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Chapter 1

Introduction

In the last decades, scientists from several fields (including sociology, biology,
physics, mathematics and computer science) have been building the new science
of complex networks. From the Internet and the World Wide Web, to networks
of friendships and even networks of disease transmissions, the reality of networks
is almost everywhere in modern society. Scientists have found that many real
systems have the structure of a complex network, i.e. a graph representative
of the intricate connections that exist between its elements [11, 85, 87]. Then,
the first question that arises is: what exactly is a network? The answer to this
question is simple, because a network is nothing more than a set of elements
(called nodes or vertices) and a set of links (also known as edges or arcs) that
connect the elements of the network in pairs. Several common examples of
complex networks can include: technological systems such as the Internet [1, 27]
and the World Wide Web [2, 31]; biological systems such as gene or protein
interaction networks [40, 46, 73]; a great variety of social networks [35, 36, 70];
financial markets [60]; and transport infrastructures such as railway and aerial
routes [42] (see figure 1.1).

The new science of complex networks is important for various reasons. One
of them is that, by focusing on the properties of real networks, it is concerned
with the structure of networks as they arise naturally in the real world. Social
networks and biological networks are naturally occurring networks of this kind,
as are networks of information like citation networks and the World Wide Web.
Furthermore, adequate theoretical models are also essential if the significance of
any particular empirical finding is to be correctly understood. Hence, empirical
observation and theoretic modeling continually stimulate each other.

Another distinctive feature of the science of complex networks is that it
tries to establish the relationship between the structural properties of a net-
worked system and its behavior. Complex networks not only have topological
properties, but have dynamical properties as well. According to this view, the
vertices of a network represent discrete dynamical entities, with their own rules
of behavior, and the edges represent couplings between these entities.

The macroscopic description of complex networks in terms of statistical prop-
erties has been largely developed in the curse for a universal classification of
them. Among these properties we find the small world effect describing that
the average distance between nodes in a network is short, usually scaling loga-
rithmically with the total number of nodes in the network. Another macroscopic

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a real complex network: the airports network, with data
about passenger flights operating in the time period from 1 November 2000 to 31
October 2001, compiled by OAG Worldwide (Downers Grove, IL) and analyzed
in [42].

property present in many complex networks is a characteristic power-law degree
distribution, which means that there are typically many nodes with low degree
and a small number with high degree, the precise distribution often following
a power-law or exponential form. A third property that many networks have
in common is network transitivity (or high clustering coefficient), which is the
property that two nodes that are both neighbors of the same third node have a
greater probability of also being neighbors of one another.

When complex networks are analyzed locally, some characteristics that be-
come partially hidden in the statistical description emerge. The most relevant
perhaps is the discovery of community structure in many of them [35], stating
that nodes in a network are joined into groups of nodes connected between them
strongly or densely, with sparse or weak connections between different groups.
For instance, in the case of social networks (networks of friendships or other
relations between individuals), it is commonly observed that such networks do
have communities inside: subsets of nodes with quite dense node-node relations,
whilst the relations between different subsets are not that dense.

The study of community structure in complex networks has deserved a lot of
attention in recent years [22, 65]. In this work we exactly focus on the analysis of
several mesoscopic descriptions of complex networks. It is an interesting subject
matter because it can be very valuable identifying structures at a mesoscopic
level of description which might reveal information about the functionality of
groups of nodes [40, 43]: communities in social networks can represent real so-
cial groupings, maybe regarding common interests or studies; communities in
citation networks can represent related articles on any common subject; commu-
nities in metabolic networks can represent cycles or other functional groupings;
communities in the World Wide Web can represent pages about related subjects.
The ability to identify these communities can help us to understand networks
better and to analyze them more efficiently.
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Figure 1.2: Example of a dendrogram depicting the hierarchical structure of a
set with anorexia data and analyzed in [63].

Traditional methods for community detection

The traditional methods to detect community structure in networks are taken
from the analysis of social networks and they are known with the generic name
of clustering [20, 38, 84]. Clustering methods group individuals into groups of
individuals or clusters, so that individuals in a cluster are close to one another.
They are classified into two big groups, agglomerative and divisive, depending
on whether they merge or split clusters respectively. Agglomerative methods
have been more commonly used because they are more time effective than their
divisive counterparts. In agglomerative hierarchical clustering, one starts defin-
ing a similarity measure between individuals and calculating the corresponding
values between all pairs of individuals. Then, an iterative process begins from
as many singleton clusters as individuals exist, merging the two more similar
clusters at each repetition step until all individuals are in the same cluster. Dur-
ing this algorithmic process, a complete hierarchy of clusters is formed and it
can be represented using a tree called dendrogram (see figure 1.2). Hierarchical
clustering does not provide a single partition of the individuals into clusters,
but the cuts through different levels in the tree provide clusters corresponding
to a mesoscopic set of nested partitions.

Among the different types of agglomerative methods we find single linkage,
complete linkage, unweighted average, weighted average, etc., which differ in
the way they perform the iterative process that goes from the singleton clusters
to the final one. Except for the single linkage case, all the other pair-group
methods suffer from a problem of non-uniqueness when two or more similarity
values between different clusters coincide during the amalgamation process. The
traditional approach for solving this drawback has been to take any arbitrary
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Figure 1.3: Minimum spanning tree for a portfolio of stocks from the S&P 500
index. Stocks are drawn with different colors corresponding to the ten industry
sectors defined by the GICS (Global Industry Classification Standard).

criterion in order to break ties between similarity values, which results in differ-
ent hierarchical classifications depending on the criterion followed. In chapter 2
we analyze several agglomerative hierarchical clustering methods, and we focus
on the non-uniqueness problem in particular, proposing a new approach that
solves the problem.

Financial complex networks

A particular type of complex networks are the correlation-based ones, i.e. net-
works used to visualize the structure of pair correlations among a set of variables.
Specifically, starting from a set of variables one can calculate the correlation co-
efficient between all possible pairs. If we identify the different variables with the
nodes of the network, each pair of nodes can be thought to be connected by an
edge with a weight related to the correlation coefficient between the two vari-
ables. Such a network is therefore completely connected. Well known examples
of correlation-based networks can be found in any portfolio of stocks traded in a
financial market, by considering the evolution of the time series obtained from
the daily difference of the closure stock price.

Sometimes there is a need to filter such complex networks into simpler rel-
evant subnetworks. In [60], Mantegna detected a hierarchical structure present
in a portfolio of stocks traded in a financial market. The goal of the study
was to obtain the taxonomy of a portfolio of stocks by using the information
of time series of stock prices only. Starting from the correlation coefficient ma-
trix of a set of stocks, one can obtain a metric distance and then identify the
clusters of companies by means of the minimum spanning tree (see figure 1.3),
which is equivalent to the single linkage hierarchical tree in order to obtain the
subdominant ultrametric [77].
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Another important application of the hierarchical clustering techniques is
certainly in portfolio selection. Many attempts have been made to solve this cen-
tral problem, from the classical approach of Markowitz [61]. In chapter 3, after
an initial description of financial complex networks, we focus on the portfolio se-
lection problem. We consider a generalization of the standard Markowitz mean-
variance model which includes cardinality and bounding constraints. These
constraints ensure the investment in a given number of different assets and
limit the amount of capital to be invested in each asset. By considering this
model, the portfolio selection problem becomes a mixed quadratic and integer
programming problem and, hence, there is no exact method able to solve the
problem in an efficient way. In a first proposal, we show how asset trees, in addi-
tion to their ability to form economically meaningful clusters, can contribute to
the portfolio selection problem. Additionally, we give a new heuristic method
based on artificial neural networks in order to trace out the efficient frontier
associated to the portfolio selection problem.

Quality functions for evaluation of modular struc-
ture

There are two main approaches to perform the grouping step of any clustering
procedure. One can use hierarchical algorithms and obtain a nested series of
partitions, or use partitional algorithms which produce a single partition of
the data. In spite of their differences, both techniques share a common point
in the use of a quality function, i.e. a quantitative criterion to evaluate how
good partitions are. In hierarchical clustering such a function is needed to know
which of the partitions in the hierarchy is the best one, and partitional clustering
usually produces clusters by optimizing a quality function.

In terms of computation, the community detection problem is very similar to
that of finding a ground state of a spin glass model. A spin glass is a disordered
material exhibiting high magnetic frustration on account of the inability of the
system to remain in a single lowest energy state (the ground state). Reichardt
and Bornholdt [79] set the basis for a unified framework under which community
detection may be viewed. They showed that the problem can be mapped onto
finding the ground state of an infinite range Potts spin glass, where the similarity
measures are translated into coupling strengths, the energy of the system is
interpreted as the quality function of the partition into communities, and the
spin states are the community indices.

In chapter 4 we describe one of the most successful quality functions for
community detection, the modularity, under a unified framework of quality func-
tions coming out from a particular spin glass model. Modularity was proposed
by Newman and Girvan [69] as a function to compute the quality of each parti-
tion along a dendrogram, and to search for local optima pointing at satisfactory
partitions. However, provided that the optimization of modularity is a NP-hard
problem, it cannot be performed by exhaustive search and only optimization
heuristics have proved to be competent in finding suboptimal solutions of the
modularity function in feasible computational time. Here we propose an exact
procedure for size reduction of complex networks preserving the value of mod-
ularity. The use of this size reduction allows to search in a more exhaustive
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way through the partitions space, what usually will end in improved values of
modularity compared to those obtained without using the size reduction.

Descriptions at different scales

Returning to the example of the portfolio with stocks from the S&P 500 index,
in figure 1.3 we had the stocks classified in 10 groups according to the dif-
ferent sectors defined by the GICS (Global Industry Classification Standard):
energy, materials, industrials, consumer discretionary, consumer staples, health
care, financials, information technology, telecommunication services, and utili-
ties. However, this classification is just one among a great variety of possibilities.
As a matter of fact, the same GICS gives three additional levels of classification
for the industry. Thus, one can classify a portfolio of stocks in: 10 sectors, 24
industry groups, 59 industries, or 112 sub-industries.

The existence of several scales of description is not just a peculiarity of
financial systems, but a common feature in many real complex systems. In
chapter 5, motivated by the recent finding that the optimization of modularity
has a resolution limit related to the characteristic scale imposed by the total
strength (sum of weights) of the network, we introduce a multiple resolution
method that allows the process of optimizing modularity to find community
structure at different scales of description. We apply the method to unravel the
mesoscales of the neuronal connectivity of the nematode C. elegans. The whole
nervous system of this worm can be represented as an adjacency network (see
figure 1.4). The purpose of the analysis is to find any correlation between the
substructures prevailing in the mesoscales and the functionalities in the worm.

General descriptions for groups of nodes

The analysis of modular structure using the modularity quality function provides
a partition of the network into communities, where each community is a subset
of nodes more connected between them than with the rest of the nodes in the
network. However, modularity is strongly focused on communities, and therefore
it cannot be used to detect general groups of nodes revealed by alternative
connectivity patterns. Although a lot of work has been done to devise reliable
techniques to optimize modularity, very little has been done to analyze the
concept of modularity itself and its reliability as a method for detection of more
general modular structure.

In chapter 6 we propose a general framework to describe groups of nodes in
networks using motifs (small connected subnetworks) as elementary units. In
particular, we give several definitions for groups of nodes, including communi-
ties, based on the principle that they contain more motifs than a null model
representing a randomized version of the network at study. Thus, we develop
the mathematical formulation for extensions of modularity where the building
blocks are different types of motifs (e.g. triangles, cycles and paths between
nodes), and not just edges as in the original expression of modularity.
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(a)

(b)

Figure 1.4: (a) C. elegans anatomy; and (b) network with its neuronal con-
nectivity, where neurons are horizontally arranged according to their spatial
position and vertically arranged according to the ten different ganglia in the
worm.
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Chapter 2

Hierarchical Clustering

Clustering is the organization of a collection of individuals into groups of in-
dividuals or clusters based on a measure of similarity, and so that individuals
within a cluster are more similar to each other than they are to any individual
belonging to a different cluster. Typical clustering procedures involve the fol-
lowing two steps [48]: first, definition of a proximity measure appropriate to the
data domain; and second, grouping.

Proximity between individuals can be measured by a similarity function,
or alternatively it can be measured by a distance function used to reflect dis-
similarity between individuals. The grouping step can be performed following
two different schemes: hierarchical and partitional. Hierarchical clustering al-
gorithms produce a nested series of partitions based on a criterion for merging
or splitting clusters based on similarity. Partitional clustering algorithms ob-
tain a single partition of the data instead of a clustering structure. Partitional
techniques usually produce clusters by optimizing a quality function, although
combinatorial search for an optimum value of the quality function is compu-
tationally prohibitive. In practice, therefore, heuristic algorithms are typically
run multiple times with different starting points, and the best configuration
obtained from all of the runs is used as the output clustering.

This classification can be supplemented by several issues that may affect the
different approaches [49].

• Agglomerative vs. divisive: This aspect relates to algorithmic structure
and operation. An agglomerative approach begins with each individual
in a distinct (singleton) cluster, and successively merges clusters together
until a stopping criterion is satisfied. A divisive method begins with all the
individuals in a single cluster and keeps splitting clusters until a stopping
criterion is met.

• Exclusive vs. nonexclusive: An exclusive classification is a partition of
the set of individuals, i.e. each object belongs to exactly one cluster. A
nonexclusive (or overlapping) classification can assign each individual to
several clusters simultaneously.

• Deterministic vs. stochastic: This issue is most relevant to partitional ap-
proaches designed to optimize a quality function. This optimization can

9
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be accomplished using random decisions, in which case we are perform-
ing a stochastic search. Otherwise, the clustering method is said to be
deterministic.

In this chapter we focus on agglomerative hierarchical clustering techniques
[20, 38, 84], which are deterministic (in other chapters some stochastic tech-
niques are developed). Only exclusive approaches are considered here and,
therefore, we always deal with non-overlapping clusters. Agglomerative hier-
archical clustering starts from a proximity matrix between individuals, each one
forming a singleton cluster. Then, clusters are themselves grouped into groups
of clusters or superclusters, the process being repeated until a complete hierar-
chy is formed. In section 2.1 we describe the classic pair-group agglomerative
algorithm.

However, agglomerative hierarchical clustering methods suffer from a prob-
lem of non-uniqueness when the pair-group algorithm is used and two or more
distances between different clusters coincide during the amalgamation process.
The traditional approach for solving this drawback has been to take any arbi-
trary criterion in order to break ties between distances, which results in different
hierarchical classifications depending on the criterion followed. In section 2.2
we propose a variable-group algorithm that consists in grouping more than two
clusters at the same time when ties occur [29]. In the same section we introduce
a tree representation for the results of the algorithm, which we call a multiden-
drogram, and in section 2.3 we show some results corresponding to data from a
real example.

Among the different types of agglomerative methods we find single linkage,
complete linkage, unweighted average, weighted average, etc., which differ in
the definition of the proximity measure between clusters. In section 2.4 we de-
scribe several hierarchical clustering strategies and we give their generalization
according to the variable-group approach. Section 2.5 goes one step further
and explains the reason of the differences in the results obtained using one
agglomerative hierarchical method or another. Finally, in section 2.6 we gen-
eralize Lance and Williams’ formula, which enables the implementation of the
hierarchical clustering algorithm in a recursive way.

2.1 Pair-group agglomerative algorithm

Agglomerative hierarchical procedures build a hierarchical classification in a
bottom-up way, from a proximity matrix containing dissimilarity data between
individuals of a set Ω = {x1, . . . , xn} (the same analysis could be done using
similarity data). The algorithm has the following steps:

0) Initialize n singleton clusters with one individual in each of them: {x1},
. . . , {xn}. Initialize also the distances between clusters, D({xi}, {xj}),
with the values of the distances between individuals, d(xi, xj):

D({xi}, {xj}) = d(xi, xj) , ∀i, j = 1, . . . , n .

1) Find the shortest distance separating two different clusters.

2) Select two clusters Xi and Xi′ separated by such shortest distance and
merge them into a new supercluster Xi ∪ Xi′ .
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3) Compute the distances D(Xi ∪ Xi′ , Xj) between the new supercluster
Xi ∪ Xi′ and each of the other clusters Xj .

4) If all individuals are not in a single cluster yet, then go back to step 1.

Following Sneath and Sokal [84], this type of approach is known as a pair-
group method, in opposition to variable-group methods which will be discussed
in section 2.2. Depending on the criterion used for the calculation of distances
in step 3, we can implement different agglomerative hierarchical methods. In
this chapter we study some of the most commonly used ones, which are: single
linkage, complete linkage, unweighted average, weighted average, unweighted
centroid, weighted centroid and joint between-within.

The use of any hierarchical clustering technique on a finite set Ω with n
individuals results in an n-tree on Ω, which is defined as a subset T of parts of
Ω satisfying the following conditions:

(i) Ω ∈ T ,

(ii) ∅ /∈ T ,

(iii) ∀x ∈ Ω {x} ∈ T ,

(iv) ∀X, Y ∈ T (X ∩ Y = ∅ ∨ X ⊆ Y ∨ Y ⊆ X) .

An n-tree gives only the hierarchical structure of a classification, but the use of
a hierarchical clustering technique also associates a height h with each of the
clusters obtained. All this information is gathered in the definition of a valued
tree on Ω, which is a pair (T, h) where T is an n-tree on Ω and h : T −→ R is a
function such that ∀X, Y ∈ T :

(i) h(X) ≥ 0 ,

(ii) h(X) = 0 ⇐⇒ |X | = 1 ,

(iii) X � Y =⇒ h(X) < h(Y ) ,

where |X | denotes the cardinality of X .

2.2 Variable-group agglomerative algorithm

2.2.1 Non-uniqueness problem

The problem of non-uniqueness may arise at step 2 of the pair-group algorithm
in section 2.1, when two or more pairs of clusters are separated by the shortest
distance value (i.e., the shortest distance is tied). Every choice for breaking
ties may have important consequences, because it changes the collection of clus-
ters and the distances between them, possibly resulting in different hierarchical
classifications. It must be noted here that not all tied distances will produce
ambiguity: they have to be the shortest ones and they also have to involve a
common cluster. On the other hand, ambiguity is not limited to cases with ties
in the original proximity values, but ties may arise during the clustering process
too.

For example, suppose that we have a graph with four individuals like that
of figure 2.1, where the initial distance between any two individuals is the value
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Figure 2.1: Toy graph with four individuals and shortest path distances.

of the shortest path connecting them. This means, for instance, that the ini-
tial distance between x2 and x4 is equal to 5. Using the unweighted average
criterion, we can obtain three different valued trees. The graphical represen-
tation of valued trees are the so called dendrograms, and figure 2.2 shows the
three corresponding dendrograms obtained for our toy example. The first two
dendrograms are quite similar, but the third one shows a considerably different
hierarchical structure. Hence, if the third dendrogram is the only one obtained
by a software package, one could extract from it the wrong conclusion that x3

is closer to x4 than it is to x2.
Except for the single linkage case, all the other clustering techniques suffer

from a non-uniqueness problem, sometimes called the ties in proximity problem,
which is caused by ties either occurring in the initial proximity data or arising
during the amalgamation process. From the family of agglomerative hierarchical
methods, complete linkage is more susceptible than other methods to encounter
ties during the clustering process, since it does not originate new proximity
values different from the initial ones. With regard to the presence of ties in the
original data, they are more frequent when one works with binary variables, or
even with integer variables comprising just some few distinct values. However,
they can also appear using continuous variables, specially if the precision of
experimental data is low. Sometimes, on the contrary, the absence of ties might
be due to the representation of data with more decimal digits than it should be
done. The non-uniqueness problem also depends on the measure used to obtain
the proximity values from the initial variables. Moreover, in general, the larger
the data set, the more ties arise [59].

The ties in proximity problem is well-known from several studies in different
fields, for example in biology [9, 10, 45], in psychology [90], or in chemistry [59].

0.0
1.0
2.0
3.0
4.0
5.0

 1  2  3  4  1  2  3  4  1  2  3  4

Figure 2.2: Unweighted average dendrograms for the toy example.
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Nevertheless, this problem is frequently ignored in software packages [10, 63, 90],
and those packages which do not ignore it fail to adopt a common standard
with respect to ties. Many of them simply break the ties in any arbitrary way,
thus producing a single hierarchy. In some cases the analysis is repeated a
given number of times with randomized input data order, and then additional
criteria can be used for selecting one of the possible solutions [9]. In other cases,
some requirements are given on the number of individuals and the number of
characteristics needed to generate proximity data without ties [45, 59]. None
of these proposals can ensure the complete absence of ties, neither can all their
requirements be satisfied always.

Another possibility for dealing with multiple solutions is to use further cri-
teria, like a distortion measure [20], and select the best solution among all the
possible ones. The result of this approach will depend necessarily on the dis-
tortion measure used, which means that an additional choice must be made.
However, this proposal does not ensure the uniqueness of the solution, since
several candidate solutions might share the same minimum distortion value.
Besides, in ill conditioned problems (those susceptible to the occurrence of too
many ties), it is not feasible to perform an exhaustive search for all possible
hierarchical classifications, due to its high computational cost. With regard
to this, in [90] two data sets are analyzed using many random permutations
of the input data order, and with additional criteria the quality of each solu-
tion is evaluated. It is observed that the best solutions frequently emerge after
many permutations, and it is also noticed that the goodness of these solutions
necessarily depends on the number of permutations used.

An alternative proposal is to seek a hierarchical classification which describes
common structure among all the possible solutions, as recommended in [45]. One
approach is to prune as little as possible from the classifications being compared
to arrive at a common structure such as the maximal common pruned tree [63].
Care must be taken not to prune too much, so this approach can be followed
only when the number of alternative solutions is small and they are all known.
Furthermore, the maximal common pruned tree need not be uniquely defined
and it does not give a complete classification for all the individuals under study.

2.2.2 Variable-group approach: the multidendrogram

Any decision taken to break ties in the toy graph of figure 2.1 would be ar-
bitrary. In fact, the use of an unfortunate rule might lead us to the worst
dendrogram of the three. A logical solution to the pair-group criterion problem
might be to assign the same importance to all tied distances and, therefore,
to use a variable-group criterion. In our example of figure 2.1 this means the
amalgamation of individuals x1, x2 and x3 in a single cluster at the same time.
The immediate consequence is that we have to calculate the distance between
the new cluster {x1} ∪ {x2} ∪ {x3} and the cluster {x4}. In the unweighted
average case this distance is equal to 5, that is, the arithmetic mean among the
values 7, 5 and 3, corresponding respectively to the distances D({x1}, {x4}),
D({x2}, {x4}) and D({x3}, {x4}). We must also decide what height should be
assigned to the new cluster formed by x1, x2 and x3, which could be any value
between the minimum and the maximum distances that separate any two of
them. In this case the minimum distance is 2 and corresponds to both of the
tied distances D({x1}, {x2}) and D({x2}, {x3}), while the maximum distance
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Figure 2.3: Unweighted average multidendrogram for the toy example.

is the one separating x1 from x3 and it is equal to 4.
Following the variable-group criterion on a finite set Ω with n individuals,

we no longer get several valued trees, but we obtain a unique tree which we call
a multivalued tree on Ω, and we define it as a triplet (T, hl, hu) where T is an
n-tree on Ω and hl, hu : T −→ R are two functions such that ∀X, Y ∈ T :

(i) 0 ≤ hl(X) ≤ hu(X) ,

(ii) hl(X) = 0 ⇐⇒ hu(X) = 0 ⇐⇒ |X | = 1 ,

(iii) X � Y =⇒ hl(X) < hl(Y ) .

A multivalued tree associates with every cluster X in the hierarchical classifi-
cation two height values, hl(X) and hu(X), corresponding respectively to the
lower and upper bounds at which member individuals can be merged into cluster
X . When hl(X) and hu(X) coincide for every cluster X , the multivalued tree
is just a valued tree. On the contrary, when there is any cluster X for which
hl(X) < hu(X), it is like having multiple valued trees because every selection
of a height h(X) inside the interval [hl(X), hu(X)] corresponds to a different
valued tree. The length of the interval indicates the degree of heterogeneity
inside cluster X . We also introduce here the concept of multidendrogram to re-
fer to the graphical representation of a multivalued tree. In figure 2.3 we show
the corresponding multidendrogram for the toy example. The shadowed region
between heights 2 and 4 refers to the interval between the respective values of
hl and hu for cluster {x1} ∪ {x2} ∪ {x3}, which in turn also correspond to the
minimum and maximum distances separating any two of the constituent clusters
{x1}, {x2} and {x3}.

Let us consider the situation shown in figure 2.4, where nine different clusters
are to be grouped into superclusters. The clusters to be amalgamated should
be those separated by the shortest distance. The picture shows the edges con-
necting clusters separated by such shortest distance, so we observe that there
are six pairs of clusters separated by shortest edges. A pair-group clustering
algorithm typically would select any of these pairs, for instance (X8, X9), and
then it would compute the distance between the new supercluster X8 ∪X9 and
the rest of the clusters Xi, for all i ∈ {1, 2, . . . , 7}. What we propose here is to
follow a variable-group criterion and create as many superclusters as groups of
clusters connected by shortest edges. In figure 2.4, for instance, the nine initial
clusters would be grouped into the four following superclusters: X1, X2 ∪ X3,
X4 ∪ X5 ∪ X6 and X7 ∪ X8 ∪ X9. Then, all the pairwise distances between
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Figure 2.4: Simultaneous occurrence of different superclusters.

the four superclusters should be computed. In general, we must be able to
compute distances D(XI , XJ) between any two superclusters XI =

⋃
i∈I Xi

and XJ =
⋃

j∈J Xj, each one of them made up of several clusters indexed by
I = {i1, i2, . . . , ip} and J = {j1, j2, . . . , jq}, respectively.

The algorithm that we propose in order to ensure uniqueness in agglomera-
tive hierarchical clustering has the following steps:

0) Initialize n singleton clusters with one individual in each of them: {x1},
. . . , {xn}. Initialize also the distances between clusters, D({xi}, {xj}),
with the values of the distances between individuals, d(xi, xj):

D({xi}, {xj}) = d(xi, xj) , ∀i, j = 1, . . . , n .

1) Find the shortest distance separating two different clusters, and record it
as Dlower.

2) Select all the groups of clusters separated by shortest distance Dlower and
merge them into several new superclusters XI . The result of this step can
be some superclusters made up of just one single cluster (|I| = 1), as well
as some superclusters made up of various clusters (|I| > 1). Notice that
the latter superclusters all must satisfy the condition Dmin(XI) = Dlower,
where

Dmin(XI) = min
i∈I

min
i′∈I
i′ �=i

D(Xi, Xi′) .

3) Update the distances between clusters following the next substeps:

3.1) Compute the distances D(XI , XJ) between all superclusters, and
record the minimum of them as Dnext (this will be the shortest dis-
tance Dlower in the next iteration of the algorithm).

3.2) For each supercluster XI made up of various clusters (|I| > 1), as-
sign a common amalgamation interval [Dlower, Dupper] for all its con-
stituent clusters Xi, i ∈ I, where Dupper = Dmax(XI) and

Dmax(XI) = max
i∈I

max
i′∈I
i′ �=i

D(Xi, Xi′) .
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4) If all individuals are not in a single cluster yet, then go back to step 1.

Using the pair-group algorithm, only the centroid methods (weighted and
unweighted) may produce reversals. Let us remember that a reversal arises in
a valued tree when it contains at least two clusters X and Y for which X ⊂ Y
but h(X) > h(Y ) [63]. In the case of the variable-group algorithm, reversals
may appear in substep 3.2. Although reversals make dendrograms difficult to
interpret if they occur during the last stages of the agglomeration process, it
can be argued that they are not very disturbing if they occur during the first
stages. Thus, as happens with the centroid methods in the pair-group case, it
could be reasonable to use the variable-group algorithm as long as no reversals
at all or only unimportant ones were produced.

Sometimes, in substep 3.2 of the variable-group clustering algorithm, it will
not be enough to adopt a fusion interval, but it will be necessary to obtain an
exact fusion value (e.g., in order to calculate a distortion measure). In these
cases, given the lower and upper bounds at which the tied clusters can merge into
a supercluster, one possibility is to select the fusion value naturally suggested by
the method being applied. For instance, in the case of the toy example and the
corresponding multidendrogram shown in figures 2.1 and 2.3, the fusion value
would be 2.7 (the unweighted average distance). If the clustering method used
was a different one such as single linkage or complete linkage, then the fusion
value would be 2 or 4, respectively. Another possibility is to use systematically
the shortest distance as the fusion value for the tied clusters. Both criteria allow
the recovering of the pair-group result for the single linkage method. The latter
criterion, in addition, avoids the appearance of reversals. However, it must be
emphasized that the adoption of exact fusion values, without considering the
fusion intervals at their whole lengths, means that some valuable information
regarding the heterogeneity of the clusters is being lost.

2.3 Soils example

We show here a real example which has been studied by Morgan and Ray [63]
using the complete linkage method. It is the Glamorganshire soils example,
formed by similarity data between 23 different soils. A table with the simi-
larities can be found also in Morgan and Ray [63], where the values are given
with an accuracy of three decimal places. In order to work with dissimilarities,
first of all we have transformed the similarities s(xi, xj) into the corresponding
dissimilarities d(xi, xj) = 1 − s(xi, xj).

The original data present a tied value for pairs of soils (3,15) and (3,20),
which is responsible for two different dendrograms using the complete linkage
strategy. We show them in figure 2.5. Morgan and Ray [63] explain that the 23
soils have been categorized into eight “great soil groups” by a surveyor. Focusing
on soils 1, 2, 6, 12 and 13, which are the only members of the brown earths soil
group, we see that the dendrogram in figure 2.5a does not place them in the
same cluster until they join soils from five other soil groups, forming the cluster
(1, 2, 3, 20, 12, 13, 15, 5, 6, 8, 14, 18). From this point of view, the dendrogram
in figure 2.5b is better, since the corresponding cluster loses soils 8, 14 and 18,
each representing a different soil group. So, in this case, we have two possible
solution dendrograms and the probability of obtaining the “good” one is, hence,
50%.
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Figure 2.5: Complete linkage dendrograms for the soils data. According to the
brown earths soil group formed by soils 1, 2, 6, 12 and 13, the dendrogram in (a)
is worse than that in (b) because the former joins these soils at a posterior stage
of the amalgamation process.
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Figure 2.6: Complete linkage multidendrogram for the soils data (with an ac-
curacy of three decimal places).

