoG) ticks for losing play-throughs (EoG defeats)

For each game, it is also included the resulting graphs for the stats related to the
heuristic: victories, score, EoG ticks on victories, and EoG ticks on defeats. They show
the resulting stats of the 20 gameplays achieved by each agent, in order: OLETS (blue),
OLMCTS (red), OSLA (green), RHEA (purple), and RS (orange).

The games are included in alphabetic order.

WMH: Aliens
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 100.00% 77.95 (0.56) 705.05 (12.26) -
18 OLMCTS 100.00% 76.55 (1.30) 489.45 (8.58) -
15 RS 100.00% 76.20 (1.34) 500.90 (13.30) -
12 OSLA 70.00% 63.15 (1.00) 781.71 (31.17) 873.67 (40.86)
10 RHEA 35.00% 49.80 (4.04) 737.86 (28.24) 592.38 (82.11)

Table C.1

WMH: Bait
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 50.00% 2.50 (0.56) 8.90 (0.09) 1500.00 (0)
18 OLMCTS 50.00% 2.50 (0.56) 16.90 (1.43) 1500.00 (0)
15 RS 50.00% 2.50 (0.56) 22.60 (2.51) 1500.00 (0)
12 OSLA 30.00% 1.50 (0.51) 37.33 (5.78) 1500.00 (0)
10 RHEA 30.00% 1.50 (0.51) 90.67 (17.13) 1500.00 (0)

Table C.2
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C. Full Results: Heuristic Diversification in GVGAI

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.1: WMH Aliens graphs

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.2: WMH Bait graphs
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WMH: Butterflies
Points Controller % Wins Score EoG victories EoG defeats

25 RS 100.00% 36.90 (3.98) 299.60 (40.82) -
18 OLMCTS 100.00% 36.60 (3.78) 255.40 (28.23) -
15 OLETS 90.00% 37.10 (3.80) 292.83 (52.88) 210.50 (33.59)
12 OSLA 35.00% 40.40 (4.29) 987.57 (102.22) 795.23 (136.05)
10 RHEA 5.00% 29.20 (2.86) 849.00 (0) 818.68 (108.01)

Table C.3

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.3: WMH Butterflies graphs
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WMH: Camel Race
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 0.00% -1.00 (0) - 79.00 (0)
25 OLMCTS 0.00% -1.00 (0) - 79.00 (0)
25 OSLA 0.00% -1.00 (0) - 79.00 (0)
25 RHEA 0.00% -1.00 (0) - 79.00 (0)
25 RS 0.00% -1.00 (0) - 79.00 (0)

Table C.4

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.4: WMH Camel Race graphs

WMH: Chase
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 70.00% 4.80 (0.36) 564.14 (81.89) 601.00 (122.06)
18 RS 20.00% 3.50 (0.39) 1099.25 (138.25) 849.62 (147.50)
15 OLMCTS 10.00% 3.50 (0.32) 969.00 (114.55) 1292.06 (99.55)
12 OSLA 5.00% 1.20 (0.32) 1093.00 (0) 1132.00 (93.81)
10 RHEA 0.00% 0.65 (0.26) - 1362.80 (66.93)

Table C.5
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.5: WMH Chase graphs

WMH: Chopper
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 30.00% 6.90 (1.02) 1288.33 (51.33) 1480.21 (19.07)
18 OLMCTS 10.00% 2.05 (1.39) 1315.00 (104.65) 1440.39 (23.94)
15 RS 10.00% 0.85 (1.34) 1341.00 (30.41) 1343.89 (52.27)
12 RHEA 0.00% -2.15 (0.86) - 425.50 (52.70)
10 OSLA 0.00% -9.40 (0.94) - 1119.70 (44.57)

Table C.6

WMH: Crossfire
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 55.00% 2.70 (0.57) 735.27 (103.56) 1465.89 (32.16)
18 OSLA 5.00% -0.70 (0.29) 726.00 (0) 381.00 (66.57)
15 RS 5.00% -0.70 (0.29) 1197.00 (0) 491.84 (96.77)
12 OLMCTS 0.0% 0.00 (0) - 1500.00 (0)
10 RHEA 0.00% -1.00 (0) - 84.25 (13.59)

Table C.7
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.6: WMH Chopper graphs

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.7: WMH Crossfire graphs
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WMH: Digdug
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 0.00% 18.40 (0.82) - 1433.15 (41.75)
18 RS 0.00% 18.20 (1.55) - 1500.00 (0)
15 OLMCTS 0.00% 15.35 (1.06) - 1500.00 (0)
12 OSLA 0.00% 5.15 (0.98) - 941.80 (97.14)
10 RHEA 0.00% 1.55 (0.76) - 348.05 (29.66)

Table C.8

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.8: WMH Digdug graphs

WMH: Escape
Points Controller % Wins Score EoG victories EoG defeats

25 RS 95.00% 0.90 (0.10) 257.58 (37.14) 993.00 (0)
18 OLETS 85.00% 0.85 (0.08) 118.59 (18.52) 1000.00 (0)
15 OSLA 70.00% 0.70 (0.10) 490.21 (51.94) 1000.00 (0)
12 OLMCTS 0.00% -0.05 (0.05) - 999.85 (0.15)
10 RHEA 0.00% -1.00 (0) - 104.40 (19.27)

Table C.9
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.9: WMH Escape graphs

WMH: Hungry Birds
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 65.00% 65.00 (10.67) 176.38 (22.77) 60.00 (0)
18 OLMCTS 0.00% 4.00 (2.68) - 465.00 (64.82)
15 RHEA 0.00% 0.00 (0) - 341.25 (50.00)
12 RS 0.00% 0.00 (0) - 318.75 (24.00)
10 OSLA 0.00% 0.00 (0) - 307.50 (47.46)

Table C.10

WMH: Infection
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 95.00% 25.30 (2.16) 720.00 (56.97) 1500.00 (0)
18 OLMCTS 90.00% 18.85 (1.92) 695.67 (57.00) 1500.00 (0)
15 RS 85.00% 19.50 (1.67) 876.00 (70.07) 1500.00 (0)
12 OSLA 85.00% 11.80 (1.26) 1032.53 (65.05) 1500.00 (0)
10 RHEA 55.00% 2.80 (1.29) 1040.36 (76.38) 1500.00 (0)

Table C.11
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.10: WMH Hungry Birds graphs

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.11: WMH Infection graphs
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WMH: Intersection
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 100.00% 34.50 (3.20) 1000.00 (0) -
18 OSLA 100.00% 4.70 (1.39) 1000.00 (0) -
15 RS 100.00% 4.15 (0.96) 1000.00 (0) -
12 OLMCTS 100.00% 1.00 (0) 1000.00 (0) -
10 RHEA 0.00% -25.00 (0) - 347.45 (32.89)

Table C.12

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.12: WMH Intersection graphs

WMH: Lemmings
Points Controller % Wins Score EoG victories EoG defeats

25 OSLA 0.00% 0.00 (0) - 1500.00 (0)
18 OLETS 0.00% -0.45 (0.17) - 1500.00 (0)
15 OLMCTS 0.00% -0.75 (0.19) - 1500.00 (0)
12 RS 0.00% -0.75 (0.35) - 1499.65 (0.26)
10 RHEA 0.00% -13.20 (1.63) - 315.30 (72.16)

Table C.13
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.13: WMH Lemmings graphs

WMH: Missile Command
Points Controller % Wins Score EoG victories EoG defeats

25 OLMCTS 75.00% 2.60 (0.54) 133.40 (10.31) 209.00 (0)
18 RS 60.00% 1.40 (0.50) 155.00 (13.20) 209.00 (0)
15 OLETS 15.00% -2.05 (0.40) 143.00 (26.94) 117.12 (5.71)
12 OSLA 5.00% -1.75 (0.29) 110.00 (0) 158.63 (13.76)
10 RHEA 0.00% -2.70 (0.16) - 124.85 (7.90)

Table C.14

WMH: Modality
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 100.00% 1.00 (0) 7.20 (0.27) -
18 OLMCTS 100.00% 1.00 (0) 10.95 (0.84) -
15 RS 100.00% 1.00 (0) 15.40 (1.38) -
12 OSLA 60.00% 0.60 (0.11) 130.42 (23.88) 1500.00 (0)
10 RHEA 50.00% 0.50 (0.11) 176.10 (48.73) 1500.00 (0)

Table C.15
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.14: WMH Missile Command graphs

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.15: WMH Modality graphs
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WMH: Plaque Attack
Points Controller % Wins Score EoG victories EoG defeats

25 RS 85.00% 35.95 (2.58) 532.00 (20.78) 489.67 (10.65)
18 OLMCTS 75.00% 36.25 (2.16) 482.27 (13.66) 605.00 (33.15)
15 OLETS 70.00% 23.50 (3.09) 573.29 (25.53) 358.67 (15.62)
12 OSLA 15.00% 13.05 (2.41) 615.00 (34.42) 467.76 (34.16)
10 RHEA 5.00% 7.85 (2.22) 579.00 (0) 404.05 (27.89)

Table C.16

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.16: WMH Plaque Attack graphs

WMH: Roguelike
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 0.00% 4.35 (1.46) - 499.10 (119.84)
18 RS 0.00% 0.75 (0.22) - 714.05 (105.24)
15 OLMCTS 0.00% 0.70 (0.19) - 880.50 (93.96)
12 OSLA 0.00% 0.35 (0.15) - 501.40 (55.88)
10 RHEA 0.00% 0.20 (0.11) - 538.20 (100.91)

Table C.17
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.17: WMH Roguelike graphs

WMH: Seaquest
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 65.00% 1184.00 (192.44) 1000.00 (0) 483.71 (131.51)
18 OLMCTS 30.00% 442.25 (149.97) 1000.00 (0) 610.50 (49.96)
15 RS 25.00% 231.20 (91.72) 1000.00 (0) 375.13 (44.08)
12 OSLA 15.00% 71.40 (49.37) 1000.00 (0) 529.47 (50.13)
10 RHEA 0.00% 4.20 (0.78) - 244.15 (30.78)

Table C.18

WMH: Survive Zombies
Points Controller % Wins Score EoG victories EoG defeats

25 RS 90.00% 7.05 (0.64) 1000.00 (0) 773.00 (82.02)
18 OLETS 90.00% 6.70 (0.64) 1000.00 (0) 771.50 (24.40)
15 OLMCTS 85.00% 6.20 (0.82) 1000.00 (0) 597.00 (51.86)
12 OSLA 85.00% 6.05 (0.74) 1000.00 (0) 697.33 (60.49)
10 RHEA 15.00% 2.35 (0.94) 1000.00 (0) 427.41 (45.49)

Table C.19
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(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.18: WMH Seaquest graphs

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.19: WMH Survive Zombies graphs
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WMH: Wait for Breakfast
Points Controller % Wins Score EoG victories EoG defeats

25 OLETS 100.00% 1.00 (0) 92.65 (13.71) -
18 OSLA 100.00% 1.00 (0) 218.70 (65.76) -
15 RS 95.00% 0.95 (0.05) 111.68 (40.76) 1500.00 (0)
12 RHEA 5.00% 0.05 (0.05) 50.00 (0) 95.05 (76.12)
10 OLMCTS 5.00% 0.05 (0.05) 1495.00 (0) 1500.00 (0)

Table C.20

(a) Victories (b) Score

(c) EoG ticks - victories (d) EoG ticks - defeats

Figure C.20: WMH Wait for Breakfast graphs
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C.2 Per Game Results: EMH

Each table contains the EMH results of one of the games displaying the information listed
below. The data is the final average resulting from the 20 gameplays of each agent. The
values in parenthesis in the table represent the corresponding Std. Deviation.

• Total number of points received in the game (Points)

• Agent (Controller)

• Average of percentage of the available level explored (% Explored)

• Average of game-ticks to the last new exploration (Game-tick last exploration)

For each game, it is also included the resulting graphs for the stats related to the
heuristic: map exploration percentage, and game ticks when the last new exploration
happened. They show the resulting stats of the 20 gameplays achieved by each agent, in
order: OLETS (blue), OLMCTS (red), OSLA (green), RHEA (purple), and RS (orange).

The games are included in alphabetic order.

EMH: Aliens
Points Controller % Explored Game-ticks last exploration

25 RS 100.00% (0) 98.10 (12.11)
18 OLETS 100.00% (0) 184.35 (24.35)
15 OLMCTS 100.00% (0) 202.45 (28.23)
12 OSLA 97.33% (2.60) 216.25 (42.62)
10 RHEA 64.00% (4.37) 395.00 (61.09)

Table C.21

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.21: EMH Aliens graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Bait
Points Controller % Explored Game-ticks last exploration

25 OLETS 66.67% (0) 5.25 (0.16)
18 RS 66.67% (0) 6.35 (0.32)
15 OSLA 66.67% (0) 7.80 (0.50)
12 OLMCTS 66.67% (0) 9.75 (0.57)
10 RHEA 66.67% (0) 44.95 (8.36)

Table C.22

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.22: EMH Bait graphs

EMH: Butterflies
Points Controller % Explored Game-ticks last exploration

25 OLETS 96.87% (1.35) 632.30 (62.30)
18 OLMCTS 95.27% (1.62) 746.30 (70.68)
15 RS 93.91% (2.99) 626.35 (73.45)
12 OSLA 73.67% (4.32) 621.90 (93.30)
10 RHEA 42.60% (3.16) 589.15 (70.07)

Table C.23

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.23: EMH Butterflies graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Camel Race
Points Controller % Explored Game-ticks last exploration

25 RS 23.71% (0.27) 78.90 (0.10)
18 OLMCTS 22.87% (0.34) 78.80 (0.19)
15 OSLA 20.61% (0.67) 76.45 (1.27)
12 OLETS 19.83% (0.42) 77.95 (0.80)
10 RHEA 7.83% (0.34) 65.15 (2.30)

Table C.24

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.24: EMH Camel Race graphs

EMH: Chase
Points Controller % Explored Game-ticks last exploration

25 OLETS 98.26% (0.73) 613.25 (55.40)
18 OLMCTS 93.30% (1.99) 611.20 (81.18)
15 RS 88.59% (3.56) 269.40 (41.26)
12 OSLA 84.19% (3.59) 451.25 (74.65)
10 RHEA 63.70% (2.72) 1282.05 (60.82)

Table C.25

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.25: EMH Chase graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Chopper
Points Controller % Explored Game-ticks last exploration

25 OLMCTS 99.59% (0.19) 549.20 (39.37)
18 RS 99.54% (0.19) 567.65 (51.22)
15 OLETS 98.40% (0.74) 502.05 (39.63)
12 OSLA 92.20% (2.10) 605.75 (44.36)
10 RHEA 35.54% (3.75) 369.50 (47.88)

Table C.26

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.26: EMH Chopper graphs

EMH: Crossfire
Points Controller % Explored Game-ticks last exploration

25 OLETS 81.13% (2.87) 1260.75 (73.42)
18 RS 37.81% (5.63) 197.80 (59.29)
15 OSLA 26.64% (4.02) 136.40 (27.63)
12 OLMCTS 13.75% (1.65) 962.95 (107.54)
10 RHEA 5.84% (0.55) 113.35 (22.05)

Table C.27

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.27: EMH Crossfire graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Digdug
Points Controller % Explored Game-ticks last exploration

25 RS 96.56% (0.37) 1448.90 (12.92)
18 OLETS 90.41% (0.89) 1457.50 (8.69)
15 OLMCTS 64.19% (1.45) 1453.10 (26.45)
12 OSLA 20.83% (3.26) 702.05 (131.43)
10 RHEA 7.11% (1.02) 515.95 (73.94)

Table C.28

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.28: EMH Digdug graphs

EMH: Escape
Points Controller % Explored Game-ticks last exploration

25 RS 51.62% (1.00) 113.60 (13.23)
18 OLETS 49.19% (1.27) 173.10 (25.48)
15 OSLA 47.97% (1.26) 239.90 (44.05)
12 RHEA 16.01% (1.85) 118.30 (20.90)
10 OLMCTS 14.32% (0.69) 886.20 (65.64)

Table C.29

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.29: EMH Escape graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Hungry Birds
Points Controller % Explored Game-ticks last exploration

25 OSLA 88.10% (2.40) 113.95 (11.70)
18 RS 87.91% (1.69) 112.45 (9.81)
15 OLETS 84.05% (3.08) 101.35 (9.38)
12 OLMCTS 81.46% (2.50) 116.30 (7.84)
10 RHEA 16.39% (1.53) 212.30 (20.72)

Table C.30

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.30: EMH Hungry Birds graphs

EMH: Infection
Points Controller % Explored Game-ticks last exploration

25 RS 85.64% (3.91) 434.75 (50.62)
18 OLETS 85.43% (3.66) 661.95 (71.50)
15 OLMCTS 79.06% (3.09) 753.30 (95.62)
12 RHEA 24.60% (1.29) 1095.10 (69.88)
10 OSLA 22.75% (1.75) 385.50 (48.67)

Table C.31

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.31: EMH Infection graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Intersection
Points Controller % Explored Game-ticks last exploration

25 RS 93.68% (1.57) 630.70 (48.73)
18 OLETS 89.79% (1.97) 567.95 (48.76)
15 OSLA 74.34% (4.00) 739.45 (52.01)
12 OLMCTS 53.54% (3.57) 333.00 (54.24)
10 RHEA 17.70% (0.84) 410.30 (53.70)

Table C.32

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.32: EMH Intersection graphs

EMH: Lemmings
Points Controller % Explored Game-ticks last exploration

25 RS 98.18% (0.29) 928.90 (41.71)
18 OLETS 97.75% (0.27) 1142.55 (40.24)
15 OLMCTS 71.31% (1.97) 1435.65 (18.47)
12 OSLA 51.58% (1.20) 1451.85 (8.42)
10 RHEA 7.14% (0.99) 309.50 (76.45)

Table C.33

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.33: EMH Lemmings graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Missile Command
Points Controller % Explored Game-ticks last exploration

25 RS 61.45% (5.30) 174.05 (17.59)
18 OLMCTS 40.76% (2.44) 148.70 (12.65)
15 OLETS 36.16% (2.40) 126.20 (11.10)
12 OSLA 24.07% (1.02) 92.30 (3.72)
10 RHEA 6.90% (0.50) 149.05 (10.15)

Table C.34

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.34: EMH Missile Command graphs

EMH: Modality
Points Controller % Explored Game-ticks last exploration

25 OSLA 96.00% (0.73) 27.60 (2.52)
18 RS 93.67% (0.32) 19.20 (0.46)
15 OLETS 93.33% (0) 22.85 (0.92)
12 OLMCTS 93.33% (0) 185.50 (27.29)
10 RHEA 88.00% (2.24) 123.85 (12.44)

Table C.35

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.35: EMH Modality graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Plaque Attack
Points Controller % Explored Game-ticks last exploration

25 RS 74.05% (1.49) 325.80 (8.42)
18 OLETS 73.66% (3.12) 392.85 (26.96)
15 OLMCTS 67.60% (1.88) 346.95 (16.89)
12 OSLA 24.82% (0.46) 190.30 (23.72)
10 RHEA 13.60% (0.90) 411.75 (25.82)

Table C.36

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.36: EMH Plaque Attack graphs

EMH: Roguelike
Points Controller % Explored Game-ticks last exploration

25 OLETS 42.22% (5.50) 551.70 (116.54)
18 RS 20.71% (1.77) 109.90 (14.47)
15 OLMCTS 17.61% (2.86) 268.20 (73.45)
12 OSLA 14.12% (1.15) 112.70 (21.89)
10 RHEA 4.51% (0.67) 343.90 (73.38)

Table C.37

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.37: EMH Roguelike graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Seaquest
Points Controller % Explored Game-ticks last exploration

25 RS 99.76% (0.23) 306.80 (13.39)
18 OLETS 91.01% (5.77) 462.60 (41.60)
15 OLMCTS 86.67% (1.62) 762.55 (44.17)
12 OSLA 42.28% (3.35) 499.25 (74.56)
10 RHEA 11.80% (1.23) 257.60 (32.92)

Table C.38

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.38: EMH Seaquest graphs

EMH: Survive Zombies
Points Controller % Explored Game-ticks last exploration

25 RS 97.60% (1.05) 426.65 (47.69)
18 OLETS 92.73% (3.20) 439.65 (58.64)
15 OSLA 90.99% (2.38) 508.95 (48.06)
12 OLMCTS 83.43% (0.76) 813.15 (54.72)
10 RHEA 43.64% (3.55) 494.30 (54.95)

Table C.39

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.39: EMH Survive Zombies graphs
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C. Full Results: Heuristic Diversification in GVGAI

EMH: Wait for Breakfast
Points Controller % Explored Game-ticks last exploration

25 OLMCTS 67.30% (4.25) 850.10 (106.67)
18 OLETS 50.30% (6.50) 220.00 (54.62)
15 RS 27.70% (5.06) 58.30 (19.51)
12 OSLA 23.60% (3.43) 151.85 (50.98)
10 RHEA 7.70% (1.31) 40.30 (18.96)

Table C.40

(a) Map exploration % (b) Game-ticks last new exploration

Figure C.40: EMH Wait for Breakfast graphs
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C. Full Results: Heuristic Diversification in GVGAI

C.3 Per Game Results: KDH

Each table contains the KDH results of one of the games displaying the information listed
below. The data is the final average resulting from the 20 gameplays of each agent. The
values in parenthesis in the table represent the corresponding Std. Deviation.

