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Abstract 

Digital elevation models (DEMs) are a widely used source for the digital representation of the Earth's 

surface in a wide range of scientific, industrial and military applications. Since many processes on Earth 

are influenced by the shape of the relief, a variety of different applications rely on accurate information 

about the topography. For instance, DEMs are used for the prediction of geohazards, climate 

modelling, or planning-relevant issues, such as the identification of suitable locations for renewable 

energies. Nowadays, DEMs can be acquired with a high geometric resolution and over large areas using 

various remote sensing techniques, such as photogrammetry, RADAR, or laser scanning (LiDAR). 

However, they are subject to uncertainties and may contain erroneous representations of the terrain. 

The quality and accuracy of the topographic representation in the DEM is crucial, as the use of an 

inaccurate dataset can negatively affect further results, such as the underestimation of landslide 

hazards due to a too flat representation of relief in the elevation model. Therefore, it is important for 

users to gain more knowledge about the accuracy of a terrain model to better assess the negative 

consequences of DEM uncertainties on further analysis results of a certain research application. A 

proper assessment of whether the purchase or acquisition of a highly accurate DEM is necessary or 

the use of an already existing and freely available DEM is sufficient to achieve accurate results is of 

great qualitative and economic importance. 

In this context, the first part of this thesis focuses on extending knowledge about the behaviour and 

presence of uncertainties in DEMs concerning terrain and land cover. Thus, the first two studies of this 

dissertation provide a comprehensive vertical accuracy analysis of twelve DEMs acquired from space 

with spatial resolutions ranging from 5 m to 90 m. The accuracy of these DEMs was investigated in two 

different regions of the world that are substantially different in terms of relief and land cover. The first 

study was conducted in the hyperarid Chilean Atacama Desert in northern Chile, with very sparse land 

cover and high elevation differences. The second case study was conducted in a mid-latitude region, 

the Rur catchment in the western part of Germany. This area has a predominantly flat to hilly terrain 

with relatively diverse and dense vegetation and land cover. The DEMs in both studies were evaluated 

with particular attention to the influence of relief and land cover on vertical accuracy. The change of 

error due to changing slope and land cover was quantified to determine an average loss of accuracy as 

a function of slope for each DEM. Additionally, these values were used to derive relief-adjusted error 

values for different land cover classes. 

The second part of this dissertation addresses the consequences that different spatial resolutions and 

accuracies in DEMs have on specific applications. These implications were examined in two exemplary 

case studies. In a geomorphometric case study, several DEMs were used to classify landforms by 

different approaches. The results were subsequently compared and the accuracy of the classification 

results with different DEMs was analysed. The second case study is settled within the field of digital 

soil mapping. Various soil types were predicted with machine learning algorithms (random forest and 

artificial neural networks) using numerous relief parameters derived from DEMs of different spatial 

resolutions. Subsequently, the influence of high and low resolution DEMs with the respectively derived 

land surface parameters on the prediction results was evaluated.  

The results on the vertical accuracy show that uncertainties in DEMs can have diverse reasons. Besides 

the spatial resolution, the acquisition technique and the degree of improvements made to the dataset 

significantly impact the occurrence of errors in a DEM. Furthermore, the relief and physical objects on 



Abstract 

 

 
II 
 

the surface play a major role for uncertainties in DEMs. Overall, the results in steeper areas show that 

the loss of vertical accuracy is two to three times higher for a 90 m DEM than for DEMs of higher spatial 

resolutions. While very high resolution DEMs of 12 m spatial resolution or higher only lose about 1 m 

accuracy per 10° increase in slope steepness, 30 m DEMs lose about 2 m on average, and 90 m DEMs 

lose more than 3 m up to 6 m accuracy. However, the results also show significant differences for DEMs 

of identical spatial resolution depending on relief and land cover. With regard to different land cover 

classes, it can be stated that mid-latitude forested and water areas cause uncertainties in DEMs of 

about 6 m on average. Other tested land cover classes produced minor errors of about 1 – 2 m on 

average. 

The results of the second part of this contribution prove that a careful selection of an appropriate DEM 

is more crucial for certain applications than for others. The choice of different DEMs greatly impacted 

the landform classification results. Results from medium resolution DEMs (30 m) achieved up to 30 % 

lower overall accuracies than results from high resolution DEMs with a spatial resolution of 5 m. In 

contrast to the landform classification results, the predicted soil types in the second case study showed 

only minor accuracy differences of less than 2 % between the usage of a spatial high resolution DEM 

(15 m) and a low resolution 90 m DEM. Finally, the results of these two case studies were compared 

and discussed with other results from the literature in other application areas. A summary and 

assessment of the current state of knowledge about the impact of a particular chosen terrain model 

on the results of different applications was made. 