On the other hand, in figure 2.6 we can see the multidendrogram correspond-
ing to the Glamorganshire soils data. The existence of a tie comprising soils 3,
15 and 20 is clear from this tree representation. Besides, the multidendrogram
gives us the good classification, that is, the one with soils 8, 14 and 18 out of
the brown earths soil group. Except for the internal structure of the cluster (1,
2, 3, 15, 20), the rest of the multidendrogram hierarchy coincides with that of
the dendrogram shown in figure 2.5(b).

Finally, notice that the incidence of ties depends on the accuracy with which
proximity values are available. In this example, if dissimilarities had been mea-
sured to four decimal places, then the tie causing the non-unique complete
linkage dendrogram might have disappeared. On the contrary, the probability
of ties is higher if lower accuracy data are used. For instance, when we con-
sider the same soils data but with an accuracy of only two decimal places, we
obtain the multidendrogram shown in figure 2.7, where three different ties can
be observed.

2.4 Agglomerative hierarchical methods

In the variable-group clustering algorithm previously proposed we have seen the
necessity of agglomerating simultaneously two families of clusters, respectively
indexed by I = {i1, i2, . . . , ip} and J = {j1, j2, . . . , jq}, into two superclusters
XI =

⋃
i∈I Xi and XJ =

⋃
j∈J Xj . In the following subsections we derive, for

each of the most commonly used agglomerative hierarchical clustering strategies,
the distance between the two superclusters, D(XI , XJ), in terms of the distances
between the respective component clusters, D(Xi, Xj).

2.4.1 Single linkage

In single linkage clustering, also called nearest neighbor or minimum method,
the distance between two clusters Xi and Xj is defined as the distance between
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Figure 2.7: Complete linkage multidendrogram for the soils data, with an accu-
racy of two decimal places.

the closest pair of individuals, one in each cluster:

D(Xi, Xj) = min
x∈Xi

min
y∈Xj

d(x, y) . (2.1)

This means that the distance between two superclusters XI and XJ can be
defined as

D(XI , XJ) = min
x∈XI

min
y∈XJ

d(x, y) = min
i∈I

min
x∈Xi

min
j∈J

min
y∈Xj

d(x, y) . (2.2)

Notice that this formulation generalizes the definition of distance between clus-
ters in the sense that equation (2.1) is recovered from equation (2.2) when
|I| = |J | = 1, that is, when superclusters I and J are both composed of a single
cluster. Grouping terms and using the definition in equation (2.1), we get the
equivalent definition:

D(XI , XJ) = min
i∈I

min
j∈J

D(Xi, Xj) . (2.3)

2.4.2 Complete linkage

In complete linkage clustering, also known as furthest neighbor or maximum
method, cluster distance is defined as the distance between the most remote
pair of individuals, one in each cluster:

D(Xi, Xj) = max
x∈Xi

max
y∈Xj

d(x, y) . (2.4)

Starting from equation (2.4) and following the same reasoning as in the single
linkage case, we extend the definition of distance to the superclusters case as

D(XI , XJ) = max
i∈I

max
j∈J

D(Xi, Xj) . (2.5)
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2.4.3 Unweighted average

Unweighted average clustering, also known as group average method or UP-
GMA (Unweighted Pair-Group Method using Averages), iteratively forms clus-
ters made up of pairs of previously formed clusters, based on the arithmetic
mean distances between their member individuals. It uses an unweighted aver-
aging procedure, that is, when clusters are joined to form a larger cluster, the
distance between this new cluster and any other cluster is calculated weighting
each individual in those clusters equally, regardless of the structural subdivision
of the clusters:

D(Xi, Xj) =
1

|Xi||Xj |
∑

x∈Xi

∑
y∈Xj

d(x, y) . (2.6)

When the variable-group strategy is followed, the UPGMA name of the method
should be modified to that of UVGMA (Unweighted Variable-Group Method
using Averages), and the distance definition between superclusters in this case
should be

D(XI , XJ) =
1

|XI ||XJ |
∑

x∈XI

∑
y∈XJ

d(x, y)

=
1

|XI ||XJ |
∑
i∈I

∑
x∈Xi

∑
j∈J

∑
y∈Xj

d(x, y) . (2.7)

Using equation (2.6), we get the desired definition in terms of the distances
between component clusters:

D(XI , XJ) =
1

|XI ||XJ |
∑
i∈I

∑
j∈J

|Xi||Xj |D(Xi, Xj) . (2.8)

In this case, |XI | is the number of individuals in supercluster XI , that is, |XI | =∑
i∈I |Xi|.

2.4.4 Weighted average

In weighted average strategy, also called WVGMA (Weighted Variable-Group
Method using Averages) in substitution of the corresponding pair-group name
WPGMA, we calculate the distance between two superclusters XI and XJ by
taking the arithmetic mean of the pairwise distances, not between individuals in
the original matrix of distances, but between component clusters in the matrix
used in the previous iteration of the procedure:

D(XI , XJ) =
1

|I||J |
∑
i∈I

∑
j∈J

D(Xi, Xj) . (2.9)

This method is related to the unweighted average one in that the former
derives from the latter when we consider

|Xi| = 1 ∀i ∈ I and |Xj | = 1 ∀j ∈ J . (2.10)

It weights the most recently admitted individuals in a cluster equally to its
previous members. The weighting discussed here is with reference to individuals
composing a cluster and not to the average distances in Lance and Williams’
recursive formula (see section 2.6), in which equal weights apply for weighted
clustering and different weights apply for unweighted clustering [84].
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2.4.5 Unweighted centroid

The next three clustering techniques assume that individuals can be represented
by points in Euclidean space. This method and the next one further assume
that the measure of dissimilarity between any pair of individuals is the squared
Euclidean distance between the corresponding pair of points. When the dissim-
ilarity between two clusters Xi and Xj is defined to be the squared distance
between their centroids, we are performing unweighted centroid (or simply cen-
troid) clustering, also called UPGMC (Unweighted Pair-Group Method using
Centroids):

D(Xi, Xj) = ‖xi − xj‖2 , (2.11)

where xi and xj are the centroids of the points in clusters Xi and Xj respectively,
and ‖ · ‖ is the Euclidean norm. Therefore, under the variable-group point
of view, the method could be named UVGMC and the distance between two
superclusters can be generalized to the definition:

D(XI , XJ) = ‖xI − xJ‖2 . (2.12)

Next we prove that this definition can be expressed in terms of equation (2.11)
as

D(XI , XJ) =
1

|XI ||XJ |
∑
i∈I

∑
j∈J

|Xi||Xj |D(Xi, Xj)

− 1
|XI |2

∑
i∈I

∑
i′∈I
i′>i

|Xi||Xi′ |D(Xi, Xi′)

− 1
|XJ |2

∑
j∈J

∑
j′∈J
j′>j

|Xj ||Xj′ |D(Xj , Xj′ ) . (2.13)

Certainly, given a cluster Xi, its centroid is

xi =
1

|Xi|
∑

x∈Xi

x ,

and the centroid of a supercluster XI can be expressed in terms of its constituent
centroids by the equation:

xI =
1

|XI |
∑
i∈I

|Xi|xi . (2.14)

Now, given two superclusters XI and XJ , the distance between them defined in
equation (2.12) is

D(XI , XJ) = ‖xI − xJ‖2 = ‖xI‖2 + ‖xJ‖2 − 2〈xI , xJ〉 ,

where 〈·, ·〉 stands for the inner product. If we substitute each centroid by its
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definition (2.14), we obtain:

D(XI , XJ) =
1

|XI |2
∑
i∈I

∑
i′∈I

|Xi||Xi′ |〈xi, xi′〉

+
1

|XJ |2
∑
j∈J

∑
j′∈J

|Xj ||Xj′ |〈xj , xj′〉

− 1
|XI ||XJ |

∑
i∈I

∑
j∈J

|Xi||Xj |2〈xi, xj〉 .

Now, since
2〈xi, xj〉 = ‖xi‖2 + ‖xj‖2 − ‖xi − xj‖2 ,

we have that

D(XI , XJ) =
1

|XI |2
∑
i∈I

∑
i′∈I

|Xi||Xi′ |〈xi, xi′〉

+
1

|XJ |2
∑
j∈J

∑
j′∈J

|Xj ||Xj′ |〈xj , xj′〉

− 1
|XI ||XJ |

∑
i∈I

∑
j∈J

|Xi||Xj|‖xi‖2 − 1
|XI ||XJ |

∑
i∈I

∑
j∈J

|Xi||Xj |‖xj‖2

+
1

|XI ||XJ |
∑
i∈I

∑
j∈J

|Xi||Xj|‖xi − xj‖2 .

This can be rewritten as

D(XI , XJ ) =
1

|XI ||XJ |
∑
i∈I

∑
j∈J

|Xi||Xj|‖xi − xj‖2

− 1
|XI |

∑
i∈I

|Xi|‖xi‖2 +
1

|XI |2
∑
i∈I

∑
i′∈I

|Xi||Xi′ |〈xi, xi′〉

− 1
|XJ |

∑
j∈J

|Xj|‖xj‖2 +
1

|XJ |2
∑
j∈J

∑
j′∈J

|Xj ||Xj′ |〈xj , xj′ 〉 ,

and, grouping terms,

D(XI , XJ) =
1

|XI ||XJ |
∑
i∈I

∑
j∈J

|Xi||Xj |‖xi − xj‖2

− 1
|XI |2

∑
i∈I

∑
i′∈I

|Xi||Xi′ |
(
‖xi‖2 − 〈xi, xi′〉

)

− 1
|XJ |2

∑
j∈J

∑
j′∈J

|Xj ||Xj′ |
(
‖xj‖2 − 〈xj , xj′〉

)
.

The second and third terms can be simplified a little more, thanks to the equality∑
i∈I

∑
i′∈I

|Xi||Xi′ |
(
‖xi‖2 − 〈xi, xi′〉

)
=

=
∑
i∈I

∑
i′∈I
i′>i

|Xi||Xi′ |
(
‖xi‖2 + ‖xi′‖2 − 2〈xi, xi′〉

)
.
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With this simplification, we have that

D(XI , XJ) =
1

|XI ||XJ |
∑
i∈I

∑
j∈J

|Xi||Xj |‖xi − xj‖2

− 1
|XI |2

∑
i∈I

∑
i′∈I
i′>i

|Xi||Xi′ |‖xi − xi′‖2

− 1
|XJ |2

∑
j∈J

∑
j′∈J
j′>j

|Xj ||Xj′ |‖xj − xj′‖2 ,

and, recalling the definition of distance between two clusters given in equa-
tion (2.11), we finally obtain the desired form of equation (2.13).

2.4.6 Weighted centroid

In weighted centroid strategy, also called median method or WVGMC (Weighted
Variable-Group Method using Centroids) in substitution of the pair-group name
WPGMC, we modify the definition of dissimilarity between two clusters given
in the unweighted centroid case, assigning each cluster the same weight in cal-
culating the “centroid”. Now the center of a supercluster XI is the average of
the centers of the constituent clusters:

xI =
1
|I|
∑
i∈I

xi . (2.15)

This method is related to the unweighted centroid one by relation (2.10), which
also related the weighted average strategy to the corresponding unweighted av-
erage. So, in this case we define the distance between two superclusters as

D(XI , XJ ) =
1

|I||J |
∑
i∈I

∑
j∈J

D(Xi, Xj)

− 1
|I|2

∑
i∈I

∑
i′∈I
i′>i

D(Xi, Xi′) −
1

|J |2
∑
j∈J

∑
j′∈J
j′>j

D(Xj , Xj′) . (2.16)

2.4.7 Joint between-within

Székely and Rizzo [88] propose an agglomerative hierarchical clustering method
that minimizes a joint between-within cluster distance, measuring both hetero-
geneity between clusters and homogeneity within clusters. This method extends
Ward’s minimum variance method [92] by defining the distance between two
clusters Xi and Xj in terms of any power α ∈ (0, 2] of Euclidean distances
between individuals:

D(Xi, Xj) =
|Xi||Xj |

|Xi| + |Xj |

(
2

|Xi||Xj |
∑

x∈Xi

∑
y∈Xj

‖x − y‖α

− 1
|Xi|2

∑
x∈Xi

∑
x′∈Xi

‖x − x′‖α − 1
|Xj |2

∑
y∈Xj

∑
y′∈Xj

‖y − y′‖α

)
. (2.17)
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When α = 2, cluster distances are a weighted squared distance between cluster
centers

D(Xi, Xj) =
2|Xi||Xj |
|Xi| + |Xj |

‖xi − xj‖2 , (2.18)

equal to twice the cluster distance that is used in Ward’s method.
Next we derive the following recursive formula for updating cluster distances

as a generalization of equation (2.17):

D(XI , XJ) =
1

|XI | + |XJ |
∑
i∈I

∑
j∈J

(|Xi| + |Xj |)D(Xi, Xj)

− |XJ |
|XI |(|XI | + |XJ |)

∑
i∈I

∑
i′∈I
i′>i

(|Xi| + |Xi′ |)D(Xi, Xi′)

− |XI |
|XJ |(|XI | + |XJ |)

∑
j∈J

∑
j′∈J
j′>j

(|Xj | + |Xj′ |)D(Xj , Xj′) . (2.19)

We give here a proof based on that of Székely and Rizzo [88] for their ag-
glomerative hierarchical formulation. Using the following constants:

θij =
1

|Xi||Xj |
∑

x∈Xi

∑
y∈Xj

‖x − y‖α ,

θii =
1

|Xi|2
∑

x∈Xi

∑
x′∈Xi

‖x − x′‖α , (2.20)

the definition (2.17) of distance between two clusters Xi and Xj is

D(Xi, Xj) =
|Xi||Xj |

|Xi| + |Xj|
(2θij − θii − θjj) .

Consider now the superclusters XI and XJ formed by merging clusters Xi, for
all i ∈ I, and Xj , for all j ∈ J . Define the corresponding constants:

θIJ =
1

|XI ||XJ |
∑

x∈XI

∑
y∈XJ

‖x − y‖α

=
1

|XI ||XJ |
∑
i∈I

∑
j∈J

∑
x∈Xi

∑
y∈Xj

‖x − y‖α ,

θII =
1

|XI |2
∑

x∈XI

∑
x′∈XI

‖x − x′‖α

=
1

|XI |2
∑
i∈I

∑
i′∈I

∑
x∈Xi

∑
x′∈Xi′

‖x − x′‖α

=
1

|XI |2
∑
i∈I

(∑
x∈Xi

∑
x′∈Xi

‖x − x′‖α + 2
∑
i′∈I
i′>i

∑
x∈Xi

∑
x′∈Xi′

‖x − x′‖α

)
,
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so that in terms of the original constants (2.20) we have:

θIJ =
1

|XI ||XJ |
∑
i∈I

∑
j∈J

|Xi||Xj |θij ,

θII =
1

|XI |2
∑
i∈I

(
|Xi|2θii + 2

∑
i′∈I
i′>i

|Xi||Xi′ |θii′

)
.

Therefore, the distance between superclusters XI and XJ is given by

D(XI , XJ ) =
|XI ||XJ |

|XI | + |XJ |
(2θIJ − θII − θJJ )

=
|XI ||XJ |

|XI | + |XJ |

[
2

|XI ||XJ |
∑
i∈I

∑
j∈J

|Xi||Xj |θij

− 1
|XI |2

∑
i∈I

(
|Xi|2θii + 2

∑
i′∈I
i′>i

|Xi||Xi′ |θii′

)

− 1
|XJ |2

∑
j∈J

(
|Xj |2θjj + 2

∑
j′∈J
j′>j

|Xj||Xj′ |θjj′

)]
.

Simplify

∑
i∈I

(
|Xi|2θii + 2

∑
i′∈I
i′>i

|Xi||Xi′ |θii′

)
=

=
∑
i∈I

[
|Xi|2θii +

∑
i′∈I
i′>i

|Xi||Xi′ |(2θii′ − θii − θi′i′ + θii + θi′i′)
]

=
∑
i∈I

[
|Xi|2θii +

∑
i′∈I
i′>i

|Xi||Xi′ |(θii + θi′i′) +
∑
i′∈I
i′>i

(|Xi| + |Xi′ |)D(Xi, Xi′)
]

= |XI |
∑
i∈I

|Xi|θii +
∑
i∈I

∑
i′∈I
i′>i

(|Xi| + |Xi′ |)D(Xi, Xi′) ,

where in last equality we have used the equivalence

∑
i∈I

[
|Xi|2θii +

∑
i′∈I
i′>i

|Xi||Xi′ |(θii + θi′i′)
]

= |XI |
∑
i∈I

|Xi|θii .
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Hence,

(|XI | + |XJ |)D(XI , XJ ) = 2
∑
i∈I

∑
j∈J

|Xi||Xj |θij

−|XJ |
∑
i∈I

|Xi|θii −
|XJ |
|XI |

∑
i∈I

∑
i′∈I
i′>i

(|Xi| + |Xi′ |)D(Xi, Xi′)

−|XI |
∑
j∈J

|Xj |θjj −
|XI |
|XJ |

∑
j∈J

∑
j′∈J
j′>j

(|Xj | + |Xj′ |)D(Xj , Xj′) ,

or, equivalently,

(|XI | + |XJ |)D(XI , XJ) =
∑
i∈I

∑
j∈J

|Xi||Xj |2θij

−
∑
i∈I

|Xi|θii

∑
j∈J

|Xj | −
∑
i∈I

|Xi|
∑
j∈J

|Xj|θjj

−|XJ |
|XI |

∑
i∈I

∑
i′∈I
i′>i

(|Xi| + |Xi′ |)D(Xi, Xi′)

− |XI |
|XJ |

∑
j∈J

∑
j′∈J
j′>j

(|Xj | + |Xj′ |)D(Xj , Xj′) ,

which is also the same as

(|XI | + |XJ |)D(XI , XJ) =
∑
i∈I

∑
j∈J

(|Xi| + |Xj |)D(Xi, Xj)

−|XJ |
|XI |

∑
i∈I

∑
i′∈I
i′>i

(|Xi| + |Xi′ |)D(Xi, Xi′)

− |XI |
|XJ |

∑
j∈J

∑
j′∈J
j′>j

(|Xj | + |Xj′ |)D(Xj , Xj′) .

And this is exactly the desired formulation given in equation (2.19).

2.5 Space distortion

Markedly different results can be obtained when a set of objects is clustered
using distinct agglomerative hierarchical methods. The point is that clustering
criteria are not model-free, but implicitly specify models for data and can pro-
vide misleading summaries of the class structure present in the data. Dubien
and Warde [24] formalized the idea of space distortion in hierarchical clustering,
referring to strategies as space-conserving, space-contracting or space-dilating.
Suppose that Xi and Xi′ are two clusters selected during the pair-group algo-
rithm of section 2.1 to be merged into the supercluster Xi ∪ Xi′ , and let Xj
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represent each one of the other clusters whose distance to the new superclus-
ter Xi ∪ Xi′ has to be calculated. Then, a clustering strategy is said to be
space-conserving if

min{D(Xi, Xj), D(Xi′ , Xj)} < D(Xi ∪ Xi′ , Xj)
max{D(Xi, Xj), D(Xi′ , Xj)} > D(Xi ∪ Xi′ , Xj) , (2.21)

and to be space-contracting if the first inequality is broken, and space-dilating
if the second inequality is broken.

Next, we modify properly equation (2.21) in terms of the variable-group
algorithm of section 2.2. Let XI and XJ be two superclusters whose distance
of separation has to be computed. Then, we can define a clustering strategy to
be space-conserving if

min
i∈I

min
j∈J

D(Xi, Xj) < D(XI , XJ) < max
i∈I

max
j∈J

D(Xi, Xj) , (2.22)

and to be space-contracting if the first inequality is broken, and space-dilating
if the second inequality is broken.

The complete linkage clustering method is space-dilating and, as a conse-
quence, it generally leads to tight clusters that join others only with difficulty
and at relatively high dissimilarity values. From their definition, complete link-
age classes are compact but need not be externally isolated. On the contrary,
the single linkage clustering method is space-contracting, leading frequently to
long untidy clusters. From their definition, single linkage classes are isolated
from one another but need not possess much internal cohesion. The elongate
growth of single linkage clusters is known as chaining effect [48]: different in-
dividuals merge into a large cluster almost one at a time during the iterative
amalgamation process. Furthermore, the chaining effect not only arises in the
agglomerative hierarchical methods studied in this chapter, but it is also ob-
served in other clustering methods. For example, in [21] the authors showed
that Newman’s Fast algorithm for community detection [66] tends to favor the
creation of large communities (clusters) at the expense of smaller ones, specially
at the early stages of the grouping process.

The single linkage and complete linkage clustering criteria take extreme ap-
proaches to the aim that classes be externally isolated and internally cohesive,
each of them concentrating on satisfying one of these objectives respectively.
The two average linkage clustering methods, weighted and unweighted, take
a middle road between these extremes and are space-conserving. Weighted
clustering was only introduced in an attempt to give merging branches in a
(multi)dendrogram equal weight regardless of the number of individuals car-
ried on each branch. Such a procedure weights the individuals unequally. Un-
weighted clustering gives equal weight to each individual in clusters whose dis-
tance from another cluster is being evaluated.

On the other hand, clustering strategies that can lead to reversals, such as the
two centroid linkage methods, sometimes are said to be highly space-contracting
since one can have, in terms of the pair-group algorithmic approach,

D(Xi ∪ Xi′ , Xj) < D(Xi, Xi′) < min{D(Xi, Xj), D(Xi′ , Xj)} , (2.23)

and in variable-group algorithmic terms,

D(XI , XJ) < Dlower < min
i∈I

min
j∈J

D(Xi, Xj) , (2.24)
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where the reader needs to remember that Dlower was the shortest distance
separating two different clusters inside XI or XJ . The joint between-within
clustering method can be said to be space-dilating because it can lead to

D(Xi ∪ Xi′ , Xj) > max{D(Xi, Xj), D(Xi′ , Xj)} , (2.25)

in terms of the pair-group algorithm, or

D(XI , XJ) > max
i∈I

max
j∈J

D(Xi, Xj) , (2.26)

using the variable-group notation.

2.6 Recursive formulation

Lance and Williams [55] put the most commonly used agglomerative hierarchi-
cal strategies into a single system, avoiding the necessity of a separate computer
program for each of them. Assume three clusters Xi, Xi′ and Xj , containing
|Xi|, |Xi′ | and |Xj | individuals respectively and with distances between them
already determined as D(Xi, Xi′), D(Xi, Xj) and D(Xi′ , Xj). Further assume
that the smallest of all distances still to be considered is D(Xi, Xi′), so that
Xi and Xi′ are joined to form a new supercluster Xi ∪ Xi′ , with |Xi| + |Xi′ |
individuals. Lance and Williams express D(Xi ∪ Xi′ , Xj) in terms of the dis-
tances already defined, all known at the moment of fusion, using the following
recurrence relation:

D(Xi ∪ Xi′ , Xj) = αiD(Xi, Xj) + αi′D(Xi′ , Xj)
+ βD(Xi, Xi′) + γ|D(Xi, Xj) − D(Xi′ , Xj)| . (2.27)

With this technique superclusters can always be computed from previous clus-
ters and it is not necessary to return to the original dissimilarity data during the
clustering process. The values of the parameters αi, αi′ , β and γ determine the
nature of the sorting strategy. Table 2.1 gives the values of the parameters that
define the most commonly used agglomerative hierarchical clustering methods.

We next give a generalization of formula (2.27) compatible with the amal-
gamation of more than two clusters simultaneously. Suppose that one wants
to agglomerate two superclusters XI and XJ , respectively indexed by I =
{i1, i2, . . . , ip} and J = {j1, j2, . . . , jq}. We define the distance between them
as:

D(XI , XJ) =
∑
i∈I

∑
j∈J

αijD(Xi, Xj)

+
∑
i∈I

∑
i′∈I
i′>i

βii′D(Xi, Xi′) +
∑
j∈J

∑
j′∈J
j′>j

βjj′D(Xj , Xj′)

+ δ
∑
i∈I

∑
j∈J

γij [Dmax(XI , XJ) − D(Xi, Xj)]

−(1 − δ)
∑
i∈I

∑
j∈J

γij [D(Xi, Xj) − Dmin(XI , XJ)] , (2.28)

where
Dmax(XI , XJ) = max

i∈I
max
j∈J

D(Xi, Xj)



2.7. SUMMARY 29

Table 2.1: Parameter values for the Lance and Williams’ formula.
Method αi (αi′ ) β γ

Single linkage 1
2 0 − 1

2

Complete linkage 1
2 0 + 1

2

Unweighted average |Xi|
|Xi|+|Xi′ |

0 0

Weighted average 1
2 0 0

Unweighted centroid |Xi|
|Xi|+|Xi′ |

− |Xi||Xi′ |
(|Xi|+|Xi′ |)2

0

Weighted centroid 1
2 − 1

4 0

Joint between-within |Xi|+|Xj|
|Xi|+|Xi′ |+|Xj | − |Xj |

|Xi|+|Xi′ |+|Xj | 0

Table 2.2: Parameter values for the variable-group formula.
Method αij βii′ (βjj′ ) γij δ

Single linkage 1
|I||J| 0 1

|I||J| 0

Complete linkage 1
|I||J| 0 1

|I||J| 1

Unweighted average |Xi||Xj |
|XI ||XJ | 0 0 −

Weighted average 1
|I||J| 0 0 −

Unweighted centroid |Xi||Xj |
|XI ||XJ | − |Xi||Xi′ |

|XI |2 0 −
Weighted centroid 1

|I||J| − 1
|I|2 0 −

Joint between-within |Xi|+|Xj |
|XI |+|XJ | − |XJ |

|XI |
|Xi|+|Xi′ |
|XI |+|XJ | 0 −

and
Dmin(XI , XJ) = min

i∈I
min
j∈J

D(Xi, Xj) .

Table 2.2 shows the values for the parameters αij , βii′ , βjj′ , γij and δ which
determine the clustering method computed by formula (2.28). They are all
gathered from the respective formulae (2.3), (2.5), (2.8), (2.9), (2.13), (2.16)
and (2.19), derived in section 2.4.

2.7 Summary

Hierarchical clustering methods have been used since the beginning of the com-
munity detection problem. They are methods longly used by social scientists,
and they consist in grouping individuals into groups of individuals or clusters
that are both internally cohesive and externally isolated. In particular, agglom-
erative hierarchical clustering begins with each individual in a different singleton
cluster, and successively merges clusters the most similar clusters at each step
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until all individuals are in the same cluster. During this algorithmic process,
a complete hierarchy of non-overlapping clusters is formed, providing a meso-
scopic set of nested partitions of individuals into clusters corresponding to the
possible cuts at different levels in the tree. We have started this chapter de-
scribing the classic pair-group agglomerative hierarchical clustering algorithm,
and remembering the definition of valued tree, which is the output result of
the pair-group agglomerative algorithm and it is graphically represented by a
dendrogram.

However, when the pair-group algorithm is used and two or more distances
between different clusters coincide during the amalgamation process, then ag-
glomerative hierarchical methods suffer from the non-uniqueness problem, which
consists in obtaining several hierarchical classifications from a unique set of tied
proximity data. In such cases, selecting a unique classification can be mislead-
ing. This problem has traditionally been dealt with distinct criteria, which
mostly consist on the selection of one out of several resulting hierarchies. Here
we have proposed a new variable-group algorithm for agglomerative hierarchical
clustering that solves the non-uniqueness problem. The output of this algorithm
is a uniquely determined type of valued tree, that we have called a multivalued
tree, and for which we have devised a new graphical representation called mul-
tidendrogram. In addition, we have illustrated the usefulness of our proposal
with some results corresponding to data from a real example formed by the
similarity values between twenty-three different soils. This example had been
previously analyzed by other authors, detecting the existence of a tied value
in the input matrix which was responsible for two different output hierarchies
when using a pair-group approach. The use of our variable-group alternative
leads to a unique result which coincides with the known classification of the soils
data.

Afterwards, we have remembered the different definitions of distance be-
tween clusters for the most commonly used agglomerative hierarchical methods
(single linkage, complete linkage, unweighted average, weighted average, un-
weighted centroid, weighted centroid, and joint between-within), and we have
generalized them in order to use the variable-group algorithm. The use of any
of these agglomerative methods implicitly specifies models for data and can
provide misleading results of the class structure present in the data at study.
We have reviewed the idea of space distortion in hierarchical clustering, which
refers to strategies as space-conserving, space-contracting or space-dilating, and
we have redefined these concepts in terms of the new variable-group approach.
Finally, we have generalized Lance and Williams’ formula, which enables us to
obtain agglomerative hierarchical classifications in a recursive way, for the seven
clustering methods studied in the chapter.

Although ties need not be present in the initial proximity data, they may
arise during the agglomeration process. For this reason and given that the re-
sults of the variable-group method coincide with those of the pair-group method
when there are no ties, we recommend to use directly the variable-group option.
With a single action one knows whether ties exist or not, and additionally the
subsequent solution is obtained.



Chapter 3

Financial Networks and
Portfolios

Financial networks are an instance of correlation-based networks, that is, a
particular type of complex systems where the nodes represent variables and each
pair of nodes is connected by an edge with a weight related to the correlation
coefficient between the two corresponding variables. The complexity of financial
systems is reflected in their completely-connected networks, where all edges
between nodes are present. In these cases, it is essential to be able to filter the
networks into simpler relevant subnetworks. One possible filtering procedure is
to use a spanning tree of the network, which is any subnetwork formed by the N
nodes of the original network and a subset of N − 1 edges keeping all the nodes
connected. When the sum of the lengths in the subset of edges is minimum, the
subnetwork is called a minimum spanning tree.

Minimum spanning trees have been recently used by Mantegna [60] to detect
the taxonomy of a portfolio of stocks traded in a financial market, identifying
hierarchical clusters of companies. In another paper by Bonanno et al. [16], the
time evolution of stock indices was studied and significant changes in the world
economy were identified using appropriate time horizons and a minimum span-
ning tree clustering method. In [52], the hierarchical structure explored by the
minimum spanning tree seemed to give information about the influential power
of the companies. And in [72], they also studied the minimum spanning tree as
a strongly pruned representative of asset correlations and found it to be robust
and descriptive of stock market events. In fact, all these works use minimum
spanning trees as a way to obtain the subdominant ultrametric of the data and
to detect the correspondent hierarchical structure of clusters. From this point
of view, to use the minimum spanning tree is equivalent to use the single link-
age hierarchical tree [77]. However, other ultrametrics are possible from other
hierarchical clustering methods such as those described in chapter 2. The differ-
ences between using one clustering method or another are shown in section 3.1
of this chapter, and they are due to the different existing classifications in terms
of space-distortion.