• Total number of points received in the game (Points)

• Agent (Controller)

• Average of the total number of sprites acknowledged (Sprites Ack.)

• Average of the unique interactions (Unique Int.)

• Average of the curiosity collisions (CC)

• Average of the curiosity actions-onto (CA)

• Average of game-ticks to the last sprite acknowledged (Game-ticks Ack.)

• Average of game-ticks to the last unique interaction (Game-ticks Int.)

• Average of game-ticks to the last curiosity collision achieved (Game-ticks CC)

• Average of game-ticks to the last curiosity action-onto achieved (Game-ticks CA)

After the tables, for each game, it is also included the resulting graphs for the stats
related to the heuristic: sprites acknowledged, unique interactions, curiosity collisions,
and curiosity actions-onto. They show the resulting stats of the 20 gameplays achieved
by each agent, in order: OLETS (blue), OLMCTS (red), OSLA (green), RHEA (purple),
and RS (orange).

The games are included in alphabetic order.
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI

K
D

H
:
C
am

el
R
ac

e
P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

O
L
E
T

S
7.

00
(0

)
1.

00
(0

)
24

.5
5

(0
.2

3)
0.

00
(0

)
68

.7
5

(0
.2

6)
0.

00
(0

)
73

.4
0

(0
.3

9)
0.

00
(0

)
18

O
L
M

C
T

S
7.

00
(0

)
1.

00
(0

)
23

.2
5

(1
.0

2)
0.

00
(0

)
70

.0
0

(0
)

0.
60

(0
.1

6)
76

.3
0

(1
.1

4)
0.

00
(0

)
15

R
S

7.
00

(0
)

1.
00

(0
)

14
.3

5
(0

.5
5)

0.
00

(0
)

70
.0

0
(0

)
1.

60
(0

.4
3)

76
.3

0
(0

.6
4)

0.
00

(0
)

12
R

H
E
A

7.
00

(0
)

1.
00

(0
)

14
.2

5
(0

.5
5)

0.
00

(0
)

70
.0

0
(0

)
1.

90
(0

.5
9)

69
.2

0
(1

.7
6)

0.
00

(0
)

10
O

S
L
A

7.
00

(0
)

1.
00

(0
)

8.
95

(0
.5

1)
0.

00
(0

)
79

.0
0

(0
)

0.
00

(0
)

58
.6

0
(3

.3
9)

0.
00

(0
)

T
ab

le
C

.4
4

K
D

H
:
C
ha

se
P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
S

4.
00

(0
)

3.
00

(0
)

83
.2

0
(4

.9
7)

0.
00

(0
)

19
4.

35
(3

2.
63

)
56

7.
90

(7
8.

53
)

56
7.

90
(7

8.
53

)
0.

00
(0

)
18

R
H

E
A

4.
00

(0
)

2.
95

(0
.0

5)
75

.0
5

(4
.5

6)
0.

00
(0

)
24

4.
30

(2
3.

83
)

42
1.

20
(4

2.
29

)
45

6.
90

(4
7.

31
)

0.
00

(0
)

15
O

L
M

C
T

S
4.

00
(0

)
2.

90
(0

.0
7)

87
.1

5
(5

.0
1)

0.
00

(0
)

15
9.

35
(2

1.
25

)
64

7.
00

(8
7.

29
)

68
0.

60
(8

0.
76

)
0.

00
(0

)
12

O
L
E
T

S
4.

00
(0

)
2.

85
(0

.0
8)

88
.0

5
(3

.7
1)

0.
00

(0
)

29
8.

55
(3

6.
96

)
76

1.
50

(8
4.

10
)

83
0.

25
(7

5.
27

)
0.

00
(0

)
10

O
S
L
A

3.
60

(0
.1

5)
2.

50
(0

.1
5)

66
.3

0
(3

.8
9)

0.
00

(0
)

62
2.

45
(9

6.
71

)
66

1.
05

(9
8.

02
)

10
08

.3
5

(9
2.

47
)

0.
00

(0
)

T
ab

le
C

.4
5

K
D

H
:
C
ho

pp
er

P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
S

9.
00

(0
)

6.
05

(0
.0

9)
11

0.
85

(2
.4

9)
26

.3
0

(0
.9

5)
83

.4
0

(5
.2

7)
55

6.
05

(8
5.

18
)

13
32

.3
5

(4
4.

21
)

13
46

.2
5

(3
5.

70
)

18
O

L
E
T

S
9.

00
(0

)
5.

95
(0

.0
5)

10
6.

20
(2

.1
6)

19
.7

0
(0

.9
9)

92
.5

5
(7

.3
6)

44
3.

45
(3

4.
65

)
11

53
.0

0
(5

5.
32

)
12

33
.4

0
(4

2.
84

)
15

O
S
L
A

9.
00

(0
)

5.
45

(0
.1

1)
63

.8
0

(4
.3

3)
16

.9
5

(1
.0

5)
14

0.
15

(1
1.

19
)

56
7.

00
(5

6.
62

)
11

24
.1

0
(5

2.
07

)
11

22
.3

0
(4

6.
50

)
12

R
H

E
A

8.
95

(0
.0

5)
6.

40
(0

.2
0)

69
.6

5
(5

.2
4)

9.
30

(1
.3

4)
89

.3
0

(9
.9

6)
63

6.
20

(5
5.

14
)

67
0.

20
(5

6.
74

)
59

6.
65

(6
0.

92
)

10
O

L
M

C
T

S
8.

95
(0

.0
5)

6.
05

(0
.1

9)
10

9.
20

(5
.6

5)
22

.5
5

(1
.5

7)
64

.2
0

(5
.7

9)
64

1.
30

(9
7.

75
)

12
38

.6
0

(8
2.

23
)

12
40

.8
5

(8
3.

18
)

T
ab

le
C

.4
6

310



C. Full Results: Heuristic Diversification in GVGAI

K
D

H
:
C
ro

ss
fi
re

P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
S

4.
00

(0
)

2.
00

(0
)

47
.4

0
(6

.2
9)

0.
00

(0
)

0.
00

(0
)

33
3.

90
(5

1.
72

)
33

3.
90

(5
1.

72
)

0.
00

(0
)

18
O

S
L
A

4.
00

(0
)

2.
00

(0
)

34
.3

0
(4

.2
4)

0.
00

(0
)

0.
00

(0
)

42
7.

20
(6

9.
87

)
42

7.
20

(6
9.

87
)

0.
00

(0
)

15
O

L
M

C
T

S
4.

00
(0

)
2.

00
(0

)
27

.7
5

(2
.4

7)
0.

00
(0

)
0.

00
(0

)
26

0.
50

(3
8.

31
)

26
0.

50
(3

8.
31

)
0.

00
(0

)
12

R
H

E
A

4.
00

(0
)

2.
00

(0
)

21
.9

0
(2

.1
7)

0.
00

(0
)

0.
00

(0
)

13
4.

05
(1

7.
69

)
13

4.
05

(1
7.

69
)

0.
00

(0
)

10
O

L
E
T

S
4.

00
(0

)
1.

30
(0

.1
0)

10
6.

20
(5

.7
2)

0.
00

(0
)

0.
00

(0
)

30
0.

80
(1

21
.5

9)
12

58
.3

5
(7

8.
49

)
0.

00
(0

)

T
ab

le
C

.4
7

K
D

H
:
D

ig
du

g
P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
H

E
A

8.
95

(0
.0

5)
8.

25
(0

.2
0)

53
.1

0
(6

.4
8)

15
6.

70
(2

2.
24

)
24

9.
60

(3
2.

39
)

57
4.

80
(8

6.
25

)
80

0.
15

(1
12

.2
0)

79
9.

10
(1

12
.9

2)
18

R
S

8.
95

(0
.0

5)
8.

05
(0

.1
8)

81
.9

5
(5

.1
1)

25
0.

45
(1

6.
24

)
19

2.
40

(2
1.

38
)

64
0.

60
(1

05
.0

5)
13

16
.5

5
(8

1.
76

)
13

13
.5

0
(8

2.
58

)
15

O
L
M

C
T

S
8.

95
(0

.0
5)

7.
90

(0
.1

7)
11

3.
75

(6
.9

6)
33

6.
25

(2
1.

82
)

13
7.

60
(1

5.
73

)
64

1.
45

(1
04

.1
8)

12
91

.5
5

(8
5.

03
)

12
97

.1
0

(8
6.

54
)

12
O

L
E
T

S
8.

80
(0

.0
9)

7.
60

(0
.1

3)
20

3.
50

(5
.4

1)
42

7.
90

(7
.5

9)
21

5.
05

(3
5.

03
)

59
0.

20
(1

00
.2

7)
14

52
.6

5
(1

1.
51

)
14

80
.0

5
(1

0.
90

)
10

O
S
L
A

7.
55

(0
.1

7)
6.

20
(0

.2
2)

10
3.

60
(1

0.
23

)
18

0.
95

(1
9.

38
)

22
6.

50
(7

0.
77

)
58

2.
55

(8
5.

59
)

91
2.

20
(1

13
.7

1)
91

0.
30

(1
17

.0
8)

T
ab

le
C

.4
8

K
D

H
:
E
sc

ap
e

P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
H

E
A

4.
00

(0
)

3.
00

(0
)

19
.3

0
(3

.1
5)

0.
00

(0
)

0.
00

(0
)

14
0.

45
(3

9.
45

)
14

0.
45

(3
9.

45
)

0.
00

(0
)

18
R

S
4.

00
(0

)
2.

60
(0

.1
1)

61
.0

5
(1

.2
2)

0.
00

(0
)

0.
00

(0
)

59
8.

75
(1

08
.3

1)
71

2.
75

(7
9.

62
)

0.
00

(0
)

15
O

L
M

C
T

S
4.

00
(0

)
2.

55
(0

.1
1)

18
.8

5
(2

.2
3)

0.
00

(0
)

0.
00

(0
)

55
3.

50
(1

09
.5

5)
95

8.
65

(2
7.

95
)

0.
00

(0
)

12
O

S
L
A

4.
00

(0
)

2.
10

(0
.0

7)
58

.7
0

(1
.1

9)
0.

00
(0

)
0.

00
(0

)
10

4.
85

(6
6.

73
)

69
3.

20
(4

1.
57

)
0.

00
(0

)
10

O
L
E
T

S
4.

00
(0

)
2.

00
(0

)
54

.4
0

(1
.3

8)
0.

00
(0

)
0.

00
(0

)
3.

75
(0

.2
0)

43
6.

75
(4

6.
07

)
0.

00
(0

)

T
ab

le
C

.4
9

311



C. Full Results: Heuristic Diversification in GVGAI

K
D

H
:
H

un
gr

y
B
ir
ds

P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
H

E
A

4.
00

(0
)

3.
15

(0
.1

6)
58

.7
0

(2
.1

2)
0.

00
(0

)
0.

00
(0

)
12

3.
05

(2
2.

14
)

24
0.

80
(6

.6
1)

0.
00

(0
)

18
R

S
4.

00
(0

)
2.

75
(0

.1
0)

63
.2

0
(1

.4
5)

0.
00

(0
)

0.
00

(0
)

49
.0

0
(1

1.
74

)
30

2.
60

(4
0.

68
)

0.
00

(0
)

15
O

L
M

C
T

S
4.

00
(0

)
2.

70
(0

.1
0)

56
.0

5
(2

.6
1)

0.
00

(0
)

0.
00

(0
)

58
.2

5
(1

6.
42

)
23

9.
90

(1
5.

91
)

0.
00

(0
)

12
O

L
E
T

S
4.

00
(0

)
2.

30
(0

.1
0)

71
.6

5
(0

.9
4)

0.
00

(0
)

0.
00

(0
)

21
.4

5
(6

.0
3)

25
0.

35
(3

.3
7)

0.
00

(0
)

10
O

S
L
A

4.
00

(0
)

2.
05

(0
.0

5)
18

.4
5

(1
.7

3)
0.

00
(0

)
0.

00
(0

)
14

.9
5

(1
1.

85
)

24
5.

30
(1

7.
07

)
0.

00
(0

)

T
ab

le
C

.5
0

K
D

H
:
In

fe
ct

io
n

P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
H

E
A

7.
00

(0
)

5.
25

(0
.1

6)
59

.2
5

(3
.7

5)
5.

60
(0

.5
5)

0.
00

(0
)

36
9.

25
(7

0.
37

)
99

4.
05

(7
1.

52
)

65
9.

75
(7

7.
10

)
18

R
S

7.
00

(0
)

4.
90

(0
.1

6)
57

.6
5

(3
.3

7)
5.

20
(0

.5
6)

0.
00

(0
)

43
1.

45
(7

7.
25

)
10

15
.3

0
(6

1.
12

)
59

2.
25

(7
8.

18
)

15
O

L
M

C
T

S
7.

00
(0

)
4.

75
(0

.2
1)

62
.6

0
(3

.8
2)

6.
60

(0
.5

7)
0.

00
(0

)
45

9.
60

(9
6.

45
)

86
0.

90
(7

3.
18

)
64

5.
75

(6
8.

26
)

12
O

L
E
T

S
7.

00
(0

)
4.

65
(0

.2
2)

57
.4

0
(3

.4
2)

6.
80

(0
.3

9)
0.

00
(0

)
65

5.
55

(7
8.

54
)

10
12

.3
5

(7
6.

66
)

79
7.

15
(6

5.
27

)
10

O
S
L
A

7.
00

(0
)

4.
45

(0
.2

4)
34

.3
5

(2
.0

1)
4.

30
(0

.5
0)

1.
80

(0
.3

5)
55

3.
85

(7
9.

83
)

11
02

.3
0

(7
0.

18
)

74
2.

00
(8

1.
36

)

T
ab

le
C

.5
1

K
D

H
:
In

te
rs

ec
ti
on

P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
S

6.
00

(0
)

5.
60

(0
.1

1)
87

.3
0

(4
.1

5)
0.

00
(0

)
0.

00
(0

)
31

7.
60

(5
9.

30
)

78
3.

30
(4

0.
30

)
0.

00
(0

)
18

O
L
E
T

S
6.

00
(0

)
5.

40
(0

.1
5)

74
.2

0
(3

.5
8)

0.
00

(0
)

0.
00

(0
)

30
3.

30
(6

7.
48

)
85

6.
50

(3
0.

22
)

0.
00

(0
)

15
O

S
L
A

6.
00

(0
)

4.
90

(0
.1

7)
65

.2
5

(2
.8

8)
0.

00
(0

)
0.

00
(0

)
32

5.
05

(6
9.

06
)

94
7.

70
(1

5.
49

)
0.

00
(0

)
12

R
H

E
A

6.
00

(0
)

4.
90

(0
.0

7)
35

.6
0

(1
.4

2)
0.

00
(0

)
0.

00
(0

)
79

.9
5

(1
8.

18
)

19
1.

40
(1

5.
71

)
0.

00
(0

)
10

O
L
M

C
T

S
6.

00
(0

)
4.

90
(0

.0
7)

35
.3

5
(1

.0
1)

0.
00

(0
)

0.
00

(0
)

46
.6

5
(7

.2
8)

65
8.

60
(6

4.
02

)
0.

00
(0

)

T
ab

le
C

.5
2

312



C. Full Results: Heuristic Diversification in GVGAI

K
D

H
:
L
em

m
in

gs
P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
H

E
A

7.
00

(0
)

2.
65

(0
.1

1)
60

.5
0

(5
.4

6)
71

.5
0

(6
.5

8)
0.

00
(0

)
45

0.
95

(1
03

.8
2)

92
6.

55
(1

04
.7

8)
91

8.
85

(1
06

.2
7)

18
R

S
7.

00
(0

)
2.

25
(0

.1
0)

86
.8

5
(3

.0
3)

97
.5

0
(2

.8
2)

0.
00

(0
)

37
8.

65
(1

44
.1

0)
12

81
.7

5
(4

5.
33

)
12

35
.4

5
(4

4.
34

)
15

O
L
M

C
T

S
7.

00
(0

)
2.

20
(0

.0
9)

85
.3

0
(1

.7
7)

10
5.

45
(2

.1
2)

0.
00

(0
)

30
1.

85
(1

33
.2

9)
11

01
.7

5
(6

3.
60

)
10

78
.7

0
(4

7.
40

)
12

O
L
E
T

S
7.

00
(0

)
2.

00
(0

)
10

0.
65

(2
.0

2)
11

0.
85

(2
.1

3)
0.

00
(0

)
4.

25
(0

.1
7)

99
8.

20
(4

8.
19

)
10

10
.2

0
(4

7.
07

)
10

O
S
L
A

7.
00

(0
)

2.
00

(0
)

47
.0

0
(2

.4
0)

57
.9

0
(3

.1
5)

0.
00

(0
)

7.
90

(1
.8

5)
13

17
.3

0
(3

9.
57

)
13

19
.9

5
(3

9.
87

)

T
ab

le
C

.5
3

K
D

H
:
M

is
si

le
C
om

m
an

d
P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

O
L
M

C
T

S
5.

00
(0

)
1.

65
(0

.1
1)

7.
15

(1
.2

9)
1.

50
(0

.2
1)

0.
00

(0
)

74
.7

5
(8

.7
3)

13
4.

10
(1

8.
91

)
67

.1
0

(1
2.

62
)

18
R

S
5.

00
(0

)
1.

65
(0

.1
3)

5.
40

(1
.0

4)
1.

35
(0

.1
8)

0.
00

(0
)

82
.5

0
(1

1.
13

)
12

0.
65

(1
9.

30
)

73
.0

5
(1

2.
13

)
15

O
L
E
T

S
5.

00
(0

)
1.

55
(0

.1
1)

3.
90

(0
.7

7)
0.

95
(0

.1
1)

0.
00

(0
)

72
.1

5
(7

.9
2)

10
0.

10
(1

9.
27

)
57

.1
0

(8
.9

7)
12

R
H

E
A

5.
00

(0
)

1.
50

(0
.1

1)
3.

60
(0

.8
2)

1.
00

(0
.1

2)
0.

00
(0

)
78

.1
5

(1
2.

10
)

97
.3

5
(1

9.
11

)
57

.0
0

(9
.1

9)
10

O
S
L
A

5.
00

(0
)

1.
10

(0
.1

4)
0.

90
(0

.2
8)

0.
75

(0
.1

2)
0.

00
(0

)
77

.2
5

(1
5.

69
)

61
.0

5
(2

0.
08

)
39

.7
5

(7
.2

4)

T
ab

le
C

.5
4

K
D

H
:
M

od
al

it
y

P
oi

nt
s

C
on

tr
ol

le
r

S
p
ri

te
s

A
ck

.
U

n
iq

u
e

In
t.

C
C

C
A

G
am

e-
ti

ck
s

A
ck

.
G

am
e-

ti
ck

s
In

t.
G

am
e-

ti
ck

s
C

C
G

am
e-

ti
ck

s
C

A
25

R
S

7.
00

(0
)

5.
00

(0
)

23
.1

0
(0

.0
7)

0.
00

(0
)

0.
00

(0
)

10
.5

0
(0

.8
9)

62
.2

5
(2

.3
1)

0.
00

(0
)

18
O

L
M

C
T

S
7.

00
(0

)
5.

00
(0

)
23

.0
0

(0
)

0.
00

(0
)

1.
30

(0
.3

2)
27

.7
0

(5
.0

8)
14

7.
90

(5
6.

72
)

0.
00

(0
)

15
R

H
E
A

7.
00

(0
)

5.
00

(0
)

20
.6

0
(0

.9
4)

0.
00

(0
)

3.
55

(0
.7

8)
81

.6
5

(1
0.

91
)

28
3.

45
(3

3.
38

)
0.

00
(0

)
12

O
L
E
T

S
6.

95
(0

.0
5)

5.
00

(0
)

23
.2

5
(0

.1
0)

0.
00

(0
)

9.
90

(1
.7

0)
7.

20
(0

.9
4)

57
.3

0
(1

.0
4)

0.
00

(0
)

10
O

S
L
A

6.
70

(0
.1

0)
5.

00
(0

)
23

.7
0

(0
.1

0)
0.

00
(0

)
53

.5
5

(1
2.

63
)

23
.3

5
(3

.4
9)

28
8.

20
(4

7.
55

)
0.

00
(0

)

T
ab

le
C

.5
5

313



C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.41: KDH Aliens graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.42: KDH Bait graphs
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.43: KDH Butterflies graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.44: KDH Camel Race graphs
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.45: KDH Chase graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.46: KDH Chopper graphs
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.47: KDH Crossfire graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.48: KDH Digdug graphs
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.49: KDH Escape graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.50: KDH Hungry Birds graphs
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.51: KDH Infection graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.52: KDH Intersection graphs
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.53: KDH Lemmings graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.54: KDH Missile Command graphs
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.55: KDH Modality graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.56: KDH Plaque Attack graphs
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.57: KDH Roguelike graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.58: KDH Seaquest graphs
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C. Full Results: Heuristic Diversification in GVGAI

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.59: KDH Survive Zombies graphs

(a) Sprites acknowledged (b) Unique interactions

(c) Curiosity collisions (d) Curiosity actions-onto

Figure C.60: KDH Wait for Breakfast graphs
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C. Full Results: Heuristic Diversification in GVGAI

C.4 Per Game Results: KEH

Each table contains the KEH results of one of the games displaying the information listed
below. The data is the final average resulting from the 20 gameplays of each agent.

• Total number of points received in the game (Points)

• Agent (Controller)

• Average of the square error obtained overall estimations (Avg. Square Error)

• Total number of interactions estimated (Interactions Estimated)

The games are included in alphabetic order.

KEH: Aliens
Points Controller Avg. Square Error Interactions Estimated

25 RS 1.11E-01 4
18 OLMCTS 1.18E-01 4
15 RHEA 1.20E-01 4
12 OSLA 1.21E-01 4
10 OLETS 1.25E-01 4

Table C.61

KEH: Bait
Points Controller Avg. Square Error Interactions Estimated

25 RHEA 2.04E+00 4
18 RS 2.43E+00 4
15 OLMCTS 2.54E+00 4
12 OLETS 3.25E+00 3
10 OSLA 4.33E+00 2

Table C.62

KEH: Butterflies
Points Controller Avg. Square Error Interactions Estimated

25 RS 2.38E-01 2
18 RHEA 2.41E-01 2
15 OLETS 2.50E-01 2
12 OSLA 2.52E-01 2
10 OLMCTS 2.53E-01 2

Table C.63
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C. Full Results: Heuristic Diversification in GVGAI

KEH: Camel Race
Points Controller Avg. Square Error Interactions Estimated

25 OLETS 2.25E-05 1
18 OSLA 6.15E-05 1
15 RHEA 3.38E-04 1
12 RS 4.66E-04 1
10 OLMCTS 8.49E-04 1

Table C.64

KEH: Chase
Points Controller Avg. Square Error Interactions Estimated

25 OLMCTS 1.67E-01 3
18 RS 1.67E-01 3
15 RHEA 1.67E-01 3
12 OLETS 5.00E-01 1
10 OSLA 5.00E-01 1

Table C.65

KEH: Chopper
Points Controller Avg. Square Error Interactions Estimated

25 RHEA 7.26E-02 7
18 OLMCTS 7.27E-02 7
15 OLETS 7.50E-02 7
12 RS 7.51E-02 7
10 OSLA 8.69E-02 6

Table C.66

KEH: Crossfire
Points Controller Avg. Square Error Interactions Estimated

25 OLMCTS 8.30E-06 3
18 OSLA 4.33E+00 2
15 RS 4.33E+00 2
12 RHEA 4.33E+00 2
10 OLETS 4.33E+00 2

Table C.67

KEH: Digdug
Points Controller Avg. Square Error Interactions Estimated

25 OSLA 1.50E-01 10
18 OLETS 1.51E-01 10
15 OLMCTS 1.52E-01 10
12 RS 1.53E-01 10
10 RHEA 1.55E-01 10

Table C.68
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C. Full Results: Heuristic Diversification in GVGAI

KEH: Escape
Points Controller Avg. Square Error Interactions Estimated

25 RHEA 0.00E+00 4
18 OLETS 6.71E-08 4
15 RS 5.81E-07 4
12 OLMCTS 2.50E-01 3
10 OSLA 5.00E-01 1

Table C.69

KEH: Hungry Birds
Points Controller Avg. Square Error Interactions Estimated

25 OLETS 1.40E-10 2
18 OLMCTS 1.50E-10 2
15 RS 3.27E-10 2
12 RHEA 3.32E-10 2
10 OSLA 7.47E-06 1

Table C.70

KEH: Infection
Points Controller Avg. Square Error Interactions Estimated

25 OLMCTS 8.33E-02 6
18 OLETS 8.60E-02 6
15 RHEA 8.82E-02 6
12 RS 9.07E-02 6
10 OSLA 9.14E-02 5

Table C.71

KEH: Intersection
Points Controller Avg. Square Error Interactions Estimated

25 OSLA 1.40E-07 2
18 RS 2.17E+00 6
15 OLMCTS 2.17E+00 6
12 RHEA 2.19E+00 6
10 OLETS 1.06E+01 5

Table C.72

KEH: Lemmings
Points Controller Avg. Square Error Interactions Estimated

25 OSLA 1.07E-05 3
18 RHEA 1.31E-05 3
15 OLMCTS 3.17E-05 3
12 RS 5.99E-05 3
10 OLETS 9.54E-05 3

Table C.73
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C. Full Results: Heuristic Diversification in GVGAI

KEH: Missile Command
Points Controller Avg. Square Error Interactions Estimated

25 RS 1.70E-01 2
18 OLMCTS 1.85E-01 2
15 RHEA 1.91E-01 2
12 OSLA 2.50E-01 2
10 OLETS 1.25E+00 1

Table C.74

KEH: Modality
Points Controller Avg. Square Error Interactions Estimated

25 OSLA 2.67E-08 2
18 OLETS 1.32E-07 5
15 OLMCTS 1.48E-06 5
12 RS 4.25E-03 5
10 RHEA 7.48E-03 5

Table C.75

KEH: Plaque Attack
Points Controller Avg. Square Error Interactions Estimated

25 OLMCTS 2.15E-01 4
18 RHEA 2.57E-01 4
15 RS 2.91E-01 4
12 OLETS 7.09E-01 4
10 OSLA 1.29E+00 4

Table C.76

KEH: Roguelike
Points Controller Avg. Square Error Interactions Estimated

25 OLETS 4.80E-09 3
18 OSLA 6.94E-08 3
15 OLMCTS 5.35E-03 5
12 RHEA 7.65E-03 5
10 RS 3.67E-02 6

Table C.77

KEH: Seaquest
Points Controller Avg. Square Error Interactions Estimated

25 OSLA 2.75E-02 8
18 RHEA 4.34E-02 8
15 RS 4.78E-02 8
12 OLETS 1.68E-01 8
10 OLMCTS 3.99E-01 8

Table C.78
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C. Full Results: Heuristic Diversification in GVGAI

KEH: Survive Zombies
Points Controller Avg. Square Error Interactions Estimated

25 RHEA 9.12E-02 4
18 OLMCTS 1.04E-01 4
15 OLETS 1.36E-01 4
12 RS 1.42E-01 4
10 OSLA 3.17E-01 3

Table C.79

KEH: Wait for Breakfast
Points Controller Avg. Square Error Interactions Estimated

25 OLMCTS 4.01E-02 7
18 OSLA 8.05E-02 5
15 RHEA 9.13E-02 7
12 RS 9.69E-02 7
10 OLETS 1.20E-01 7

Table C.80
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C. Full Results: Heuristic Diversification in GVGAI

C.5 Per Game Estimations: KEH

Each table contains the resulting predictions of one game and agent displaying, for each
of the sprites labelled with their corresponding stype, the information listed below. The
final prediction is the average (and corresponding standard deviation) resulting from the
20 gameplays of the agent.

• ID of the sprite (Stype)

• Ground truth, estimation of the agent, and accuracy of the prediction for each of
the possible types of interactions with that sprite:

– collision win (CW)

– collision score (CS)

– action-onto win (AW)

– action-onto score (AS)

The values in parenthesis represent the corresponding Std. Deviation. The games
are included in alphabetical order, and for each of them is included 5 different tables,
one per agent.

331



C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI

O
S
L
A

P
re

d
ic

ti
on

s:
H

un
gr

y
B
ir
ds

S
ty

p
e

G
ro

u
n
d

T
ru

th
E
st

im
at

io
n
s

A
cc

u
ra

cy
S
qu

ar
e

E
rr

or
C

W
C

S
A
W

A
S

C
W

C
S

A
W

A
S

C
W

C
S

A
W

A
S

0
0

0
-

-
-0

.0
1

(0
.0

0)
0.

00
(0

.0
0)

-
-

2.
99

E
-0

5
0.

00
E

+
00

-
-

T
ab

le
C

.1
26

O
L
E
T

S
P

re
d
ic

ti
on

s:
H

un
gr

y
B
ir
ds

S
ty

p
e

G
ro

u
n
d

T
ru

th
E
st

im
at

io
n
s

A
cc

u
ra

cy
S
qu

ar
e

E
rr

or
C

W
C

S
A
W

A
S

C
W

C
S

A
W

A
S

C
W

C
S

A
W

A
S

0
0

0
-

-
-0

.0
0

(0
.0

0)
0.

00
(0

.0
0)

-
-

5.
61

E
-1

0
0.

00
E

+
00

-
-

5
0

0
-

-
0.

00
(0

.0
0)

0.
00

(0
.0

0)
-

-
0.

00
E

+
00

0.
00

E
+

00
-

-

T
ab

le
C

.1
27

O
L
M

C
T

S
P

re
d
ic

ti
on

s:
H

un
gr

y
B
ir
ds

S
ty

p
e

G
ro

u
n
d

T
ru

th
E
st

im
at

io
n
s

A
cc

u
ra

cy
S
qu

ar
e

E
rr

or
C

W
C

S
A
W

A
S

C
W

C
S

A
W

A
S

C
W

C
S

A
W

A
S

0
0

0
-

-
-0

.0
0

(0
.0

0)
0.

00
(0

.0
0)

-
-

5.
98

E
-1

0
0.

00
E

+
00

-
-

5
0

0
-

-
0.

00
(0

.0
0)

0.
00

(0
.0

0)
-

-
0.

00
E

+
00

0.
00

E
+

00
-

-

T
ab

le
C

.1
28

352



C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI

R
H

E
A

P
re

d
ic

ti
on

s:
In

te
rs

ec
ti
on

S
ty

p
e

G
ro

u
n
d

T
ru

th
E
st

im
at

io
n
s

A
cc

u
ra

cy
S
qu

ar
e

E
rr

or
C

W
C

S
A
W

A
S

C
W

C
S

A
W

A
S

C
W

C
S

A
W

A
S

0
0

0
-

-
0.

00
(0

.0
0)

0.
00

(0
.0

0)
-

-
0.

00
E

+
00

0.
00

E
+

00
-

-
5

0
10

-
-

0.
00

(0
.0

0)
10

.0
0

(0
.0

0)
-

-
0.

00
E

+
00

0.
00

E
+

00
-

-
6

0
0

-
-

-0
.3

2
(0

.0
4)

-5
.0

1
(0

.0
0)

-
-

1.
02

E
-0

1
2.

51
E

+
01

-
-

10
-1

-5
-

-
-0

.2
9

(0
.0

5)
-5

.0
2

(0
.0

0)
-

-
4.

98
E

-0
1

3.
14

E
-0

4
-

-
12

-1
-5

-
-

-0
.2

6
(0

.0
7)

-5
.1

3
(0

.0
6)

-
-

5.
50

E
-0

1
1.

61
E

-0
2

-
-

15
0

0
-

-
0.

00
(0

.0
0)

0.
00

(0
.0

0)
-

-
0.

00
E

+
00

0.
00

E
+

00
-

-

T
ab

le
C

.1
39

R
S

P
re

d
ic

ti
on

s:
In

te
rs

ec
ti
on

S
ty

p
e

G
ro

u
n
d

T
ru

th
E
st

im
at

io
n
s

A
cc

u
ra

cy
S
qu

ar
e

E
rr

or
C

W
C

S
A
W

A
S

C
W

C
S

A
W

A
S

C
W

C
S

A
W

A
S

0
0

0
-

-
0.

00
(0

.0
0)

0.
00

(0
.0

0)
-

-
4.

12
E

-0
6

0.
00

E
+

00
-

-
5

0
10

-
-

0.
00

(0
.0

0)
10

.0
0

(0
.0

0)
-

-
0.

00
E

+
00

0.
00

E
+

00
-

-
6

0
0

-
-

-0
.6

3
(0

.0
4)

-5
.0

1
(0

.0
0)

-
-

4.
02

E
-0

1
2.

51
E

+
01

-
-

10
-1

-5
-

-
-0

.6
6

(0
.0

4)
-5

.0
1

(0
.0

0)
-

-
1.

17
E

-0
1

1.
79

E
-0

4
-

-
12

-1
-5

-
-

-0
.3

8
(0

.0
8)

-5
.0

4
(0

.0
1)

-
-

3.
85

E
-0

1
1.

79
E

-0
3

-
-

15
0

0
-

-
0.

00
(0

.0
0)

0.
00

(0
.0

0)
-

-
2.

89
E

-0
6

0.
00

E
+

00
-

-

T
ab

le
C

.1
40

357



C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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C. Full Results: Heuristic Diversification in GVGAI
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Appendix D

Full Results: Team of Agents Generated per Game

This appendix contains the graphs that constitute the resulting team for each of the
games and set of enabled heuristics from Chapter 6. The graphs included are organised
by game, as follows:

• Team generated for Butterflies, displaying B2 and B3 results together for compar-
ison (D.1).

• Team generated for Zelda, Z5 (D.2).

• Team generated for Digdug, D5 (D.3).

• Team generated for Sheriff, S4 (D.4).
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D. Full Results: Team of Agents Generated per Game

D.1 Butterflies Team Assemble (B2 and B3 Comparison)

Each figure contains the MAP-Elites generated for the same pair of features for Butterflies
for two different experiments, one corresponding to B2 and the other to B3. Their results
have been included side to side for easy comparison. Each graph contains the following
information:

• Title showing the game and number of elites (agents) generated.

• Features (resulting stats) constituting the axis of the map.

• Heatmap representing the MAP-Elites.

• The legend represents the final average of game-ticks to EoG of each agent.

(a) B2 (b) B3

Figure D.1: Features: Collisions and Score.

(a) B2 (b) B3

Figure D.2: Features: Curiosity and Collisions.
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D. Full Results: Team of Agents Generated per Game

(a) B2 (b) B3

Figure D.3: Features: Curiosity and Score.

(a) B2 (b) B3

Figure D.4: Features: Exploration percentage and Collisions.