Another important application of hierarchical asset trees, in addition to their
ability to form economically meaningful clusters, is in portfolio selection. In this
problem, given a set of available securities or assets, one wants to find out the
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optimum way of investing a particular amount of money in the assets. Many
attempts have been made to solve this central problem, from the classical ap-
proach of Markowitz [61] to more sophisticated techniques [54, 71, 72, 75, 89],
and in all these attempts correlations between asset prices play a crucial role.
In [71, 72], for instance, the authors concentrate on the minimum spanning
tree as a characteristic graph for the description of the correlations, and they
study how the companies of the minimum risk Markowitz portfolio are located
on the tree. In section 3.2 we give a detailed description of a novel portfolio
selection approach, which reduces significantly the space and time complexity
of the problem. The base idea is to minimize the risk of portfolios diversifying
the investment into several assets belonging to different economic sectors. Hier-
archical clustering trees can help us in the task of identifying distinct economic
sectors, which will be probably represented by the main clusters in hierarchical
trees.

The portfolio selection problem is an instance from the family of quadratic
programming problems when the standard Markowitz mean-variance model is
considered. However, this model has not got any cardinality constraint ensuring
that every portfolio invests in a given number of different assets, neither uses
any bounding constraint limiting the amount of money to be invested in each
asset. This sort of constraints are very useful in practice. In order to overcome
these inconveniences, the standard model can be generalized to include these
constraints. With the latter model, the portfolio selection problem becomes a
mixed quadratic and integer programming problem, and there is no exact algo-
rithm able to solve this problem in an efficient way. Hence, the use of heuristic
algorithms in this case is imperative. In the past some heuristic methods have
been developed using Genetic Algorithms (GA) [18, 30, 56, 86, 94], Tabu Search
(TS) [18, 82], and Simulated Annealing (SA) [18, 34, 51]. In section 3.3 we in-
troduce a new heuristic method to solve the portfolio selection problem based
on artificial Neural Networks (NN) [28], and we compare its results to those
obtained using three representative methods based on GA, TS and SA.

3.1 Financial complex systems

3.1.1 Correlation-based networks

Correlation-based networks are a particular type of complex systems used to
visualize the structure of pair correlations among a set of variables. Specifically,
starting from a set of variables one can calculate the correlation coefficient be-
tween all possible pairs. If we identify the different variables with the nodes of
the network, each pair of nodes can be thought to be connected by an edge with
a weight related to the correlation coefficient between the two corresponding
variables. Such a network is therefore completely connected. Well known exam-
ples of correlation-based networks are found in any portfolio of stocks traded in
a financial market, by considering the synchronous evolution of the time series
obtained from the daily differences between stock prices.

Let Pi(t) be the closure price of stock i at day t. Then, the return of stock i
at day t, Ri(t), is defined as the logarithm of the ratio between two consecutive
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closure prices:

Ri(t) = ln
(

Pi(t)
Pi(t − 1)

)
= ln(Pi(t)) − ln(Pi(t − 1)) . (3.1)

The mean return of stock i is
μi = 〈Ri〉 , (3.2)

where the brackets 〈·〉 denote the arithmetic mean over the time interval of
interest; and the covariance between returns of stocks i and j is the expectation
value

σij = 〈(Ri − μi)(Rj − μj)〉 = 〈RiRj〉 − 〈Ri〉〈Rj〉 . (3.3)

Finally, in order to weight the edges of the financial complex network, we quan-
tify the degree of similarity between two time series Ri and Rj by means of
their statistical correlation, ρij , computed over the investigated time period:

ρij =
σij√
σiiσjj

=
〈RiRj〉 − 〈Ri〉〈Rj〉√

(〈R2
i 〉 − 〈Ri〉2)(〈R2

j 〉 − 〈Rj〉2)
. (3.4)

Alternatively, one can assign distance values to the edges of a correlation-
based network. This is the approach followed in [14, 39, 60], where the distance
between two stocks i and j is measured as

dij =
√
〈(R̃i − R̃j)2〉 =

√
2(1 − ρij) , (3.5)

with R̃i(t) being the standardized return of stock i at day t, that is,

R̃i(t) =
Ri(t) − μi√

σii
. (3.6)

The distance (3.5) measures the Euclidean distance between R̃i and R̃j , and
therefore it is a proper metric function ranging from 0 for perfectly correlated
time series (ρij = +1), to 2 for anticorrelated stocks (ρij = −1).

3.1.2 Hierarchical asset trees

Portfolio theory suggests that, in order to minimize the risk involved in a finan-
cial investment, one should diversify among different assets by choosing those
stocks whose price time evolutions are as diverse as possible. Therefore, it might
be expected a connection between hierarchical asset trees (or multidendrograms)
and the Markowitz portfolio selection scheme by means of the following rule: se-
lect stocks belonging to clusters that are as distant as possible from each other.
This rule suggests the partitioning of a portfolio selection problem into several
disjoint subproblems according to the main clusters of a hierarchical asset tree,
which will probably represent different economic sectors. The risk is then di-
vided into two components: one between economic sectors, that is minimized
partitioning the problem according to the hierarchical clusters; and another
one within sectors, that is minimized solving each subproblem separately. The
time cost of this approach reduces significantly that of the original problem, not
only because of the size reduction, but because of the possibility to solve the
subproblems in parallel since they are disjoint.
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Let us now follow this approach on real data from a stock market. In partic-
ular, we focus on the Standard and Poor’s 500 (S&P 500) index, and we consider
the two-years time period that goes from 31 December 2002 to 31 December
2004, both included, which means a total of 504 trading day intervals. From
the data publicly available at http://finance.yahoo.com/, for each stock we have
collected two different data: the daily volume, and the close price adjusted for
dividends and splits. There is a set of 491 stocks with daily data for the whole
time period under study, from which we have taken the subset of N = 250
stocks with highest mean volume. In this study we consider the time series
of the returns from this subset of stocks, which gathers more than 87% of the
volume traded by the set of 491 stocks.

The first thing that we study is the differences that arise in terms of space-
distortion by the use of distinct clustering methods described in chapter 2: Single
Linkage (SL), Complete Linkage (CL), Unweighted Average (UA), Weighted
Average (WA), and Joint Between-Within (JBW)1. In figure 3.1 we show, in top-
down increasing space-distortion order, the corresponding multidendrograms for
the hierarchical clustering methods considered. We can see clearly how the
Single Linkage method suffers from the chaining effect, and therefore it is not a
good strategy in order to split the portfolio selection problem into subproblems
of similar sizes. On the other hand, the multidendrograms obtained by means of
both the Complete Linkage and the Joint Between-Within clustering methods
show clear inner structures, corresponding to the branches of the hierarchical
tree. However, before we can make any decision about which strategy to follow,
we will do a further analysis of the data.

We take each hierarchical asset tree and we split it into disjoint subtrees
following the top-down order. This means that, starting from the partition
made up of a unique cluster with all the stocks in it, at each step we cut the
highest branch remaining in the tree and we obtain a partition where clusters
are identified as disjoint subtrees. In figure 3.2 we show the sizes of the biggest
and smallest clusters in the partitions corresponding to the first 23 splittings,
for each of the five hierarchical clustering methods under consideration. A first
look at the results is enough to discard the Unweighted Average method, since
it gives partitions similar to those of the Single Linkage method, i.e. partitions
with clusters of sizes too dissimilar. Given that the test set has 250 stocks in
it, we only plan to do the first three splittings of the hierarchical asset trees
(partitions with 2, 3 and 4 clusters), otherwise we would get too small subprob-
lems. Therefore, from the three remaining methods, we finally decide to discard
the Weighted Average method because its partition into 4 clusters contains a
cluster of size 2 which is not significant enough.

3.2 Portfolio selection

3.2.1 Formulation of the problem

First of all, as we introduce the notation that we are going to use in the rest of the
chapter, let us remember the well known Markowitz mean-variance model [61]
for the portfolio selection problem. Let N be the number of different assets, μi

1We do not consider here Centroid linkage methods, Weighted or Unweighted, because
both of them can produce reversals and this means the loss of any hierarchical structure.
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Figure 3.1: Hierarchical asset trees (multidendrograms) for the test set of
N = 250 stocks belonging to the S&P 500 index. The trees are arranged in
top-down increasing space-distortion order: Single Linkage (SL), Unweighted
Average (UA), Weighted Average (WA), Complete Linkage (CL), and Joint
Between-Within (JBW).
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Figure 3.2: Maximum (top) and minimum (bottom) size of the clusters that
appear in the first 23 divisions of the hierarchical asset trees. The number of
clusters in these partitions ranges from 2 to 25.
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the mean return of asset i, σij the covariance between returns of assets i and j,
and λ ∈ [0, 1] the risk aversion parameter. The decision variables xi represent
the proportion of capital to be invested in asset i. Using this notation, the
standard Markowitz mean-variance model for the portfolio selection problem is:

minimize λ

⎡
⎣ N∑

i=1

N∑
j=1

xiσijxj

⎤
⎦+ (1 − λ)

[
−

N∑
i=1

μixi

]
, (3.7)

subject to
N∑

i=1

xi = 1 , (3.8)

0 ≤ xi ≤ 1 , i = 1, . . . , N . (3.9)

The case with λ = 0 represents maximizing the portfolio mean return (without
considering the variance) and the optimal solution will be formed only by the
asset with the greatest mean return. The case with λ = 1 represents minimizing
the total variance associated to the portfolio (regardless of the mean returns)
and the optimal solution will typically consist of several assets. Any value
of λ inside the interval (0, 1) represents a tradeoff between mean return and
variance, generating a solution between the two extremes λ = 0 and 1. Since
every solution satisfying all the constraints (feasible solution) corresponds with
one of the possible portfolios, from here on we will speak without distinguishing
between solutions for the above problem and portfolios.

The portfolio selection problem is an instance of the family of multiobjective
optimization problems. Therefore, one of the first things to do is to adopt a
definition for the concept of optimality. Here we will use the Pareto optimality
definition [81], that is, a feasible solution of the portfolio selection problem will
be an optimal or nondominated solution if there is not any other feasible solution
improving one objective without making worse the other.

Usually a multiobjective optimization problem has several optimal solutions.
The objective function values of all these nondominated solutions form what it
is called the efficient frontier. For the problem defined in equations (3.7)–(3.9),
the efficient frontier is an increasing curve that gives the best tradeoff between
mean return and variance (risk). In figure 3.3, we show an example of such
a curve corresponding to the benchmark problem. This efficient frontier has
been computed taking different values for the risk aversion parameter λ and
solving exactly the corresponding portfolio selection problems. The objective
function values of the resulting solutions give the points that form the curve
in figure 3.3. We call this curve the standard efficient frontier in order to
distinguish it from the general efficient frontier, corresponding to the general
mean-variance portfolio selection model which will be described next.

With the purpose of generalizing the standard Markowitz model to include
cardinality and bounding constraints, we will use a model formulation that can
be also found in [18, 50, 82]. In addition to the previously defined variables, let K
be the desired number of different assets in the portfolio with no null investment,
εi and δi be respectively the lower and upper bounds for the proportion of capital
to be invested in asset i, with 0 ≤ εi ≤ δi ≤ 1. The additional decision variables
zi are 1 if asset i is included in the portfolio and 0 otherwise. Then, the general
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Figure 3.3: Standard efficient frontier corresponding to the S&P 500 benchmark
data.

mean-variance model for the portfolio selection problem is:

minimize λ

⎡
⎣ N∑

i=1

N∑
j=1

xiσijxj

⎤
⎦+ (1 − λ)

[
−

N∑
i=1

μixi

]
, (3.10)

subject to
N∑

i=1

xi = 1 , (3.11)

N∑
i=1

zi = K , (3.12)

εizi ≤ xi ≤ δizi , i = 1, . . . , N , (3.13)
zi ∈ {0, 1} , i = 1, . . . , N . (3.14)

This formulation is a mixed quadratic and integer programming problem for
which efficient algorithms do not exist. Another difference with the standard
model is that in the presence of cardinality and bounding constraints the result-
ing efficient frontier, which we are going to call general efficient frontier, can be
quite different from the one obtained with the standard mean-variance model.
In particular, the general efficient frontier may be discontinuous [18, 50].

Figure 3.4 shows in gray the standard efficient frontier that solves the prob-
lem formulated in equations (3.7)–(3.9) for the S&P 500 benchmark data previ-
ously described. It also shows in black the general efficient frontier that solves
the general problem in equations (3.10)–(3.14). The general efficient frontier has
been computed using the values K = 25, εi = 0.01 and δi = 1 for the problem
formulation, and the values Δλ = 0.02 and T = 1000N for the implementation
of the Tabu Search algorithm in [18] used to solve this portfolio selection prob-
lem. Hence, we have tested 51 different values for the risk aversion parameter λ
and the Tabu Search procedure has evaluated 1000N portfolios for each value of
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Figure 3.4: Standard (gray) and general (black) efficient frontiers corresponding
to the S&P 500 benchmark data.

λ. Note that the general efficient frontier departs significantly from the standard
efficient frontier in the zone corresponding to high-return solutions. This is due
to the fact that high-return solutions are typically characterized by their low-
diversified investments, whilst in the formulation of this benchmark problem we
are searching for solutions with exactly K = 25 different investments.

Finally, in order to take advantage of the hierarchical clustering strategies
previously analyzed, we need a way to divide a portfolio selection problem
into several subproblems. The general mean-variance model shown in equa-
tions (3.10)–(3.14) can be divided into several subproblems according to any
partition of assets into clusters. Thus, let Nc be the number of assets in cluster
c and, without loss of generality, suppose that the Nc assets of cluster c are
indexed consecutively from 1 to Nc. Let also Pc = Nc/N be the proportion of
assets in cluster c. Then, given a certain partition of assets into clusters, the
portfolio selection problem can be divided into different subproblems, one for
each cluster c, in the following way:

minimize λ

⎡
⎣ Nc∑

i=1

Nc∑
j=1

xiσijxj

⎤
⎦+ (1 − λ)

[
−

Nc∑
i=1

μixi

]
, (3.15)

subject to
Nc∑
i=1

xi = Pc , (3.16)

Nc∑
i=1

zi = PcK , (3.17)

εizi ≤ xi ≤ Pcδizi , i = 1, . . . , Nc , (3.18)
zi ∈ {0, 1} , i = 1, . . . , Nc . (3.19)

Once all the subproblems have been solved, the solutions forming the corre-
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spondent efficient frontiers can be combined in order to get candidate solutions
for the efficient frontier of the original problem. Note that the combination of
solutions satisfying constraints (3.16)–(3.19) makes straightforward the satis-
faction of constraints (3.11)–(3.14) by the combined solution. Therefore, after
obtaining the candidate solutions by the combination process, it is only left to
filter out the dominated solutions.

3.2.2 Results of the hierarchical strategies

Taking the sets of Pareto optimal portfolios obtained with the two hierarchical
clustering strategies studied (Complete Linkage and Joint Between-Within),
we can trace out the hierarchical efficient frontiers and compare them to the
standard and general efficient frontiers. Doing so we get an upper bound of
the error associated to each hierarchical strategy. We show these comparisons
in figure 3.5, where the three different partitions are arranged by rows and
the two hierarchical strategies are arranged by columns. As a reference, the
standard and general efficient frontiers are drawn in lighter colors. For the
partition into 2 clusters, the Joint Between-Within strategy covers a wider zone
of the efficient frontier and therefore a greater variety of solutions are obtained
using this strategy. On the contrary, for the partitions into 3 and 4 clusters, the
Complete Linkage strategy covers better the efficient frontier. In the same figure,
it can also be observed that the more the problem is divided into subproblems
according to finer partitions, the more the solutions are gathered on the low-risk
zone formed by portfolios with high diversification.

In table 3.1, we show some data describing the computational experiments.
For each experiment performed we give two types of information: the cardinality
of the clusters forming the correspondent partition, and the computation time
needed to solve the problem by a parallel implementation of the algorithm. As
it can be seen, the computation time clearly depends on the size of the biggest
cluster in each partition, which is in total agreement with the conclusions of the
theoretical study stating that the time cost function is linear with respect to the
number of assets. Please note that the two sets of data shown in the first row are
identical because they correspond to the same experiment, independently of the
clustering strategy, which consists in considering all the assets put into a single
cluster. These data are given just to have a reference allowing comparisons.

Finally, in order to analyze the relative quality of the solutions obtained
with the two hierarchical strategies, for each division of the problem we have
merged the corresponding pair of hierarchical efficient frontiers into a single
one, and we have removed from it the dominated solutions. Then we have
separated the resulting merged efficient frontier into the two parts that form it
according to the hierarchical origin of the points, obtaining the results depicted
in figure 3.6. According to these graphs we can conclude that the Complete
Linkage method gives partitions of clusters which are generally better suited in
order to divide and solve the portfolio selection problem using this hierarchical
clustering approach.
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Figure 3.5: Hierarchical efficient frontiers for the S&P 500 benchmark data. The
variance of return is represented on the x-axis and the mean return is represented
on the y-axis. The standard and general efficient frontiers are drawn in lighter
colors, whilst hierarchical efficient frontiers are drawn in black.

Table 3.1: Description of the computational experiments performed on the
S&P 500 benchmark data considering two different hierarchical strategies. For
each experiment, the cardinality of the clusters forming the correspondent par-
tition and the computation time needed to solve the problem are given.

Clusters Complete Linkage Joint Between-Within
1 Partition {250} {250}

Time 77 minutes 77 minutes

2 Partition {190, 60} {233, 17}
Time 45 minutes 66 minutes

3 Partition {190, 41, 19} {169, 64, 17}
Time 44 minutes 35 minutes

4 Partition {151, 39, 41, 19} {100, 69, 64, 17}
Time 28 minutes 13 minutes
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Figure 3.6: Contributions to merged efficient frontiers for the S&P 500 bench-
mark data. The variance of return is represented on the x-axis and the mean
return is represented on the y-axis. The standard and general efficient frontiers
are drawn in lighter colors, whilst contributions to merged efficient frontiers are
drawn in black.
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3.3 The Hopfield neural network

3.3.1 Energy function

There are two main approaches for solving combinatorial optimization prob-
lems using artificial neural networks (NN): Hopfield networks and Kohonen’s
self-organizing feature maps. While the latter are mainly used in Euclidean
problems, the Hopfield networks have been widely applied in different classes of
combinatorial optimization problems [83]. Although the problem at hand is not
a combinatorial optimization one, we take advantage of the fact that the objec-
tive function in equation (3.10) has the same form than the energy function in
Hopfield networks and, consequently, it will be minimized when we follow the
Hopfield dynamics.

The Hopfield network [47] is an artificial NN model with a single layer of
neurons fully connected, that is, all the neurons are connected to each other as
well as to themselves. The N variables in the problem are represented by N
neurons in the network and, given that we have defined xi as the proportion of
capital to be invested in asset i, the state of neuron i will be also represented
by xi. Using this notation, the energy function for the Hopfield network has the
following appearance:

E(x) = −1
2

N∑
i=1

N∑
j=1

xiwijxj −
N∑

i=1

bixi , (3.20)

where bi is the constant external input or bias for neuron i, and wij is the
weight of the synaptic connection from neuron i to neuron j. Now, looking at
the objective function of the portfolio selection problem,

f(x) = λ

⎡
⎣ N∑

i=1

N∑
j=1

xiσijxj

⎤
⎦+ (1 − λ)

[
−

N∑
i=1

μixi

]
, (3.21)

and just comparing it with the energy function in equation (3.20), we get the
corresponding values for the synaptic weights

wij = −2λσij , (3.22)

and for the external inputs
bi = (1 − λ)μi . (3.23)

3.3.2 Network dynamics

From here on, let us consider that we work with discrete time. Hence, if the
state of neuron i at time t is represented by xi(t), the equations that govern the
dynamics of the Hopfield network are:

xi(t + 1) = Gi(hi(t)) , i = 1, . . . , N , (3.24)

where hi(t) is the input to neuron i at time t,

hi(t) =
N∑

j=1

wjixj(t) + bi , (3.25)
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and Gi is the activation function, for which we use the sigmoid

Gi(hi) = εi +
δi − εi

1 + exp(−β(hi − γ))
, (3.26)

with a gain β > 0 and a centering constant γ. In our simulations γ has been
assigned the middle value between the maximum and the minimum initial inputs
hi(0). εi and δi are used to ensure that the outputs of the sigmoid fall inside the
interval [εi, δi], as it is required by the constraint in equation (3.13). Without
loss of generality, let us suppose that all the lower bounds take the same value
(εi = ε) and all the upper bounds are also identical (δi = δ). The output vector
in a Hopfield network represents the solution for the problem at hand, and it
lies inside the hypercube [ε, δ]N . The stability of the network can be proved
defining the so called energy function for the network and proving that its time
derivative is nonincreasing.

The nonlinear nature of the Hopfield network produces multiple equilibrium
points. For any given set of initial conditions, x(0), the symmetric Hopfield
network with wji = wij will converge towards a stable equilibrium point. When
the network is deterministic, the position of that point is uniquely determined
by the initial conditions: all the initial conditions that lie inside the attraction
field of an equilibrium point will converge asymptotically towards that point.
The number of equilibrium points and their exact positions are determined by
the network parameters wij and β. When the gain β is small, the number of
equilibrium points is low (possibly as low as 1) and they all lie inside the hyper-
cube [ε, δ]N . However, as the gain increases, the number of equilibrium points
also increases and their positions move towards the vertices of the hypercube.
When the gain tends to its extreme values, β → +∞, the equilibrium points
reach the hypercube vertices and are maximum in number. In this case, the
energy function for the network has the appearance shown in equation (3.20).

In this work we update the neurons asynchronously, that is, only one neuron
at a time. The neurons to be updated are selected randomly. This way of
updating does not change the positions of the equilibrium points in the network,
but it does change the descending path through the energy surface. Therefore,
initial conditions that originally were attracted to a particular equilibrium point,
can be attracted towards a different equilibrium point when using asynchronous
updating.

For solving the portfolio optimization problem we have implemented a Hop-
field network with gains β changing through time [74] and avoiding the sat-
uration of the activation function Gi. The gains used are such that the im-
age interval of the terms β(hi(0) − γ) in equation (3.26) widens linearly from
[−10, +10] to [−20, +20]. The initial gain values produce few equilibrium points
and hence, regardless of the initial conditions, the network converges towards
these points. As time passes, gains are linearly increased, producing energy sur-
faces with a higher number of equilibrium points and moving these equilibrium
points towards the vertices of the hypercube [ε, δ]N .

Another problem that must be addressed is the possibility of convergence of
the symmetric Hopfield network (wji = wij) to cycles of length 2. In order to
avoid this undesired behavior in our network dynamics, the following discrete
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model has been used:

xi(t + 1) = (1 − αi)xi(t) + αiGi

⎛
⎝ N∑

j=1

wjixj(t) + bi

⎞
⎠ , (3.27)

with αi ∈ (0, 1]. In [91] it is shown that periodic points that are not fix points can
appear, specially when all αi = 1. However, if synaptic weights are symmetric
(wji = wij) and

wii >
αi − 2
αiβ

, (3.28)

then the above discrete model has the sequential dynamics convergent to fix
points for any αi ∈ (0, 1]. Since the synaptic weights wii are fixed from the
beginning and the gains β are linearly increased, given any particular pair of
values wii and β, what one must do here is to give a value to αi satisfying the
previous condition (3.28).

3.3.3 Constraints satisfaction

When solving any optimization problem using a Hopfield network, the problem
constraints usually appear in the energy function. However, in our case this is
not necessary. First, regarding the constraint xi ∈ [εi, δi] in equation (3.13),
we can say that it will be satisfied using as the activation function a sigmoid
such as the one defined in equation (3.26), since its outputs already lie inside
the desired interval.

In order to satisfy the cardinality constraint in equation (3.12), we begin
our heuristic algorithm with a NN having 3K/2 neurons that follow the already
described Hopfield dynamics. Doing so we get a minimum for the objective
function. Next thing to do is pruning the least representative neuron, that is,
the one with the smallest output. Then we update this new network (with one
less neuron) following the same Hopfield dynamics. These two steps, neuron
pruning and objective function minimization, are repeated until the network
has exactly K neurons. The remaining neurons are a solution for our original
portfolio selection problem.

We are only left to consider the constraint in equation(3.11). To satisfy this
constraint we evaluate the feasibility of every portfolio using the same greedy
algorithm that has been used in [18], which changes the proportions of capital
xi to be invested in each selected asset in order to ensure, if possible, that
all constraints are satisfied. In a first step, the algorithm assigns to all xi

corresponding to a selected asset its lower limit εi plus a fraction proportional
to its current value. This ensures that all the constraints relating to the lower
bounds are satisfied. In a second iterative step, the algorithm takes all the
selected assets exceeding their respective upper limit δi and fixes them up to
these upper limits. Then the rest of the selected assets that are not fixed up,
are given a new value for xi ensuring the lower bounds εi and adding a fraction
of the free portfolio proportion. This iterative process is repeated until there is
no asset out of its limits.

The only thing that we have changed in the greedy algorithm is the inser-
tion of the current candidate solution into the set H with all the Pareto optimal
solutions. In [18], the current solution is added to the set H only when it de-
creases the best objective function value found until that moment. Afterwards,
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when the heuristic method finishes, all the dominated solutions are removed
from H . However, this approach can leave out of this set solutions which are
Pareto optimal. For example, let us consider the case with a risk aversion pa-
rameter λ = 0.5. If we first evaluate a solution a with variance of return equal
to 0.001 and mean return equal to 0.005, then the objective function value for
a is f(a) = −0.002. Now, if we evaluate in second place a solution b with vari-
ance of return 0.004 and mean return 0.006, the objective function value for b is
f(b) = −0.001, which is greater than f(a), so the solution b would not be added
to the set H . However, in this case the two solutions should be included into H
because both of them are Pareto optimal. What we do in our implementation
of the greedy algorithm is to include in H all the evaluated solutions and, when
the NN heuristic finishes, we remove from this set all the dominated solutions.

Bringing together all that we have said until now, we next show the NN
heuristic used in this work:

function Neural Network Heuristic
(Δλ: Float; {increment for the risk aversion parameter}
T: Natural; {number of iterations}
M: Natural) {number of portfolios in the set P}
returns (H: Set Of Portfolio) is

var
P: Set Of Portfolio; {set with candidate portfolios}
P Cand: Portfolio; {candidate portfolio}

begin
H := Empty Set();
for λ := 0 to 1 by Δλ do

P := Initialize Portfolios Randomly(M); {K assets in each portfolio}
Evaluate Portfolios(P, H); {greedy algorithm}
for t := 1 to T by +1 do

P Cand := Select Portfolio Randomly(P);
for k := 3*K/2 to K+1 by -1 do

Follow Hopfield Dynamics(P Cand); {P Cand has k assets}
Prune Worst Neuron(P Cand);

end for;
Follow Hopfield Dynamics(P Cand); {P Cand has K assets}
Evaluate Portfolio(P Cand, H); {greedy algorithm}
Replace Maximum Portfolio(P Cand, P);

end for;
end for;
return H;

end Neural Network Heuristic;

procedure Follow Hopfield Dynamics
(P Cand: in out Portfolio) is

var
R: Natural; {number of repetitions}

begin
(γ, β) := Study Initial Inputs(P Cand); {central input and gain value}
for r := 1 to R by +1 do

Update Neuron(γ, β, P Cand); {neuron to update selected randomly}
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Increase Gain Value(β);
end for;

end Follow Hopfield Dynamics;

3.3.4 Results of the neural network heuristic

We have searched the general efficient frontier that solves the problem for-
mulated in equations (3.10)–(3.14) for five sets of benchmark data that have
been already used in [18, 50, 56, 82, 86]. These data correspond to weekly
prices from March 1992 to September 1997 and they come from the indices:
Hang Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100
in USA and Nikkei 225 in Japan. The number N of different assets consid-
ered for each one of the test problems is 31, 85, 89, 98 and 225, respectively.
The mean returns and covariances between returns have been calculated for
the data. The sets of mean returns and covariances are publicly available at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html.

All the results presented here have been computed using the values K = 10,
εi = 0.01 and δi = 1 for the problem formulation (as in reference [18]), and the
values Δλ = 0.02, T = 1000N and M = 100 for the implementation of the NN
algorithm. Therefore, we have tested 51 different values for the risk aversion
parameter λ and each one of the four heuristics has evaluated 1000N portfolios
for each value of λ, without counting initializations.

The general efficient frontier has been computed using the former NN and our
own implementation of three other heuristic algorithms presented in [18], which
are based on GA, TS and SA. Our implementation of these additional heuristics
uses the same parameter values than those presented in reference [18]. We would
like to notice that the computational results presented here are not directly
comparable to those presented in [18] due to the differences that exist at the
moment of updating the set of Pareto optimal solutions (previously explained)
and some other possible statistical fluctuations.

Taking the sets of Pareto optimal portfolios obtained with each heuristic we
can trace out their heuristic efficient frontiers and compare them to the standard
efficient frontiers. Doing so we get an upper bound of the error associated to
each heuristic algorithm. We show these comparisons in figure 3.7, where the
five problems are arranged by rows and the four heuristics are arranged by
columns. Except for the first problem, where all four heuristics seem to obtain
similar results, the four major problems show a common behavior. Looking at
the portfolios with low mean return because of the low risk allowed (high values
of the risk aversion parameter λ), we can see how the NN algorithm gets better
results than the other three heuristics. On the contrary, the situation changes
when we consider low values of λ and the increase of the mean return is the main
objective, regardless of the risk. The solutions obtained in the first case consist
of significant investments diversified in four or more of the K = 10 assets, whilst
the solutions in the second case only have “significant investments”2 in three or
less of the K = 10 assets. Our explanation for the results obtained with the NN
is that when the risk aversion parameter λ takes low values, the quadratic term
in equation (3.21) decreases considerably and the objective function becomes
almost linear, being no more a proper Hopfield energy function.

2Here we have applied the term “significant investment” to any investment above 1/K.
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Figure 3.7: Heuristic efficient frontiers for five benchmark data. The variance
of return (×103) is represented on the x-axis and the mean return (×103) is
represented on the y-axis. Standard efficient frontiers are drawn in gray, whilst
heuristic efficient frontiers are drawn in black.
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Now let us take a look at some numerical results in table 3.2. First of all we
have the number of points measure, which indicates how many of the portfolios
evaluated by each heuristic method have persisted and finally appear in the
corresponding heuristic efficient frontier. The results show that the highest
numbers of points for all five problems come from TS, whilst the lowest numbers
come from NN.