(a) B2 (b) B3

Figure D.5: Features: Exploration percentage and Curiosity.
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D. Full Results: Team of Agents Generated per Game

(a) B2 (b) B3

Figure D.6: Features: Exploration percentage and Score.

(a) B2 (b) B3

Figure D.7: Features: Wins and Collisions.

(a) B2 (b) B3

Figure D.8: Features: Wins and Curiosity.
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D. Full Results: Team of Agents Generated per Game

(a) B2 (b) B3

Figure D.9: Features: Wins and Exploration percentage.

(a) B2 (b) B3

Figure D.10: Features: Wins and Score.

380



D. Full Results: Team of Agents Generated per Game

D.2 Zelda Team Assemble

Each figure contains the MAP-Elites generated for a pair of features for Zelda. Each
graph contains the following information:

• Title showing the game and number of elites (agents) generated.

• Features (resulting stats) constituting the axis of the map.

• Heatmap representing the MAP-Elites.

• The legend represents the final average of game-ticks to EoG of each agent.

Figure D.11: Features: Curiosity and In-
teractions.

Figure D.12: Features: Curiosity and
Kills.

Figure D.13: Features: Curiosity and
Score.

Figure D.14: Features: Exploration per-
centage and Curiosity.
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D. Full Results: Team of Agents Generated per Game

Figure D.15: Features: Exploration per-
centage and Interactions.

Figure D.16: Features: Exploration per-
centage and Kills.

Figure D.17: Features: Exploration per-
centage and Score.

Figure D.18: Features: Interactions and
Kills.

Figure D.19: Features: Interactions and
Score.

Figure D.20: Features: Wins and Curios-
ity.
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D. Full Results: Team of Agents Generated per Game

Figure D.21: Features: Wins and Explo-
ration percentage.

Figure D.22: Features: Wins and Interac-
tions.

Figure D.23: Features: Wins and Kills. Figure D.24: Features: Wins and Score.
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D. Full Results: Team of Agents Generated per Game

D.3 Digdug Team Assemble

Each figure contains the MAP-Elites generated for a pair of features for Digdug. Each
graph contains the following information:

• Title showing the game and number of elites (agents) generated.

• Features (resulting stats) constituting the axis of the map.

• Heatmap representing the MAP-Elites.

• The legend represents the final average of game-ticks to EoG of each agent.

Figure D.25: Features: Curiosity x Inter-
actions. Figure D.26: Features: Curiosity x Items.

Figure D.27: Features: Curiosity x Kills. Figure D.28: Features: Curiosity x Score.
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D. Full Results: Team of Agents Generated per Game

Figure D.29: Features: Exploration per-
centage x Curiosity.

Figure D.30: Features: Exploration per-
centage x Interactions.

Figure D.31: Features: Exploration per-
centage x Items.

Figure D.32: Features: Exploration per-
centage x Kills.

Figure D.33: Features: Exploration per-
centage x Score.

Figure D.34: Features: Interactions x
Items.
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D. Full Results: Team of Agents Generated per Game

Figure D.35: Features: Interactions x
Kills.

Figure D.36: Features: Interactions x
Score.

Figure D.37: Features: Kills x Items. Figure D.38: Features: Wins x Curiosity.

Figure D.39: Features: Wins x Explo-
ration percentage.

Figure D.40: Features: Wins x Interac-
tions.
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D. Full Results: Team of Agents Generated per Game

Figure D.41: Features: Wins x Items. Figure D.42: Features: Wins x Kills.

Figure D.43: Features: Wins x Score.
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D. Full Results: Team of Agents Generated per Game

D.4 Sheriff Team Assemble

Each figure contains the MAP-Elites generated for a pair of features for Sheriff. Each
graph contains the following information:

• Title showing the game and number of elites (agents) generated.

• Features (resulting stats) constituting the axis of the map.

• Heatmap representing the MAP-Elites.

• The legend represents the final average of game-ticks to EoG of each agent.

Figure D.44: Features: Curiosity x Inter-
actions. Figure D.45: Features: Curiosity x Kills.

Figure D.46: Features: Curiosity x Score.
Figure D.47: Features: Exploration per-
centage x Curiosity.
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D. Full Results: Team of Agents Generated per Game

Figure D.48: Features: Exploration per-
centage x Interactions.

Figure D.49: Features: Exploration per-
centage x Kills.

Figure D.50: Features: Exploration per-
centage x Score.

Figure D.51: Features: Interactions x
Kills.

Figure D.52: Features: Interactions x
Score. Figure D.53: Features: Kills x Score.

389



D. Full Results: Team of Agents Generated per Game

Figure D.54: Features: Wins x Curiosity.
Figure D.55: Features: Wins x Explo-
ration percentage.

Figure D.56: Features: Wins x Interac-
tions. Figure D.57: Features: Wins x Kills.

Figure D.58: Features: Wins x Score.
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Appendix E

Full Results: Team Portability to New Levels

This appendix contains the results from the portability experiments described in Chap-
ter 7, gathered by each of the games used as follows:

• Butterflies (E.1).

• Zelda (E.2).

• Digdug (E.3).

• Sheriff (E.4).

For each game, I include two types of tables. One contains the resulting stats of each
behaviour-type agent across all levels, and the other, the collective resulting stats of every
agent in each level. The stats related to the competence of the agent are highlighted.
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E. Full Results: Team Portability to New Levels

E.1 Portability Results in Butterflies

Two types of tables are included. First, each table contains the final stats of a particular
agent across all the levels used for Butterflies. Last, each table gathers the stats by level,
displaying the results of the different behaviour-type agents in it.

In the tables, the stats related to the competence of the corresponding behaviour-type
are highlighted. Also, information about relevant maximum values for each of the levels
is included for reference.

E1 (Low scorer)
Features lvl 7.2a lvl 7.19a lvl 7.19b lvl 7.19c lvl 7.19d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Score 64 38 58 38 18

Gameplay Results
EoG 95.41 102.64 120.84 81.03 78.68
Win rate 100% 100% 100% 100% 85.00%
Score 20.44 29.58 43.56 21.2 12.64
Exploration % 42.04% 44.26% 50.70% 33.77% 32.25%
Unique interactions 1.34 1.2 1.36 1.13 1.48
Curiosity 7.84 13.19 17.59 9.25 5.89
Collisions 7.89 13.33 17.84 9.29 6.25
Interactions 7.89 13.33 17.84 9.29 6.25

Table E.1: Butterflies: Per-level portability results for E1 (Low scorer).

E2 (High scorer)
Features lvl 7.2a lvl 7.19a lvl 7.19b lvl 7.19c lvl 7.19d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Score 64 38 58 38 18

Gameplay Results
EoG 1866.53 1927.34 1753.88 1988.18 959.46
Win rate 33% 32% 25% 28.99% 9%
Score 47.76 30.78 51.1 22.58 11.86
Exploration % 98.45% 99.20% 99.29% 100% 78.05%
Unique interactions 2 2 2 2 1.94
Curiosity 125.97 104.28 127.64 85.56 74.79
Collisions 380.85 315.50 312.38 265 254.69
Interactions 380.85 315.50 312.38 265 254.69

Table E.2: Butterflies: Per-level portability results for E2 (High scorer).
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E. Full Results: Team Portability to New Levels

E3 (High curiosity)
Features lvl 7.2a lvl 7.19a lvl 7.19b lvl 7.19c lvl 7.19d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Walls (trees) 102 93 91 83 99
Butterflies 6 12 12 10 7

Gameplay Results
EoG 1704.40 1981.48 1611.16 1987.38 862.94
Win rate 6% 5% 0% 2% 4%
Score 46.08 30.98 51.7 22.16 11.22
Exploration % 68.05% 60.77% 64.66% 45.66% 42.82%
Unique interactions 2 2 2 2 1.91
Curiosity 116.53 98.99 116.38 82.13 76.38
Collisions 1436.82 1754.85 1362.33 1780.46 715.56
Interactions 1436.82 1754.85 1362.33 1780.46 715.56

Table E.3: Butterflies: Per-level portability results for E3 (High curiosity).

E4 (Speed-runner)
Features lvl 7.2a lvl 7.19a lvl 7.19b lvl 7.19c lvl 7.19d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000

Gameplay Results
EoG 102.15 103.49 114.38 73.61 61.13
Win rate 100% 100% 99% 100% 89%
Score 21.1 29.68 46.44 21.32 13.28
Exploration % 41.17% 42.08% 45.85% 29.02% 25.60%
Unique interactions 1.96 1.91 1.97 1.68 1.8
Curiosity 11.79 14.91 20.95 10.2 6.66
Collisions 12.2 15.26 21.77 10.35 6.97
Interactions 12.2 15.26 21.77 10.35 6.97

Table E.4: Butterflies: Per-level portability results for E4 (Speed-runner).
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E. Full Results: Team Portability to New Levels

E5 (High explorer)
Features lvl 7.2a lvl 7.19a lvl 7.19b lvl 7.19c lvl 7.19d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Open locations 206 215 217 225 209

Gameplay Results
EoG 1886.98 1951.63 1753.26 1967.24 793.78
Win rate 21% 27% 6.99% 28.99% 8%
Score 46.96 31.26 52.24 22.62 12.54
Exploration % 99.29% 99.30% 99.33% 99.77% 74.56%
Unique interactions 2 2 2 2 1.97
Curiosity 128.95 106.08 129.88 84.93 73.98
Collisions 524.31 442.26 423.59 362.27 258.09
Interactions 524.31 442.26 423.59 362.27 258.09

Table E.5: Butterflies: Per-level portability results for E5 (High explorer).

E6 (Walls interaction)
Features lvl 7.2a lvl 7.19a lvl 7.19b lvl 7.19c lvl 7.19d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Walls (trees) 102 93 91 83 99
Butterflies 6 12 12 10 7
Open locations 206 215 217 225 209

Gameplay Results
EoG 1557.9 1924.17 1612.95 1990.3 860.37
Win rate 10% 12% 3% 3% 5%
Score 44.54 31.12 51.78 22.34 11.24
Exploration % 67.43% 60.28% 68.15% 44.60% 43.25%
Unique interactions 2 2 2 2 1.96
Curiosity 114.59 96.53 120.46 79.86 75.16
Collisions 1296.68 1683.06 1351.35 1801.41 708.53
Interactions 1296.68 1683.06 1351.35 1801.41 708.53

Table E.6: Butterflies: Per-level portability results for E6 (Walls interaction).
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E. Full Results: Team Portability to New Levels

Level 7.2a
Info

Butterflies 6
Cocoons 27
Open locations 206
Walls (trees) 102

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 95.41 1866.53 1704.40 102.15 1886.98 1557.9
Win rate - 100% 33% 6% 100% 21% 10%
Score 64 20.44 47.76 46.08 21.1 46.96 44.54
Exploration % - 42.04% 98.45% 68.05% 41.17% 99.29% 67.43%
Unique interactions - 1.34 2 2 1.96 2 2
Curiosity - 7.84 125.97 116.53 11.79 128.95 114.59
Collisions - 7.89 380.85 1436.82 12.2 524.31 1296.68
Interactions - 7.89 380.85 1436.82 12.2 524.31 1296.68

Table E.7: Butterflies: Per-agent portability results for Level 7.2a (original).

Level 7.19a
Info

Butterflies 12
Cocoons 8
Open locations 215
Walls (trees) 93

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 102.64 1927.34 1981.48 103.49 1951.63 1924.17
Win rate - 100% 32% 5% 100% 27% 12%
Score 38 29.58 30.78 30.98 29.68 31.269 31.12
Exploration % - 44.26% 99.20% 60.77% 42.08% 99.30% 60.28%
Unique interactions - 1.2 2 2 1.91 2 2
Curiosity - 13.19 104.28 98.99 14.91 106.08 96.53
Collisions - 13.33 315.50 1754.85 15.26 442.26 1683.06
Interactions - 13.33 315.50 1754.85 15.26 442.26 1683.06

Table E.8: Butterflies: Per-agent portability results for Level 7.19a.
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E. Full Results: Team Portability to New Levels

Level 7.19b
Info

Butterflies 12
Cocoons 18
Open locations 217
Walls (trees) 91

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 120.84 1753.88 1611.16 114.38 1753.26 1612.95
Win rate - 100% 25% 0% 99% 6.99% 3%
Score 58 43.56 51.1 51.7 46.44 52.24 51.78
Exploration % - 50.70% 99.29% 64.66% 45.85% 99.33% 68.15%
Unique interactions - 1.36 2 2 1.97 2 2
Curiosity - 17.59 127.64 116.38 20.95 129.88 120.46
Collisions - 17.84 312.38 1362.33 21.77 423.59 1351.35
Interactions - 17.84 312.38 1362.33 21.77 423.59 1351.35

Table E.9: Butterflies: Per-agent portability results for Level 7.19b.

Level 7.19c
Info

Butterflies 10
Cocoons 10
Open locations 225
Walls (trees) 83

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 81.03 1988.18 1987.38 73.61 1967.24 1990.3
Win rate - 100% 28.99% 2% 100% 28.99% 3%
Score 38 21.2 22.58 22.16 21.32 22.62 22.34
Exploration % - 33.77% 100% 45.66% 29.02% 99.77% 44.6%
Unique interactions - 1.13 2 2 1.68 2 2
Curiosity - 9.25 85.56 82.13 10.2 84.93 79.86
Collisions - 9.29 265 1780.46 10.35 362.27 1801.41
Interactions - 9.29 265 1780.46 10.35 362.27 1801.41

Table E.10: Butterflies: Per-agent portability results for Level 7.19c.
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E. Full Results: Team Portability to New Levels

Level 7.19d
Info

Butterflies 7
Cocoons 3
Open locations 209
Walls (trees) 99

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 78.68 959.46 862.94 61.13 793.78 860.37
Win rate - 85% 9% 4% 89% 8% 5%
Score 18 12.64 11.86 11.22 13.28 12.54 11.24
Exploration % - 32.25% 78.05% 42.82% 25.60% 74.56% 43.25%
Unique interactions - 1.48 1.94 1.91 1.8 1.97 1.96
Curiosity - 5.89 74.79 76.38 6.66 73.98 75.16
Collisions - 6.25 254.69 715.56 6.97 258.09 708.53
Interactions - 6.25 254.69 715.56 6.97 258.09 708.53

Table E.11: Butterflies: Per-agent portability results for Level 7.19d.
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E. Full Results: Team Portability to New Levels

E.2 Portability results in Zelda

Two types of tables are included. First, each table contains the final stats of a particular
agent across all the levels used for Zelda. Last, each table gathers the stats by level,
displaying the results of the different behaviour-type agents in it.

In the tables, the stats related to the competence of the corresponding behaviour-type
are highlighted. Also, information about relevant maximum values for each of the levels
is included for reference.

E1 (High scorer)
Features lvl 7.2b lvl 7.28a lvl 7.28b lvl 7.28c lvl 7.28d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Score 14 14 14 18 14

Gameplay Results
EoG 1892.14 1871.92 1794.14 1942.7 1741.66
Win rate 0% 0% 0% 1% 0%
Score 12.25 12.11 11.70 16.44 11.55
Exploration % 96.27% 96.12% 93.87% 97.35% 91.62%
Unique interactions 5.07 5 4.8 5.22 3.89
Curiosity 57.75 51.06 63.43 48.66 50.53
Collisions 90.87 74.09 106.94 62.07 83.28
Hits 5.65 5.61 5.45 7.72 5.31
Interactions 96.52 79.7 112.39 69.79 88.59
Kills 5.65 5.61 5.45 7.72 5.31
Items 0.97 0.95 0.90 0.98 0.96

Table E.12: Zelda: Per-level portability results for E1 (High scorer).
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E. Full Results: Team Portability to New Levels

E2 (Speed-runner)
Features lvl 7.2b lvl 7.28a lvl 7.28b lvl 7.28c lvl 7.28d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000

Gameplay Results
EoG 617.18 1187.98 1242.26 689.03 450.86
Win rate 90% 76% 65% 89% 96%
Score 6.52 9.17 9.68 8.74 5.95
Exploration % 72.65% 94.17% 92.42% 76.76% 58.175%
Unique interactions 4.02 5.19 5.13 4.64 3.53
Curiosity 42.74 69.57 75.72 41.74 27.72
Collisions 87.05 178.73 223.01 76.32 57.02
Hits 2.38 3.79 4.04 3.51 2.05
Interactions 89.43 182.52 227.04 79.82 59.06
Kills 2.38 3.79 4.04 3.51 2.05
Items 0.96 0.96 0.97 0.95 0.98

Table E.13: Zelda: Per-level portability results for E2 (Speed-runner).

E3 (High explorer)
Features lvl 7.2b lvl 7.28a lvl 7.28b lvl 7.28c lvl 7.28d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Open locations 126 130 114 138 120

Gameplay Results
EoG 1905.62 1845.61 1872.29 1941.68 1808.31
Win rate 10% 3% 3% 11% 8%
Score 11.39 11.13 11.25 15.38 11.39
Exploration % 98.03% 95.36% 95.25% 98.31% 93.33%
Unique interactions 4.9 5.05 5.07 5.34 3.93
Curiosity 64.12 57.31 72.87 57.97 59
Collisions 102.91 84.35 130.35 81.57 101.84
Hits 5.18 5.12 5.18 7.13 5.2
Interactions 108.09 89.46 135.53 88.80 107.04
Kills 5.18 5.12 5.18 7.13 5.2
Items 0.99 0.95 0.95 0.99 0.97

Table E.14: Zelda: Per-level portability results for E3 (High explorer).
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E. Full Results: Team Portability to New Levels

E4 (Low killer)
Features lvl 7.2b lvl 7.28a lvl 7.28b lvl 7.28c lvl 7.28d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
NPCs (monsters) 6 6 6 8 6

Gameplay Results
EoG 548.03 1277.5 1162.81 985.01 445.86
Win rate 94% 73% 60% 79% 98%
Score 5.06 8.15 7.32 8.59 5.47
Exploration % 65.06% 94.11% 86.64% 83.23% 58.30%
Unique interactions 3.19 4.61 4.59 4.21 3.21
Curiosity 24.78 52.02 55.54 36.63 18.34
Collisions 34.73 80.79 99.53 54.18 26.9
Hits 1.62 3.25 2.97 3.53 1.79
Interactions 36.35 84.04 102.5 57.71 28.68
Kills 1.62 3.25 2.97 3.53 1.79
Items 0.97 0.97 0.91 0.89 1

Table E.15: Zelda: Per-level portability results for E4 (Low killer).