The number of points measure only gives an idea about the total number
of solutions that appear in each heuristic efficient frontier, but it does not say
anything about the quality of the solutions. Now, also in table 3.2, we present
three error measures, one for variances, another one for mean returns and a third
global error measure. Let the pair (vi, ri) represent the variance and mean
return of a point in a heuristic efficient frontier. Let also v̂i be the variance
corresponding to ri according to a linear interpolation in the standard efficient
frontier. We define the variance of return error, ϕi, for any heuristic point (vi, ri)
as the value 100(v̂i−vi)/v̂i (note that this quantity will always be nonnegative).
The average value of all the errors ϕi for the points in a heuristic efficient frontier
gives us the variance of return error shown in table 3.2. In the same way, using
the mean return r̂i corresponding to vi according to a linear interpolation in the
standard efficient frontier, we define the mean return error, ψi, as the quantity
100(ri − r̂i)/r̂i. We get the average error for the mean returns computing the
average of all the errors ψi, which appears in table 3.2 as the mean return error.
There is not a single heuristic that gives better results than the others in any
of these two average errors. Regarding the NN results we must say that, except
for the second benchmark problem, they are worse than those obtained by the
other heuristics. This is so because we are considering all possible values of the
risk aversion parameter as a whole. In the next subsection we will see how the
NN improves considerably its results when we consider only the best solutions
of each heuristic.

We also give the results obtained with a third error measure defined in [18].
It is calculated averaging the minimums between the mean return errors, ψi, and
the standard deviation of return errors, ϕ̃i, which are similar to the variance
of return errors but defined from the standard deviation of returns, si, i.e.
ϕ̃i = 100(ŝi − si)/ŝi. We present the values correspondent to the minimum
error measure in table 3.2 to allow some kind of comparison between our results
and those from reference [18]. However, we prefer to consider the variance
of return error and the mean return error separately, because the use of the
standard deviation for the calculation of the minimum error measure does not
correspond exactly with the objective function of the problem at hand.

With regard to the computation times, the TS and the SA are the most
efficient algorithms, followed by the GA and finally by the NN. Anyway, all
four time cost functions are linear with respect to the number of assets N since
the four algorithms have evaluated 1000N portfolios for each value of the risk
aversion parameter λ, and the rest of operations in the algorithms (except for
the crossover procedure in the GA) do not depend on N . The times presented
in table 3.2 agree with it.

3.3.5 Merge process

In order to improve the results obtained separately by the four heuristic algo-
rithms, we have merged the four heuristic efficient frontiers into a single one
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Table 3.2: Numerical results for five benchmark problems. For each benchmark
problem and each heuristic method we give: the number of points in the heuristic
efficient frontier, three error measures (variance of return, mean return and
minimum), and the computation time.

Index GA TS SA NN
Hang Seng Number of points 3402 3659 2640 1108

Variance error 3.9576 3.9329 3.8689 4.1039
Mean error 1.1926 1.1500 1.1574 1.4530
Minimum error 1.1321 1.1237 1.1203 1.2316
Time (s) 47 16 18 390

DAX 100 Number of points 1828 2292 1264 573
Variance error 26.1240 24.1340 26.8588 12.5914
Mean error 2.6202 2.8490 2.6893 2.2060
Minimum error 2.4457 2.6668 2.3896 1.5776
Time (s) 162 45 47 1069

FTSE 100 Number of points 1284 1295 1267 426
Variance error 3.3464 3.1458 3.6930 4.4663
Mean error 0.9300 0.8954 1.3127 1.9636
Minimum error 0.7310 0.7357 0.9512 1.2513
Time (s) 160 51 60 1106

S&P 100 Number of points 1780 2318 1779 750
Variance error 7.2039 7.6219 8.1602 8.3811
Mean error 1.6130 1.4249 1.9672 2.6816
Minimum error 1.3236 1.3130 1.7251 1.7922
Time (s) 178 50 52 1211

Nikkei Number of points 807 1027 984 312
Variance error 4.9877 3.5724 3.4830 6.5924
Mean error 3.3931 1.1581 1.2144 3.1050
Minimum error 1.1415 0.5510 0.5458 1.4737
Time (s) 570 120 121 2827
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Figure 3.8: Contributions to merged efficient frontiers for five benchmark data.
The variance of return (×103) is represented on the x-axis and the mean return
(×103) is represented on the y-axis. Standard efficient frontiers are drawn in
gray, whilst contributions to merged efficient frontiers are drawn in black.

and we have removed from it the dominated solutions. Then we have separated
the resulting merged efficient frontier into the four parts that form it accord-
ing to the heuristic origin of the points, getting the results shown in figure 3.8.
Observe that these graphs confirm what we had already noticed in figure 3.7,
which is that the NN gives better results than the other heuristics, except for the
smallest benchmark problem, when we consider high values of the risk aversion
parameter λ and, on the contrary, it gives worse solutions for low values of λ.

Continuing with the results of the merge process, let us now use the new
merged efficient frontiers to compare the quality of the initial solutions provided
by each heuristic method. We take the initial numbers of points in each heuristic
efficient frontier (see table 3.2) and we compare them with the final numbers
of points in the merged efficient frontiers that come from the corresponding
heuristic, to obtain the percentage of points surviving the merge process which
are shown in table 3.3. The initial quality of TS solutions is outstanding given
that more than 90% of the portfolios provided by this algorithm survive the
merge process. Next, we show the contribution of each heuristic to the merged
efficient frontiers. As it can be seen, more than half of the points in the merged
efficient frontiers come from the TS. Nevertheless, we would like to remember
that most of these points correspond to low diversification portfolios.

Also in table 3.3, we give the values obtained with the three previously
defined error measures when they are applied to the merged efficient frontiers.
Limiting the error calculations only to the solutions that pass the merge process,
we observe that the NN gets the lowest variance of return errors in the five
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Table 3.3: Numerical results for five benchmark problems after the merge pro-
cess. For each problem and each heuristic method we give: the number and
percentage of points surviving the merge process, the contribution percentage,
and three error measures (variance of return, mean return and minimum).

Index GA TS SA NN
Hang Seng Nb points 1015 3340 270 5

Points % 29.8 91.3 10.2 0.5
Contribution % 21.9 72.1 5.8 0.1
Variance error 4.4758 3.9046 4.5314 1.2279
Mean error 1.2438 1.1431 1.1834 1.5304
Minimum error 1.2321 1.1200 1.1167 0.3751

DAX 100 Nb points 635 2088 291 222
Points % 34.7 91.1 23.0 38.7
% contribucin 19.6 64.5 9.0 6.9
Variance error 31.1493 23.2013 32.9453 2.3004
Mean error 2.6802 2.3492 1.8412 2.7545
Minimum error 2.6802 2.3492 1.8412 1.1326

FTSE 100 Nb points 220 1207 666 146
Points % 17.1 93.2 52.6 34.3
Contribution % 9.8 53.9 29.7 6.5
Variance error 5.1662 2.7487 3.8031 2.5449
Mean error 1.1129 0.5192 0.6501 3.1171
Minimum error 0.9700 0.5160 0.6501 1.2544

S&P 100 Nb points 370 2146 456 287
Points % 20.8 92.6 25.6 38.3
Contribution % 11.4 65.8 14.0 8.8
Variance error 6.6434 6.3510 7.3497 5.9020
Mean error 0.8449 0.7978 0.9405 4.7956
Minimum error 0.8349 0.7978 0.7381 2.7908

Nikkei Nb points 122 943 648 53
Points % 15.1 91.8 65.9 17.0
Contribution % 6.9 53.4 36.7 3.0
Variance error 4.6384 3.3516 3.6212 0.7172
Mean error 0.6399 0.5624 0.6153 4.6097
Minimum error 0.6399 0.5237 0.5002 0.3578
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benchmark problems, being especially good the result obtained in the second
problem. With respect to the mean return error, the situation is the opposite
one and the NN gives the highest error values. Finally notice that in the GA,
TS and SA columns of the same table there are several cases where the mean
return error coincides with the minimum error. In these cases, the heuristics
have the mean return errors always lower than the standard deviation errors.

3.4 Summary

Considering the synchronous evolution of the time series obtained from the daily
differences between stock prices traded in a financial market, and identifying the
different time variables with the nodes of a network, each pair of nodes can be
thought to be connected by an edge with a weight related to the correlation
coefficient between the corresponding pair of variables. In this chapter we have
described the complexity of such correlation-based financial systems, reflected
in their associated networks which result in completely-connected structures. In
these cases, sometimes it is necessary to filter the networks into simpler relevant
subnetworks. Such a filtering can be done, for instance, using hierarchical asset
trees. In order to analyze the space-distortion differences that exist between the
output asset trees of distinct hierarchical clustering methods, we have used a set
of real data from the Standard and Poor’s 500 index. We have only considered
agglomerative methods that do not produce reversals in their output hierarchical
trees, and we have arranged the results in space-distortion order. At one end
of this classification appears the single linkage method, which suffers from the
known chaining effect, whilst at the other end of the arrangement one finds the
complete linkage and the joint between-within methods, both of them showing
clear inner structures corresponding to the branches of their hierarchical trees.

Then, we have focused on solving the portfolio selection problem and tracing
out its efficient frontier. Instead of using the standard Markowitz mean-variance
model, we have used a generalization of it that includes cardinality and bounding
constraints. Dealing with this type of constraints, the portfolio selection prob-
lem becomes a mixed quadratic and integer programming problem for which
no computational efficient algorithms are known. First, we have used the hier-
archical asset trees to device a new portfolio selection approach based on the
division of the problem into several subproblems according to the clusters aris-
ing in the asset trees. For doing that, we have used the two more promising
hierarchical methods for the problem at hand, namely complete linkage and
joint between-within.

In a second approach, we have developed a heuristic method based on the
Hopfield Neural Network. First, we have remembered the peculiar form of the
Hopfield energy function, which resembles the objective function of the portfolio
selection problem. Next, we have described the network dynamics and we have
analyzed how to satisfy each constraint of the problem. Finally, we have taken
the results obtained with our Neural Network and we have compared them to
those obtained using three other heuristic methods based on Genetic Algorithms,
Tabu Search and Simulated Annealing.
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Chapter 4

Size Reduction of Complex
Networks

The study of the modular structure in real-world complex networks has become
a classical subject in the area because several aspects of the problem are both
challenging and interesting. The challenge comes from the difficulty for unveil-
ing the best partition of the network in terms of communities, in the sense of
groups of nodes that are more intraconnected rather than interconnected be-
tween them [35]. The interest comes from the fact that this level of description
could help to understand the interplay between network topology and func-
tionality [40, 43], and also because it resembles the coarse graining process in
statistical physics to describe systems at the mesoscale.

Hierarchical clustering methods have the advantage of not requiring previous
knowledge about the number and size of communities in a network. The output
of the algorithm has the form of a tree representing a complete hierarchy of
possible partitions into communities for the network, and it could be desirable
to know which of those partitions describes in a better way the community
structure of the network, i.e. where should a multidendrogram be cut off. With
that purpose we look for an appropriate quality function, that is, a quantitative
criterion to evaluate how good partitions are. Several interesting proposals
have been taken from the field of statistical physics, such as those based on
spin models. One of the best known quality functions is the modularity defined
by Newman and Girvan [69], and in section 4.1 we describe modularity under
a unified framework of quality functions coming from a particular spin glass
model.

Modularity optimization has become one of the best approaches to detect
community structure in networks. The reason is simple: if modularity is a good
quality function, then partitions with high modularity values should be among
the best partitions. However, modularity optimization cannot be performed by
exhaustive search since the number of different partitions for a given network
with N nodes is equal to the Bell number for N [13], which grows at least
exponentially. Indeed, the computational complexity of modularity optimiza-
tion is in the NP (Non-deterministic Polynomial-time) class [17], therefore it is
quite improbable to find a solution within a time growing polynomially with
the size of the network. Several authors have attacked the problem proposing

55
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different heuristic algorithms that are able to find, within reasonable compu-
tational time, quite good approximations to the partitions of maximum mod-
ularity [19, 25, 40, 66, 68, 76]. Nevertheless, when facing the decomposition
into communities of very large networks, optimality is usually sacrificed in fa-
vor of computational time. In this chapter, we demonstrate that it is possible
to reduce the size of complex networks while preserving the value of modu-
larity, independently of the partition under consideration [5]. In section 4.2 we
describe the property of modularity that allows the size reductions of some com-
plex networks, and in section 4.3 we proof certain possible analytic reductions
preserving modularity. Finally, in section 4.4 we estimate the amount of size
reduction that one might expect in terms of the degree distribution, and we
show some size reductions obtained for several real complex networks.

4.1 Quality functions

Communities in complex networks are usually understood as groups of nodes
that are densely connected between them and only sparsely connected with the
rest of the network. Reichardt and Bornholdt [79] mapped the community de-
tection problem onto finding the ground state of an infinite range Potts spin
glass model, where similarity measures are translated into coupling strengths.
They argued that any quality function for an assignment of nodes into commu-
nities should follow this simple principle: group together what is linked, and
keep apart what is not. From here, two requirements for such a quality function
arise: it should i) reward internal links between nodes in the same community
(in the same spin state), and ii) penalize missing links between nodes in the same
community. This leads to the following Hamiltonian representing the energy of
the system:

H = −
∑

i

∑
j

rijAijδ(Ci, Cj) +
∑

i

∑
j

sij(1 − Aij)δ(Ci, Cj) , (4.1)

where Aij denotes the adjacency matrix of the graph, with Aij = 1 if an edge
exists and 0 otherwise; Ci and Cj denote the respective community indices (or
spin states) of nodes i and j, with the Kronecker delta function, δ(Ci, Cj), taking
the value 1 when i and j are in the same community, 0 otherwise; and rij and
sij denote the weights of the contributions corresponding to the existent and
missing links, respectively.

A convenient choice of weights rij and sij , such that the contribution of
existent and missing links can be adjusted through a unique parameter γ, is:

rij = 1 − γpij , (4.2)
sij = γpij , (4.3)

where pij denotes the probability that a link exists between nodes i and j,
normalized such that

∑
i

∑
j pij = 2m (this means that m is the total number

of links in the graph). For γ = 1, this leads to the natural situation where the
total amount of energy that can be contributed by existent and missing links is
equal: ∑

i

∑
j

rijAij =
∑

i

∑
j

sij(1 − Aij) . (4.4)
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Henceforth, we will consider that the parameter γ takes a constant value equal
to 1. The choice of the weights rij and sij in (4.3), and the latter consideration
about the value of the parameter γ, allow us to further simplify the Hamiltonian

H = −
∑

i

∑
j

(Aij − pij)δ(Ci, Cj) . (4.5)

This represents a spin glass with couplings Jij = Aij − pij between all pairs of
nodes: ferromagnetic where links between nodes are present, and antiferromag-
netic where links are absent.

The Hamiltonian in equation (4.5) compares the true distribution of links
in the graph with the expected distribution given by a particular null model of
connectivity pij . Depending on the problem under study, one can assume differ-
ent expressions for pij , which allows for the comparison of the quality function
for graphs with different topology. One possible choice for the link distribution
model pij may take into account that the network exhibits a particular degree
distribution. Since links are more probable between nodes of high degree, links
between these nodes get a higher weight. Taking this fact into account, we can
consider

pij =
kikj

2m
, (4.6)

where ki and kj are the respective degrees of nodes i and j (i.e. the number of
edges attached to them).

In order to measure how good a community structure found by an algorithm
is, many authors have given values of a quality function defined by Newman
and Girvan as modularity [69], and which can be expressed as:

Q =
1

2m

∑
i

∑
j

(
Aij −

kikj

2m

)
δ(Ci, Cj) . (4.7)

This already resembles the Hamiltonian of equation (4.5) when pij takes the
form in equation (4.6). It is now clear that we can write

Q = − 1
2m

H . (4.8)

Therefore, maximum modularity is reached when the Hamiltonian is minimal.
To maximize the modularity of a community structure is hence equivalent to
finding the spin configuration that minimizes this Hamiltonian.

In terms of the weighted adjacency matrix, wij , that represents the value
of the weight of the link between nodes i and j, the definition of modularity is
expressed as [64]:

Q =
1

2w

∑
i

∑
j

(
wij −

wiwj

2w

)
δ(Ci, Cj) , (4.9)

where the strength of node i is wi =
∑

j wij , and the total strength of the
network is 2w =

∑
i wi =

∑
i

∑
j wij . Given a network partitioned into com-

munities, the modularity measures the fraction of edges in the network falling
within communities, minus the expected value of the same function in a null
case network with the same nodes and the same partition into communities,
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but with edges redistributed at random preserving the strength of the nodes. In
general, random networks are not expected to exhibit modular structure beyond
certain fluctuations. When the number of edges located inside communities is
similar to the expected number of random edges, then modularity values are in
proximity to zero. The higher the modularity value, the better the partitioning
into communities is because more deviates from the null case.

The definition of modularity can be also extended, preserving its semantics
in terms of probability, to the scenario of directed networks as follows:

Q =
1

2w

∑
i

∑
j

(
wij −

wout
i win

j

2w

)
δ(Ci, Cj) , (4.10)

where wout
i and win

j are respectively the output and input strengths of nodes i
and j,

wout
i =

∑
j

wij , (4.11)

win
j =

∑
i

wij , (4.12)

and the total strength of the network is

2w =
∑

i

wout
i =

∑
j

win
j =

∑
i

∑
j

wij . (4.13)

When the network is undirected, then the output and input strengths are equal
(wout

i = win
i = wi), thus recovering the standard definition of strength.

4.2 Network reduction preserving modularity

4.2.1 Reduced network

Let G be a weighted complex network of size N , with weights wij ≥ 0. If
the network is unweighted, the weights matrix becomes the usual connectivity
matrix, with values equal to 1 for connected pairs of nodes, and 0 otherwise.
We will assume that the network may be directed, i.e. represented by a non-
symmetric weights matrix.

Any grouping of the N nodes of the complex network G in N ′ parts may
be represented by a function R : {1, . . . , N} −→ {1, . . . , N ′} which assigns a
group index Ri ≡ R(i) to every i-th node in G. The reduced network G′ in
which each of these groups is replaced by a single node may be easily defined in
the following way: the weight w′

rs between the nodes which represent groups r
and s is the sum of all the weights connecting vertices in these groups,

w′
rs =

∑
i

∑
j

wijδ(Ri, r)δ(Rj , s) , r, s ∈ {1, . . . , N ′} . (4.14)

For unweighted networks the value of w′
rs is just the number of arcs from the

first to the second group of nodes. It must be emphasized that a node r of
the reduced network G′ acquires a self-loop if w′

rr �= 0, which summarizes the
internal connectivity of the nodes of G forming this group.
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The output and input strengths of the reduced network G′ are:

w′out
r =

∑
s

w′
rs =

∑
i

∑
j

wijδ(Ri, r)
∑

s

δ(Rj , s) =
∑

i

wout
i δ(Ri, r) , (4.15)

w′in
s =

∑
r

w′
rs =

∑
j

∑
i

wijδ(Rj , s)
∑

r

δ(Ri, r) =
∑

j

win
j δ(Rj , s) , (4.16)

and its total strength, 2w′, is equal to the total strength 2w of the original
network:

2w′ =
∑

r

w′out
r =

∑
s

w′in
s =

∑
i

wout
i =

∑
j

win
j = 2w . (4.17)

4.2.2 Modularity preservation

The main property of the reduced network is the preservation of modularity
(4.9) or (4.10), i.e. the modularity of any partition of the reduced network is
equal to the modularity of its corresponding partition of the original network.

More precisely, let C′ : {1, . . . , N ′} −→ {1, . . . , M} be a partition in M clus-
ters of the reduced network G′. Its corresponding partition C : {1, . . . , N} −→
{1, . . . , M} of the original graph is given by the composition of the reducing
function R with the partition C′, i.e. C = C′ ◦ R. Therefore, the statement of
the previous paragraph becomes:

Q′(C′) = Q(C) . (4.18)

The proof is straightforward:

Q′(C′) =
1

2w′

∑
r

∑
s

(
w′

rs −
w′out

r w′in
s

2w′

)
δ(C′

r, C
′
s)

=
1

2w

∑
r

∑
s

⎛
⎝∑

i

∑
j

wijδ(Ri, r)δ(Rj , s)

− 1
2w

∑
i

wout
i δ(Ri, r)

∑
j

win
j δ(Rj , s)

⎞
⎠ δ(C′

r , C
′
s)

=
1

2w

∑
i

∑
j

(
wij −

wout
i win

j

2w

)∑
r

∑
s

δ(Ri, r)δ(Rj , s)δ(C′
r, C

′
s)

=
1

2w

∑
i

∑
j

(
wij −

wout
i win

j

2w

)
δ(C′

Ri
, C′

Rj
)

=
1

2w

∑
i

∑
j

(
wij −

wout
i win

j

2w

)
δ(Ci, Cj)

= Q(C) . (4.19)

We have found a relevant property of modularity, namely that those nodes
forming a community in the optimal partition can be represented by a unique
node in the reduced network. Each node in the reduced network summarizes
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the information necessary for the calculation of modularity in its self-loop (that
accounts for the intraconnectivity of the community) and its arcs (that account
for the total strengths with the rest of the network). The question now is:
how do we determine which nodes will belong to the same community in the
optimal partition, before this partition is obtained? The answer to this question
will provide us with a size reduction method in complex networks preserving
modularity.

4.3 Analytic reductions

Here we give the proof for certain possible analytic size reductions of weighted
networks, undirected and directed.

4.3.1 Reductions for undirected networks

The modularity of an undirected network may be written as

Q =
∑

i

qi , (4.20)

where
qi =

1
2w

∑
j

(
wij −

wiwj

2w

)
δ(Ci, Cj) (4.21)

is the contribution to modularity of the i-th node. If we allow this node to
change of community, the value of Ci becomes a parameter and therefore it is
useful to define

qi,r =
1

2w

∑
j

(
wij −

wiwj

2w

)
δ(Cj , r) , qi = qi,Ci , (4.22)

which accounts for the contribution of the i-th node to modularity if it were in
community r. The separation of the self-loop term, which does not depend on
which community node i belongs to, yields to the definition of

q̃i,r =
1

2w

∑
j �=i

(
wij −

wiwj

2w

)
δ(Cj , r) , q̃i = q̃i,Ci , (4.23)

and
Q̃ =

∑
i

q̃i =
1

2w

∑
i

∑
j �=i

(
wij −

wiwj

2w

)
δ(Cj , Ci) , (4.24)

satisfying

qi,r = q̃i,r +
1

2w

(
wii −

w2
i

2w

)
(4.25)

and

Q = Q̃ +
1

2w

∑
i

(
wii −

w2
i

2w

)
. (4.26)

The role of these individual node contributions to modularity becomes ev-
ident in the expression of the change of modularity when node i goes from
community r to community s:

ΔQ = 2(q̃i,s − q̃i,r) . (4.27)
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As a particular case, a node i that forms its own community, i.e. an isolated
node, which moves to any community s produces a change in modularity

ΔQ = 2q̃i,s . (4.28)

Therefore, if there exists a community s for which q̃i,s > 0, then node i cannot
be isolated in the partition of optimal modularity. This existence is easily proved
by considering the sum of q̃i,r for all communities:

∑
r

q̃i,r =
1

2w

∑
j �=i

(
wij −

wiwj

2w

)∑
r

δ(Cj , r)

=
1

2w

∑
j �=i

(
wij −

wiwj

2w

)

= − 1
2w

(
wii −

w2
i

2w

)
, (4.29)

where we have made use of the definitions of strength wi and total strength 2w
for the simplification of the expression. Thus,

wii ≤
w2

i

2w
⇒

∑
r

q̃i,r ≥ 0 ⇒ ∃s : q̃i,s ≥ 0 , (4.30)

completing the proof that there are no isolated nodes in the configuration which
maximizes modularity, unless they have a big enough self-loop.

Now, it remains the problem of the determination of a node j, an acquain-
tance of node i in its optimal community, in order to group them (Ri = Rj)
in a single equivalent node with a self-loop, as explained above. If we know
that nodes i and j share the same community at maximum modularity, the
reduced network will be equivalent to the original one as regards modularity:
no information lost, and a smaller size. Taking into account that the sign of the
q̃i,r can only be positive if there is a link between node i and another node in
community r, the only candidates to be the right acquaintance of any node are
its neighbors in the network.

The simplest particular cases are hairs, i.e. nodes connected to the network
with only one link. Hence, a hair can be analytically grouped with its neighbor k
if

wii ≤
w2

i

2w
, (4.31)

producing a self-loop for node k of value

w′
kk = wii + 2wik . (4.32)

When node i has no self-loop (wii = 0), this condition is always fulfilled (see
figure 4.1a). Note also that in the particular case of unweighted undirected net-
works, the recursive process of reducing hairs allows only one iteration, because
after that new hairs will have self-loops that will not satisfy (4.31).

Another solvable structure is the triangular hair, in which two nodes i and j
have only one link connecting them, two more links from i and j to a third
node k, and possibly self-loops. In this case, if

wii ≤
w2

i

2w
and wjj ≤

w2
j

2w
, (4.33)
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(a)

i k
...
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...w′
kk

(b)
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k
...wij
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...
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Figure 4.1: Analytic reductions for undirected networks: (a) example of a hair
reduction; (b) example of a triangular hair reduction. The widespread case of
unweighted networks, all weights equal to 1, implies that in the reduction (a),
w′

kk = 2, and in the reduction (b), w′
hh = 2 and w′

hk = 2.

nodes i and j share the same community in the optimal partition and therefore
may be grouped as a single node h. Moreover, the resulting structure becomes
a simple hair, which can be grouped with node k if

w′
hh ≤ w

′2
h

2w′ , (4.34)

where

w′
hh = wii + 2wij + wjj , (4.35)

w′
hk = wik + wjk , (4.36)
w′

h = wi + wj = w′
hh + w′

hk . (4.37)

In the particular case of nodes i and j without self-loops (wii = wjj = 0), the
triangular hair can always be reduced to a single hair with a self-loop w′

hh = 2wij

(see figure 4.1b).

4.3.2 Reductions for directed networks

Directed networks are considered here in the scope of modularity represented in
equation (4.10), although other possibilities have been recently proposed [44].
The treatment of directed networks requires the distinction between the output
and input contributions of nodes to modularity:

Q =
∑

i

qout
i =

∑
j

qin
j , (4.38)
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where

qout
i,r =

1
2w

∑
j

(
wij −

wout
i win

j

2w

)
δ(Cj , r) , qout

i = qout
i,Ci

, (4.39)

qin
j,r =

1
2w

∑
i

(
wij −

wout
i win

j

2w

)
δ(Ci, r) , qin

j = qin
j,Cj

. (4.40)

The separation of the self-loop term follows the same pattern than for undi-
rected networks:

q̃out
i,r =

1
2w

∑
j( �=i)

(
wij −

wout
i win

j

2w

)
δ(Cj , r) , q̃out

i = q̃out
i,Ci

, (4.41)

q̃in
j,r =

1
2w

∑
i( �=j)

(
wij −

wout
i win

j

2w

)
δ(Ci, r) , q̃in

j = q̃in
j,Cj

, (4.42)

and
Q̃ =

∑
i

q̃out
i =

∑
j

q̃in
j , (4.43)

satisfying

qout
i,r = q̃out

i,r +
1

2w

(
wii −

wout
i win

i

2w

)
, (4.44)

qin
j,r = q̃in

j,r +
1

2w

(
wjj −

wout
j win

j

2w

)
, (4.45)

and

Q = Q̃ +
1

2w

∑
i

(
wii −

wout
i win

i

2w

)
. (4.46)

With these definitions at hand, the change of modularity when node i goes
from community r to community s becomes

ΔQ = (q̃out
i,s + q̃in

i,s) − (q̃out
i,r + q̃in

i,r) , (4.47)

and the change when an isolated node i moves to any community s is

ΔQ = q̃out
i,s + q̃in

i,s . (4.48)

The first difference between directed and undirected networks comes from
the fact that now we cannot prove the inexistence of isolated nodes in the
partition of optimal modularity. The previous argumentation was based on the
use of equation (4.29), which now splits in two relationships:

∑
r

q̃out
i,r = − 1

2w

(
wii −

wout
i win

i

2w

)
, (4.49)

∑
r

q̃in
j,r = − 1

2w

(
wjj −

wout
j win

j

2w

)
. (4.50)
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The next step is the same:

wii ≤
wout

i win
i

2w
⇒

∑
r

q̃out
i,r ≥ 0 ⇒ ∃s1 : q̃out

i,s1
≥ 0 , (4.51)

wii ≤
wout

i win
i

2w
⇒

∑
r

q̃in
i,r ≥ 0 ⇒ ∃s2 : q̃in

i,s2
≥ 0 . (4.52)

Since communities s1 and s2 need not be the same, the change of modularity
in equation (4.48) is not guaranteed to be positive, and thus isolated nodes are
possible in the partition which maximizes modularity.

Nevertheless, there exist three kinds of nodes for which we can prove that
they cannot be isolated in the optimal partition, provided their self-loops are
not too large: hairs, sources (nodes with only output links) and sinks (nodes
with only input links).

Directed hairs, i.e. nodes connected only to another node, either through an
output, an input, or both links, necessarily have s1 = s2. Therefore, it is save
to group them in the same way as undirected hairs when

wii ≤
wout

i win
i

2w
. (4.53)

In particular, if the hair has no self-loop (wii = 0), then this condition is always
fulfilled (see figure 4.2a). Whenever the self-loop is present, both output and
input links are needed to counterbalance it. The resulting self-loop w′

kk of the
grouped node has value

w′
kk = wii + wik + wki . (4.54)

Sink nodes i are characterized by null output strengths, wout
i = 0, which

imply q̃out
i,r = 0 for all communities r. Thus, the change of modularity in equa-

tion (4.48) only depends on the value of q̃in
i,s, and expression (4.52) tells us that

they can always be grouped with an increase of modularity. The same prop-
erty applies to sources, which are defined as nodes with null input strengths,
win

i = 0. Note that sources and sinks cannot have self-loops, since this would
be in contradiction with their null input and output strengths respectively.

A triangular hair formed by a source node i and a sink node j behaves
exactly as the undirected triangular hair, being possible to group them in a
single node h with a self-loop (see figure 4.2b), where

w′
hh = wij , (4.55)

w′
hk = wik , (4.56)

w′
kh = wkj . (4.57)

4.4 Estimate of the amount of reduction

The above proofs allow us to face the problem of size reduction in complex net-
works into a firm basis. In particular, this size reduction preserving modularity
ensures that the structural mesoscale found by maximizing modularity will be
invariant under these transformations. The natural question at this point is:
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Figure 4.2: Analytic reductions for directed networks: (a) example of a hair
reduction; (b) example of a triangular hair reduction.

what is the percentage in size reduction of networks using the previous rules?
To answer this question it is mandatory to have an estimate of the number of
hairs and triangular hairs that we might expect in complex networks. In real
networks this calculation can be performed by direct enumeration; neverthe-
less, an estimate can be made in terms of general grounds about the degree
distribution P (k).

Here we provide some rough estimates for the most widespread degree distri-
butions in natural and artificial complex networks: scale-free and exponential.
For scale-free networks it is usually assumed a P (k) = αk−γ , with γ ∈ [2, 3]
for most of the real scale-free complex networks. The normalization condition
provides with the value of α. As a first approximation, neglecting the structural
cut-off of the network, we can write

α

∞∑
k=1

k−γ = αζ(γ) = 1 , (4.58)

where ζ(γ) is the Dirichlet series representation of the Riemman zeta function.
For values of γ ∈ [2, 3] we obtain α ∈ [1/ζ(2), 1/ζ(3)] ≈ [0.61, 0.83]. This means
that, roughly speaking, the number of hairs that corresponds to P (1) is about
83% of nodes in a scale-free network with γ = 3 and 61% when γ = 2.

An equivalent estimate can be conducted for exponential degree distributions
of type P (k) = αe−βk, with β > 0. In this case, normalization implies that

α

∞∑
k=1

e−βk = α
e−β

1 − e−β
= 1 , (4.59)
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Table 4.1: Results of the size reduction process for several real networks. For
each network we present its number of nodes, before and after reduction, as well
as the percentage of size reduction.

Network N Nreduced Reduction (%)
Zachary 34 33 2.94
Jazz 198 193 2.53
E-mail 1133 981 13.42
Airports-UU 3618 2763 23.63
Airports-WU 3618 2763 23.63
Airports-WD 3618 2880 20.40
PGP 10680 6277 41.23
AS(2001) 11174 7386 33.90
AS(2006) 22963 15118 34.16

and then α = eβ − 1. The percentage of hairs in this case is P (1) = 1 − e−β,
that for plausible values of β ∈ [0.5, 1.5], provides a reduction between 40% and
77% respectively.

At the light of these estimates, the size reduction process provides with an
interesting technique to confront the analysis of community structure in complex
networks by maximizing modularity with a substantial advantage in computa-
tional cost without sacrificing any information. We have checked our size reduc-
tion process in several real networks: the Zachary’s karate club network [95];
the jazz musicians network [36]; the e-mail network of the University Rovira i
Virgili [41]; the airports network with data about passenger flights operating in
the time period from 1 November 2000 to 31 October 2001, compiled by OAG
Worldwide (Downers Grove, IL) and analyzed in [42]; the network of users of
the PGP algorithm for secure information transactions [15]; and the Internet
network at the Autonomous System (AS) level as it was in 2001 and 2006, re-
constructed from BGP tables posted by the University of Oregon Route Views
Project. The results obtained are reported in table 4.1, where we can observe
that the percentage of size reduction is greater than 20% in most cases (this is
true in particular for the biggest networks), although the percentage is below
our theoretical estimates. This is due to the fact that we have not considered
the cut-offs of the degree distributions in real networks.

Particularly illustrative is the analysis of the airports network. We have
constructed different networks from the raw data, the unweighted undirected
network (airports-UU) previously used in [42], the weighted undirected network
(airports-WU) where the weights reflect the number of passengers using the
connection in the period of study, and the most realistic case corresponding
to the weighted directed network of the airports connections (airports-WD).
These networks allowed us to check our reduction technique in all the possible
scenarios.

4.5 Summary

In hierarchical clustering, where the results have the form of a nested series of
partitions, one needs to use a quality function to know which of the partitions
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in the hierarchy is the best one. Several interesting quality functions have been
proposed from the field of statistical physics, such as those based on spin models.
We have begun this chapter describing one of the most successful functions,
the modularity of Newman and Girvan, under a unified framework of quality
functions coming out from a particular spin glass model.

The challenge of optimizing the modularity has deserved many efforts from
the scientific community in recent years. Provided that the problem is NP-hard,
the optimization of modularity cannot be performed by exhaustive search, and
only optimization heuristics have proved to be competent in finding subopti-
mal solutions of the modularity function in feasible computational time. Here
we have proposed an exact procedure for size reduction of complex networks
preserving the value of modularity, independently on the partition under con-
sideration. First, we have described the property of modularity that allows the
size reductions of some complex networks, namely that the nodes forming a
community in any optimal partition can be represented by a unique node in a
reduced network. Each node in the reduced network summarizes the informa-
tion necessary for the calculation of the modularity in its self-loop (that accounts
for the intra-connectivity of the community) and in its edges (that account for
the inter-connectivity with the rest of the network).

Next, we have proved two possible analytic size reductions preserving the
modularity of weighted networks (both directed and undirected): hairs, i.e.
nodes connected to the network with only one link; and triangular hairs, which
are particular structures formed by three nodes. Finally, we have estimated the
amount of size reduction (that is, the number of hairs) which one might expect
for the most widespread degree distributions in complex networks: scale-free
and exponential. We have also performed some experiments of size reduction
on several real complex networks.



68 CHAPTER 4. SIZE REDUCTION OF COMPLEX NETWORKS



Chapter 5

Resolution Levels in
Complex Networks

The standard approach to determinate the modular structure of complex net-
works is based on the optimization of the modularity quality function. Initially
it was thought that maximizing modularity one always obtains the “best” par-
tition of the network into communities. This partition represents an interme-
diate topological scale of organization, or mesoscale, that in many cases has
been shown to coincide with known information about subdivisions in the net-
work [22, 69]. However, recently Fortunato and Barthélemy [32] have proved
that the optimization of modularity has an important drawback: the existence
of a resolution limit beyond which no separation into smaller groups can be ob-
tained, although these smaller modules might have their own entity. This occurs
with any density of links within communities, even at the limit case where all
the nodes inside the communities are connected forming cliques. The problem
seems to be that modularity, as it has been prescribed, does not have access to
these other levels of description which coexist simultaneously and are, in gen-
eral, a distinctive feature of complex networks. The same limitation has been
observed for other quality functions different from modularity [53].

In setion 5.1, we address the issue of community detection in two ways: first,
clarifying the conceptual interpretation of the resolution limit, not as a problem
but as a feature of quality functions that can help us to understand in deep
the structure of networks; and second and most important, we provide with a
method that allows the full screening of the topological structure at any res-
olution level using the original definition of modularity [7]. The main idea is
to provide all the nodes with a magnitude, that we call resistance, which con-
trols their strengths without affecting the structural topology of the network.
Its role is to highlight the contrast between groups whenever they exist. Once
the method has been introduced, in section 5.2 we propose a new heuristic al-
gorithm based on Tabu Search, especially well suited for the determination of
the mesoscales in networks, and in section 5.3 we validate the method comput-
ing the modular structure at multiple resolution levels for several examples of
synthetic and real complex networks. Afterwards, in section 5.4 we show some
techniques to extract the information hidden in the whole mesoscale found by
the algorithm, and in section 5.5 we apply them to the determination of several

69
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scales of organization in the synaptic connectivity of the neuronal system of the
nematode C. elegans [8]. The general description given all along the applica-
tion of the method allows its usage on any other complex network. Finally, in
section 5.6 we present a brief discussion about the role of the different scales,
the comparison of our method with other possible approaches to the mesoscales,
and the significance of the mesoscales in contrast with the commonly accepted
one-scale of description.

5.1 Networks topology at different scales

5.1.1 Resolution limit and topological scales

Writing the definition of modularity in terms of contribution of modules we
have:

Q =
m∑

s=1

(
wss

w
−
(ws

2w

)2
)

, (5.1)

where wss is the internal strength of module s and ws is the total strength of
module s. For unweighted networks wss reduces to the number of internal links
and ws is the sum of degrees of the nodes in module s.

The solution that we propose takes advantage of the dependence of the
resolution limit on the total strength 2w. Consider the case study consisting
on two identical modules with a single link connecting them to the rest of the
network and only one link connecting them to each other [32]. The resolution
limit states that these modules will not be found, optimizing modularity, if their
internal strengths are

wss <

√
w

2
− 1 . (5.2)

In [32] the authors neglect the contribution −1 in the second side of inequal-
ity (5.2), which is acceptable for large values of the total strength.

Our proposal to solve this problem is to modify the total strength 2w. Let
us assume that we increase the strength of every node by a quantity r, then
inequality (5.2) will read

wss <
1
2

(√
2w + Nr − nsr − 2

)
, (5.3)

where ns stands for the number of nodes in module s and N stands for the
number of nodes in the network. The result of the prescription (5.3) is that
by rescaling the topology by a factor r, the example above can be separated
optimizing modularity because the growth of

√
r is slower than that of r, i.e. at

some scale controlled by r both modules will be visible using optimal modularity.
The problem now is how to increase the strength of the nodes without alter-

ing the topological characteristics of the original network. We solve this problem
by rescaling the topology defining Wr from the original weighted adjacency ma-
trix W of the graph, as follows:

Wr = W + rI , (5.4)

where I is the identity matrix. In terms of graphs, this new matrix represents
the original network with self-loops of weight r for every node. Note that the
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prescription in equation (5.4) supposes a constant shift (translation) r of the
strength of each node.

The commonly analyzed structural characteristics of networks (strength dis-
tribution, weighted clustering coefficient, strength correlations of any order, etc.)
remain the same in the new network because the translation of strengths does
not affect the weights wij of original links, which are the building blocks of the
topology. The shift only affects the property of each node individually and in
the same way for all them. The spectra of the original graph is also shifted a
quantity r for each eigenvalue, preserving then any property that depends on
differences between eigenvalues. The eigenvectors are exactly the same. Fi-
nally, the associated Laplacian matrix of the original matrix, Lij = wiδij −wij ,
responsible for the behavior of linear dynamical processes on the network [4],
remains also unchanged.

The interesting property of the re-scaled topology Wr is that its character-
istic scale in terms of modularity has changed. Then, the topological structure
revealed by optimizing modularity for Wr is that of large groups for small values
of r, and smaller groups for large values of r, all of them strictly embedded in the
original topology. This fact allows for the screening of the modular structure by
analyzing the optimal modular structure of Wr for different values of r. Note
that the rescaling of the topology is simply an elegant way to enhance the total
strength of the network, without varying its topological properties. Thus, the
rescaling can be used, in principle, to analyze the structure of networks using
any quality function at different resolution levels parametrized by r.

5.1.2 Multiple resolution method

The analysis of modules at different resolution levels that we propose, consists
into optimize the modularity of the graph Wr for different values of r. Denoting
Qr the modularity of the network at scale r, the equivalent expression to (5.1)
reads:

Qr =
m∑

s=1

(
2wss + nsr

2w + Nr
−
(

ws + nsr

2w + Nr

)2
)

. (5.5)

The self-link value r for the nodes represents a resistance, and stands for the
opposition of nodes to become part of any community, in the scope of modular-
ity.

The topological scale determined by maximizing Q at which the detection
of modular structure has been attacked so far, corresponds to r = 0 (this is
the scale at which modularity was originally defined by Newman). For positive
values of r, we have access to the substructures below those at r = 0, and for
negative values of r we have access to the superstructures. The topological scale
corresponding to all nodes separated (forming their own communities) is found
by maximizing Qrmax , where rmax is the smallest positive value of r that satisfies

wij <
(wi + r)(wj + r)

2w + Nr
, ∀i �= j . (5.6)

And the topological scale corresponding to a unique module formed by the whole
network is found by maximizing Qrmin, where rmin has a lower bound defined
by the asymptote rasymp = −2w/N (for a detailed analysis see subsections 5.1.3
and 5.1.4). At the asymptote the total strength is zero, thus no meaningful scales
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can be found for values of r below it. Note that the average strength can be
written as (2w+Nr)/N = r−rasymp. To compare results at different resolution,
we adopt the usual formulation in other areas of physics (optics, acoustics, etc.)
where scales are prescribed as the logarithm of the ratio between the relevant
parameter. Here, the difference between scales, is measured as the logarithm of
the ratio between strengths

log
(

2w + Nr

2w + Nr′

)
≡ log

(
r − rasymp

r′ − rasymp

)
. (5.7)

In this new description, we have that a module is defined at each scale of
description r, as the result of the maximization of Qr. Moreover, modules that
exist at a certain level of description may disappear from our observation when
changing the scale r while others arise. Note that nothing implies that the
substructures to which we will have access at different resolution levels are nec-
essarily hierarchical, indeed in general they will not be hierarchical. Although,
in principle, all resolution scales provide some information about the topology,
and are important, the detection of partitions that are more persistent than the
rest when changing the resolution r is indicative of a tougher modular structure.

5.1.3 Resistance limiting cases for undirected networks

Here we present the mathematical proofs of the physical limiting cases of the
resistance for weighted networks, namely the limit of resistance for which all
nodes are isolated, and the limit for which all nodes become members of a
single group that represents the whole network. In this subsection we deal with
undirected networks, whilst next subsection is dedicated to directed networks.

Let wij = wji ≥ 0, i �= j, be the weights of a complex network, where
wij = 0 if there is no link between nodes i and j. We suppose that this network
is connected; otherwise, each connected component should be analyzed one by
one. The addition of a common resistance r to all nodes may be understood as
the definition of a new network with weights

w′
ij =

{
wij if i �= j ,
r if i = j .

(5.8)

The strengths of this network are

w′
i =

∑
j

w′
ij = wi + r , (5.9)

and its total strength is

2w′ =
∑

i

w′
i = 2w + Nr . (5.10)

Now, the modularity of the new network is calculated as

Qr =
1

2w′

∑
i

∑
j

(
w′

ij −
w′

iw
′
j

2w′

)
δ(Ci, Cj) , (5.11)

which may also be written as

Qr =
1

2w′

∑
i

∑
j �=i

(
wij −

w′
iw

′
j

2w′

)
δ(Ci, Cj) + Dr , (5.12)
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where

Dr =
1

2w′

∑
i

(
r − w′

i
2

2w′

)
. (5.13)

Note that Dr does not depend on the community partition.

All nodes isolated

If we have

w′
ij −

w′
iw

′
j

2w′ < 0 , ∀i �= j , (5.14)

then Qr in equation (5.12) is maximized when δ(Ci, Cj) = 0 , ∀i �= j, i.e. mod-
ularity attains its maximum when all nodes are isolated in clusters of just one
node. In terms of the resistance they simply become second order inequalities,

(2w + Nr)wij < (wi + r)(wj + r) , ∀i �= j , (5.15)

which can easily be solved for all pairs of nodes joined by an edge. Thus, rmax

is the minimum value of r which satisfies all these inequalities, and for r > rmax

all nodes are separated in the optimal community configuration.

All nodes in the same community

Let us analyze the behavior of modularity just to the right of the asymptote
rasymp = −2w/N . For convenience, we write the resistance as

r = −2w

N
+ ε , (5.16)

where ε = ε/N and ε is a small positive constant.
The first term of modularity in equation (5.11) can be split in the following

way:

∑
i

∑
j

w′
ij

ε
δ(Ci, Cj) =

∑
i

∑
j

w′
ij

ε
−
∑

i

∑
j �=i

wij

ε
(1 − δ(Ci, Cj))

= 1 − a

ε
, (5.17)

being a the sum of weights of edges connecting different communities. If there
are two or more communities, then a > 0, otherwise a = 0.

The analysis of the second (null case) term in equation (5.11) requires a
communities expansion:

∑
i

∑
j

w′
iw

′
j

ε2
δ(Ci, Cj) =

∑
c

⎛
⎝∑

i

∑
j

w′
iw

′
j

ε2
δ(Ci, c)δ(Cj , c)

⎞
⎠

=
∑

c

1
ε2

(∑
i

w′
iδ(Ci, c)

)⎛
⎝∑

j

w′
jδ(Cj , c)

⎞
⎠

=
1
ε2

∑
c

(∑
i

(wi + r)δ(Ci, c)

)2

=
b

ε2
, (5.18)



74 CHAPTER 5. RESOLUTION LEVELS IN COMPLEX NETWORKS

where b > 0, and b ∼ O(ε2) only if all strengths are equal, on the contrary
b ∼ O(1).

Therefore,

Qrasymp+ε = 1 − a

ε
− b

ε2
, (5.19)

which has an asymptotic behavior

lim
ε→0+

Qrasymp+ε =
{

−∞ if two or more communities ,
0 if only one community .

(5.20)

This means that, for values of the resistance just above the asymptote, the
optimal communities configuration is that with all nodes together in a single
module that corresponds to the whole network.

5.1.4 Resistance limiting cases for directed networks

Let wij ≥ 0, i �= j, be the weight of an arc that goes from the i-th to the j-th
node, where wij = 0 if there is no link between them. We suppose that this
network is connected in the weak sense (weak connected components), i.e. the
connected components are found as if the arcs were undirected; otherwise, each
connected component should be analyzed one by one.

The natural generalization of modularity to cope with directed networks was
introduced in [5], and is expressed as

Qr =
1

2w

∑
i

∑
j

(
wij −

wout
i win

j

2w

)
δ(Ci, Cj) , (5.21)

where the output and input strengths of the network are

wout
i =

∑
j

wij , (5.22)

win
j =

∑
i

wij , (5.23)

and its total strength is

2w =
∑

i

wout
i =

∑
j

win
j =

∑
ij

wij . (5.24)

The addition of a common resistance r to all nodes may be understood as
the definition of a new network with weights

w′
ij =

{
wij if i �= j ,
r if i = j .

(5.25)

The strengths of this network are

w′
i
out = wout

i + r , (5.26)

w′
j
in = win

j + r , (5.27)

and its total strength is

2w′ =
∑

i

w′
i
out =

∑
j

w′
j
in = 2w + Nr . (5.28)
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Now, the modularity (5.21) of the new network is calculated as

Qr =
1

2w′

∑
i

∑
j

(
w′

ij −
w′

i
out

w′
j
in

2w′

)
δ(Ci, Cj) , (5.29)

which may also be written as

Qr =
1

2w′

∑
i

∑
j �=i

(
wij −

w′
i
out

w′
j
in

2w′

)
δ(Ci, Cj) + Dr , (5.30)

where

Dr =
1

2w′

∑
i

(
r − w′

i
out

w′
i
in

2w′

)
. (5.31)

Note that Dr does not depend on the community partition.

All nodes isolated

If we have(
w′

ij −
w′

i
out

w′
j
in

2w′

)
+

(
w′

ji −
w′

j
out

w′
i
in

2w′

)
< 0 , ∀i < j , (5.32)

then Qr in equation (5.30) is maximized when δ(Ci, Cj) = 0, ∀i �= j, i.e. mod-
ularity attains its maximum when all nodes are isolated in clusters of just one
node. In terms of the resistance they simply become second order inequalities,

(2w+Nr)(wij +wji) < (wout
i +r)(win

j +r)+(wout
j +r)(win

i +r) , ∀i < j , (5.33)

which can easily be solved for all pairs of nodes joined by an arc. Thus, rmax is
the minimum value of r which satisfies all these inequalities, and for r > rmax

all nodes are separated in the optimal community configuration.

All nodes in the same community

The analysis of this case follows the same steps as in subsection 5.1.3, yielding
also to (5.19):

Qrasymp+ε = 1 − a

ε
− b

ε2
. (5.34)

The only difference is that now:

b =
∑

c

(∑
i

(wout
i + r)δ(Ci, c)

)⎛
⎝∑

j

(win
j + r)δ(Cj , c)

⎞
⎠ . (5.35)

Unlike for undirected networks, the value of b is not guaranteed to be positive,
and then:

lim
ε→0+

Qrasymp+ε =
{

−sign(b) ∞ if two or more communities ,
0 if only one community .

(5.36)

This means that, only if b is positive for all the different community partitions,
for values of the resistance just above the asymptote, the optimal communities
configuration is that with all nodes together in a single module that corresponds
to the whole network. Otherwise, the modularity will raise to +∞ for the
maximum modularity configuration, and the single module structure might not
be present for any value of the resistance.
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5.2 Modularity optimization using Tabu Search

The method to unveil the mesoscales of a complex network consists then in
optimizing Qr, for r ∈ [rmin, rmax]. Different values of r will eventually reveal
different optimal partitions that represent intermediate topological scales of the
complex network. In order to find the community structure we propose a new
method to optimize the modularity based on Tabu Search [37]. The algorithm
proceeds as follows: starting from an initial solution (a partition in groups of
nodes of the network), S Init, an iterative process that explores the search space
begins, stepping from the solution of the current iteration, S Iter, to one of its
neighbors, S Neig. The neighborhood is composed by the partitions that are
obtained from the current solution by the application of a local operator called
move. In our case, the move operator acts on a node at a time moving it from
its current community to another selected at random, or creating a new one.
Among the solutions in the neighborhood the best one is chosen to become the
new current solution for the next iteration of the algorithm.

In order to escape from local optima, a list of tabu moves is used. This tabu
list stores and forbids the most recently accepted moves and it is updated as the
algorithm proceeds, so that a move just added to the list is removed from it after
a certain number of iterations (Tabu Tenure) have passed. However, tabu moves
are allowed when they lead to an improved solution. Once a solution is accepted,
the node moved to obtain this solution is inserted into the tabu list, in order to
prevent the movement of the same node during the next Tabu Tenure iterations,
unless this move leads us to the best solution found until that moment. We
have used a logarithmic function on the number of nodes as the number of idle
iterations needed to stop the search.

function Tabu Modularity Optimization
(Net: Network; {complex network}
S Init: Solution) {solution to initiate the search}
returns (S Best: Solution) is

const
Tabu Tenure: Natural := 5;

var
Tabu Moves: Array Of Natural; {counters of forbidden moves}
Max Idle: Natural; {maximum number of idle iterations}
Num Idle: Natural; {number of idle iterations}
S Iter: Solution; {solution of the current iteration}
S Neig: Solution; {solution in the neighborhood}
Node Best: Natural; {node with the best move}

begin
for Node := 1 to Number Of Nodes(Net) do {initialize the tabu moves}

Tabu Moves[Node] := 0;
end for;
Max Idle := Maximum Of Nonimprovements(Number Of Nodes(Net));
Num Idle := 0;
S Iter := S Init;
S Best := S Init;
while Num Idle < Max Idle do

Explore Neighborhood(Net, S Iter, S Best, Tabu Moves, S Neig,
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Node Best);
for Node := 1 to Number Of Nodes(Net) do {decrease the tabu moves}

Tabu Moves[Node] := Maximum(0, Tabu Moves[Node]-1);
end for;
Tabu Moves[Node Best] := Tabu Tenure;
S Iter := S Neig;
if Modularity(S Neig) > Modularity(S Best) then

S Best := S Neig;
Num Idle := 0;

else
Num Idle := Num Idle + 1;

end if ;
end while;
return S Best;

end Tabu Modularity Optimization;

procedure Explore Neighborhood
(Net: in Network;
S Iter: in Solution;
S Best: in Solution;
Tabu Moves: in out Array Of Natural;
S Neig: out Solution;
Node Best: out Natural) is

var
S Move: Solution; {solution from the move of a node}

begin
Node Best := 0;
for Node := 1 to Number Of Nodes(Net) do

S Move := Solution From Move(Net, S Iter, Node);
if Modularity(S Move) > Modularity(S Best) then

Tabu Moves[Node] := 0;
end if ;
if Tabu Moves[Node] = 0 and (Node Best = 0 or else

Modularity(S Move) > Modularity(S Neig)) then
Node Best := Node;
S Neig := S Move;

end if ;
end for;

end Explore Neighborhood;

The main advantage of this algorithm is that it is a mixture of divisive and
agglomerative processes, avoiding the drawbacks of each strategy. Moreover,
the iterative process can start from any initial partition, which is adequate for
the mesoscale determination, since the optimal partitions for nearby values of
the resistance are frequently similar. In terms of computational cost, the Tabu
Search heuristic is equivalent to other stochastic optimization methods such as
Simulated Annealing or Genetic Algorithms.
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5.3 Validation of the method

We show the results of our method investigating the modular structure at multi-
ple resolution levels (different scales), for examples of synthetic and real complex
networks. A first approach on synthetic networks is illustrative for validation
of the procedure when different coexistent topological scales are imposed by
construction. We have also analyzed the modular structure of real networks.
In general, in real cases, the results are more difficult to assess because nothing
from the topology indicates the existence a priori of more relevant structure in
the network, and only the corroboration a posteriori of the structure found with
known facts about the (social, biological, etc.) meaning of it can give reliabil-
ity to any method. In the experiments, we have studied between 100 and 500
values of r inside the interval (rasymp, rmax] for synthetic networks, and 1000
values of r for real networks. All the experiments have been cross checked using
two modularity optimization heuristics: extremal optimization [25], and a new
proposal for the optimization of modularity based on Tabu Search, repeating
each one 20 times and keeping the partition obtained at the optimal value of
Qr.

In figure 5.1 we have screened the whole range of topological scales for three
synthetic networks, representing the number of modules obtained at the opti-
mal partition for Qr, and the network analyzed highlighting the partition at two
representative scales indicated by (I) and (II). Although the networks studied
may have more than two relevant scales, we have just drawn two of them cho-
sen among the most representative ones. First we have computed the modular
structure in a hierarchical scale-free network with 125 nodes, RB 125, proposed
by Ravasz and Barabasi [78]. In figure 5.1a we plot the modular structure found,
which shows three different scales that deserve discussion. We observe clearly
persistent structures in 5 and 25 communities respectively, that account for the
subdivisions more significant in the process, showing two hierarchical levels for
the structure. Additionally, the most stable partition in terms of resolution does
not correspond to any of the previous ones, but it corresponds to the partition
in 26 modules (the same as the one in 25 modules, but isolating the main hub).
The partition in 5 modules and the partition in 26 modules are highlighted on
the original network. This result is in perfect correspondence with the synchro-
nization patterns produced on this network using coupled oscillators [4].

Another network example used is the H 13-4 network [4], which corresponds
to a homogeneous in degree network with two predefined hierarchical levels,
being 256 the number of nodes, 13 the number of links of each node with the
most internal community (formed by 16 nodes), 4 the number of links with the
most external community (four groups of 64 nodes), and 1 more link with any
other node at random in the network. In figure 5.1b we represent the network
and its corresponding modular structure at different scales. Both hierarchical
levels are revealed by the method as they correspond to the original construction
of the network: the first hierarchical level consisting in 4 groups of 64 nodes,
and the second level consisting in 16 groups of 16 nodes.

Finally, we have used the FB network proposed by Fortunato and Barthélemy
[32] to demonstrate the resolution limit of modularity (at r = 0). It consists in
two cliques of 20 nodes linked with two small cliques of 5 nodes. At r = 0 the
best partition cannot separate the two small cliques. In figure 5.1c we observe
that the partition searched by the authors, formed by the four cliques isolated
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Figure 5.1: Multiple resolution of modular structure in synthetic networks. Left:
number of modules obtained at the optimal partition for Qr, where each point
corresponds to a different partition and the arrows indicate the optimal parti-
tions at r = 0. Right: networks analyzed, highlighting the partitions at two
representative scales indicated by (I) and (II). (a) RB 125 corresponds to the
hierarchical scale-free network proposed in [78]. The regions corresponding to
5, 25 and 26 modules are the most representative (stable) in terms of resolution.
(b) H 13-4 corresponds to a homogeneous in degree network with two prede-
fined hierarchical levels. Both levels are revealed by the method at different
scales. (c) FB corresponds to the network proposed in [32] to demonstrate the
resolution limit of modularity (at r = 0). This limit is overcome at scale (II)
providing with the partition expected.
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in their own communities, is obtained by increasing the resolution r, showing
that the resolution limit of modularity is overcome by the method in region (II).

We have also studied a couple of social networks for which explicit knowl-
edge about its modular structure is available (see figure 5.2). These particular
networks, formed by social acquaintances between individuals, have the main
characteristic that after a period of study decomposed in perfectly identifiable
parts. The challenge is to find the modular structure of these parts without
previous knowledge about the real partition. The optimization of modularity at
r = 0 fails to provide this information, and no other method has been able to
find the real partitioned structure. However, the most representative scales in
terms of resolution optimizing Qr obtained by applying our method correspond
exactly to the real splittings.

First, we have investigated the classical social network of the Zachary’s
karate club [95], accounting for the study over two years of the friendships
between 34 members of a karate club at a US university in 1970. The network
in question was divided, at the end of the study period, in two groups after
a dispute between the club’s administrator and the club’s instructor, which
ultimately resulted in the instructor leaving and starting a new club, taking
about half of the original club’s members with him. The analysis of this data
has been a paradigmatic benchmark to test the accuracy of community detec-
tion algorithms. Zachary constructed a weighted network using different social
measures (see figure 5.2a), although many times in the literature the network
has been considered unweighted for simplicity or tradition, missing important
information in the process.

The goal of any community detection algorithm trying to identify modules
on this network should be to find the actual split occurred, assigning perfectly
the nodes to the two known resulting clubs. The first approach to this goal was
given by Girvan and Newman in [35], where they used a divisive method that
produced a hierarchical tree representing the whole modular structure. They
found that the first network splitting obtained by the method assigned correctly
all nodes except node number 3. However, no measure about the quality of the
partition was introduced at that time, and then all levels of the hierarchical
tree were equivalent, with no way to have a preference for any partition. In [69],
the same authors introduced the modularity measure Q and reported that the
best structure in the hierarchy, in terms of the value of Q, was a partition in
four groups and not two as expected. From this point on, many authors have
analyzed this network and have provided the best values of Q obtained. Today it
is well accepted that the best partition in terms of modularity of the Zachary’s
unweighted network is achieved for four groups with a value of Q = 0.419.
We have applied our method to screen the modular structure of the original
weighted network at all resolution scales of r. The results in figure 5.2a show
that the most stable level of resolution is precisely the partition resulting in the
two groups representing the two clubs, with no mismatch of any individual.

The second network analyzed is the dolphins social network of Lusseau et
al. [58]. This network was constructed from observations of a community of 62
bottle nose dolphins over a period of seven years from 1994 to 2001. The nodes
in the network represent the dolphins, and the ties between nodes represent
the associations between dolphin pairs occurring more often than expected by
chance. There is evidence [57] that a temporary disappearance of the dolphin
denoted SN100, led to the fission of the dolphins community in the two iden-
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Figure 5.2: Multiple resolution of modular structure in real networks. Top:
number of modules in the optimal partitions at different scales; the arrows
indicate the best partitions obtained at r = 0, which do not correspond to the
real partitions. Bottom: representation of the networks and the partitions in
the plateaus marked as (I), which correspond both to the most stable scales
of description and to the known splittings occurred in the real networks. (a)
Zachary’s karate club network [95]. (b) Dolphins social network by Lusseau et
al. [58].
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Figure 5.3: Toy network for the calculation of its mesoscales.

tifiable parts shown in figure 5.2b. The optimization of modularity at r = 0
does not produce the expected split, but a partition in five communities with
Q = 0.518. Other approaches as the one exposed in [67] neither success to find
the real division. Our method allows to reveal all the modular structure in the
whole range of resolution, indicating that the most stable solution in terms of
resolution of optimal Qr corresponds exactly to the two partitions observed in
this animal social network.