E5 (High killer + high explorer)
Features lvl 7.2b lvl 7.28a lvl 7.28b lvl 7.28c lvl 7.28d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
NPCs (monsters) 6 6 6 8 6
Open locations 126 130 114 138 120

Gameplay Results
EoG 1943.6 1920.91 1829.95 1964.87 1849.12
Win rate 1% 1% 4% 13% 12%
Score 12.35 12.26 11.75 16.53 11.89
Exploration % 97.19% 97.93% 94.71% 98.61% 94%
Unique interactions 5.06 5.50 5.26 5.37 3.95
Curiosity 81.21 76.27 86.48 72.96 69.74
Collisions 132.98 116.94 160.69 103.38 131.33
Hits 5.68 5.66 5.44 7.71 5.41
Interactions 138.65 122.60 166.13 111.09 136.74
Kills 5.68 5.66 5.44 7.71 5.41
Items 0.99 0.99 0.94 0.99 1

Table E.16: Zelda: Per-level portability results for E5 (High killer + high explorer).
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E6 (High killer + low explorer)
Features lvl 7.2b lvl 7.28a lvl 7.28b lvl 7.28c lvl 7.28d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
NPCs (monsters) 6 6 6 8 6
Open locations 126 130 114 138 120

Gameplay Results
EoG 2000 2000 1949.72 1904.54 1979.58
Win rate 0% 0% 0% 0% 0%
Score 9.94 10.43 8.51 14.74 8.11
Exploration % 48.38% 50.66% 42.25% 54.79% 35.73%
Unique interactions 3.94 4.61 3.87 4.34 3.44
Curiosity 33.34 32.13 32.90 34.85 27.44
Collisions 124.97 108 145.86 100.17 128.42
Hits 4.78 5.17 4.21 7.26 3.77
Interactions 129.75 113.17 150.07 107.43 132.19
Kills 4.78 5.17 4.21 7.26 3.77
Items 0.35 0.07 0.08 0.22 0.58

Table E.17: Zelda: Per-level portability results for E6 (High killer + low explorer).

Level 7.2b
Info

Open locations 126
Walls 90

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1892.14 617.18 1905.62 548.03 1943.6 2000
Win rate - 0% 90% 10% 94% 1% 0%
Score 14 12.25 6.52 11.39 5.06 12.35 9.94
Exploration % - 96.27% 72.65% 98.03% 65.06% 97.19% 48.38%
Unique interactions - 5.07 4.02 4.9 3.19 5.06 3.94
Curiosity - 57.75 42.74 64.12 24.78 81.21 33.34
Collisions - 90.87 87.05 102.91 34.73 132.98 124.97
Hits - 5.65 2.38 5.18 1.62 5.68 4.78
Interactions - 96.52 89.43 108.09 36.35 138.65 129.75
Kills 6 5.65 2.38 5.18 1.62 5.68 4.78
Items 1 0.97 0.96 0.99 0.97 0.99 0.35

Table E.18: Zelda: Per-agent portability results for Level 7.2b (original).
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Level 7.28a
Info

Open locations 130
Walls 86

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1871.92 1187.98 1845.61 1277.5 1920.91 2000
Win rate - 0% 76% 3% 73% 1% 0%
Score 14 12.11 9.17 11.13 8.15 12.26 10.43
Exploration % - 96.12% 94.17% 95.36% 94.11% 97.93% 50.66%
Unique interactions - 5 5.19 5.05 4.61 5.50 4.61
Curiosity - 51.06 69.57 57.31 52.02 76.27 32.13
Collisions - 74.09 178.73 84.35 80.79 116.94 108
Hits - 5.61 3.79 5.12 3.25 5.66 5.17
Interactions - 79.7 182.52 89.46 84.04 122.60 113.17
Kills 6 5.61 3.79 5.12 3.25 5.66 5.17
Items 1 0.95 0.96 0.95 0.97 0.99 0.07

Table E.19: Zelda: Per-agent portability results for Level 7.28a.

Level 7.28b
Info

Open locations 114
Walls 102

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1794.14 1242.26 1872.29 1162.81 1829.95 1949.72
Win rate - 0% 65% 3% 60% 4% 0%
Score 14 11.67 9.68 11.25 7.32 11.75 8.51
Exploration % - 93.87% 92.42% 95.25% 86.64% 94.71% 42.25%
Unique interactions - 4.8 5.13 5.07 4.59 5.26 3.87
Curiosity - 63.43 75.72 72.87 55.54 86.48 32.90
Collisions - 106.94 223.01 130.35 99.53 160.69 145.86
Hits - 5.45 4.04 5.18 2.97 5.44 4.21
Interactions - 112.39 227.04 135.53 102.5 166.13 150.07
Kills 6 5.45 4.04 5.18 2.97 5.44 4.21
Items 1 0.90 0.97 0.95 0.91 0.94 0.08

Table E.20: Zelda: Per-agent portability results for Level 7.28b.
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Level 7.28c
Info

Open locations 138
Walls 78

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1942.7 689.03 1941.68 985.01 1964.87 1904.54
Win rate - 1% 89% 11% 79% 13% 0%
Score 18 16.44 8.74 15.38 8.59 16.53 14.74
Exploration % - 97.35% 76.76% 98.31% 83.23% 98.61% 54.79%
Unique interactions - 5.22 4.64 5.34 4.21 5.37 4.34
Curiosity - 48.66 41.74 57.97 36.63 72.96 34.85
Collisions - 62.07 76.32 81.57 54.18 103.38 100.17
Hits - 7.72 3.51 7.13 3.53 7.71 7.26
Interactions - 69.79 79.82 88.70 57.71 111.09 107.43
Kills 8 7.72 3.51 7.13 3.53 7.71 7.26
Items 1 0.98 0.95 0.99 0.89 0.99 0.22

Table E.21: Zelda: Per-agent portability results for Level 7.28c.

Level 7.28d
Info

Open locations 120
Walls 96

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1741.66 450.86 1808.31 445.86 1849.12 1979.58
Win rate - 0% 96% 8% 98% 12% 0%
Score 14 11.55 5.95 11.39 5.47 11.89 8.11
Exploration % - 91.62% 58.175% 93.33% 58.30% 94% 35.73%
Unique interactions - 3.89 3.53 3.93 3.21 3.95 3.44
Curiosity - 50.53 27.72 59 18.34 69.74 27.44
Collisions - 83.28 57.02 101.84 26.9 131.33 128.42
Hits - 5.31 2.05 5.2 1.79 5.41 3.77
Interactions - 88.59 59.06 107.04 28.68 136.74 132.19
Kills 6 5.31 2.05 5.2 1.79 5.41 3.77
Items 1 0.96 0.98 0.97 1 1 0.58

Table E.22: Zelda: Per-agent portability results for Level 7.28d.
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E.3 Portability results in Digdug

Two types of tables are included. First, each table contains the final stats of a particular
agent across all the levels used for Digdug. Last, each table gathers the stats by level,
displaying the results of the different behaviour-type agents in it.

In the tables, the stats related to the competence of the corresponding behaviour-type
are highlighted. Also, information about relevant maximum values for each of the levels
is included for reference.

E1 (High collector + high killer)
Features lvl 7.2c lvl 7.36a lvl 7.36b lvl 7.36c lvl 7.36d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
NPCs (monsters) 12 16 13 5 14
Items 27 19 41 8 50

Gameplay Results
EoG 1999.619 1999.73 1999.77 1999.94 1999.57
Win rate 6.99% 1% 2% 2% 6%
Score 41.57 44.05 58.2 11.83 51.02
Exploration % 73.19% 74.00% 74.03% 67.25% 57.01%
Unique interactions 7 6.94 7 6.74 7
Curiosity 476.84 494.16 454.66 367.8 282.05
Collisions 208.37 206.12 206.63 169.57 146.84
Hits 275.42 297.7 255.12 200.11 138.69
Interactions 483.78 503.82 461.75 369.67 285.53
Kills 10.64 13.74 11.56 3.88 12.68
Items 26.92 18.91 40.76 7.95 49.90

Table E.23: Digdug : Per-level portability results for E1 (High collector + high killer).
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E2 (High collector + low killer)
Features lvl 7.2c lvl 7.36a lvl 7.36b lvl 7.36c lvl 7.36d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
NPCs (monsters) 12 16 13 5 14
Items 27 19 41 8 50

Gameplay Results
EoG 2000 2000 2000 2000 2000
Win rate 0% 0% 0% 0% 0%
Score 25.73 22.60 41.2 5.22 34.95
Exploration % 99.93% 99.84% 99.87% 99.98% 99.97%
Unique interactions 6.07 6.02 6.02 5.46 6.29
Curiosity 315.38 332.08 307.97 212.44 186.03
Collisions 39.78 36.19 53.22 12.21 53.83
Hits 276.56 297.60 255.55 200.54 132.57
Interactions 316.34 333.79 308.76 212.75 186.40
Kills 2.81 3.19 3.05 0.60 4.69
Items 27 19 40.99 8 50

Table E.24: Digdug : Per-level portability results for E2 (High collector + low killer).

E3 (Low collector + high killer)
Features lvl 7.2c lvl 7.36a lvl 7.36b lvl 7.36c lvl 7.36d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
NPCs (monsters) 12 16 13 5 14
Items 27 19 41 8 50

Gameplay Results
EoG 2000 2000 2000 2000 2000
Win rate 0% 0% 0% 0% 0%
Score 27.38 30.97 35.33 10.37 32.37
Exploration % 21.49% 21.54% 24.63% 23.83% 29.68%
Unique interactions 6 4.90 6.26 5.65 6.24
Curiosity 114.98 118.7 118.99 88.94 74.37
Collisions 70.01 71.90 74.21 54.27 43.96
Hits 74.67 82 77.94 59.09 47.45
Interactions 144.68 153.89 152.14 113.35 91.40
Kills 9.64 12.62 12.53 4.7 13.31
Items 9.14 5.05 11.36 1.72 9.74

Table E.25: Digdug : Per-level portability results for E3 (Low collector + high killer).
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E4 (Walls breaker)
Features lvl 7.2c lvl 7.36a lvl 7.36b lvl 7.36c lvl 7.36d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Breakable walls 267 292 247 196 103
NPCs (monsters) 12 16 13 5 14
Items 27 19 41 8 50

Gameplay Results
EoG 1916.47 1814.02 1819.31 1947.28 1598.63
Win rate 1% 1% 0% 3% 2%
Score 40.32 41.91 53.95 12.03 42.13
Exploration % 70.12% 67.66% 67.70% 64.73% 46.98%
Unique interactions 6.97 6.88 7 6.98 6.77
Curiosity 464.6 463.77 434.05 358.54 249.87
Collisions 200.09 187.56 193.87 162.54 130.35
Hits 269.65 282.32 245.53 197.70 120.67
Interactions 469.74 469.88 439.4 360.24 251.01
Kills 10.66 13.57 10.97 4.1 10.67
Items 25.68 17.17 37.30 7.7 41.40

Table E.26: Digdug : Per-level portability results for E4 (Walls breaker).

E5 (High explorer)
Features lvl 7.2c lvl 7.36a lvl 7.36b lvl 7.36c lvl 7.36d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Open locations 405 405 405 405 405

Gameplay Results
EoG 1998.90 1998.53 1998.78 1999.66 1962.19
Win rate 0% 0% 0% 0% 0%
Score 31.54 28.78 47.35 9.12 39.65
Exploration % 99.98% 100% 99.99% 100% 98.51%
Unique interactions 7 7 7 7 6.97
Curiosity 328.28 345.97 321.81 220.82 191.72
Collisions 49.54 45.78 63.42 18.47 58.9
Hits 279.75 301.40 259.16 202.56 133.36
Interactions 329.29 347.17 322.58 221.02 192.26
Kills 5.82 6.40 6.19 2.56 7.43
Items 27 19 41 8 49.02

Table E.27: Digdug : Per-level portability results for E5 (High explorer).
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E6 (Low explorer + high scorer)
Features lvl 7.2c lvl 7.36a lvl 7.36b lvl 7.36c lvl 7.36d

Level Info (Max. Values)
EoG 2000 2000 2000 2000 2000
Score 44 48 61 14 53
Open locations 405 405 405 405 405

Gameplay Results
EoG 2000 2000 2000 1999.90 1999.88
Win rate 0% 0% 0% 2% 6.99%
Score 35.49 35.46 51.3 11.02 47.71
Exploration % 30.92% 26.49% 36.32% 26.96% 37.98%
Unique interactions 6.37 5.56 6.35 5.85 6.44
Curiosity 155.65 137.1 165.06 98.46 123
Collisions 94.77 84.11 104.51 60.04 73.60
Hits 95.38 89.59 95.86 63.84 62.54
Interactions 190.14 173.7 200.36 123.88 136.14
Kills 9.64 12.01 11.64 4.36 12.18
Items 21.15 11.92 39 4.51 44.99

Table E.28: Digdug : Per-level portability results for E6 (Low explorer + high scorer).

Level 7.2c
Info

Open locations 405
Breakable walls 267

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1999.61 2000 2000 1916.47 1998.90 2000
Win rate - 6.99% 0% 0% 1% 0% 0%
Score 44 41.57 25.73 27.38 40.32 31.54 35.49
Exploration % - 73.19% 99.93% 21.49% 70.12% 99.98% 30.92%
Unique interactions - 7 6.07 6 6.97 7 6.37
Curiosity - 476.84 315.38 114.98 464.6 328.28 155.65
Collisions - 208.37 39.78 70.019 200.09 49.54 94.77
Hits - 275.42 276.56 74.67 269.65 279.75 95.38
Interactions - 483.78 316.34 144.68 469.74 329.29 190.14
Kills 12 10.64 2.81 9.64 10.66 5.82 9.64
Items 27 26.92 27 9.14 25.68 27 21.15

Table E.29: Digdug : Per-agent portability results for Level 7.2c (original).
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Level 7.36a
Info

Open locations 405
Breakable walls 292

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1999.73 2000 2000 1814.02 1998.53 2000
Win rate - 1% 0% 0% 1% 0% 0%
Score 48 44.05 22.60 30.97 41.91 28.78 35.46
Exploration % - 74.00% 99.84% 21.54% 67.66% 100% 26.49%
Unique interactions - 6.94 6.02 4.90 6.88 7 5.56
Curiosity - 494.16 332.08 118.7 463.77 345.97 137.1
Collisions - 206.12 36.19 71.90 187.56 45.78 84.11
Hits - 297.7 297.60 82 282.32 301.40 89.59
Interactions - 503.82 333.79 153.89 469.88 347.17 173.7
Kills 16 13.74 3.19 12.62 13.57 6.40 12.01
Items 19 18.91 19 5.05 17.17 19 11.92

Table E.30: Digdug : Per-agent portability results for Level 7.36a.

Level 7.36b
Info

Open locations 405
Breakable walls 247

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1999.77 2000 2000 1819.31 1998.80 2000
Win rate - 2% 0% 0% 0% 0% 0%
Score 61 58.2 41.2 35.33 53.95 47.35 51.3
Exploration % - 74.03% 99.87% 24.63% 67.70% 99.99% 36.32%
Unique interactions - 7 6.02 6.26 7 7 6.35
Curiosity - 454.66 307.97 118.99 434.05 321.81 165.06
Collisions - 206.63 53.22 74.21 193.87 63.42 104.51
Hits - 255.12 255.55 77.94 245.53 259.16 95.86
Interactions - 461.75 308.76 152.14 439.4 322.58 200.36
Kills 13 11.56 3.05 12.53 10.97 6.19 11.64
Items 41 40.76 40.99 11.36 37.30 41 39

Table E.31: Digdug : Per-agent portability results for Level 7.36b.
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Level 7.36c
Info

Open locations 405
Breakable walls 196

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1999.94 2000 2000 1947.28 1999.66 1999.90
Win rate - 2% 0% 0% 3% 0% 2%
Score 14 11.83 5.22 10.37 12.03 9.12 11.02
Exploration % - 67.25% 99.98% 23.83% 64.73% 100% 26.96%
Unique interactions - 6.74 5.46 5.65 6.98 7 5.85
Curiosity - 367.8 212.44 88.94 358.54 220.82 98.46
Collisions - 169.57 12.21 54.27 162.54 18.47 60.04
Hits - 200.11 200.54 59.09 197.70 202.56 63.84
Interactions - 369.67 212.75 113.35 360.24 221.02 123.88
Kills 5 3.88 0.60 4.7 4.1 2.56 4.36
Items 8 7.95 8 1.72 7.7 8 4.51

Table E.32: Digdug : Per-agent portability results for Level 7.36c.

Level 7.36d
Info

Open locations 405
Breakable walls 103

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 2000 1999.57 2000 2000 1598.63 1962.19 1999.88
Win rate - 6% 0% 0% 2% 0% 6.99%
Score 53 51.02 34.95 32.37 42.13 39.65 47.71
Exploration % - 57.01% 99.97% 29.68% 46.98% 98.51% 37.98%
Unique interactions - 7 6.29 6.24 6.77 6.97 6.44
Curiosity - 282.05 186.03 74.37 249.87 191.72 123
Collisions - 146.84 53.83 43.96 130.35 58.9 73.60
Hits - 138.69 132.57 47.45 120.67 133.36 62.54
Interactions - 285.53 186.40 91.40 251.01 192.26 136.14
Kills 14 12.68 4.69 13.31 10.67 7.43 12.18
Items 50 49.90 50 9.74 41.40 49.02 44.99

Table E.33: Digdug : Per-agent portability results for Level 7.36d.
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E.4 Portability results in Sheriff

Two types of tables are included. First, each table contains the final stats of a particular
agent across all the levels used for Sheriff. Last, each table gathers the stats by level,
displaying the results of the different behaviour-type agents in it.

In the tables, the stats related to the competence of the corresponding behaviour-type
are highlighted. Also, information about relevant maximum values for each of the levels
is included for reference.

E1 (Survivor + low killer)
Features lvl 7.2d lvl 7.43a lvl 7.43b lvl 7.43c lvl 7.43d

Level Info (Max. Values)
EoG 1000 1000 1000 1000 1000
NPCs (bandits) 8 9 9 11 11

Gameplay Results
EoG 992.58 990.32 1000 991.82 1000
Win rate 98% 99% 100% 99% 100%
Score 3.27 4.03 3.91 4.77 4.87
Exploration % 99.11% 98.55% 99.67% 98.87% 99.41%
Unique interactions 5.26 5.44 5.2 5.84 5.67
Curiosity 39.73 45.74 23.82 40.94 31.69
Collisions 11.64 11.71 10.02 12.29 11.11
Hits 30.07 36.06 15.79 30.94 22.87
Interactions 41.71 47.76 25.81 43.23 33.97
Kills 3.28 4.02 3.89 4.78 4.87

Table E.34: Sheriff : Per-level portability results for E1 (Survivor + low killer).
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E2 (High killer + high explorer)
Features lvl 7.2d lvl 7.43a lvl 7.43b lvl 7.43c lvl 7.43d

Level Info (Max. Values)
EoG 1000 1000 1000 1000 1000
NPCs (bandits) 8 9 9 11 11
Open locations 280 280 280 280 280

Gameplay Results
EoG 952.62 977.38 969.09 972.01 980.83
Win rate 97% 99% 98% 97% 100%
Score 7.07 8.09 8.03 9.93 10.12
Exploration % 97.89% 98.97% 99.01% 98.2% 99.55%
Unique interactions 6.02 5.85 5.64 6.42 6.17
Curiosity 53.3 63.69 32.58 62.36 47.94
Collisions 8.63 9.60 6.88 10.22 9.31
Hits 45.98 55.85 27.16 53.89 40.16
Interactions 54.61 65.44 34.04 64.11 49.47
Kills 6.96 7.95 7.96 9.91 10

Table E.35: Sheriff : Per-level portability results for E2 (High killer + high explorer).