5.4 Matrices for the analysis of the mesoscales

We have studied the mesoscales in synthetic structured networks and real com-
plex networks [7]. The results show that there are several intermediate scales of
description of the complex networks: the topological mesoscales. These scales
are revealed by intervals of values of the resistance r, for which the optimal
partition does not change.

For a comprehensive representation of the whole mesoscale that allows for
the extraction of information, we propose to represent the connectivity matrix
after processing it as follows: i) for each pair of nodes we compute the normalized
length at values of r − rasymp in logarithmic scale, for which they belong to the
same group, and we represent this normalized length in a color scale; ii) the
matrix is reordered from left to right by the size of the connected components
with larger lengths at different values of the resistance. The darker colors in the
scale represent groups of nodes that are connected at larger lengths.

In the following subsections we give the details of the mesoscales determina-
tion for a toy model, in order to clarify all the steps involved.

5.4.1 Mesoscales matrix

Let us consider the undirected graph in figure 5.3, with all weights equal to 1. Its
main parameters are: N = 7, 2w = 16, rasymp = −2.2857 and rmax = 5.2749.
To avoid the infinities at the asymptote and the degeneration of the optimal
solution at rmax, we study the mesoscales for values of the resistance in the
interval [rasymp + ε, rmax + ε], where ε is a small positive constant. In this toy
example we have taken ε = 10−4 and a discretization of the resistance range
in 1001 equally distributed values. The optimization of modularity has been
performed using exhaustive search, appropriate only for very small graphs such
as this one. The results are summarized in table 5.1.

When the graph has certain symmetries, a degeneration of the optimal com-
munity structure may appear, i.e. different optimal partitions of the nodes in
communities having the same maximum of modularity. This is the case of the
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Table 5.1: Summary of the results obtained during the optimization of modular-
ity for the toy network. We have taken a discretization of the resistance range
in 1001 equally distributed values, and the optimization has been performed
using exhaustive search.

step r r − rasymp Qr size optimal communities
0 -2.2856 0.0001 0.0000 1 {1, 2, 3, 4, 5, 6, 7}
1 -2.2781 0.0077 0.0000 1 {1, 2, 3, 4, 5, 6, 7}

· · · 1 {1, 2, 3, 4, 5, 6, 7}
75 -1.7186 0.5671 0.0000 1 {1, 2, 3, 4, 5, 6, 7}
76 -1.7110 0.5747 0.0003 2 {1, 2, 3, 4} {5, 6, 7}

· · · 2 {1, 2, 3, 4} {5, 6, 7}
340 +0.2850 2.5707 0.3808 2 {1, 2, 3, 4} {5, 6, 7}
341 +0.2926 2.5783 0.3812 3 {1, 2, 3} {4} {5, 6, 7}

· · · 3 {1, 2, 3} {4} {5, 6, 7}
873 +4.3148 6.6005 0.5221 3 {1, 2, 3} {4} {5, 6, 7}
874 +4.3224 6.6081 0.5223 5 {1, 2} {3} {4} {5} {6, 7}

· · · 5 {1, 2} {3} {4} {5} {6, 7}
999 +5.2675 7.5532 0.5541 5 {1, 2} {3} {4} {5} {6, 7}

1000 +5.2750 7.5607 0.5543 7 {1} {2} {3} {4} {5} {6}{7}

Table 5.2: Lengths of the mesoscales for the toy network obtained from the
range of resistances at which each partition into communities is optimal.

optimal communities rfrom rto length % length
{1, 2, 3, 4} {5, 6, 7} -1.7110 +0.2926 0.6519 58.25
{1, 2, 3} {4} {5, 6, 7} +0.2926 +4.3224 0.4087 36.52

{1, 2} {3} {4} {5} {6, 7} +4.3224 +5.2750 0.0585 5.23

configuration in two communities, in which node 4 could have been placed in
the other community. In real networks these symmetries do not appear, so they
usually do not become a problem.

Any graphical representation of the whole mesoscale should take into ac-
count, for every pair of nodes, the proportion of mesoscales at which they be-
long to the same community. Each mesoscale has a natural length (see table 5.2)
defined by the range of resistances [rfrom, rto] at which it is optimal:

length = log(rto − rasymp) − log(rfrom − rasymp) . (5.37)

Thus, the length proportion for a pair of nodes is the sum of the lengths corre-
sponding to mesoscales in which they belong to the same community, normalized
by the total length (see figure 5.4a). The graphical representation of this table,
which we call mesoscales matrix, is shown in figure 5.4b.

This example is quite simple since the mesoscales obtained are hierarchi-
cal and then their representation following the hierarchical order is convenient
to extract information. However, usually graphs will present non-hierarchical
mesoscales, for instance the circular network depicted in figure 5.5 has the
mesoscales shown in table 5.3 (with rasymp = −2.0).
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(a) (b)
1 2 3 4 5 6 7

1 1.00 1.00 0.95 0.58 0.00 0.00 0.00
2 1.00 1.00 0.95 0.58 0.00 0.00 0.00
3 0.95 0.95 1.00 0.58 0.00 0.00 0.00
4 0.58 0.58 0.58 1.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 1.00 0.95 0.95
6 0.00 0.00 0.00 0.00 0.95 1.00 1.00
7 0.00 0.00 0.00 0.00 0.95 1.00 1.00

1
2
3
4
5
6
7

1 2 3 4 5 6 7

Figure 5.4: Mesoscales table and mesoscales matrix for the toy network.
(a) Mesoscales table, formed by the lengths of pairs of nodes in the same commu-
nity, normalized by the total length. (b) Mesoscales matrix, where the contrast
has been adjusted to enhance the visibility of the four different length levels
present in the mesoscales table.

1

2 3

4

5

67

8

Figure 5.5: Circular network with non-hierarchical mesoscales.

Table 5.3: Non-hierarchical mesoscales for the circular network.
optimal communities rfrom rto length % length
{1, 2, 3, 4} {5, 6, 7, 8} -0.9999 -0.3999 0.2041 22.60
{1, 2, 3} {4, 5, 6} {7, 8} -0.3999 +0.6721 0.2227 24.66
{1, 2} {3, 4} {5, 6} {7, 8} +0.6721 +6.0001 0.4762 52.74
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Its non-hierarchical structure is clear: nodes 3 and 4 are in the same com-
munities in the first and third partitions, but in different communities in the
second one; and nodes 4 and 5 are exactly in the opposite situation. To extract
information in this case some processing is necessary, we propose in the next
section a possible way to deal with these situations.

5.4.2 Filtered mesoscales matrix

In the previous examples, the mesoscales matrices were simple enough to make
all the mesoscales visible at a glance. However, when working with real data,
usually the mesoscales matrices turn out to be much more confusing, with dis-
ordered nodes and non-transitive relationships of nodes having the same (or
similar) lengths. Here we show how to calculate the filtered mesoscales matrix
from a given mesoscales matrix, as a way to extract the information hidden in
it.

Let us suppose that we have obtained the mesoscales table in figure 5.6a,
whose mesoscales matrix is shown in figure 5.6b. The filtered mesoscales matrix
is obtained by the application of several thresholds to the mesoscales matrix, i.e.
the lengths below the threshold are discarded, and the connected components
of the graph defined by the remaining lengths are found. Figures 5.6c–f show
the results after the application of thresholds 0.25, 0.50, 0.75 and 1.00. The first
threshold divides the network in two connected components, which ordered by
size are: {2, 3, 5, 6, 7}, {1, 4}. This partition gives the reference for the rest of
the process. The following connected components, ordered by size within each
one of the groups found in the previous threshold, are: {2, 5, 7}, {3, 6}, {1, 4}
for threshold 0.50; {2, 7}, {5}, {3}, {6}, {1, 4} for threshold 0.75; and {2}, {7},
{5}, {3}, {6}, {1}, {4} for threshold 1.00. Finally, the filtered mesoscales matrix
is built by the composition of these four threshold matrices (see figure 5.6g).

In order to complete this example, we give two more matrices. First, we
want to show that by using more threshold cuts in the mesoscales matrix we
would obtain a more detailed filtered mesoscales matrix preserving the struc-
tures already found because of transitivity. For instance, the result using eight
instead of four thresholds is given in figure 5.6h. Second, we would like to assert
the difference between the mesoscales matrix and the filtered mesoscales matrix.
For this reason we show in figure 5.6i the former using the ordering found by the
latter. Clearly, the definition of the filtered mesoscales matrix helps to extract
information of the mesoscales imposing transitivity relations in the data found
by the mesoscales matrix.

5.4.3 Networks to validate the mesoscales matrices

In order to validate the method we have used synthetic networks where different
topological scales coexist. First we have computed the mesoscales in a synthetic
hierarchical scale-free complex network, RB 125, which extends up to 125 nodes
the model network proposed by Ravasz and Barabasi [78]. This network and
its corresponding mesoscales matrix are plotted in figure 5.7 (top). From the
mesoscales matrix we observe a clear structure in two hierarchical levels of five
and twenty-five communities respectively, that account for the subdivisions more
persistent in the process. The significant topological role of the hub connectors
is also revealed in this case.
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(a)
1 2 3 4 5 6 7

1 1.0 0.2 0.1 0.8 0.0 0.0 0.1
2 0.2 1.0 0.4 0.0 0.6 0.0 0.8
3 0.1 0.4 1.0 0.2 0.1 0.7 0.1
4 0.8 0.0 0.2 1.0 0.2 0.1 0.0
5 0.0 0.6 0.1 0.2 1.0 0.0 0.1
6 0.0 0.0 0.7 0.1 0.0 1.0 0.3
7 0.1 0.8 0.1 0.0 0.1 0.3 1.0

(b) (c) (d) (e)

1
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Figure 5.6: Calculation of filtered mesoscales matrices from a mesoscales ta-
ble. (a) Sample mesoscales table. (b) Corresponding mesoscales matrix.
(c) Connected components of the mesoscales matrix at the threshold of 0.25.
(d) Threshold of 0.50. (e) Threshold of 0.75. (f) Threshold of 1.00. (g) Fil-
tered mesoscales matrix (4 levels). (h) Filtered mesoscales matrix (8 levels).
(i) Mesoscales matrix using the ordering defined by the filtered mesoscales ma-
trix.
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RB 125
1

0

H 13-4
1

0

FB
1

0

Figure 5.7: Synthetic complex networks and their respective mesoscales matri-
ces. Color levels correspond to the persistence of the structures in r. We plot the
networks (left) as well as their mesoscales matrices (right). RB 125 corresponds
to an extension of the hierarchical complex network proposed in [78]. H 13-4
corresponds to an homogeneous in degree network with two predefined hierar-
chical levels. FB corresponds to the network proposed in [32] to demonstrate
the resolution limit of modularity.
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Another validation example is the H 13-4 network, which corresponds to
a homogeneous in degree network with two predefined hierarchical community
levels, being: 256 the number of nodes, 13 the number of links of each node
with the most internal community (of 16 nodes), 4 the number of links with
the most external community (four groups of 64 nodes), and 1 more link with
any other node at random in the network [4]. We represent the network and
its corresponding mesoscales matrix in figure 5.7 (center). Again the method
reveals the hierarchy prescribed with a difference in contrast between the first
hierarchical level (groups of 16 nodes) and the second (groups of 64 nodes), as
it corresponds to the original construction of the network.

Finally, we have used the FB network proposed in [32] to demonstrate the
resolution limit of modularity (at Newman’s scale r = 0). It consists in two
cliques of 20 nodes linked with two small cliques of 5 nodes. At r = 0 the best
partition cannot separate the two small cliques. In the mesoscales matrix of the
FB network drawn in figure 5.7 (down), we observe that the most persistent
partition is precisely the one formed by the 4 cliques isolated in their own
communities, showing that the resolution limit of modularity can be overcome
by the method.

5.5 Analysis of the C. elegans neuronal network

Here we develop the analysis of the C. elegans neuronal network, from the
details of the parameters used to discover its mesoscales, to the enumeration of
the functional and anatomical correlations found between neurons.

We have taken the largest connected component of the directed C. elegans
neuronal network (297 neurons) and we have discretized the resistance range
for the determination of the mesoscales in the following way:

1. The interval from rasymp = −29.69 to rmax = 10357.99 has been divided
in 1000 non-uniform intervals, in such a way that the last resistance incre-
ment is ten times larger than the first one, and the size of the increments
grow at a constant rate.

2. The significant Newman’s scale at r = 0 has been added.

3. The negative values of the resistance have been discarded, since we are
interested only in sub-structure beyond the standard Newman’s scale.

This amounts to the analysis of the mesoscales at 990 different values of the
resistance parameter.

The neuronal network of the C. elegans can be represented as a weighted
directed adjacency matrix (see figure 5.8). The order of the neurons in the ma-
trix follows that of [87], obtained from experimental data in [93]. The detection
of the mesoscales in this neuronal system has been performed according to the
method explained in this chapter. The best partition at r = 0 corresponding
to the original Newman’s scale provides with five communities. The represen-
tation of the obtained groups is depicted in figure 5.9 (left). This figure does
not allow the observation of relevant information because of the original order
of the neurons in figure 5.8, however after ordering the neurons in the matrix by
their communities, the representation shown in figure 5.9 (right) emerges. These
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1

0

Figure 5.8: Connectivity matrix of the C. elegans neuronal network.

Figure 5.9: Newman’s scale of the C. elegans neuronal network. Left, original
order. Right, reordering by communities.

communities contain neurons whose soma can be correlated with spatial parts
of the worm, mainly the head, the body and the tail (see posterior figure 5.13).

The coarse graining at r = 0 provides then with a large scale in this system,
hence our interest has been focused not in supra-structural but in sub-structural
levels. This means that we have analyzed the mesoscales for r ∈ [0, rmax],
obtaining the mesoscales matrix depicted in figure 5.10. We use the partition
at r = 0 (Newman’s scale) as a reference for the substructures found by the
method, i.e. Newman’s scale corresponds to the threshold equal to 0 in the
mesoscales matrix (see figure 5.11).

Any trial of classification by the functional role of neurons in the C. elegans
is extremely delicate because the multi functional aspects they have. Many neu-
rons participate in different synaptic pathways resulting in different functional-
ities. This property is also captured by our method showing that at different
scales the same neuron can appear in different groups, i.e. the method is not
necessarily hierarchical.

In order to extract information from the results obtained, we use the filtered
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1

0

Figure 5.10: Mesoscales matrix for the C. elegans neuronal network.

mesoscales matrix as explained in the previous section. By fixing a threshold in
the length value, we are able to unravel sub-structural scales that could corre-
spond to groups of neurons involved in different functionalities (see figures 5.11
and 5.12). The most interesting information is that provided at a large value of
the threshold, because in this case the substructures found contain small groups
of neurons whose activity is most likely associated to a specific action. With
this information at hand, and the wide description of each neuron found at the
public database of C. elegans [93], we propose a tentative classification of some
groups of neurons by functionality.

We have studied the filtered mesoscales matrix at a threshold value of 0.6.
Fixing our attention at this level of description, we present a tentative functional
classification for the groups of five or more neurons (see figure 5.13). We have
used the information presented in [26] and [93] for each neuron position and
individual functionality, as a guide for the classification of specific actions. Our
purpose, after identification of individual functionalities, has been to assign a
specific action to the whole group of neurons.

The results of the analysis of the filtered mesoscales matrix for the C. elegans
neuronal connectivity show that: i) the substructures that prevail at different
topological scales are most of them in agreement with the location of the soma
of neurons along the body of the worm, and ii) the functionality of the different
substructures found by the method are correlated with specific actions of the
worm which allows for a tentative classification of functional groups. The clas-
sification obtained (see table 5.4) does not pretend to be exact but to provide
biologists with a useful information for future research.

5.6 Discussion

5.6.1 Synchronization dynamics

The results show that there exist several intermediate scales of description in
complex networks, the topological mesoscale. These scales are revealed by inter-
vals of values of the resistance r, for which the optimal partition does not change
(see figure 5.1). The obvious question at this point is: what are these scales
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threshold = 0.0 threshold = 0.1

threshold = 0.2 threshold = 0.3

threshold = 0.4 threshold = 0.5

Figure 5.11: Elaboration of the filtered mesoscales matrix for the C. elegans
neuronal network. Cumulative mesoscales up to thresholds from 0.0 to 0.5.
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threshold = 0.6 threshold = 0.7

threshold = 0.8 threshold = 0.9

threshold = 1.0

Figure 5.12: Elaboration of the filtered mesoscales matrix for the C. elegans
neuronal network. Cumulative mesoscales up to thresholds from 0.6 to 1.0.
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Figure 5.13: Groups of five or more neurons analyzed from the filtered
mesoscales matrix of the C. elegans neuronal network at a threshold level equal
to 0.6.
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Table 5.4: Tentative functionalities for the groups of five or more neurons
analyzed from the filtered mesoscales matrix of the C. elegans neuronal network
at a threshold level equal to 0.6.

i Neurons: RIAL, RIAR, RMDDL, RMDR, RMDVR, SMDDR,
SMDVL, SMDVR

Function: Nose/head orientation movement.

ii Neurons: IL1DR, IL1VR, IL2DR, IL2VR, RIPR
Function: Head-withdrawal reflex, more related to dorsal relaxation.

iii Neurons: IL2L, IL2R, OLQVL, OLQVR, RIH
Function: Head-withdrawal reflex, more related to ventral relaxation.

iv Neurons: ADLR, AIBR, ASEL, ASHR, AWCL, AWCR, AIAR,
AIYL

Function: Olfactory and thermo sensation reflex.

v Neurons: AIAL, ASGL, ASJL, ASKL, PVQL
Function: Chemotaxis to lysine reflex.

vi Neurons: AS3, DA2, DA3, DA4, DA5, DB1, DB2, DB3, DB4, DD1,
VA3, VB2, VD2, VD3, VD4, VD5, VD6, WM

Function: Backward/sinusoidal movement of the worm, more related
to touch stimulus.

vii Neurons: AVAL, AVAR, AVBL, AVBR, AVDL, AVDR, AVEL,
AVER, DA1, FLPL, FLPR, PQR, PVCL, PVCR, PVDL,
PVDR, PVPR, RIFR

Function: Forward and backward/sinusoidal movement of the worm,
more related to search for food in starving case, involve
social feeding effect.

viii Neurons: AVFL, AVFR, AVHL, AVHR, AVJL
Function: Impossible to determine from the experimental data avail-

able. There is not any specific function known for any of
these neurons.

ix Neurons: AVKL, AVKR, DVA, PDEL, PDER, PVM, WN
Function: The functionality of this group could be related to a relax-

ation state similar to a sleep state, with reduced motor ac-
tivity, decreased sensory threshold, characteristic posture
and easy reversibility, basically mediated by PDs neurons.
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representative for? The answer of this question is not trivial, and is intrinsically
related to the functioning of the complex network as a substrate for different
dynamical processes, communication and friendship in social networks, cogni-
tive task in neural networks, or different levels of aggregation of computers in
the Internet, for example. Our guess is that a simple dynamical process on top
of a complex networks, should somehow reveal the topological mesoscale also in
terms of temporal patterns. To check this hypothesis, we have implemented a
synchronization dynamics on top of different topologies following [3, 4]. The dy-
namics corresponds to the non-linear interaction between oscillators connected
following the links of the complex networks. Analyzing the temporal meta-
stable patterns emerging in the evolution towards complete synchronization, we
corroborate our initial guess.

The temporal mesoscale of the dynamics of synchronization (of phase oscil-
lators) near the synchronization attractor are governed by the solutions of the
linear dynamics:

dθi

dt
= −k

∑
j

Lijθj , i = 1, . . . , N , (5.38)

where k is a constant, θj are the phases of the nodes and Lij the Laplacian
matrix of the network.

To identify patterns of synchronization in time, we use [4] a discretization
of the matrix ρij = 〈cos(θi − θj)〉 where 〈·〉 stands for the average over different
realizations of the initial conditions. In all cases presented here we have averaged
105 realizations, and used a discretization threshold of 0.999. We observe that
the intermediate scales that are revealed by the synchronization process are
in agreement with those found by the topological method proposed here. The
method allows not only to identify the number of communities at different scales
but also to determine which nodes form these communities.

We show the corroboration of these claims in a set of synthetic networks,
where the modular structure at different scales is imposed by construction. In
figure 5.14, we sketch first the topology of a simple model of hierarchical net-
work [78], and the comparison between the specific communities found at dif-
ferent resolution levels, and the synchronization patterns observed in the path
towards synchronization. The synthetic network of 25 nodes used combines the
scale-free property with a high clustering coefficient, and can be iterated, fol-
lowing the scheme plotted in figure 5.14a, to have many hierarchical levels. The
results of the comparison reveal a strong equivalence between both processes,
the static resolution method at different scales (different values of the resis-
tance), and the groups of synchronized nodes in time. In figure 5.15 we extend
this comparison for three more network structures: H 13-4 corresponding to the
homogeneous in degree network described in section 5.3; equivalently the H 15-2
network [4] corresponds to a homogeneous in degree network with two prede-
fined hierarchical levels, being 256 the number of nodes, 15 the number of links
of each node with the most internal community, 2 the number of links with the
most external community, and 1 more link with any other node at random in the
network; the RB 125 network has been used also in section 5.3 and corresponds
to the same scheme exposed in figure 5.14a adding a new hierarchical level. The
plots here represent, in log-log scale, the number of communities as a function
of the translated resistance r − rasymp, and time. The correspondence between
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Figure 5.14: Comparison between the communities found at different resolution
levels and the groups of synchronized nodes in time. (a) The network struc-
ture corresponds to the hierarchical network proposed by Ravasz and Barabasi.
(b) Communities found at different scales for the network depicted. The left
arrow represents the value of the resistance for which these structures prevail.
The right arrow stands for the time intervals for which the same structures are
found in a synchronization process. For large positive values of r the network is
decomposed in individual nodes, whilst for large negative values of r the whole
network forms a single community.

the patterns is highlighted, and again the correspondence is overwhelming.
Obviously, the functioning of real complex networks can rely on dynamical

processes very different from the synchronization process exposed here, however
it is still instructive to see how a simple nonlinear process reflects the mesoscale
of complex networks, or from another point of view, to see how the topology of
the networks imposes dynamical (temporal) scales in their functioning.

5.6.2 Comparison with other methods

Some authors have proposed algorithms to extract the hierarchical organization
of complex networks by modifying the objective function [79], or by search-
ing local minima of the modularity landscape [80]. These approaches differ
conceptually from ours and also in practice: i) the modification of the quality
function [79] does not always provide with the correct substructure of networks;
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Figure 5.15: Comparison between topological scales and dynamical scales of syn-
chronization. The plots represent, in log-log scale, the number of communities
as a function of (a) the translated resistance r − rasymp, and (b) time. Dashed
red lines are a guide to the eye to emphasize the correspondence between the
plateaus observed. Legends refer to the network structure.
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ii) the method based on the screening of local minima of modularity [80] is de-
signed assuming that the structure is hierarchical, which is not the case in many
real networks.

The method proposed by Sales-Pardo et al. is specifically designed to un-
ravel the hierarchical structure in networks. The comparison with our method
is then not possible within our more general scope of any topology. For hier-
archical networks, their method will find the hierarchy of scales, as ours also
does, however, for non-hierarchical networks, their method can only produce
nested communities, in contrast with ours. Conceptually, the difference can be
summarized as follows: hierarchies imply multiple scales of description, but the
implication does not hold in reverse.

The method proposed by Reichardt and Bornholdt (R&B) [79] was not de-
signed to avoid the resolution limit of modularity but to offer a way to connect
modularity with statistical physics. The main idea by the authors is to tune the
null model (i.e. change the quality function) and then to obtain other partitions
by maximizing the new quality functions. Indeed in [53] the authors interest-
ingly showed that the R&B method has the same resolution problems envisioned
in [32] for modularity. The problem is that the R&B method consisting into
varying γ (the prefactor that multiplies the null model) is not equivalent to tune
the resolution of Newman’s modularity. The authors in [53] recognize that if the
size distribution of the communities is broad, like in collaboration networks or
school friendship networks, there is no single proper value of γ for the optimal
resolution. The main difference with our method is that, no matter the size
distribution of communities to be broad or not, the rescaling of the topology
method that we present finds all the topological structure correctly because it
is designed to this end.

To support the above discussion we have built a toy model network with
a simple topology but difficult for community detection algorithms because it
includes communities of different sizes, some of them sparse and other dense
(see figure 5.16). The network model is small enough to have a clear vision
of the modules, and to be attacked with computationally costly techniques in
reasonable time. While our method succeeds in the process, the R&B method
fails. The results of our method and the R&B method varying γ are presented
in figure 5.16.

It is worth noticing that the parameter γ in R&B approach does not corre-
spond to any value of r. Only when γ = 1 and r = 0 both definitions become
equal, and are exactly Newman’s original definition. Rewriting Qr in equa-
tion (5.5) in terms of nodes,

Qr =
1

2w + Nr

∑
i

∑
j

(
wij + rδij −

(wi + r)(wj + r)
2w + Nr

)
δ(Ci, Cj) , (5.39)

and comparing it to the R&B modularity

QR&B
γ =

1
2w

∑
i

∑
j

(
wij − γ

wiwj

2w

)
δ(Ci, Cj) , (5.40)

for both prescriptions to be equivalent for all partitions, one must show that

(wi + r)(wj + r)
2w + Nr

− rδij = γ
wiwj

2w
, ∀i, j . (5.41)
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Figure 5.16: Detection of modules in the stars & clique network. (a) Stars
& clique network with communities of different sizes and densities of edges.
(b) Top: number of modules as a function of the topological scale r using
our method; the red line indicates the range of scales for which the natural
partition (four stars and one clique) is obtained. Bottom: number of modules
as a function of the parameter γ in R&B model; the natural partition (four stars
and one clique) is not obtained for any value of γ.
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If i �= j, then the relationship between r and γ becomes

γ =
2w

2w + Nr
· wi + r

wi
· wj + r

wj
, (5.42)

which is only fulfilled for r = 0 and γ = 1, the trivial case stated before, because
otherwise one would have different values of γ for each pair of nodes i and j.
Therefore, there is no transformation of Qr into QR&B

γ , and they are screening
different things.

5.6.3 Which is the “best” scale of description of complex
networks?

The question about the determination of the “best” scale of description of a
complex network is natural, but ill posed in the current scenario. Through-
out the paper we have stated that the more “stable” partitions, in terms of
persistence maximizing Qr when varying the scales with r, are somehow more
relevant in the topological description of the mesoscale. Their existence is an
observed fact: some partitions are more persistent than others when changing
the resolution scale of the topology. We think that this fact is not surprising, as
it is not in many physical systems: phenomena that are observed persistently
over a wide range of scales vanish at other scales, and others emerge. In general,
these more persistent phenomena are usually more important to understand the
system. More stable partitions are relevant in the sense that they usually have
known meaning, but we cannot state that other partitions not so prevalent are
uninformative. All them are embedded in the topology and give their particular
information.

Summarizing what we think about the determination of the “best” or “more
relevant” scale of description, we can say that the existence of relevant scales of
description of a complex network should unavoidably pass through the definition
of “relevant”. Throughout the paper we have never tried to define “relevant”
directly from the results obtained with our method, but a posteriori. We use,
in the case of synthetic networks and real networks, the information that we
have a priori (e.g. knowledge about the hierarchy imposed by construction,
or known splits) to determine which scale is more relevant and then to check
whether it is found by the method. What we observe is that these relevant
scales are usually related to partitions that are significantly persistent (stable)
at different scales (variation of r). However, to invert the argument is not
straightforward. It is true that one could invent a function that peaks at the
scales we see in reality that are known, as for example a function that accounts
for the homogeneity of the obtained communities, but this inevitably imposes
new conditions to the definition of module. Matching the discussion above let
us expose the following: if it exists such a function that indicates the most
“relevant” scale of description (and then partition), why not use this function
as the objective function to optimize? This argument is strong because it implies
that to determine if any scale is more important than others one must optimize
a different quality function designed to this end, not modularity.
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5.7 Summary

Motivated by the recent finding that the optimization of modularity has a res-
olution limit related to the characteristic scale imposed by the total strength
(sum of weights) of the network, in this chapter we have proposed a multiple
resolution procedure that allows the process of optimizing modularity to go deep
into the structure. The main idea consists in to re-scale the topology by defining
a new network from the original one, providing each node with a self-loop of
the same magnitude which we have called resistance. In terms of connectivity,
the new network shows the same characteristics that the original network, but
allows the search of modules at different topological scales.

To find the community structure, we have proposed a new algorithm to
optimize the modularity based on Tabu Search. The results are sets of partitions
that screen the full range of structural modules, from individual nodes up to
the whole network, in each particular scale. As validation for the method, we
have provided examples of the modular substructure and superstructure found
in synthetic and real complex networks.

We have also introduced a method to uncover information from the several
scales of description found in many real complex systems. A graphical represen-
tation of the whole mesoscale is obtained by superposing all the scales found,
weighted by the interval in the resistance for which they prevail. The result is a
mesoscales matrix whose representation provides with a structural map of the
topology of the network. The mesoscales matrices for synthetic networks clearly
reveal how nodes form groups at different scales, thanks to the symmetries of the
networks analyzed. However, in real complex networks where these symmetries
are usually absent, a filtering process is needed to visualize the same informa-
tion. Therefore, we have designed what we have called the filtered mesoscales
matrix, consisting in: i) to fix a mesoscale (a level color) and remove from the
mesoscales matrix the elements under this level (lighter colors); ii) to calculate
the connected components of the remaining elements (groups); and iii) to ar-
range the matrix in decreasing size order within the groups obtained at previous
levels. The process is iterated starting from the lowest mesoscale to the highest
one, accumulating the results of previous stages.

We have applied the complete method to unravel the mesoscales of the neu-
ronal connectivity of the nematode C. elegans. The whole nervous system of
this worm can be represented as a weighted directed adjacency network. The
mesoscales matrix obtained in this case is difficult to analyze because: first,
the order of the nodes is not prescribed; and second, the groups obtained at
different scales are not necessarily hierarchical. To enhance its visualization we
have calculated the corresponding filtered mesoscales matrix.

In the last section of the chapter, we have presented a discussion about the
role of the different topological scales beyond its statical definition, revealing
their implications in dynamical processes on top of networks. We have also
compared our method with other possible approaches to the mesoscales. And
finally, we have given a perspective about the significance of the mesoscales in
contrast with the commonly accepted one-scale of description.
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Chapter 6

General Descriptions of
Communities

Even though a lot of work has been done to devise reliable techniques to maxi-
mize modularity, very little has been done to analyze the concept of modularity
itself and its reliability as a method for community detection. To a large extent,
the success of modularity as a quality function to analyze the modular structure
of complex networks relies on its intrinsic simplicity. The researcher interested
in this analysis is endowed with a non-parametric function to be optimized, the
modularity, and the result of the analysis will provide a partition of the network
into communities, where each community is a subset of nodes more connected
between them than with the rest of the nodes in the network. However, mod-
ularity is strongly focused on communities, and for this reason it cannot be
used in general to detect groups of nodes revealed by alternative connectivity
patterns. The only exception is represented by “anti-communities”, i.e. groups
of nodes with a few edges inside and many edges connecting different groups.
The presence of anti-communities indicates that a network has a multipartite
structure. Anti-communities could be detected by modularity minimization [67],
although the results are not so good.

Here we propose a general framework to describe groups of nodes, including
communities [6]. The contents of the chapter are structured as follows: sec-
tion 6.1 shows the need to generalize the description of communities given by
the standard modularity; then, the mathematical formalism of the generalized
modularities is presented in section 6.2; finally, in section 6.3 the framework is
tested on synthetic and real networks, and there is a brief discussion about the
results obtained.

6.1 Motif-based communities

In general, detecting multipartite structure from first principles requires a defi-
nition of the classes that is quite different (in fact, opposite) with respect to
standard community definitions. Let us consider bipartite networks, where
nodes/actors are connected through other entities, for example collaboration
in a work, attendance to an event, etc. In these specific cases, nodes of the
same class (e.g. actors) are not directly linked or only share a few edges, and
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usually some projection of the network into a subnetwork formed by a single
class of nodes is needed for subsequent analysis. For example, in a projection
into the actors space, two actors could be connected if they share any team,
and the weight of this link could be either one (unweighted projection) or the
number of shared teams (weighted projection). However, the analysis of net-
work projections implies the use of partial information and, therefore, some
complementary information which could be relevant is missed out. An alterna-
tive approach to network projections which allows working with all the available
information simultaneously is to generalize the definition of community in or-
der to deal with different classes of nodes. Doing it within a modularity-based
framework requires a different formulation of modularity [12, 44].

Bipartite networks are characterized by the fact that any path with even
length starting from a node of either class ends in the same class, due to the
absence of internal edges in each class. Hence, if the two classes are A and B and
we start from a node iA of class A, the first step leads to one of its neighbors,
say iB, which is in B, the next step to a neighbor jA of iB, which is in A, and
so on. In this way, paths of even length starting and ending in the same class
may reveal bipartite structure, if there are many of them.

On the other hand, in a graph with modular structure, there are many edges
inside each module, so one accordingly expects a large number of paths between
nodes. In particular, one expects a large number of cycles, i.e. closed paths.
Small connected subnetworks or motifs could be used to define and identify both
communities of nodes and more general topological groupings. In fact, the high
density of edges within any community determines correlations between nodes
that go beyond nearest-neighbors. Here we give different definitions for groups of
nodes, including communities, based on the principle that they “contain” more
motifs than a null model representing a randomized version of the network at
study. The null model of modularity is adopted, i.e. a random network with the
same degree sequence of the original network, because modularity lends itself
to a simple generalization. Several extensions of modularity are derived, where
the building blocks are motifs and not just edges as in the original expression.
After that, the new functions are maximized to detect the classes.

The modularity-based framework is used here only as an illustrative example
of how motifs can be defined to detect general groups of nodes in networks,
but this new framework can be useful to any other method designed to detect
substructure in networks. Note that the extended quality functions, which will
be introduced, also obey the principle of the resolution limit, which states that
modularity will not be able to resolve substructures beyond a certain size limit,
just like the original modularity [32]. However this limit is now motif-dependent
and then several resolutions of substructures can be achieved by changing the
motif.

6.2 Mathematical formulation of motif modu-
larity

The original definition of modularity by Newman and Girvan [69] only deals
with unweighted and undirected networks. Later on, Newman generalized it to
cope with weighted networks [64]. In this work we start from an extension of
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modularity to weighted directed networks [5], which reduces to the previous one
for undirected networks, and which is calculated as follows:

Q(C) =
1

2w

∑
i

∑
j

(
wij −

wout
i win

j

2w

)
δ(Ci, Cj) , (6.1)

where wij is the weight of the connection from the i-th to the j-th node,
wout

i =
∑

j wij and win
j =

∑
i wij stand for their output and input strengths

respectively, 2w =
∑

ij wij is the total strength of the network, Ci is the index
of the community which node i belongs to, and the Kronecker δ is 1 if nodes i
and j are in the same community, and 0 otherwise. For undirected networks,
wout

i = win
i ≡ wi, thus recovering the weighted undirected definition of modu-

larity in [64]. The larger the value of modularity, the better the corresponding
partition of the network into modules.

In the next subsections we develop the mathematical formulation of a motif
modularity which generalizes the standard one given in equation (6.1). First,
the most general framework is explained, and then the formalism is applied to
several classes of motifs.

6.2.1 General motif modularity

Let M = (VM, EM) be a motif (connected undirected graph, or weakly con-
nected directed graph), where VM is the set of M nodes of the motif, and
EM ⊆ VM × VM is the set of its edges.

Let {wij ≥ 0 | i, j = 1, . . . , N} be the weights of a (directed or undirected)
network of N nodes, where wij = 0 if there is no edge from the i-th to the j-th
node, and wij ∈ {0, 1} if the network is unweighted. The nodes of the motif will
be labeled by the indices i1, i2, . . . , iM , all of them running between 1 and N .

Given a certain partition C of an unweighted network in communities, the
number of motifs fully included within the communities is given by

ΨM(C) =
∑
i1

∑
i2

· · ·
∑
iM

∏
(a,b)∈EM

wiaib
δ(Cia , Cib

) . (6.2)

Degenerated motifs, i.e. those where some nodes are counted more than once,
are included in this sum. The formula also holds for weighted networks, which
can be inferred from the mapping between weighted networks and unweighted
multigraphs [64].

The maximum value of ΨM(C) corresponds to the partition in a single
community containing all the nodes:

ΨM =
N∑

i1=1

N∑
i2=1

· · ·
N∑

iM=1

∏
(a,b)∈EM

wiaib
. (6.3)

For a random network preserving the strength of the nodes, these quantities
are respectively

ΩM(C) =
∑
i1

∑
i2

· · ·
∑
iM

∏
(a,b)∈EM

wout
ia

win
ib

δ(Cia , Cib
) (6.4)
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and
ΩM =

∑
i1

∑
i2

· · ·
∑
iM

∏
(a,b)∈EM

wout
ia

win
ib

. (6.5)

Now, by analogy with the standard modularity, we define the motif modu-
larity as the fraction of motifs inside the communities minus the fraction in a
random network which preserves the strength of the nodes:

QM(C) =
ΨM(C)

ΨM
− ΩM(C)

ΩM
. (6.6)

The introduction of null case weights, nij , masked weights, wij(C), and
masked null case weights, nij(C),

nij = wout
i win

j , (6.7)
wij(C) = wijδ(Ci, Cj) , (6.8)
nij(C) = nijδ(Ci, Cj) , (6.9)

allows the simplification of the previous expressions, in particular motif modu-
larity:

QM(C) =

∑
i1i2···iM

∏
(a,b)∈EM

wiaib
(C)

∑
i1i2···iM

∏
(a,b)∈EM

wiaib

−

∑
i1i2···iM

∏
(a,b)∈EM

niaib
(C)

∑
i1i2···iM

∏
(a,b)∈EM

niaib

. (6.10)

Motif modularity may be further generalized by relaxing the condition that
all nodes of the motif should be fully inside the modules. This is done just
by removing some of the maskings in equation (6.10) as required, and possibly
with the addition of some Kronecker δ functions between non-adjacent nodes
of the motif. In this way, it is possible to define classes of nodes different from
communities, as we shall see in subsection 6.2.3.

6.2.2 Cycle modularity

Among the simplest possible motifs, triangles are the ones which have deserved
more attention in the networks literature. For instance, it has been shown
that real networks have higher clustering coefficients than expected in random
networks [62]. Thus, it would be desirable to be able to find “communities
of triangles”. Our approach consists in the definition of a triangle modularity,
Q�(C), based on the triangular motif E� = {(1, 2), (2, 3), (3, 1)}, which reads:

Q�(C) =

∑
ijk

wij(C)wjk(C)wki(C)

∑
ijk

wijwjkwki

−

∑
ijk

nij(C)njk(C)nki(C)

∑
ijk

nijnjknki

. (6.11)

Triangle modularity is trivially generalizable to cycles of length �, making
use of the cyclical motif EC(�) = {(1, 2), (2, 3), . . . , (�− 1, �), (�, 1)}. The number
of these motifs within the communities is given by

ΨC(�)(C) =
∑

i1i2···i�

wi1i2(C)wi2i3(C) · · ·wi�−1i�
(C)wi�i1(C) . (6.12)
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The full formula for the cycle modularity, QC(�)(C), follows immediately from
it.

If the network is directed, then other non-cyclical motifs exist. We skip
them, since their derivation is straightforward.

6.2.3 Path modularity

A path of length �, P(�), is simply the linear motif defined by the set of edges
EP(�) = {(1, 2), (2, 3), . . . , (�, � + 1)}. We remark that cycles are closed paths,
but here we shall only consider open paths. The number of paths of length �
fully inside the communities is given by

ΨP(�)(C) =
∑

i1i2···i�+1

wi1i2(C)wi2i3(C) · · ·wi�i�+1(C) . (6.13)

Note that this expression equals the sum of the components of the �-th power
of the masked weight matrix.

The path of length � = 1 corresponds to the simplest motif EP(1) = {(1, 2)},
which is just a single edge, so its motif modularity (6.10) equals the standard
definition of modularity (6.1).

Paths of length 2 are also useful for the analysis of bipartite networks, pro-
vided one removes the constraint that all nodes of the path belong to the same
module. If one allows that the middle node of a path of length 2 could be any
node of the network, whereas the first and third nodes are kept within the same
group, the path can be used to discover relationships between nodes of differ-
ent groups. If a network is bipartite, for instance, there will be many paths of
length 2 starting from a class and returning to it from the other class. If only
the extremes of the path P̃(�) are required to be inside the community, their
total number is given by

ΨP̃(�)(C) =
∑

i1i2···i�+1

wi1i2wi2i3 · · ·wi�i�+1δ(Ci1 , Ci�+1) . (6.14)

In this case, the calculation makes use of the �-th power of the weight matrix
(instead of the masked weight matrix), and the masking is applied to the sum
of their components.

6.3 Examples and tests

When one is faced with the problem of community detection in a particular
network, the first thing to do should be to answer the following question: what
sort of connectivity patterns or motifs are pertinent in this study? According to
the answer, it is straightforward to select one of the possible motif modularities.
We present in this section examples of the application of the previous framework
to two synthetic networks. Finally, we perform two tests on real networks for
which the real partitions observed are known.

The synthetic networks that we have generated for this purpose are the
clique & circle network and the star network. In figure 6.1 we show these
networks as well as the classes found using different motif modularities. Suppose
we want to find node classes by means of triangles. When we optimize the
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Figure 6.1: Results obtained using motif modularities for two synthetic net-
works. (a) Clique & circle network, with triangle modularity. (b) Star network,
with paths of size 2 modularity with free intermediate node. Members of the
same class are depicted using equal symbol and color.

triangle modularity for the clique & circle network, the clique forms a community
whereas the nodes of the circle are separated into five singleton communities.
This is due to the absence of triangles within the circle. On the contrary, the
standard modularity identifies the circle as a community.

The second example, the star network, is a case where the path motifs prove
to be useful. This network can be seen as a simple bipartite network with
eight actors (the leaf nodes) and just one event (the hub node). In this case,
recalling what we have said in the previous section, the path modularity of
length 2 with a free intermediate node is the proper motif modularity to use.
The results confirm that the star is decomposed in two classes, one for the leaves
and another for the hub. The same partition is obtained for any even path length
with free intermediate nodes, while for odd path lengths all nodes are joined in a
single community. This holds as well if one maximizes the standard modularity;
however, the correct partition of the network can be recovered by modularity
minimization.

The real networks used for testing are the Zachary Karate Club network [95]
and the Southern Women Event Participation network [23, 33]. A description of
each network can be found in their respective references. For the mathematical
analysis presented here the interesting fact regarding these networks is that we
know the real splittings occurred in the Zachary network, as well as the most
plausible classification assigned in the literature to the Women Event Partici-
pation data, as reported by Freeman [33]. In figure 6.2 we show both networks
as well as their respective partitions.

For the Zachary Karate Club network, the nature of the data suggests to
try an optimization of path modularities, since the decision of following any of
the two leaders during the splitting of the club surely depended on higher order
friendship relationships (friends of friends, and so on). When a path modularity
of length 1 is considered (i.e. the classical definition of modularity), the best
partition obtained splits each one of the two real communities into two sub-
communities, yielding a partition in four communities. However, when one looks
for a more compact structure of the communities, which can be accomplished by
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Figure 6.2: Results obtained using motif modularities for two real networks.
(a) Zachary Karate Club network, where we depict the real splitting obtained
when using several path and cycle modularities. (b) Southern Women Event
Participation network, where we depict the results of the analysis of this mul-
tipartite network without any projection, simply applying modularity of path
free intermediate of length 2. Remarkably the results show clearly the role dif-
ferentiation of women and events, as well as the splitting of women according
to the events participation that has been reported in the literature.
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increasing the length of the paths, the optimization of path modularity delivers
the real splitting observed, for all path lengths we have used (from 2 to 6).
The same result is obtained when the paths are replaced by cycles (lengths
from 4 to 9). Triangles give almost the exact partition, but with two exceptions:
nodes 10 and 12 become isolated, because they do not belong to any triangle.

The second network tested is a multipartite network. In this case, as well
as for the star network, the use of path modularity of length 2 with a free
intermediate node is crucial, and it accounts for the role differentiation between
women and events. The results not only reveal the two roles of events and
women, but also recover their internal split according to their participation in
events, a classification made by social scientists [33] (with the same exception
of one woman, as in the weighted projection and bipartite methods in [44]).
In this case, the minimization of standard modularity is only able to separate
women and events, with no further subdivision.

6.4 Summary

In this chapter we have shown that a general classification of groups of nodes
in networks is possible if one uses motifs (small connected subnetworks) as
elementary units, instead of simple edges. To show that, we have given several
definitions for groups of nodes, including communities, based on the principle
that they contain more motifs than a null model representing a randomized
version of the network at study. Then, we have developed the mathematical
formulation for several extensions of modularity where the building blocks are
motifs and not edges as in the original expression by Newman and Girvan.
First, we have explained the most general framework of motif modularity, and
afterwards we have applied this formalism to several classes of motifs. Among
the simplest possible motifs, triangles have deserved a lot of attention in the
networks literature (for instance, in the definition of the clustering coefficient).
Thus, our initial approach has consisted in the definition of triangle modularity,
which enables us to find communities of triangles. As a matter of fact, triangles
are easily generalizable to cycles, what has immediately led us to the formula for
cycle modularity. Finally, we have shown how path modularity is also possible.
In fact, paths of length 2 have proved to be very useful for the analysis of
bipartite networks.

We have tested these new versions of modularity on synthetic and real net-
works. Using the type of motif which was pertinent in each case, we have
been able to recover the expected connectivity patterns, both when the net-
works showed modular structure as well as when they presented multipartite
structure.



Chapter 7

Conclusions

In this work we have studied several mesoscopic descriptions of complex net-
works. The main conclusions that can be drawn are the following:

• We have proposed a new variable-group method for agglomerative hierar-
chical clustering that solves the non-uniqueness problem arising when the
classic pair-group method is used. The output of our new algorithm is a
uniquely determined type of valued tree, that we have called a multivalued
tree, and for which we have devised a new graphical representation called
multidendrogram. We can summarize the main advantages of our new pro-
posal in the following points: i) when there are no ties, the variable-group
method gives the same result as the pair-group one; ii) the new method
always gives a uniquely determined solution; iii) in the multidendrogram
representation for the results, one can explicitly observe the occurrence of
ties during the agglomerative process and, besides, the height of any fu-
sion interval indicates the degree of heterogeneity inside the corresponding
cluster; iv) when ties exist, the variable-group method is computationally
more efficient than obtaining all the possible solutions following out the
various ties with the pair-group alternative; and v) the new proposal can
be also computed in a recursive way using a generalization of Lance and
Williams’ formula.

• We have studied the correlation-based financial networks and the possi-
bility of filtering such networks into simpler relevant subnetworks using
hierarchical asset trees. We have analyzed the space-distortion differences
that exist between the output asset trees of distinct hierarchical cluster-
ing methods, and we have arranged the results in space-distortion order.
At one end of this classification has appeared the single linkage method,
suffering from the chaining effect, whilst at the other end of the arrange-
ment we have found the complete linkage and the joint between-within
methods, both of them showing clear inner structures corresponding to
the branches of their hierarchical trees.

• In order to solve the portfolio selection problem, we have used the hierar-
chical asset trees to divide the problem into several subproblems accord-
ing to the clusters arising in the asset trees. We have used the two more
promising hierarchical methods for the problem at hand, namely complete
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linkage and joint between-within. According to the results obtained, we
can conclude that the complete linkage method gives partitions of clusters
which are generally better suited in order to divide and solve the port-
folio selection problem using our new hierarchical clustering alternative.
The time cost of this approach reduces significantly that of the original
problem, not only because of the division of the problem into smaller sub-
problems, but also on account of the possibility to solve the subproblems
in parallel since they are disjoint.

• Given that the objective function of the portfolio selection problem resem-
bles so much the energy function of a Hopfield neural network, we have
developed a new heuristic method based on the Hopfield neural network to
solve the same portfolio selection problem. We have taken the results ob-
tained with our neural network approach and we have compared them to
those obtained using three other heuristic methods based on genetic algo-
rithms, tabu search and simulated annealing. All the experimental results
lead us to conclude that none of the four heuristic methods has outper-
formed the others in all types of investment policies. However, we have
observed that, when dealing with problem instances demanding proper
diversification portfolios with low risk of investment, the neural network
model has given better solutions than the other three heuristic methods.

• Provided that the optimization of modularity is an NP-hard problem, it
cannot be performed by exhaustive search. Only optimization heuristics
have proved to be competent in finding suboptimal solutions of the mod-
ularity function in feasible computational time. Here we have proposed
an exact procedure for size reduction of complex networks preserving the
value of modularity, and we have also estimated the amount of size reduc-
tions which one might expect for two of the most widespread degree distri-
butions in complex networks: scale-free and exponential. The systematic
use of this size reduction allows to search more exhaustively through the
space of partitions, what usually will end in improved values of modularity
compared to those obtained without using the size reduction.

• Motivated by the recent finding that the optimization of modularity has
a resolution limit related to the characteristic scale imposed by the total
strength of the network, we have proposed a multiple resolution procedure
that allows the process of optimizing modularity to go deep into the struc-
ture. The screening of different scales of descriptions should be useful to
get deeper in the understanding of complex networks. The analysis of the
results reveals that some topological scales are more persistent (stable)
in terms of resolution than others. These stable scales provide with spe-
cific information about the main modular aspects of the structure: in the
synthetic networks analyzed, they correspond to the predefined structural
scales imposed ad hoc; and in the real networks, they correspond exactly
to previous knowledge about the networks that has not been recovered by
any other method studying these networks up to now. With this method,
we release optimization of modularity from resolution problems, and give
new ideas about the description of complex networks. The existence of
several scales of description for complex networks has deep analogies with
the common study of complex systems in physics, where different models
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have been formulated at different spatial scales to get insight in different
aspects of their phenomenology.

• In order to find community structure at different topological scales, we
have proposed a new algorithm to optimize the modularity based on tabu
search. Its main advantage is that it is a mixture of agglomerative and
divisive processes, avoiding the drawbacks of each strategy. Moreover, the
iterative process can start from any initial partition, which is adequate
for the determination of the mesoscales, since the optimal partitions for
nearby values of the resistance are frequently similar.

• We have introduced two techniques for a graphical representation of the
several scales of description found in many complex systems. First, the
mesoscales matrix which is obtained by superposing all the scales found,
weighted by the interval in the resistance for which they prevail. The
representation of the mesoscales matrix provides with a structural map of
the topology of the network. Second, for instances of real complex net-
works where symmetries are missing, we have designed a filtering process
that produces the filtered mesoscales matrix. This way, without losing
any information from the original mesoscales matrix, we achieve a clearer
representation of the structural map.

• After calculating the mesoscales matrix and the filtered mesoscales matrix
corresponding to the neuronal connectivity of the nematode C. elegans, we
have unveiled its mesoscales. The results of the analysis show some inter-
esting correlations between the substructures prevailing in the mesoscales
and the location of the soma of the neurons or the functionalities in the
worm. These results could help biologists to design specific targeted ex-
periments based on the classification of the neurons according to their
roles at different topological scales.

• We have given a general classification of groups of nodes in networks de-
veloping a unified extension of modularity where the building blocks are
general motifs and not simple edges. Using the type of motif which was
pertinent in each case, we have tested the new versions of modularity on
several networks and we have been able to recover the expected connec-
tivity patterns.
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Appendix A

Descripciones Mesoscópicas
de Redes Complejas

En las últimas décadas, cient́ıficos provenientes de distintos campos (como soci-
oloǵıa, bioloǵıa, f́ısica, matemáticas e informática) han estado construyendo la
nueva ciencia de las redes complejas. Desde Internet y la World Wide Web, hasta
las redes de amistades e incluso las redes de transmisiones de enfermedades, la
realidad de las redes está en casi todos los ámbitos de la sociedad moderna.
Los cient́ıficos han observado que muchos sistemas reales están estructurados
en forma de redes complejas, esto es, en forma de grafos que representan las
conexiones existentes entre sus elementos [11, 85, 87]. Pero la primera pregunta
que uno se plantea es: qué es exactamente una red compleja? La respuesta
a esta pregunta es sencilla, pues una red no es nada más que un conjunto de
elementos (llamados nodos o vértices) y un conjunto de arcos que conectan a
los elementos de la red por pares. Algunos ejemplos habituales de redes com-
plejas incluyen: sistemas tecnológicos como Internet [1, 27] y la World Wide
Web [2, 31]; sistemas biológicos como redes de interacción de genes o protéınas
[40, 46, 73]; una gran variedad de redes sociales [35, 36, 70]; mercados financieros
[60]; e infraestructuras de transporte como ferrocarriles y rutas aéreas [42].

La nueva ciencia de las redes complejas es importante por varios motivos.
Uno de ellos es que, al fijarse en las propiedades de redes reales, estudia la
estructura de las redes tal y como aparecen de manera natural en el mundo real.
Las redes sociales y las redes biológicas son ejemplos de este tipo que surgen de
manera natural, al igual que también lo son las redes de información como las
redes de citas y la World Wide Web. Además, los modelos teóricos pertinentes
también son esenciales para poder comprender correctamente el significado de
cualquier hallazgo emṕırico. Por lo tanto, la observación emṕırica y el modelado
teórico se estimulan continuamente el uno al otro.

Otra caracteŕıstica distintiva de la ciencia sobre redes complejas es que in-
tenta establecer la relación existente entre las propiedades estructurales de un
sistema y su comportamiento. Las redes compleja no sólo tienen propiedades
topológicas, sino que también presentan propiedades dinámicas. Bajo este punto
de vista, los vértices de una red representan entidades discretas y dinámicas,
con sus propias reglas de comportamiento, mientras que los arcos representan
conexiones entre estas entidades.
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La descripción macroscópica de redes complejas en términos de propiedades
estad́ısticas se ha desarrollado ampliamente, a la búsqueda de su clasificación
universal. Entre estas propiedades encontramos el llamado efecto de mundo
pequeño, que dice que la distancia promedio entre los nodos de una red es
pequeña, y habitualmente escala de manera logaŕıtmica con el número total
de nodos en la red. Otra propiedad macroscópica presente en muchas redes
complejas es la caracteŕıstica distribución de grado en forma de ley de poten-
cias, lo que significa que t́ıpicamente hay muchos nodos con grados bajos y unos
pocos nodos con grados elevados, siguiendo a menudo dicha distribución una
forma exponencial o de ley de potencias. Una tercera propiedad que muchas
redes tienen en común es la transitividad (o elevado coeficiente de clustering),
que consiste en que dos nodos vecinos de un mismo tercer nodo tengan una
mayor probabilidad de ser ellos mismos vecinos entre śı.

Cuando las redes complejas son analizadas de manera local, emergen al-
gunas caracteŕısticas que permanećıan parcialmente ocultas en la descripción
estad́ıstica. La más relevante quizás sea el descubrimiento de la estructura de
comunidades en muchas de ellas [35], según la cual los nodos de una red se
reúnen dentro de grupos de nodos conectados entre śı de una manera fuerte
o densa, con conexiones más esparsas o débiles entre grupos distintos. Por
ejemplo, considerando el caso de las redes sociales (redes de amistades u otras
relaciones entre individuos), se observa habitualmente que tales redes contienen
comunidades en su interior: subconjuntos de nodos dentro de los cuales las
relaciones nodo a nodo son bastante densas, mientras que las relaciones entre
subconjuntos distintos no son tan densas.

El estudio de la estructura de comunidades en redes complejas ha recibido
mucha atención en los últimos años [22, 65]. En este trabajo nos centramos exac-
tamente en el análisis de varias descripciones mesoscópicas de redes complejas.
Es un tema interesante porque puede ser muy valioso identificando estructuras
a un nivel de descripción mesoscópico, las cuales podŕıan revelar información
acerca de la funcionalidad de grupos de nodos [40, 43]: las comunidades en
una red social pueden representar agrupaciones sociales reales, quizás según
intereses comunes o formación; las comunidades en una red de citas pueden rep-
resentar art́ıculos sobre un mismo tema relacionados; las comunidades en una
red metabólica pueden representar ciclos u otras agrupaciones funcionales; las
comunidades en la World Wide Web pueden representar páginas sobre temas
relacionados. Ser capaces de identificar estas comunidades puede ayudarnos a
comprender mejor las redes y explotarlas de manera más eficiente.

Clustering jerárquico

Los métodos tradicionales para detectar estructura de comunidades en redes
están tomados del análisis de las redes sociales y se reúnen bajo el nombre de
clustering [20, 38, 84]. Los métodos de clustering agrupan individuos en grupos
de individuos o clusters, de manera que los individuos dentro de un cluster están
cercanos los unos de los otros. Se clasifican en dos grandes grupos, aglomera-
tivos y divisivos, dependiendo de si consisten en reunir o separar comunidades.
Los métodos aglomerativos se han usado más habitualmente porque son más efi-
cientes en tiempo de cálculo que la alternativa divisiva. En los métodos aglom-
erativos se empieza definiendo una medida de similitud y calculando sus valores
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entre todos los pares de nodos de la red. A continuación se comienza un proceso
iterativo partiendo de tantos clusters individuales como individuos existan, y a
cada nuevo paso se fusionan los dos clusters más similares hasta que todos los
individuos se hallan en un mismo cluster. El clustering jerárquico no propor-
ciona una única partición de la red en comunidades, sino que los cortes a través
de diferentes niveles del árbol nos proporcionan todo un conjunto mesoscópico
de particiones anidadas. Hemos comenzado el caṕıtulo 2 describiendo el algo-
ritmo clásico de clustering jerárquico de grupo par, y recordando la definición
de árbol valuado, que es el resultado del algoritmo aglomerativo de grupo par
y que se representa gráficamente mediante un dendrograma.

Entre los distintos tipos de métodos aglomerativos encontramos los de en-
lazado sencillo, enlazado completo, promedio no pesado, promedio pesado, etc.,
los cuales difieren entre śı por la manera como llevan a cabo el proceso iterativo
que va de los clusters individuales al cluster final. Excepto en el caso del en-
lazado sencillo, todos los otros métodos aglomerativos de grupo par sufren un
problema de no unicidad cuando dos o más valores de similitud entre clusters
distintos coinciden durante el proceso de agrupamiento. Esto es la causa de
que se generen distintas clasificaciones jerárquicas a partir de un mismo con-
junto de datos que representan proximidades y en el cual aparecen empates.
En tales casos, seleccionar una única clasificación puede provocar resultados no
deseados. Este problema se ha venido tratando tradicionalmente con distintos
criterios, la mayoŕıa de los cuales consisten en la selección de una jerarqúıa re-
sultante entre varias posibles. Nosotros hemos propuesto un algoritmo de grupo
variable que consiste en agrupar más de dos clusters simultáneamente cuando
aparezcan empates, resolviendo aśı el problema de la no unicidad en el clus-
tering jerárquico aglomerativo. La salida de este algoritmo es un tipo de árbol
valuado y uńıvocamente determinado, al cual hemos denominado árbol multi-
valuado, y para el cual hemos ideado una representación gráfica nueva llamada
multidendrograma. Además, hemos ilustrado la utilidad de nuestra propuesta
con algunos resultados correspondientes a datos de un ejemplo real formado por
los valores de similitud entre veintitrés suelos distintos (ver figura A.1). Este
ejemplo hab́ıa sido previamente analizado por otros autores, quienes hab́ıan de-
tectado la existencia de un valor duplicado en la matriz de entrada que originaba
dos posibles jerarqúıas distintas como resultado de usar el enfoque de grupo par.
El uso de nuestra alternativa de grupo variable conduce a un único resultado
que coincide con la clasificación conocida para dichos datos de suelos.

A continuación hemos recordado las diferentes definiciones de distancia en-
tre clusters usadas por los métodos jerárquicos aglomerativos más habituales
(enlazado sencillo, enlazado completo, promedio no pesado, promedio pesado,
centroide no pesado, centroide pesado, e inter-intra), y las hemos generalizado
con el propósito de poder utilizar el algoritmo de grupo variable. La utilización
de cualquiera de estos métodos aglomerativos especifica impĺıcitamente modelos
para los datos y puede proporcionar resultados confusos acerca de la estructura
de clases presente en los datos estudiados. Hemos revisado la idea de distorsión
del espacio en el clustering jerárquico, según la cual las estrategias pueden ser
espacio-conservadoras, espacio-contractoras o espacio-dilatadoras, y hemos re-
definidos estos conceptos en términos del nuevo enfoque de grupo variable.