E3 (High killer + low explorer)
Features lvl 7.2d lvl 7.43a lvl 7.43b lvl 7.43c lvl 7.43d

Level Info (Max. Values)
EoG 1000 1000 1000 1000 1000
NPCs (bandits) 8 9 9 11 11
Open locations 280 280 280 280 280

Gameplay Results
EoG 449.45 503.97 430.43 556.24 479.03
Win rate 98% 98% 100% 99% 99%
Score 7.92 8.88 8.99 10.89 10.98
Exploration % 15.33% 16.36% 15.26% 17.81% 15.96%
Unique interactions 5.09 5.25 4.41 5.40 5.4
Curiosity 24.11 28.27 14.52 32.22 25.07
Collisions 9.18 11.72 6.84 12.27 9.95
Hits 20.90 24.34 13.06 28.72 22.48
Interactions 30.07 36.06 19.9 40.98 32.43
Kills 6.95 7.93 8 9.95 10

Table E.36: Sheriff : Per-level portability results for E3 (High killer + low explorer).
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E4 (Speed-runner)
Features lvl 7.2d lvl 7.43a lvl 7.43b lvl 7.43c lvl 7.43d

Level Info (Max. Values)
EoG 1000 1000 1000 1000 1000

Gameplay Results
EoG 364.75 360.53 363.59 417.71 418.7
Win rate 100% 97% 98% 99% 100%
Score 7.99 8.78 8.89 10.88 10.99
Exploration % 65.90% 62.46% 63.58% 70.28% 68.63%
Unique interactions 5.91 5.93 5.98 6.29 6.16
Curiosity 44.06 46.51 29.85 53.43 42.42
Collisions 11.11 9.81 11.46 13.28 12.26
Hits 34.81 38.9 21.14 42.87 32.53
Interactions 45.92 48.71 32.6 56.15 44.79
Kills 7 7.84 7.93 9.91 10

Table E.37: Sheriff : Per-level portability results for E4 (Speed-runner).

E5 (Barrels shooter)
Features lvl 7.2d lvl 7.43a lvl 7.43b lvl 7.43c lvl 7.43d

Level Info (Max. Values)
EoG 1000 1000 1000 1000 1000
Barrels 55 65 27 71 51
NPCs (bandits) 8 9 9 11 11

Gameplay Results
EoG 668.73 571.65 534.52 597.22 498.91
Win rate 44% 33% 31% 32% 26%
Score 5.34 5.29 5.59 6.84 6
Exploration % 17.10% 15.22% 14.10% 16.14% 14.66%
Unique interactions 5.49 5.30 5.06 5.53 5.5
Curiosity 73.17 70.85 45.54 72.52 57.08
Collisions 403.46 334.44 327.25 345.68 281.61
Hits 35.96 38.19 17.49 39.86 29.28
Interactions 439.41 372.63 344.74 385.54 310.88
Kills 5.83 5.89 6.22 7.46 6.65

Table E.38: Sheriff : Per-level portability results for E5 (Barrels shooter).
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E6 (High curiosity + low interactions)
Features lvl 7.2d lvl 7.43a lvl 7.43b lvl 7.43c lvl 7.43d

Level Info (Max. Values)
EoG 1000 1000 1000 1000 1000

Gameplay Results
EoG 837.65 817.12 807.13 813.78 864.55
Win rate 94% 94% 92% 92% 97%
Score 7.07 8.04 8.24 9.79 10.12
Exploration % 91.44% 91.06% 91.81% 89.63% 93.46%
Unique interactions 6.11 6.01 6.17 6.03 6.25
Curiosity 95.77 101.81 73.46 99.92 89.47
Collisions 75.38 73.13 79.42 72.89 76.31
Hits 47.14 54.33 26.86 53.04 40.67
Interactions 122.51 127.46 106.28 125.93 116.98
Kills 6.8 7.71 7.89 9.49 9.81

Table E.39: Sheriff : Per-level portability results for E6 (High curiosity + low interac-
tions).

Level 7.2d
Info

Barrels 55
Open locations 280
Walls 88

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 1000 992.58 952.62 449.45 364.75 668.73 837.65
Win rate - 98% 97% 98% 100% 44% 94%
Score 8 3.27 7.07 7.92 7.99 5.34 7.07
Exploration % - 99.11% 97.89% 15.33% 65.90% 17.10% 91.44%
Unique interactions - 5.26 6.02 5.09 5.91 5.49 6.11
Curiosity - 39.73 53.3 24.11 44.06 73.17 95.77
Collisions - 11.64 8.63 9.18 11.11 403.46 75.38
Hits - 30.07 45.98 20.90 34.81 35.96 47.14
Interactions - 41.71 54.61 30.07 45.92 439.41 122.51
Kills 8 3.28 6.96 6.95 7 5.83 6.8

Table E.40: Sheriff : Per-agent portability results for Level 7.2d.
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Level 7.43a
Info

Barrels 65
Open locations 280
Walls 88

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 1000 990.32 977.38 503.97 360.53 571.65 817.12
Win rate - 99% 99% 98% 97% 33% 94%
Score 9 4.03 8.09 8.88 8.78 5.29 8.04
Exploration % - 98.55% 98.97% 16.36% 62.46% 15.22% 91.06%
Unique interactions - 5.44 5.85 5.25 5.93 5.30 6.01
Curiosity - 45.74 63.69 28.27 46.51 70.85 101.81
Collisions - 11.71 9.60 11.72 9.81 334.44 73.13
Hits - 36.06 55.85 24.34 38.9 38.19 54.33
Interactions - 47.76 65.44 36.06 48.71 372.63 127.46
Kills 9 4.02 7.95 7.93 7.84 5.89 7.71

Table E.41: Sheriff : Per-agent portability results for Level 7.43a.

Level 7.43b
Info

Barrels 27
Open locations 280
Walls 88

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 1000 1000 969.09 430.43 363.59 534.52 807.13
Win rate - 100% 98% 100% 98% 31% 92%
Score 9 3.91 8.03 8.99 8.89 5.59 8.24
Exploration % - 99.67% 99.01% 15.26% 63.58% 14.10% 91.81%
Unique interactions - 5.2 5.64 4.47 5.98 5.06 6.17
Curiosity - 23.82 32.58 14.52 29.85 45.54 73.46
Collisions - 10.02 6.88 6.84 11.46 327.25 79.42
Hits - 15.79 27.16 13.06 21.14 17.49 26.86
Interactions - 25.81 34.04 19.9 32.6 344.74 106.28
Kills 9 3.89 7.96 8 7.93 6.22 7.89

Table E.42: Sheriff : Per-agent portability results for Level 7.43b.
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E. Full Results: Team Portability to New Levels

Level 7.43c
Info

Barrels 71
Open locations 280
Walls 88

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 1000 991.82 972.01 556.24 417.71 597.22 813.78
Win rate - 99% 97% 99% 99% 32% 92%
Score 11 4.77 9.93 10.89 10.88 6.84 9.79
Exploration % - 98.87% 98.2% 17.81% 70.28% 16.14% 89.63%
Unique interactions - 5.84 6.42 5.40 6.29 5.53 6.03
Curiosity - 40.94 62.36 32.22 53.43 72.52 99.92
Collisions - 12.29 10.22 12.27 13.28 345.68 72.89
Hits - 30.94 53.89 28.72 42.87 39.86 53.04
Interactions - 43.23 64.11 40.98 56.15 385.54 125.93
Kills 11 4.78 9.91 9.95 9.91 7.46 9.49

Table E.43: Sheriff : Per-agent portability results for Level 7.43c.

Level 7.43d
Info

Barrels 51
Open locations 280
Walls 88

Gameplay Results
Features Max E1 E2 E3 E4 E5 E6
EoG 1000 1000 980.83 479.03 418.7 498.91 864.55
Win rate - 100% 100% 99% 100% 26% 97%
Score 11 4.87 10.12 10.98 10.99 6 10.12
Exploration % - 99.41% 99.55% 15.96% 68.63% 14.66% 93.46%
Unique interactions - 5.70 6.17 5.4 6.16 5.5 6.25
Curiosity - 31.69 47.94 25.07 42.42 57.08 89.47
Collisions - 11.11 9.31 9.95 12.26 281.61 76.31
Hits - 22.87 40.16 22.48 32.53 29.28 40.67
Interactions - 33.97 49.47 32.43 44.79 310.88 116.98
Kills 11 4.87 10 10 10 6.65 9.81

Table E.44: Sheriff : Per-agent portability results for Level 7.43d.
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Appendix F

Case Study: Material

For the Case Study described in Chapter 8 I include the Information Sheet and Consent
Form provided to the participants; as well as the list of questions used, taken from the
IMI and PENS questionnaires. PENS is not open source, so I merely mention the number
of the question used, while in IMI I include the questions used and their adaptation to
our questionnaire.
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Information Sheet 
 
Overview 
In this study, you will be asked to play a game and then to fill 2 questionnaires about your 
experience of playing the game. The game is a basic player versus agent capture game. You are 
not being assessed on your performance in the game but do try to play as best you can! 
You will be playing the game 3 times and each session will be 30 seconds long. The whole 
experiment should not take more than 15 minutes 
 
The game 
Skulls and Tombstones is a competitive game. You collect skulls and bring them to the 
tombstones, one by one.  
Your avatar is on the right and he turns the tombstone BLUE when you bring a skull to a 
tombstone, indicating that you have captured it.  
Your opponent turns the tombstones RED, but you can turn them back to BLUE by bringing 
a skull to it.  
You win if the number of blue tombstones is higher than the red tombstones when the game 
ends.  
 

 
 
Player controllers 
The game is played with the arrows of the keyboard. Only four actions are allowed: ↑, ↓, ← 
and →. 

F. Case Study: Material

F.1 Information Sheet
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Questionnaire 
After playing, you will be asked to fill out a questionnaire about your playing experience. You are not 
required to answer all the questions but please do so for the study to be robust. 
 
Questions 
If you have any questions about the game or the study please ask them now but once the study has 
started, please keep your questions until the the end. 
 
Withdrawing 
You are free to withdraw from this study at any point without giving a reason . There are no 
incentives for doing this activity so your participation should be voluntary. 
 
Data 
Your ingame score data and the data that you are filling in the questionnaire is being gathered. 
The data gathered will be visible to the researchers conducting the study. This will be in the form of 
a spreadsheet but you will not be individually identifiable from the data. The data may be used later 
for further study or publication. However, you will not be identifiable in any way for either reason. 
 

 
 
 
 

F. Case Study: Material
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Consent to Participate in a Research Study

Goldsmiths, University of London
10th July 2017 - Onwards

Title of study: Skulls and tombstones experiment
Investigators: Sokol Murturi (smurt001@gold.ac.uk), Andrew Martin (andrew.martin@gold.ac.uk),
Cristina Guerrero-Romero (cris.guerrero@essex.ac.uk), Shringi Kumari (sk1382@york.ac.uk)

Please read carefully, tick all the boxes and sign the form to give your consent to participate in
the study.

- I confirm that I am at least 18 years old. 2

- I confirm that I have read and understood the information sheet provided. 2

- I confirm that I have had the opportunity to consider the information, ask questions and have
had any queries answered satisfactorily. 2

- I understand that my participation is voluntary and that I am free to withdraw at any time
without giving any reason and without there being any negative consequences. 2

- I agree for the data collected from me to be anonymously used by the investigators in the
ongoing experiment. 2

- I give my permission to participate in this study. 2

Name of participant Date Signature

Name of researcher Date Signature

1

F. Case Study: Material

F.2 Consent Form

419



F. Case Study: Material

ID
C

om
po

ne
nt

It
em

Q
ue

st
io

nn
ai

re
it

em
O

ri
gi

na
li

te
m

1
C

om
pe

te
nc

e
P

E
N

S1
2

P
E

N
S2

3
P

E
N

S3
4

In
te

re
st

/E
nj

oy
m

en
t

IM
I1

I
en

jo
ye

d
pl

ay
in

g
th

is
ga

m
e

ve
ry

m
uc

h
I

en
jo

ye
d

do
in

g
th

is
ac

ti
vi

ty
ve

ry
m

uc
h

5
IM

I2
T

hi
s

ga
m

e
w

as
fu

n
to

pl
ay

T
hi

s
ac

ti
vi

ty
w

as
fu

n
to

do
.

6
IM

I3
I

th
ou

gh
t

th
is

w
as

a
bo

ri
ng

ga
m

e
I

th
ou

gh
t

th
is

w
as

a
bo

ri
ng

ac
ti

vi
ty

.
(R

)
7

IM
I4

T
hi

s
ga

m
e

di
d

no
t

ho
ld

m
y

at
te

nt
io

n
at

al
l

T
hi

s
ac

ti
vi

ty
di

d
no

t
ho

ld
m

y
at

te
nt

io
n

at
al

l.
(R

)
8

IM
I5

I
w

ou
ld

de
sc

ri
be

th
is

ga
m

e
as

ve
ry

in
te

re
st

in
g

I
w

ou
ld

de
sc

ri
be

th
is

ac
ti

vi
ty

as
ve

ry
in

te
re

st
in

g.
9

IM
I6

I
th

ou
gh

t
th

is
ga

m
e

w
as

qu
it

e
en

jo
ya

bl
e

I
th

ou
gh

t
th

is
ac

ti
vi

ty
w

as
qu

it
e

en
jo

ya
bl

e.
10

IM
I7

W
hi

le
I

w
as

pl
ay

in
g

th
e

ga
m

e,
I

w
as

th
in

ki
ng

ab
ou

t
ho

w
m

uc
h

I
en

jo
ye

d
it

W
hi

le
I

w
as

do
in

g
th

is
ac

ti
vi

ty
,I

w
as

th
in

ki
ng

ab
ou

t
ho

w
m

uc
h

I
en

jo
ye

d
it

.
11

P
re

ss
ur

e/
T
en

si
on

IM
I1

9
I

di
d

no
t

fe
el

ne
rv

ou
s

at
al

lw
hi

le
pl

ay
in

g
th

is
ga

m
e

I
di

d
no

t
fe

el
ne

rv
ou

s
at

al
lw

hi
le

do
in

g
th

is
.

(R
)

12
IM

I2
0

I
fe

lt
ve

ry
te

ns
e

w
hi

le
pl

ay
in

g
th

is
ga

m
e

I
fe

lt
ve

ry
te

ns
e

w
hi

le
do

in
g

th
is

ac
ti

vi
ty

.
13

IM
I2

1
I

w
as

ve
ry

re
la

xe
d

w
hi

le
pl

ay
in

g
th

is
I

w
as

ve
ry

re
la

xe
d

in
do

in
g

th
es

e.
(R

)
14

IM
I2

2
I

w
as

an
xi

ou
s

w
hi

le
pl

ay
in

g
th

is
ga

m
e

I
w

as
an

xi
ou

s
w

hi
le

w
or

ki
ng

on
th

is
ta

sk
.

15
IM

I2
3

I
fe

lt
pr

es
su

re
d

w
hi

le
pl

ay
in

g
th

is
ga

m
e

I
fe

lt
pr

es
su

re
d

w
hi

le
do

in
g

th
es

e.
16

P
er

ce
iv

ed
C

om
pe

te
nc

e

IM
I8

I
th

in
k

I
am

pr
et

ty
go

od
at

th
is

ga
m

e
I

th
in

k
I

am
pr

et
ty

go
od

at
th

is
ac

ti
vi

ty
.

17
IM

I9
I

th
in

k
I

di
d

pr
et

ty
w

el
la

t
th

is
ga

m
e,

co
m

pa
re

d
to

ot
he

rs
pl

ay
er

s
I

th
in

k
I

di
d

pr
et

ty
w

el
la

t
th

is
ac

ti
vi

ty
,c

om
pa

re
d

to
ot

he
r

st
ud

en
ts

.
18

IM
I1

0
A

ft
er

pl
ay

in
g

th
is

ga
m

e
fo

r
a

w
hi

le
,I

fe
lt

pr
et

ty
co

m
pe

te
nt

A
ft

er
w

or
ki

ng
at

th
is

ac
ti

vi
ty

fo
r

aw
hi

le
,I

fe
lt

pr
et

ty
co

m
pe

te
nt

.
19

IM
I1

1
I

am
sa

ti
sfi

ed
w

it
h

m
y

pe
rf

or
m

an
ce

in
th

e
ga

m
e

I
am

sa
ti

sfi
ed

w
it

h
m

y
pe

rf
or

m
an

ce
at

th
is

ta
sk

.
20

IM
I1

2
I

w
as

pr
et

ty
sk

ill
ed

at
th

is
ga

m
e

I
w

as
pr

et
ty

sk
ill

ed
at

th
is

ac
ti

vi
ty

.
21

IM
I1

3
T

hi
s

w
as

a
ga

m
e

I
co

ul
d

no
t

pl
ay

ve
ry

w
el

l
T

hi
s

w
as

an
ac

ti
vi

ty
th

at
I

co
ul

dn
’t

do
ve

ry
w

el
l.

T
ab

le
F
.1

:
T

he
P

E
N

S
an

d
IM

I
it

em
s

us
ed

in
th

e
qu

es
ti

on
na

ir
e

fo
r

th
e

C
as

e
St

ud
y.

P
E

N
S

is
no

t
op

en
so

ur
ce

so
qu

es
ti

on
s

ar
e

re
fe

re
nc

ed
bu

t
no

t
in

cl
ud

ed
.

Fo
r

IM
I,

it
in

cl
ud

es
th

e
or

ig
in

al
an

d
pa

ra
ph

ra
se

d
qu

es
ti

on
s

us
ed

in
th

e
st

ud
y.

420



Bibliography

Activision. Call of Duty (series). Activision, Oct 2003.

Aghyad Mohammad Albaghajati and Moataz Aly Kamaleldin Ahmed. Video Game
Automated Testing Approaches: An Assessment Framework. IEEE Transactions on
Games, 2020.

Alberto Alvarez, Steve Dahlskog, Jose Font, and Julian Togelius. Empowering Quality
Diversity in Dungeon Design with Interactive Constrained MAP-Elites. In 2019 IEEE
Conference on Games (CoG), pages 1–8. IEEE, 2019.

Damien Anderson, Cristina Guerrero-Romero, Philip Rodgers, John Levine, and Diego
Perez-Liebana. Ensemble Decision Systems for General Video Game Playing. In 2019
IEEE Conference on Games (CoG), pages 1–8. IEEE, 2019.