Finalmente, hemos generalizado la fórmula de Lance y Williams, la cual
permite obtener clasificaciones jerárquicas aglomerativas de manera recursiva,
que permite implementar el algoritmo de manera recursiva. En su formulación,
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Figure A.1: Dendrogramas y multidendrograma de enlazado completo para los
datos de suelos. Teniendo en cuenta el grupo de suelos de tierras marrones
formado por los suelos 1, 2, 6, 12 y 13, se puede observar que el dendrograma
en (a) es peor que el de (b) porque el primero reúne dichos suelos en una etapa
posterior del proceso de agrupación. El correspondiente multidendrograma (c)
para estos mismos datos nos proporciona la clasificación correcta de los suelos.
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Table A.1: Parámetros para la fórmula de grupo variable.
Método αij βii′ (βjj′ ) γij δ

Enlazado sencillo 1
|I||J| 0 1

|I||J| 0

Enlazado completo 1
|I||J| 0 1

|I||J| 1

Promedio no pesado |Xi||Xj |
|XI ||XJ | 0 0 −

Promedio pesado 1
|I||J| 0 0 −

Centroide no pesado |Xi||Xj |
|XI ||XJ | − |Xi||Xi′ |

|XI |2 0 −
Centroide pesado 1

|I||J| − 1
|I|2 0 −

Inter-intra |Xi|+|Xj |
|XI |+|XJ | − |XJ |

|XI |
|Xi|+|Xi′ |
|XI |+|XJ | 0 −

suponemos que deseamos agrupar simultáneamente dos familias de clusters, re-
spectivamente indexadas por I = {i1, i2, . . . , ip} y J = {j1, j2, . . . , jq}, en dos
superclusters XI =

⋃
i∈I Xi y XJ =

⋃
j∈J Xj . Definimos la distancia entre

ellos, D(XI , XJ), en términos de las distancias entre los respectivos clusters
componentes, D(Xi, Xj), como:

D(XI , XJ) =
∑
i∈I

∑
j∈J

αijD(Xi, Xj)

+
∑
i∈I

∑
i′∈I
i′>i

βii′D(Xi, Xi′) +
∑
j∈J

∑
j′∈J
j′>j

βjj′D(Xj , Xj′)

+ δ
∑
i∈I

∑
j∈J

γij [Dmax(XI , XJ) − D(Xi, Xj)]

−(1 − δ)
∑
i∈I

∑
j∈J

γij [D(Xi, Xj) − Dmin(XI , XJ)] , (A.1)

donde
Dmax(XI , XJ) = max

i∈I
max
j∈J

D(Xi, Xj)

y
Dmin(XI , XJ) = min

i∈I
min
j∈J

D(Xi, Xj) .

La tabla A.1 muestra los valores de los parámetros αij , βii′ , βjj′ , γij y δ de la
fórmula dada en la ecuación A.1, para los siete métodos de clustering jerárquico
aglomerativo estudiados en el caṕıtulo.

Resumiendo las ventajas principales de la nueva propuesta, éstas se pueden
exponer en los siguientes puntos: i) cuando no aparecen empates, el algoritmo
de grupo variable da el mismo resultado que el de grupo par; ii) el nuevo algo-
ritmo siempre da una única solución; iii) en la representación de los resultados
mediante multidendrogramas se puede apreciar expĺıcitamente la aparición de
empates durante el proceso de aglomeración y, además, la altura de todo in-
tervalo de fusión indica el grado de heterogeneidad existente dentro del cluster
correspondiente; iv) cuando existen empates, el algoritmo de grupo variable
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es computacionalmente más eficiente que obtener todas las soluciones posibles
deshaciendo los distintos empates en el algoritmo de grupo par; v) la nueva
propuesta también se puede calcular de manera recursiva utilizando una gener-
alización para la fórmula de Lance y Williams.

A pesar de que en los datos originales de proximidades no aparezcan em-
pates, éstos pueden surgir durante el proceso de aglomeración. Por ese motivo, y
dado que los resultados del algoritmo de grupo-variable coinciden con los del al-
goritmo de grupo par cuando no hay empates, recomendamos usar directamente
la opción de grupo variable. De esta forma, en una única acción se averigua si
existen empates o no, y además se obtiene la consiguiente solución.

Redes financieras y carteras

Un tipo particular de redes complejas son las redes basadas en correlaciones,
es decir, redes utilizadas para visualizar la estructura de correlaciones entre un
conjunto de variables. Concretamente, a partir de un conjunto de variables
se puede calcular el coeficiente de correlación entre todos los pares. Al iden-
tificar las diferentes variables con los nodos de una red, todo par de nodos se
puede conectar mediante un arco cuyo peso esté relacionado con el coeficiente
de correlación entre las dos variables respectivas. Una red aśı construida es,
por consiguiente, una red completamente conexa. Ejemplos bien conocidos de
redes basadas en correlaciones se pueden encontrar en cualquier cartera de val-
ores de un mercado financiero, al analizar la evolución de las series temporales
obtenidas a partir de la diferencia diaria del precio de cierre de los valores.

En el caṕıtulo 3 hemos descrito la complejidad de dichas redes financieras
basadas en correlaciones. En estos casos, algunas veces es necesario filtrar dichas
redes complejas para obtener subredes relevantes y más simples. En [60], Man-
tegna detectó una estructura jerárquica presente en una cartera de valores de
un mercado financiero. El objetivo del estudio era conseguir la taxonomı́a de
una cartera de valores utilizando para ello solamente la información de las series
temporales de los precios de los valores. Partiendo de la matriz del coeficiente
de correlación para un conjunto de valores bursátiles, se puede obtener una
distancia métrica e identificar los grupos de compañ́ıas por medio del árbol de
recubrimiento mı́nimo (ver figura A.2), que es equivalente al árbol jerárquico
resultante del enlazado sencillo en términos de obtener la ultramétrica subdom-
inante [77].

Con el propósito de analizar las diferencias en términos de distorsión del
espacio que existen entre los árboles financieros obtenidos mediante distintos
métodos de clustering jerárquico, hemos utilizado un conjunto de datos reales
tomados del ı́ndice S&P 500. Solamente hemos tenido en cuenta los métodos
aglomerativos que no producen inversiones en sus árboles jerárquicos, y hemos
organizado los resultados en orden de distorsión del espacio. En un extremo
de esta clasificación (ver figura A.3) aparece el método de enlazado sencillo,
el cual sufre del conocido efecto de encadenamiento, mientras que en el otro
extremo nos encontramos con los métodos de enlazado completo e inter-intra,
donde ambos muestran estructuras internas claras en las ramas de sus árboles
jerárquicos.

Otra importante aplicación de las técnicas de clustering jerárquico puede
hallarse en la optimización de una cartera de valores. Desde la publicación del
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Figure A.2: Árbol de recubrimiento mı́nimo correspondiente a una cartera de
valores del ı́ndice bursátil S&P 500. Los valores bursátiles están dibujados con
distintos colores de acuerdo con los diez sectores industriales definidos por el
GICS (Global Industry Classification Standard).

trabajo ya clásico de Markowitz [61], muchos otros trabajos se han dedicado a
diversos aspectos de la optimización de carteras. En este caṕıtulo también nos
centramos en el problema de optimizar una cartera de valores. Trabajamos con
una generalización del modelo estándar media-varianza de Markowitz en el que
se incluyen restricciones de cardinalidad y de acotación. Estas restricciones por
un lado garantizan la inversión en un número determinado de valores distintos, y
por otra parte limitan la cantidad de capital a invertir en cada valor. Al consid-
erar este modelo, el problema de optimizar una cartera se convierte en un prob-
lema mixto de programación cuadrática y entera, y, por consiguiente, no hay
ningún método exacto capaz de resolver el problema de una manera eficiente.
En una primera propuesta, mostramos cómo los árboles financieros, además
de tener la habilidad de proporcionar clusters llenos de significado económico,
también nos pueden ayudar en la optimización de una cartera. La propuesta
consiste en dividir el problema en varios subproblemas según los distintos clus-
ters que aparezcan en los árboles financieros. Hemos utilizado los dos métodos
jerárquicos más prometedores para esta estrategia, esto es, el de enlazado com-
pleto y el inter-intra. A la vista de los resultados mostrados en la figura A.4,
podemos concluir que el método de enlazado completo proporciona particiones
de clusters que son generalmente más adecuadas para dividir y resolver el prob-
lema de optimizar una cartera mediante nuestro nuevo enfoque de clustering
jerárquico.

En una segunda aproximación, hemos desarrollado un método heuŕıstico
basado en la red neuronal de Hopfield. Primero hemos recordado la forma
particular de la función de enerǵıa de Hopfield, que es muy parecida a la función
objetivo para optimizar una cartera de valores. A continuación hemos descrito
la dinámica de la red y hemos analizado cómo satisfacer cada restricción del



122 APPENDIX A. RESUMEN

ES

0.0

0.5

1.0

1.5



PNP

0.0

0.5

1.0

1.5



PP

0.0

0.5

1.0

1.5



EC

0.0

0.5

1.0

1.5



II

0.0

2.5

5.0

7.5

10.0

 1 60 126 199 143 208 19 44 190 20 175 226 219 166 177 8 139 168 122 17 247 18 132 178 195 3 26 25 194 110 162 204 22 27 83 250 7 57 128 223 105 145 214 68 76 119 120 165 6 69 86 156 203 176 182 236 11 40 48 67 174 88 216 123 2 186 246 30 118 233 74 79 124 50 75 80 90 106 10 184 52 78 116 102 231 125 160 53 234 54 59 225 41 159 201 93 94 84 114 148 85 70 238 51 87 150 63 136 192 72 109 249 193 243 33 34 113 142 147 77 224 181 211 65 92 149 220 244 144 222 107 137 127 14 15 115 212 157 191 16 158 31 239 240 171 232 95 55 241 210 96 98 29 47 130 108 155 167 138 89 202 38 154 213 4 135 215 9 207 179 46 134 187 217 28 58 100 133 189 39 200 237 97 180 218 5 129 188 42 140 245 205 163 21 56 103 36 104 153 32 228 45 121 161 101 152 73 146 131 230 99 169 13 229 61 49 151 112 117 221 12 66 82 242 62 81 185 209 227 141 198 91 173 23 43 24 235 64 164 183 71 248 35 37 170 172 197 196 111 206

Figure A.3: Árboles financieros jerárquicos (multidendrogramas) para el el con-
junto de prueba con N = 250 valores correspondientes al ı́ndice S&P 500. Los
árboles están dispuestos, de arriba a abajo, en orden creciente de distorsión del
espacio: Enlazado Sencillo (ES), Promedio No Pesado (PNP), Promedio Pesado
(PP), Enlazado Completo (EC), e Inter-Intra (II).
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Figure A.4: Contribuciones a las fronteras de eficiencia fusionadas para los
datos de prueba del ı́ndice S&P 500. En el eje x se representa la varianza de la
rentabilidad y en el eje y se representa la rentabilidad media. Las fronteras de
eficiencia estándar y general se muestran en colores más claros, mientras que las
contribuciones a las fronteras de eficiencia fusionadas están pintadas de negro.
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Figure A.5: Contribuciones a las fronteras de eficiencia fusionadas para cinco
conjuntos de prueba. En el eje x se representa la varianza de la rentabilidad
(×103) y en el eje y se representa la rentabilidad media (×103). Las fronteras
de eficiencia estándar se muestran en gris, mientras que las contribuciones a las
fronteras de eficiencia fusionadas están pintadas de negro.

problema. Finalmente hemos tomado los resultado obtenidos con nuestra red
neuronal y los hemos comparado con los resultados obtenidos usando otros tres
métodos heuŕısticos, a saber, algoritmos genéticos, búsqueda tabú y temple
simulado. Todos los resultados experimentales presentados en este trabajo (ver
a modo de resumen la figura A.5) nos conducen a concluir que ninguno de los
cuatro métodos heuŕısticos utilizados ha sido mejor que el resto en todos los
tipos de poĺıticas de inversión. Sin embargo hemos observado que, al tratar con
ejemplares del problema que requeŕıan carteras verdaderamente diversificadas
con un riesgo de inversión bajo, el modelo de red neuronal ha dado mejores
soluciones que los otros tres métodos heuŕısticos.

Reducción del tamaño de redes complejas

Existen dos enfoques principales a la hora de realizar el paso de agrupamiento en
cualquier procedimiento de clustering. Uno puede utilizar algoritmos jerárquicos
y obtener una serie de particiones anidadas, o utilizar algoritmos particionales
que originan una única partición de los datos. A pesar de sus diferencias, ambas
técnicas comparten un punto en común en la posible utilización de una función
de calidad, esto es, un criterio cuantitativo para evaluar cuán buenas son las
particiones. En el clustering jerárquico dicha función se necesita para saber
cuál de las particiones de la jerarqúıa es la mejor, y el clustering particional
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habitualmente produce clusters optimizando una función de calidad.
En términos de cómputo, el problema de detección de comunidades es muy

semejante al problema de encontrar un estado fundamental de un modelo de
vidrio de esṕın. Un vidrio de esṕın es un material desordenado que exhibe
una elevada frustración magnética debido a la incapacidad del sistema para
permanecer en un único estado de enerǵıa mı́nima (el estado fundamental). Re-
ichardt y Bornholdt [79] establecieron la base para un marco unificado bajo el
cual se puede incluir la detección de comunidades. Ellos mostraron que dicho
problema se puede hacer corresponder con el problema de hallar el estado fun-
damental de un vidrio de esṕın de Potts de rango infinito, donde los valores de
similitud se traducen en fuerzas de conexiones, la enerǵıa del sistema se inter-
preta como la función de calidad de la partición en comunidades, y los estados
de los espines son los ı́ndices de las comunidades.

Hemos comenzado el caṕıtulo 4 describiendo una de las funciones de cali-
dad más populares para la detección de comunidades, la modularidad, bajo un
marco común para funciones de calidad provenientes de un modelo particular
de vidrio de esṕın. La modularidad fue propuesta por Newman y Girvan [69]
como una función para calcular la calidad de las particiones existentes a lo largo
de un dendrograma, y poder buscar óptimos locales que indicaŕıan particiones
satisfactorias. Dada una red particionada en comunidades, siendo Ci la comu-
nidad del nodo i, la definición matemática de modularidad se puede expresar
en términos de la matriz de adyacencia pesada, wij , que representa el valor del
peso en el arco entre i y j, como:

Q =
1

2w

∑
i

∑
j

(
wij −

wiwj

2w

)
δ(Ci, Cj) , (A.2)

donde el peso del nodo i es wi =
∑

j wij , el peso total de la red es 2w =∑
i wi =

∑
i

∑
j wij , y la función delta de Kronecker, δ(Ci, Cj), toma el valor 1

si los nodos i y j están en la misma comunidad y el valor 0 en otro caso.
El reto de optimizar la modularidad ha merecido muchos esfuerzos por parte

de la comunidad cient́ıfica durante estos últimos años. Dado que el problema
tiene un coste computacional NP, no se puede llevar a cabo mediante búsqueda
exhaustiva y solamente las heuŕısticas de optimización han demostrado ser com-
petentes a la hora de buscar soluciones subóptimas de la función de modularidad
en un tiempo de cálculo razonable. Aqúı hemos propuesto un método exacto
que permite transformar una red determinada en otra más pequeña que conserva
el mismo valor de modularidad, independientemente de la partición consider-
ada. Primero hemos descrito la propiedad de la modularidad que permite la
reducción de tamaño de redes complejas, a saber, que los nodos que forman una
comunidad en cualquier partición óptima se pueden representar mediante un
único nodo en una red reducida. Toda la información necesaria para calcular la
modularidad, cada nodo de la red reducida la reúne en su auto-loop (que rep-
resenta la intraconectividad de la comunidad) y en sus arcos (que representan
la interconectividad con el resto de la red).

A continuación hemos presentado dos posibles reducciones anaĺıticas que
preservan la modularidad en redes pesadas (tanto dirigidas como no dirigidas):
pelos, esto es, nodos conectados a la red mediante un único arco; y pelos trian-
gulares, que son estructuras particulares compuestas por tres nodos (ver figura
A.6). Finalmente hemos estimado la cantidad de reducciones de tamaño (es de-
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Figure A.6: Reducciones anaĺıticas para redes no dirigidas: (a) ejemplo de
reducción de un pelo; (b) ejemplo de reducción de un pelo triangular. El caso
particular de redes no pesadas, en las que todos los pesos valen 1, implica
w′

kk = 2 en la reducción (a), e implica w′
hh = 2 y w′

hk = 2 en la reducción (b).

cir, el número de pelos) que uno puede esperar conseguir para las distribuciones
de grado más habituales en redes complejas: sin escala y exponencial.

El uso sistemático de esta reducción de tamaño permite realizar búsquedas
más exhaustivas a través del espacio de particiones, la cual cosa se traducirá
normalmente en mejores valores de modularidad comparamos con los obtenidos
sin usar la reducción de tamaño. Creemos que la idea de la reducción de tamaño
anaĺıtica se podŕıa extender a otros motifs (bloques constituyentes) de las redes,
aunque su tratamiento anaĺıtico es posible que sea más dif́ıcil.

Niveles de resolución en redes complejas

Volviendo al ejemplo de la cartera con valores bursátiles del ı́ndice S&P 500,
en la figura A.2 mostrábamos los valores bursátiles clasificados en 10 grupos
según los distintos sectores definidos por el GICS (Global Industry Classification
Standard): enerǵıa, materiales, industrial, productos de consumo no básico,
productos de primera necesidad, salud, finanzas, tecnoloǵıa de la información,
servicios de telecomunicaciones, y servicios de utilidad pública. Sin embargo,
esta clasificación es solamente una de las muchas posibles. De hecho, el mismo
GICS ofrece tres niveles más de clasificación para la industria. Aśı, uno puede
clasificar una cartera de valores en: 10 sectores, 24 grupos de industrias, 59
industrias, o 112 ramas industriales.

La existencia de varias escalas de descripción no es simplemente una pe-
culiaridad de los sistemas financieros, sino que es una caracteŕıstica común a



127

muchos sistemas complejos reales. En el caṕıtulo 5, motivados por el reciente
hallazgo de que la optimización de la modularidad presenta un ĺımite de res-
olución relacionado con la escala caracteŕıstica impuesta por la suma de pesos
total de la red, hemos presentado un método de resolución múltiple con el que
se consigue que la optimización de la modularidad pueda hallar estructura de
comunidades en distintas escalas de descripción. La idea principal consiste en
reescalar la topoloǵıa definiendo una nueva red a partir de la original, añadiendo
a cada nodo un auto-loop de igual magnitud que hemos llamado resistencia. La
nueva red presenta las mismas caracteŕısticas que la red original en términos
de conectividad, pero permite buscar módulos a través de diferentes escalas
topológicas.

Con el fin de hallar la estructura de comunidades, hemos propuesto un nuevo
algoritmo para optimizar la modularidad basado en búsqueda tabú. La prin-
cipal virtud de este algoritmo es que se trata de una combinación de procesos
aglomerativos y divisivos, evitando aśı los inconvenientes que presentan am-
bas estrategias por separado. Además, el proceso iterativo puede comenzar
desde cualquier partición inicial, lo cual es provechoso para el cálculo de la
mesoescala, puesto que las particiones óptimas para valores próximos de la re-
sistencia acostumbran a ser muy similares. Como validación del método, hemos
proporcionado ejemplos de la subestructura y superestructura modular hallada
en diversas redes complejas, tanto reales como sintéticas (ver figura A.7). Los
resultados son conjuntos de particiones que muestrean, en cada escala partic-
ular, el rango de módulos estructurales desde los nodos individualmente hasta
toda la red al completo.

También hemos presentado un método para desvelar información a partir
de las diversas escalas de descripción que aparecen en muchos sistemas comple-
jos reales. Obtenemos una representación gráfica de la mesoescala al completo
superponiendo todas las escalas halladas, ponderadas por el intervalo en la re-
sistencia durante el cual prevalecen. El resultado es una matriz de mesoescalas
cuya representación proporciona un mapa estructural de la topoloǵıa de la red.
Las matrices de mesoescalas para las redes sintéticas mostradas en la figura
A.8 revelan cómo los nodos forman grupos a diferentes escalas. Sin embargo,
las simetŕıas presentes en las redes analizadas juegan en favor de esta clara
visualización. En redes complejas reales, estas simetŕıas están habitualmente
ausentes y es necesario un proceso de filtrado para poder revelar esta misma
información. Con este propósito hemos diseñado lo que llamamos la matriz de
mesoescalas filtrada, que consiste en: i) fijar una mesoescala (nivel de color) y
quitar de la matriz de mesoescalas los elementos por debajo de dicho nivel (col-
ores más claros); ii) calcular las componentes conexas de los elementos restantes
(grupos); y iii) reordenar la matriz de izquierda a derecha en orden de tamaño
decreciente, respetando los grupos obtenidos en niveles anteriores. Este proceso
se repite desde la mesoescala más baja hasta la más alta, acumulando los re-
sultados de las etapas previas. De este modo, se consigue una representación
más clara del mapa estructural sin perder ninguna información de la matriz de
mesoescalas original.

Hemos aplicado este método con el fin de desvelar las mesoescalas corre-
spondientes a la conectividad neuronal del nematodo C. elegans. El sistema
nervioso completo de este nematodo se puede representar mediante una red de
adyacencia. La matriz de mesoescalas obtenida en este caso es dif́ıcil de analizar
porque: primero, el orden de los nodos no está prescrito; y, segundo, los grupos



128 APPENDIX A. RESUMEN

(a)

1 10 100
r - r

asymp

1

10

100

m
od

ul
es

RB 125

(I)

(II)
r = 0

(I) (II)

(b)

1 10 100
r - r

asymp

1

10

100

m
od

ul
es

H 13-4

(I)

(II)

r = 0

(I) (II)

(c)

1 10 100
r - r

asymp

1

10

100

m
od

ul
es

FB

(I)
(II)

r = 0

(I) (II)

Figure A.7: Resolución múltiple de la estructura modular en redes sintéticas.
Izquierda: número de módulos en la partición óptima obtenida para la modu-
laridad, donde cada punto corresponde a una partición diferente y las flechas
señalan las particiones óptimas en el valor 0 de resistencia. Derecha: redes
analizadas, destacando las particiones correspondientes a dos escalas represen-
tativas indicadas por (I) y (II). (a) RB 125 es una extensión de la red jerárquica
propuesta en [78]. Las regiones correspondientes a 5, 25 y 26 módulos son las
más representativas (estables) en términos de resolución. (b) H 13-4 es una red
homogénea en grado y con dos niveles jerárquicos predefinidos. Ambos niveles
son descubiertos en distintas escalas. (c) FB es la red propuesta en [32] para
demostrar el ĺımite de resolución de la modularidad. Este ĺımite es superado en
la escala (II), obteniendo la partición esperada.
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Figure A.8: Redes complejas sintéticas y sus matrices de mesoescalas. Los nive-
les de color se corresponden con la persistencia de las estructuras para distintos
valores de la resistencia. Dibujamos tanto las redes (izquierda) como sus respec-
tivas matrices de mesoescalas (derecha). RB 125 corresponde a una extensión
de la red jerárquica propuesta en [78]. H 13-4 corresponde a una red homogénea
en grado y con dos niveles jerárquicos predefinidos. FB corresponde a la red
propuesta en [32] para demostrar el ĺımite de resolución de la modularidad.
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obtenidos en escalas distintas no son todos jerárquicos. Para realzar la visual-
ización hemos calculado la correspondiente matriz de mesoescalas filtrada. El
análisis de la matriz de mesoescalas filtrada del C. elegans muestra varias cor-
relaciones interesantes de las subestructuras que prevalecen en las mesoescalas,
por una parte con la localización del soma de las neuronas, y por otra con
las funcionalidades en el gusano. Estos resultados pueden ser útiles para los
biólogos a la hora de diseñar experimentos con objetivos espećıficos basados
en la clasificación de las neuronas según sus funciones en las diferentes escalas
topológicas.

En la última sección de este caṕıtulo hemos presentado una discusión ac-
erca del papel de las distintas escalas topológicas más allá de su definición
estática, revelando su implicación en procesos dinámicos que hay sobre las redes.
También hemos comparado nuestro método con otros posibles acercamientos a
la mesoescala. Y finalmente hemos dado una perspectiva sobre el significado
de las mesoescalas comparándolo con la comúnmente aceptada escala única de
descripción.

El estudio de distintas escalas de descripción debeŕıa ser útil para compren-
der mejor las redes complejas. El análisis de los resultados revela que algunas
escalas topológicas son más persistentes (estables) que otras, en términos de res-
olución. Estas escalas más estables proporcionan información espećıfica sobre
los principales aspectos modulares de la estructura: en las redes sintéticas anal-
izadas, se corresponden con las escalas estructurales predefinidas impuestas ad
hoc; y en las redes reales, se corresponden exactamente con conocimiento previo
sobre las redes que hasta el momento no ha sido recuperado por ningún otro
método que haya estudiado estas redes. Con nuestro método, la optimización
de la modularidad queda liberada de problemas de resolución, y damos nuevas
ideas acerca de la descripción de redes complejas. La existencia de varias escalas
de descripción en redes complejas presenta muchas analoǵıas con el estudio de
sistemas complejos en f́ısica, donde se han formulado diversos modelos en dis-
tintas escalas espaciales para poder comprender diferentes fenómenos.

Descripciones generales de comunidades

El análisis de la estructura modular utilizando la modularidad como función
de calidad proporciona una partición de la red en comunidades, donde cada
comunidad es un subconjunto de nodos más conectados entre ellos que con el
resto de nodos de la red. Sin embargo, la modularidad se basa enormemente
de comunidades y, por consiguiente, no se puede utilizar para detectar grupos
generales de nodos revelados mediante patrones de conectividad alternativos. A
pesar de que se ha trabajado mucho con el fin de obtener técnicas fiables para
optimizar la modularidad, hasta ahora se ha hecho muy poco por analizar el
concepto de modularidad propiamente dicho y su fiabilidad como método para
la detección de estructura modular más general.

En el caṕıtulo 6 hemos propuesto un marco general para describir grupos de
nodos en redes utilizando motifs (pequeñas subredes conexas) como unidades
elementales. En concreto, hemos dado varias definiciones de grupos de nodos,
incluyendo las comunidades, basadas en el principio de que contengan más mo-
tifs que un modelo de caso nulo que representa una versión aleatorizada de la
red en estudio. De este modo, hemos desarrollado la formulación matemática
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para extensiones a la modularidad donde los bloques constituyentes son distin-
tos tipos de motifs (por ejemplo triángulos, ciclos y caminos entre nodos), y no
simplemente arcos como es el caso de la expresión original de la modularidad.
Primero hemos explicado el marco más general de la modularidad basada en
motifs, que por analoǵıa con la modularidad estándar hemos definido como la
fracción de motifs que hay dentro de las comunidades menos la fracción que
habŕıa en una red aleatoria que preservase los grados de los nodos:

QM(C) =
ΨM(C)

ΨM
− ΩM(C)

ΩM
, (A.3)

donde ΨM(C) es el número de motifs incluidos de forma completa dentro de
las comunidades que forman una partición determinada C, y su valor máximo,
ΨM, se corresponde con la partición en una única comunidad que contenga
todos los nodos. Para una red aleatoria que preserve los grados de los nodos,
estas mismas cantidades son respectivamente ΩM(C) y ΩM. A continuación
hemos aplicado este formalismo a varios tipos de motifs. Entre los motifs más
simples, los triángulos han recibido mucha atención en los trabajos sobre redes
complejas (por ejemplo, en la definición del coeficiente de clustering). Por este
motivo, nuestro primer paso ha consistido en definir la modularidad basada
en triángulos, que nos permite hallar comunidades hechas a base de triángulos.
Además, el hecho de que los triángulos se pueden generalizar fácilmente a ciclos,
nos ha conducido inmediatamente a la fórmula de la modularidad basada en
ciclos. Por último, hemos mostrado que la modularidad basada en caminos
también es posible. De hecho, los caminos de longitud 2 han demostrado ser
muy útiles en el estudio de redes bipartitas.

Hemos probado estas nuevas versiones de modularidad con redes sintéticas
y reales (ver figura A.9). Utilizando el tipo de motif que era pertinente en
cada caso, hemos podido recuperar los patrones de conectividad esperados en
las redes, tanto para el caso de redes con estructura modular como para el caso
de redes con estructura multipartita. Además, este principio va más allá del
uso de la modularidad y creemos que podŕıa inspirar otros marcos alternativos
igualmente prometedores con el fin de detectar grupos genéricos de nodos en
redes.
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Figure A.9: Resultados obtenidos utilizando modularidad basada en motifs para
dos redes reales: (a) red del club de karate Zachary, donde representamos la di-
visión real obtenida utilizando distintas modularidades basadas en caminos y
ciclos; (b) red bipartita que representa la participación en eventos por mujeres,
donde los resultados (que muestran claramente la diferencia de roles entre mu-
jeres y eventos) han sido obtenidos aplicando modularidad basada en caminos
de longitud 2 con nodos intermedios libres.



Appendix B

List of Publications

• A. Fernández and S. Gómez.
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Motif-based communities in complex networks.
Journal of Physics A: Mathematical and Theoretical, 41:224001, 2008.

133



134 APPENDIX B. LIST OF PUBLICATIONS



Bibliography

[1] L.A. Adamic and E. Adar. Friends and neighbors on the web. Social
Networks, 25(3):211–230, 2003.

[2] R. Albert, H. Jeong, and A.L. Barabási. Diameter of the world-wide web.
Nature, 401:130–131, 1999.

[3] A. Arenas, A. Dı́az-Guilera, and C.J. Pérez-Vicente. Synchronization pro-
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[76] J.M. Pujol, J. Béjar, and J. Delgado. Clustering algorithm for determining
community structure in large networks. Physical Review E, 74(016107),
2006.

[77] R. Rammal, G. Toulouse, and M.A. Virasoro. Ultrametricity for physicists.
Reviews of Modern Physics, 58(3):765–788, 1986.

[78] E. Ravasz and A.-L. Barabasi. Hierarchical organization in complex net-
works. Physical Review E, 67(026112), 2003.

[79] J. Reichardt and S. Bornholdt. Statistical mechanics of community detec-
tion. Physical Review E, 74(016110), 2006.
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