Marc André. Splendor . Space Cowboys, 2014.

Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. Automated Video Game Testing Using
Synthetic and Human-Like Agents. IEEE Transactions on Games, 2019.

Sinan Ariyurek, Elif Surer, and Aysu Betin-Can. Playtesting: What is Beyond Personas.
arXiv preprint arXiv:2107.11965, 2021.

Martin Balla, Adrián Barahona-Rıos, Adam Katona, et al. Illuminating Game Space
Using MAP-Elites for Assisting Video Game Design. In 11th AISB Symposium on AI
& Games (AI&G), pages 1–6, 2021.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis
Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al.
The Hanabi Challenge: A New Frontier for AI Research. Artificial Intelligence, 280:
103216, 2020.

Richard Bartle. Hearts, Clubs, Diamonds, Spades: Players who Suit MUDs. Journal of
MUD research, 1(1):19, 1996.

Richard Bartle. Virtual Worlds: Why People Play. Massively multiplayer game devel-
opment, 2(1):3–18, 2005.

421



BIBLIOGRAPHY

Richard Bartle. Player Type Theory: Uses and Abuses, Feb 2012. URL https://www.

youtube.com/watch?v=ZIzLbE-93nc. Casual Connect Europe.

Antoine Bauza. Hanabi . R&R Games, Cocktail Games, Abacus Spiele, 2014.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos. Unifying Count-Based Exploration and Intrinsic Motivation. Advances
in neural information processing systems, 29:1471–1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learn-
ing Environment: An Evaluation Platform for General Agents. Journal of Artificial
Intelligence Research, 47:253–279, 2013.

Hans J Berliner. Experiences in Evaluation with BKG-A Program that Plays Backgam-
mon. In IJCAI, volume 5, pages 428–433. Citeseer, 1977.

Regina Bernhaupt. User Experience Evaluation Methods in the Games Development
Life Cycle. In Game User Experience Evaluation, pages 1–8. Springer, 2015.

Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Poker as a Testbed
for AI Research. In Proceedings of AI’98, Conference of the Canadian Society for
Computational Studies of Intelligence, pages 228–238. Springer, 1998.

BioWare. Mass Effect . Microsoft Game Studios, Nov 2007.

Blizzard Entertainment. Starcraft . Blizzard Entertainment, Mar 1998.

Blizzard Entertainment. Hearthstone. Blizzard Entertainment, Mar 2014.

Ivan Bravi and Simon Lucas. Rinascimento: Searching the Behaviour Space of Splendor.
arXiv preprint arXiv:2106.08371, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540,
2016.

Noam Brown and Tuomas Sandholm. Superhuman AI for Multiplayer Poker. Science,
365(6456):885–890, 2019.

Cameron Browne and Frederic Maire. Evolutionary Game Design. IEEE Transactions
on Computational Intelligence and AI in Games, 2(1):1–16, 2010.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and
Simon Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in games, 4(1):1–43, 2012.

Michael Buro. The Othello Match of the Year: Takeshi Murakami vs. Logistello. ICGA
Journal, 20(3):189–193, 1997.

422

https://www.youtube.com/watch?v=ZIzLbE-93nc
https://www.youtube.com/watch?v=ZIzLbE-93nc


BIBLIOGRAPHY

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep Blue. Artificial
Intelligence, 134(1-2):57–83, 2002.

Rodrigo Canaan, Julian Togelius, Andy Nealen, and Stefan Menzel. Diverse Agents for
Ad-Hoc Cooperation in Hanabi. In 2019 IEEE Conference on Games (CoG), pages
1–8. IEEE, 2019.

Alessandro Canossa and Anders Drachen. Play-personas: Behaviours and Belief Systems
in User-Centred Game Design. In IFIP Conference on Human-Computer Interaction,
pages 510–523. Springer, 2009.

Loïc Caroux, Katherine Isbister, Ludovic Le Bigot, and Nicolas Vibert. Player-Video
Game Interaction: A Systematic Review of Current Concepts. Computers in Human
Behavior, 48:366–381, 2015.

Tristan Cazenave, Yen-Chi Chen, Guan-Wei Chen, Shi-Yu Chen, Xian-Dong Chiu, Julien
Dehos, Maria Elsa, Qucheng Gong, Hengyuan Hu, Vasil Khalidov, et al. Polygames:
Improved Zero Learning. ICGA Journal, 42(4):244–256, 2020.

Jenova Chen. Designing Journey, 2013. URL https://www.gdcvault.com/play/

1017700/Designing. GDC.

Chun Yin Chu, Tomohiro Harada, and Ruck Thawonmas. Biasing Monte-Carlo Roll-
outs with Potential Field in General Video Game Playing. In IPSJ Kansai-Branch
Convention, pages 1–6, 2015a.

Chun Yin Chu, Hisaaki Hashizume, Zikun Guo, Tomohiro Harada, and Ruck Tha-
wonmas. Combining Pathfinding Algorithm with Knowledge-based Monte-Carlo Tree
Search in General Video Game Playing. In 2015 IEEE Conference on Computational
Intelligence and Games (CIG), pages 523–529. IEEE, 2015b.

Alan Cooper. The Inmates are Running the Asylum. Sams, Apr 1999.

Creative Assembly. Total War: Rome II . SEGA, Sep 2013.

Crystal Dynamics. Tomb Raider: Underworld . Eidos Interactive, Nov 2008.

Daedalic Entertainment. Deponia. Daedalic Entertainment, Jan 2012.

Pierre Le Pelletier de Woillemont, Rémi Labory, and Vincent Corruble. Configurable
Agent With Reward As Input: A Play-Style Continuum Generation. In 2021 IEEE
Conference on Games (CoG). IEEE, 2021.

Edward L Deci and Richard M Ryan. Intrinsic Motivation Inventory. Self-Determination
Theory, 267, 2003.

Anders Drachen, Alessandro Canossa, and Georgios N Yannakakis. Player Modeling
Using Self-Organization in Tomb Raider: Underworld. In Computational Intelligence
and Games (CIG). IEEE Symposium on, pages 1–8. IEEE, 2009.

423

https://www.gdcvault.com/play/1017700/Designing
https://www.gdcvault.com/play/1017700/Designing


BIBLIOGRAPHY

Anders Drachen, Pejman Mirza-Babaei, and Lennart E Nacke. Games User Research.
Oxford University Press, 2018.

Marc Ebner, John Levine, Simon M. Lucas, Tom Schaul, Tommy Thompson, and Julian
Togelius. Towards a Video Game Description Language. In Artificial and Computa-
tional Intelligence in Games, volume 6 of Dagstuhl Follow-Ups, pages 85–100. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2013. ISBN 978-3-
939897-62-0. doi: 10.4230/DFU.Vol6.12191.85. URL http://drops.dagstuhl.de/

opus/volltexte/2013/4338.

Agoston E Eiben, James E Smith, et al. Introduction to Evolutionary Computing, vol-
ume 53. Springer, 2003.

Mark Ferguson, Sam Devlin, Daniel Kudenko, and James Alfred Walker. Player Style
Clustering without Game Variables. In International Conference on the Foundations
of Digital Games, pages 1–4. ACM, 2020.

Matthew C Fontaine, Scott Lee, Lisa B Soros, Fernando de Mesentier Silva, Julian
Togelius, and Amy K Hoover. Mapping Hearthstone Deck Spaces through Map-Elites
with Sliding Boundaries. In Proceedings of The Genetic and Evolutionary Computation
Conference, pages 161–169, 2019.

Raluca D Gaina, Diego Pérez-Liébana, and Simon M Lucas. General Video Game for 2
Players: Framework and Competition. In 2016 8th Computer Science and Electronic
Engineering (CEEC), pages 186–191. IEEE, 2016.

Raluca D Gaina, Jialin Liu, Simon M Lucas, and Diego Pérez-Liébana. Analysis of
Vanilla Rolling Horizon Evolution Parameters in General Video Game Playing. In
European Conference on the Applications of Evolutionary Computation, pages 418–
434. Springer, 2017.

Pablo García-Sánchez, Alberto Tonda, Antonio M Mora, Giovanni Squillero, and
Juan Julián Merelo. Automated Playtesting in Collectible Card Games Using Evolu-
tionary Algorithms: A Case Study in Hearthstone. Knowledge-Based Systems, 153:
133–146, 2018.

Michael Genesereth and Yngvi Björnsson. The International General Game Playing
Competition. AI Magazine, 34(2):107–107, 2013.

Michael Genesereth, Nathaniel Love, and Barney Pell. General Game Playing: Overview
of the AAAI Competition. AI magazine, 26(2):62–62, 2005.

Christian Guckelsberger, Christoph Salge, Jeremy Gow, and Paul Cairns. Predicting
Player Experience without the Player. an Exploratory Study. In Proceedings of the
Annual Symposium on Computer-Human Interaction in Play, pages 305–315, 2017.

Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet, Sami Purmonen,
Bartlomiej Kozakowski, Richard Meurling, and Lele Cao. Human-Like Playtesting

424

http://drops.dagstuhl.de/opus/volltexte/2013/4338
http://drops.dagstuhl.de/opus/volltexte/2013/4338


BIBLIOGRAPHY

with Deep Learning. In 2018 IEEE Conference on Computational Intelligence and
Games (CIG), pages 1–8. IEEE, 2018.

Cristina Guerrero Romero. GVGAI experiments. Github, 2017. URL https://github.

com/kisenshi/gvgai-experiments.

Cristina Guerrero Romero. Demo - Diversifying Heuristics for GVGAI. Youtube, 2018.
URL https://www.youtube.com/watch?v=aLgPm9kbfY8.

Cristina Guerrero Romero. Beyond Playing to Win: Agent Behaviour Re-
search (in GVGAI). Github, 2021a. URL https://github.com/kisenshi/

gvgai-agent-behaviour-research.

Cristina Guerrero Romero. Beyond Playing to Win: Agent Behaviour Research.
Results Processing. Github, 2021b. URL https://github.com/kisenshi/

experiments-automated-gameplay-results-processing.

Cristina Guerrero Romero. Configuration and Results: Generalisation Experiments for
the Generated Team of Agents with Diverse Behaviours, Oct 2021c. URL https:

//osf.io/kmgz4.

Cristina Guerrero Romero. Experiments and Results: MAP-Elites to Generate a Team
of Agents that Elicits Diverse Automated Gameplay. OSF, Apr 2021d. URL https:

//osf.io/whxm8.

Cristina Guerrero Romero. Visualize Diverse Gameplays Based on Agent Behaviour,
2021e. URL https://demo-visualize-diverse-gameplay-xqjmp.ondigitalocean.

app/.

Cristina Guerrero Romero and Shringi Kumari. Material of Studying General Agents
in Video Games from the Perspective of Player Experience. OSF, Aug 2020. URL
https://osf.io/tmc6x.

Cristina Guerrero-Romero and Diego Perez-Liebana. MAP-Elites to Generate a Team
of Agents that Elicits Diverse Automated Gameplay. In 2021 IEEE Conference on
Games (CoG). IEEE, 2021.

Cristina Guerrero-Romero, Annie Louis, and Diego Perez-Liebana. Beyond Playing to
Win: Diversifying Heuristics for GVGAI. In 2017 IEEE Conference on Computational
Intelligence and Games (CIG), pages 118–125. IEEE, 2017.

Cristina Guerrero-Romero, Simon M Lucas, and Diego Perez-Liebana. Using a Team of
General AI Algorithms to Assist Game Design and Testing. In 2018 IEEE Conference
on Computational Intelligence and Games (CIG), pages 1–8. IEEE, 2018.

Cristina Guerrero-Romero, Shringi Kumari, Diego Perez-Liebana, and Sebastian Deter-
ding. Studying General Agents in Video Games from the Perspective of Player Expe-
rience. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 16(1):217–223, Oct. 2020.

425

https://github.com/kisenshi/gvgai-experiments
https://github.com/kisenshi/gvgai-experiments
https://www.youtube.com/watch?v=aLgPm9kbfY8
https://github.com/kisenshi/gvgai-agent-behaviour-research
https://github.com/kisenshi/gvgai-agent-behaviour-research
https://github.com/kisenshi/experiments-automated-gameplay-results-processing
https://github.com/kisenshi/experiments-automated-gameplay-results-processing
https://osf.io/kmgz4
https://osf.io/kmgz4
https://osf.io/whxm8
https://osf.io/whxm8
https://demo-visualize-diverse-gameplay-xqjmp.ondigitalocean.app/
https://demo-visualize-diverse-gameplay-xqjmp.ondigitalocean.app/
https://osf.io/tmc6x


BIBLIOGRAPHY

Christoffer Holmgård, Antonios Liapis, Julian Togelius, and Georgios N Yannakakis.
Evolving Personas for Player Decision Modeling. In 2014 IEEE Conference on Com-
putational Intelligence and Games, pages 1–8. IEEE, 2014a.

Christoffer Holmgård, Antonios Liapis, Julian Togelius, and Georgios N Yannakakis.
Generative Agents for player Decision Modeling in Games. In 9th International Con-
ference on the Foundations of Digital Games, 2014b.

Christoffer Holmgård, Julian Togelius, Antonios Liapis, and Georgios N Yannakakis.
MiniDungeons 2: An Experimental Game for Capturing and Modeling Player Deci-
sions. In 10th Conference on the Foundations of Digital Games, 2015.

Christoffer Holmgård, Michael Cerny Green, Antonios Liapis, and Julian Togelius. Auto-
mated Playtesting with Procedural Personas through MCTS with Evolved Heuristics.
IEEE Transactions on Games, 11(4):352–362, 2018.

Andrew Hoyt, Matthew Guzdial, Yalini Kumar, Gillian Smith, and Mark O Riedl. In-
tegrating Automated Play in Level Co-Creation. arXiv preprint arXiv:1911.09219,
2019.

id Software. Doom. id Software, 1993.

Sidra Iftikhar, Muhammad Zohaib Iqbal, Muhammad Uzair Khan, and Wardah Mah-
mood. An Automated Model Based Testing Approach for Platform Games. In 2015
ACM/IEEE 18th International Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 426–435. IEEE, 2015.

IO Interactive. Hitman: Blood Money . Eidos Interactive, May 2006.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The Malmo Plat-
form for Artificial Intelligence Experimentation. In IJCAI, pages 4246–4247. Citeseer,
2016.

Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper,
Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, et al. Unity: A
General Platform for Intelligent Agents. arXiv preprint arXiv:1809.02627, 2018.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng,
Hunter Henry, Adam Crespi, Julian Togelius, and Danny Lange. Obstacle Tower:
A Generalization Challenge in Vision, Control, and Planning. arXiv preprint
arXiv:1902.01378, 2019.

Ahmed Khalifa, Diego Perez-Liebana, Simon M Lucas, and Julian Togelius. General
Video Game Level Generation. In Proceedings of the Genetic and Evolutionary Com-
putation Conference 2016, pages 253–259. ACM, 2016.

Ahmed Khalifa, Michael Cerny Green, Diego Perez-Liebana, and Julian Togelius. Gen-
eral Video Game Rule Generation. In 2017 IEEE Conference on Computational In-
telligence and Games (CIG), pages 170–177. IEEE, 2017.

426



BIBLIOGRAPHY

Ahmed Khalifa, Scott Lee, Andy Nealen, and Julian Togelius. Talakat: Bullet Hell
Generation through Constrained MAP-Elites. In Proceedings of The Genetic and
Evolutionary Computation Conference, pages 1047–1054, 2018.

Krams Design. Anna’s Quest . Daedalic Entertainment, Jul 2015.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki
Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan
Omidshafiei, et al. OpenSpiel: A Framework for Reinforcement Learning in Games.
arXiv preprint arXiv:1908.09453, 2019.

John Levine, Clare Bates Congdon, Marc Ebner, et al. General Video Game Playing.
In Artificial and Computational Intelligence in Games, Dagstuhl Follow-Ups, page 8.
Dagstuhl Publishing, Nov 2013.

Daniele Loiacono, Pier Luca Lanzi, Julian Togelius, Enrique Onieva, David A Pelta,
Martin V Butz, Thies D Lönneker, Luigi Cardamone, Diego Perez, Yago Sáez, et al.
The 2009 simulated car racing championship. IEEE Transactions on Computational
Intelligence and AI in Games, 2(2):131–147, 2010.

Simon M Lucas. Ms Pac-Man Competition. ACM SIGEVOlution, 2(4):37–38, 2007.

Simon M Lucas, Jialin Liu, and Diego Perez-Liebana. The N-Tuple Bandit Evolutionary
Algorithm for Game Agent Optimisation. In 2018 IEEE Congress on Evolutionary
Computation (CEC), pages 1–9. IEEE, 2018.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht,
and Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation Proto-
cols and Open Problems for General Agents. Journal of Artificial Intelligence Research,
61:523–562, 2018.

T Machado, A Nealen, and J Togelius. CICERO: Computationally Intelligent Collab-
orative EnviROnment for game and level design. In 3rd workshop on Computational
Creativity and Games (CCGW) at the 8th International Conference on Computational
Creativity (ICCC’17), pages 1–8, 2017a.

Tiago Machado. SeekWhence, Nov 2018. URL https://www.youtube.com/watch?v=

MhjBv2ZPpek.

Tiago Machado, Andy Nealen, and Julian Togelius. Seekwhence a Retrospective Analysis
Tool for General Game Design. In Proceedings of the 12th International Conference
on the Foundations of Digital Games, pages 1–6, 2017b.

Cyril Marlin. Automated Testing: Building A Flexible Game Solver,
Oct 2011. URL https://www.gamedeveloper.com/programming/

automated-testing-building-a-flexible-game-solver. Game Developer.

Robert Masella. Automated Testing of Gameplay Features in ’Sea of Thieves’, 2019.
URL https://www.youtube.com/watch?v=X673tOi8pU8. GDC.

427

https://www.youtube.com/watch?v=MhjBv2ZPpek
https://www.youtube.com/watch?v=MhjBv2ZPpek
https://www.gamedeveloper.com/programming/automated-testing-building-a-flexible-game-solver
https://www.gamedeveloper.com/programming/automated-testing-building-a-flexible-game-solver
https://www.youtube.com/watch?v=X673tOi8pU8


BIBLIOGRAPHY

Massive Entertainment. Tom Clancy’s The Division. Ubisoft, Mar 2016.

John McCarthy. What is Artificial Intelligence? Computer Science Department, Stan-
ford University, 1998. Available online at http://jmc.stanford.edu/articles/

whatisai/whatisai.pdf.

Elisa D Mekler, Julia Ayumi Bopp, Alexandre N Tuch, and Klaus Opwis. A Systematic
Review of Quantitative Studies on the Enjoyment of Digital Entertainment Games.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 927–936, 2014.

David Melhart, Ahmad Azadvar, Alessandro Canossa, Antonios Liapis, and Georgios N
Yannakakis. Your Gameplay Says it All: Modelling Motivation in Tom Clancy’s the
Division. In 2019 IEEE Conference on Games (CoG), pages 1–8. IEEE, 2019.

Andre Mendes, Julian Togelius, and Andy Nealen. Hyper-Heuristic General Video Game
Playing. In 2016 IEEE Conference on Computational Intelligence and Games (CIG),
pages 1–8. IEEE, 2016.

General Computer Corporation Midway. Ms. Pac-man. Midway, Jan 1982.

Ian Millington. AI for Games. CRC Press, 3rd edition, Dec 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-Level Control Through Deep Reinforcement Learning. Nature, 518
(7540):529, 2015.

Jean-Baptiste Mouret and Jeff Clune. Illuminating Search Spaces by Mapping Elites.
arXiv preprint arXiv:1504.04909, 2015.

Luvneesh Mugrai, Fernando Silva, Christoffer Holmgård, and Julian Togelius. Auto-
mated Playtesting of Matching Tile Games. In 2019 IEEE Conference on Games
(CoG), pages 1–7. IEEE, 2019.

Mark J Nelson. Game Metrics without Players: Strategies for Understanding Game
Artifacts. In Workshops at the Seventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2011.

Mark J Nelson. Investigating Vanilla MCTS Scaling on the GVG-AI Game Corpus. In
2016 IEEE Conference on Computational Intelligence and Games (CIG), pages 1–7.
IEEE, 2016.

Thorbjørn S Nielsen, Gabriella AB Barros, Julian Togelius, and Mark J Nelson. General
Video Game Evaluation Using Relative Algorithm Performance Profiles. In European
Conference on the Applications of Evolutionary Computation, pages 369–380. Springer,
2015.

Nils J Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, Apr 1998.

428

http://jmc.stanford.edu/articles/whatisai/whatisai.pdf
http://jmc.stanford.edu/articles/whatisai/whatisai.pdf


BIBLIOGRAPHY

Nintendo. Super Mario Bros. Nintendo, Sep 1985.

Santiago Ontanón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David Churchill,
and Mike Preuss. A Survey of Real-Time Strategy Game AI Research and Competition
in StarCraft. IEEE Transactions on Computational Intelligence and AI in games, 5
(4):293–311, 2013.

Hyunsoo Park and Kyung-Joong Kim. MCTS with Influence Map for General Video
Game Playing. In 2015 IEEE Conference on Computational Intelligence and Games
(CIG), pages 534–535. IEEE, 2015.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984. ISBN 0-201-
05594-5.

Barney Pell. METAGAME in Symmetric Chess-Like Games. University of Cambridge
Computer Laboratory, 1992.

Barney Pell. A Strategic Metagame Player for General Chess-like Games. Computational
Intelligence, 12(1):177–198, 1996.

Diego Perez, Spyridon Samothrakis, Simon Lucas, and Philipp Rohlfshagen. Rolling
Horizon Evolution Versus Tree Search for Navigation in Single-Player Real-Time
Games. In Proceedings of the 15th annual conference on Genetic and evolutionary
computation, pages 351–358, 2013.

Diego Perez, Spyridon Samothrakis, and Simon Lucas. Knowledge-Based Fast Evo-
lutionary MCTS for General Video Game Playing. In 2014 IEEE Conference on
Computational Intelligence and Games, pages 1–8. IEEE, 2014.

Diego Perez Liebana, Jens Dieskau, Martin Hunermund, Sanaz Mostaghim, and Simon
Lucas. Open loop Search for General Video Game Playing. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, pages 337–344, 2015.

Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Simon M
Lucas, Adrien Couëtoux, Jerry Lee, Chong-U Lim, and Tommy Thompson. The 2014
General Video Game Playing Competition. IEEE Transactions on Computational
Intelligence and AI in Games, 8(3):229–243, 2015.

Diego Perez-Liebana, Sanaz Mostaghim, and Simon M Lucas. Multi-Objective Tree
Search Approaches for General Video Game Playing. In 2016 IEEE Congress on
Evolutionary Computation (CEC), pages 624–631. IEEE, 2016.

Diego Pérez-Liébana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, and Simon M
Lucas. Analyzing the Robustness of General Video Game Playing Agents. In 2016
IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8. IEEE,
2016.

429



BIBLIOGRAPHY

Diego Perez-Liebana, Katja Hofmann, Sharada Prasanna Mohanty, Noburu Kuno, Andre
Kramer, Sam Devlin, Raluca D Gaina, and Daniel Ionita. The Multi-Agent Reinforce-
ment Learning in MalmÖ (MARLÖ) Competition. arXiv preprint arXiv:1901.08129,
2019a.

Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D Gaina, Julian Togelius, and
Simon M Lucas. General Video Game AI: A Multitrack Framework for Evaluating
agents, Games, and Content Generation Algorithms. IEEE Transactions on Games,
11(3):195–214, 2019b.

Diego Perez-Liebana, Simon M. Lucas, Raluca D. Gaina, Julian Togelius, Ahmed Khal-
ifa, and Jialin Liu. General Video Game Artificial Intelligence, volume 3. Morgan &
Claypool Publishers, 2019c. https://gaigresearch.github.io/gvgaibook/.

Diego Perez-Liebana, Cristina Guerrero-Romero, Alexander Dockhorn, Dominik Jeuris-
sen, and Linjie Xu. Generating Diverse and Competitive Play-Styles for Strategy
Games. In 2021 IEEE Conference on Games (CoG). IEEE, 2021.

Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. Automated Game Testing
with ICARUS: Intelligent Completion of Adventure Riddles via Unsupervised Solv-
ing. In Extended abstracts publication of the annual symposium on computer-human
interaction in play, pages 153–164, 2017.

Jacques Pitrat. Realization of a General Game-Playing Program. In IFIP congress,
pages 1570–1574, 1968.

Steven Rabin. Game AI Pro: Collected Wisdom of Game AI Professionals. CRC Press,
2013. ISBN 1466565969.

Steven Rabin. Game AI Pro 2: Collected Wisdom of Game AI Professionals. CRC
Press, 2015. ISBN 1482254794.

Rare. Sea of Thieves. Microsoft Studios, Mar 2018.

Shaghayegh Roohi, Jari Takatalo, Christian Guckelsberger, and Perttu Hämäläinen. Re-
view of Intrinsic Motivation in Simulation-Based Game Testing. In Proceedings of the
2018 chi conference on human factors in computing systems, pages 1–13, 2018.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, Global
Edition. Pearson, 4th edition, May 2021.

Richard M Ryan and Edward L Deci. Self-Determination Theory: Basic Psychological
Needs in Motivation, Development, and Wellness. Guilford Publications, 2017.

Richard M Ryan, C Scott Rigby, and Andrew Przybylski. The Motivational Pull of
Video Games: A Self-Determination Theory Approach. Motivation and Emotion, 30
(4):344–360, 2006.

430

https://gaigresearch.github.io/gvgaibook/


BIBLIOGRAPHY

J Schaeffer. One Jump Ahead: Challenging Human Supremacy in Checkers. ICGA
Journal, 20(2):93–93, 1997.

Markus Schatten, Igor Tomičić, Bogdan Okreša Ðurić, and Nikola Ivković. Towards an
Agent-Based Automated Testing Environment for Massively Multi-Player Role Play-
ing Games. In 2017 40th International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO), pages 1149–1154. IEEE,
2017.

Tom Schaul. A Video Game Description Language for Model-Based or Interactive Learn-
ing. In 2013 IEEE Conference on Computational Inteligence in Games (CIG), pages
1–8. IEEE, 2013.

Magy Seif El-Nasr, Simon Niedenthal, Igor Kenz, Priya Almeida, and Joseph Zupko.
Dynamic Lighting for Tension in Games. Game Studies Journal, 7(1), 2007.

Noor Shaker, Mohammad Shaker, and Julian Togelius. Ropossum: An Authoring Tool
for Designing, Optimizing and Solving Cut the Rope Levels. In Ninth Artificial Intel-
ligence and Interactive Digital Entertainment Conference, 2013.

Claude E Shannon. Programming a Computer for Playing Chess. Philosophical Maga-
zine, 7(41):256–275, 1950.

John J Shaughnessy, Eugene B Zechmeister, and Jeanne S Zechmeister. Research Meth-
ods in Psychology. McGraw-Hill, 2000.

Rafet Sifa, Anders Drachen, Christian Bauckhage, Christian Thurau, and Alessandro
Canossa. Behavior evolution in tomb raider underworld. In 2013 IEEE Conference on
Computational Inteligence in Games (CIG), pages 1–8. IEEE, 2013.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the Game of Go with Deep Neural Networks and Tree Search.
nature, 529(7587):484–489, 2016.

Chiara F Sironi, Jialin Liu, Diego Perez-Liebana, Raluca D Gaina, Ivan Bravi, Simon M
Lucas, and Mark HM Winands. Self-Adaptive MCTS for General Video Game Playing.
In International Conference on the Applications of Evolutionary Computation, pages
358–375. Springer, 2018.

Team Meat. Super Meat Boy . Team Meat, Oct 2010.

Gerald Tesauro. TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-
Level Play. Neural Computation, 6(2):215–219, 1994.

Thatgamecompany. Journey . Sony Computer Entertainment, Mar 2012.

431



BIBLIOGRAPHY

Tommy Thompson. Revolutionary Warfare The AI of Total War
(Part 3), Feb 2018. URL https://www.gamedeveloper.com/design/

revolutionary-warfare-the-ai-of-total-war-part-3-. Game Developer.

Julian Togelius, Noor Shaker, Sergey Karakovskiy, and Georgios N Yannakakis. The
Mario AI Championship 2009-2012. AI Magazine, 34(3):89–92, 2013.

Alan M Turing. Digital Computers Applied to Games. Faster than thought, 1953.

Anders Tychsen and Alessandro Canossa. Defining Personas in Games Using Metrics.
In Proceedings of the 2008 Conference on Future Play: Research, Play, Share, pages
73–80, 2008.

Valve. Counter-Strike. Valve, Nov 2000.

JG van Eeden. Analysing and Improving the Knowledge-based Fast Evolutionary MCTS
Algorithm. Master’s thesis, Utrecht University, Jul 2015.

Jan van Valburg. Automated Testing and Profiling for Call of Duty, 2018. URL https:

//www.youtube.com/watch?v=8d0wzyiikXM. GDC.

Vanessa Volz and Boris Naujoks. Towards Game-Playing AI Benchmarks via Perfor-
mance Reporting Standards. In 2020 IEEE Conference on Games (CoG), pages 764–
771. IEEE, 2020.

Vanessa Volz, Dan Ashlock, and Simon Colton. Gameplay Evaluation Measures. Ar-
tificial and Computational Intelligence in Games: AI-Driven Game Design (Dagstuhl
Seminar 17471), page 122, 2018.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

Ari Weinstein and Michael L Littman. Bandit-Based Planning and Learning in
Continuous-Action Markov Decision Processes. In Twenty-Second International Con-
ference on Automated Planning and Scheduling, 2012.

Wizarbox. So Blonde: Back to the Island . dtp Entertainment, Mar 2010.

Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. Vizdoom Competitions:
Playing Doom from Pixels. IEEE Transactions on Games, 11(3):248–259, 2018.

Georgios N Yannakakis and Julian Togelius. Experience-Driven Procedural Content
Generation. IEEE Transactions on Affective Computing, 2(3):147–161, 2011.

Georgios N Yannakakis and Julian Togelius. A Panorama of Artificial and Computational
Intelligence in Games. IEEE Transactions on Computational Intelligence and AI in
Games, 7(4):317–335, 2014.

Georgios N Yannakakis and Julian Togelius. Artificial Intelligence and Games. Springer,
2018. http://gameaibook.org.

432

https://www.gamedeveloper.com/design/revolutionary-warfare-the-ai-of-total-war-part-3-
https://www.gamedeveloper.com/design/revolutionary-warfare-the-ai-of-total-war-part-3-
https://www.youtube.com/watch?v=8d0wzyiikXM
https://www.youtube.com/watch?v=8d0wzyiikXM
http://gameaibook.org


BIBLIOGRAPHY

Georgios N Yannakakis, Antonios Liapis, and Constantine Alexopoulos. Mixed-Initiative
Co-Creativity. In 9th International Conference on the Foundations of Digital Games,
2014.

Nick Yee. The Gamer Motivation Profile: What we Learned from 250,000 Gamers. In
Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play,
pages 2–2, 2016.

Nick Yee. Gamer Motivation Model - Reference Sheets and Details (v2),
Apr 2019a. URL https://quanticfoundry.com/wp-content/uploads/2019/04/

Gamer-Motivation-Model-Reference.pdf. Accessed: 2021-10-06.

Nick Yee. A Deep Dive into the 12 Motivations: Findings from 400,000+ Gamers, Mar
2019b. URL https://www.gdcvault.com/play/1025742/A-Deep-Dive-into-the.
GDC.

Imants Zarembo. Analysis of Artificial Intelligence Applications for Automated Testing of
Video Games. In ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of
the International Scientific and Practical Conference, volume 2, pages 170–174, 2019.

Yunqi Zhao, Igor Borovikov, Fernando de Mesentier Silva, Ahmad Beirami, Jason Ru-
pert, Caedmon Somers, Jesse Harder, John Kolen, Jervis Pinto, Reza Pourabolghasem,
et al. Winning is not Everything: Enhancing Game Development with Intelligent
Agents. IEEE Transactions on Games, 12(2):199–212, 2020.

433

https://quanticfoundry.com/wp-content/uploads/2019/04/Gamer-Motivation-Model-Reference.pdf
https://quanticfoundry.com/wp-content/uploads/2019/04/Gamer-Motivation-Model-Reference.pdf
https://www.gdcvault.com/play/1025742/A-Deep-Dive-into-the

	I Introduction and Background
	Introduction
	Scope
	Research Questions
	Contributions
	Publications
	Structure

	Background
	Definitions
	Game-Playing Artificial Intelligence
	Tree-Search algorithms
	Evolutionary algorithms

	General Video Game Playing (GVGP)
	Frameworks for research in GVGP
	Heuristics for GVGP agents

	Gameplay Behaviour
	Player-types
	Play-personas and gameplay metrics
	Procedural personas

	Video Game Development and Testing
	Automated testing in the industry
	Game-playing agents and automated play-testing
	AI techniques within games with a focus on NPCs

	Summary and Conclusion

	Tools
	GVGAI Framework
	The Video Game Description Language (VGDL)
	The GVGAI Framework and Competition

	Agents
	One Step Look Ahead (OSLA)
	Monte Carlo Tree Search (MCTS)
	Open-Loop Expectimax Tree Search (OLETS)
	Rolling Horizon Evolutionary Algorithm (RHEA)
	Random Search (RS)

	MAP-Elites
	Application in games

	Games
	Game selection for Chapter 4
	Game selection for Chapters 6 and 7
	Original game for Chapter 8: Skulls and Tombstones

	Summary


	II Beyond Playing to Win
	Foundation: Heuristic Diversification in General Game-Playing
	Introduction
	Definitions
	Goals and Heuristics Implementation
	Winning Maximisation Heuristic (WMH)
	Exploration Maximisation Heuristic (EMH)
	Knowledge Discovery Heuristic (KDH)
	Knowledge Estimation Heuristic (KEH)

	Controllers
	Games
	Performance Comparison
	WMH
	EMH
	KDH
	KEH
	Results summary and discussion

	Analysing the Distinct Behaviour
	Behaviour in Butterflies
	Behaviour in Digdug

	Conclusions

	Vision: Use a Team of Agents for Game Development and Testing
	Introduction
	Methodology Description
	The Team
	Winner
	Speed-runner
	Survivor
	Record breaker
	Collector
	Killer
	Map explorer
	Novelty explorer
	Competence seeker
	Curious
	Scholar
	Search space scholar
	Risk analyst
	Semantic

	Game Evaluation
	Logging system
	Reports

	Variations
	Limitations
	Conclusions

	Approach: Generate the Team and Elicit a Diverse Gameplay
	Introduction
	Definitions
	Overview of the Approach
	Defining Agents with Behaviours Easy to Generate
	Agent: OLMCTS with an interchangeable heuristic
	MemberBehaviour
	Using MAP-Elites to generate the team

	Goals and Heuristics Implementation
	Experiment: Team Generation for Different Games
	Experiments configuration
	Games, levels, and experiments codification
	Resulting teams
	Summary and discussion

	Interactive Tool: Automated Gameplay Visualisation
	Conclusions

	Application: Team Portability and Level Testing
	Introduction
	Identification of Behaviour-type Agents from the Team
	Butterflies
	Zelda
	Digdug
	Sheriff

	Experiment: Portability of the Agents
	Portability experiment in Butterflies
	Portability experiment in Zelda
	Portability experiment in Digdug
	Portability experiment in Sheriff
	Results overview

	Exploratory Work: Using the Team for Level Testing
	Testing a `broken` level in Butterflies
	Testing a `broken` level in Zelda
	Testing a `broken` level in Digdug
	Testing a `broken` level in Sheriff
	Results overview

	Conclusion

	Prospect: Take a Player Experience Perspective
	Introduction and Motivation
	Definitions
	Exploratory Case Study Overview
	The General Agents (NPCs)
	Version A: Std. NPC
	Version B: Exp. NPC
	NPC's behaviour comparison

	Participants
	Material
	Experimental Set-Up
	Results
	Discussion
	Conclusions


	III Conclusions and Future Work
	Conclusions
	Future Work
	Heuristic diversification in GVGP
	Using a Team of GVGP agents: extensions and applications
	Integrating GVGP agents in games

	Concluding Remarks


	IV Appendices
	GVGAI Framework Games: Details and Screenshots
	Aliens
	Bait
	Butterflies
	Camel Race
	Chase
	Chopper
	Crossfire
	Digdug
	Escape
	Hungry Birds
	Infection
	Intersection
	Lemmings
	Missile Command
	Modality
	Plaque Attack
	Roguelike
	Seaquest
	Survive Zombies
	Wait For Breakfast

	List of Research Resources
	Heuristic Diversification
	Generation of the Team of Agents
	Team Portability and Level Testing
	Case study

	Full Results: Heuristic Diversification in GVGAI
	Per Game Results: WMH
	Per Game Results: EMH
	Per Game Results: KDH
	Per Game Results: KEH
	Per Game Estimations: KEH

	Full Results: Team of Agents Generated per Game
	Butterflies Team Assemble (B2 and B3 Comparison)
	Zelda Team Assemble
	Digdug Team Assemble
	Sheriff Team Assemble

	Full Results: Team Portability to New Levels
	Portability Results in Butterflies
	Portability results in Zelda
	Portability results in Digdug
	Portability results in Sheriff

	Case Study: Material
	Information Sheet
	Consent Form