In summary, the vertical accuracy measures obtained for each DEM are a first attempt to determine 

individual error values for each DEM that can be interpreted independently of relief and land cover 

and can be better applied to other regions. This may help users in the future to better estimate the 

accuracy of a tested DEM in a particular landscape. The consequences of elevation model selection on 

further results are highly dependent on the topic of the study and the study area's level of detail. The 

current state of knowledge on the impact of uncertainties in DEMs on various applications could be 

established. However, the results of this work can be seen as a first step and more work is needed in 

the future to extend the knowledge of the effects of DEM uncertainties on further topics that have not 

been investigated to date.  
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Zusammenfassung 

Digitale Geländemodelle (engl. digital elevation models, DEMs) werden häufig genutzt, um eine 

digitale Darstellung und Repräsentation der Erdoberfläche in zahlreichen Bereichen der Wissenschaft, 

Industrie und im Militär zu erhalten. Da viele Prozesse auf der Erde von der Form des Reliefs beeinflusst 

werden, sind eine Vielzahl unterschiedlicher Anwendungen auf genaue topografische Informationen 

angewiesen. DEMs werden beispielsweise genutzt für die Vorhersage von Georisiken, 

Klimamodellierungen, oder planungsrelevante Fragestellungen wie die Ermittlung geeigneter 

Standorte für erneuerbare Energien. Digitale Geländemodelle können heutzutage durch verschiedene 

Fernerkundungstechniken, wie Photogrammmetrie, RADAR, oder Laserscanning (LiDAR), mit hoher 

geometrischer Auflösung und über große Gebiete erstellt werden. Dennoch sind sie mit 

Unsicherheiten behaftet und können fehlerhafte Darstellungen des Geländes enthalten. Die Qualität 

und Genauigkeit der abgebildeten Topografie ist jedoch von entscheidender Bedeutung. Die Nutzung 

eines fehlerbehafteten Datensatzes kann negative Auswirkungen auf weiterführende Ergebnisse 

haben, wie beispielsweise die Unterschätzung von Hangrutschungsgefahren durch ein zu flach 

dargestelltes Relief im Geländemodell. Es ist daher wichtig, genaue Kenntnisse über die Qualität eines 

verwendeten Geländemodells in einem bestimmten Gebiet zu besitzen, um negative Konsequenzen 

auf weiterführende Ergebnisse verschiedenster Forschungsanwendungen besser abschätzen zu 

können. Eine angemessene Beurteilung darüber, ob der Erwerb eines hochgenauen DEMs notwendig 

ist, oder die Verwendung eines bereits vorhandenen und frei verfügbaren DEMs zur Erzielung 

hinreichend genauer Ergebnisse ausreicht, ist von qualitativer und ökonomischer Wichtigkeit. 

Im ersten Teil dieser Arbeit steht die Erweiterung des Wissens über das Auftreten von Unsicherheiten 

in DEMs in Bezug auf Gelände und Landbedeckung im Vordergrund. Die ersten beiden Studien dieser 

Dissertation liefern hierzu eine umfassende Analyse der vertikalen Genauigkeit von zwölf aus dem 

Weltraum aufgenommenen DEMs, welche eine geometrische Auflösung zwischen 5 m und 90 m 

besitzen. Die Genauigkeit dieser DEMs wurde in zwei unterschiedlichen Regionen der Welt untersucht, 

die sich in Bezug auf Relief und Landbedeckung stark unterscheiden. Die erste Studie erfolgte in der 

hyperariden chilenischen Atacama-Wüste im Norden Chiles, mit kaum vorhandener Landbedeckung 

und sehr großen Höhenunterschieden im Relief. Die zweite Fallstudie wurde in einer Region der 

mittleren Breiten durchgeführt, dem Rur-Einzugsgebiet im westlichen Teil Deutschlands. Dieses Gebiet 

besitzt ein überwiegend flaches bis hügeliges Gelände mit vielfältiger Vegetation und Landbedeckung. 

Die Auswertung beider Studien erfolgte mit besonderem Augenmerk auf den Einfluss von Relief und 

Landbedeckung auf die vertikale Genauigkeit der DEMs. Es wurde die Änderung des Fehlers durch 

wechselnde Hangneigungen und Landbedeckungen quantifiziert, um für jedes DEM einen 

durchschnittlichen Genauigkeitsverlust in Abhängigkeit zur Hangneigung zu ermitteln. Zusätzlich 

wurden diese Werte zur Ableitung von reliefbereinigten Fehlerwerten für verschiedene 

Landbedeckungsklassen verwendet.  

Der zweite Teil dieser Dissertation befasste sich mit den Folgen, die unterschiedliche räumliche 

Auflösungen und Genauigkeiten in DEMs auf bestimmte Anwendungen haben können. Diese 

Auswirkungen wurden beispielhaft anhand von zwei verschiedenen Fallstudien untersucht. In einer 

geomorphometrischen Fallstudie wurden verschiedene Geländemodelle verwendet, um Landformen 

mit unterschiedlichen Methodiken zu klassifizieren. Die Ergebnisse wurden im Anschluss verglichen 

und die Genauigkeit der Klassifikationsergebnisse, hergestellt durch die Nutzung unterschiedlicher 

DEMs, analysiert. Die zweite Fallstudie ist im Bereich der digitalen Bodenkartierung angesiedelt. Es 
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wurden unter der Verwendung von zahlreichen Reliefparametern, abgeleitet von DEMs 

unterschiedlicher Auflösung, verschiedene Bodentypen mit Hilfe von Algorithmen des maschinellen 

Lernens (Random Forest und künstliche neuronale Netze) vorhergesagt. Anschließend wurde der 

Einfluss von hoch- und geringauflösenden DEMs mit den jeweils daraus abgeleiteten 

Landoberflächenparametern auf die Vorhersageergebnisse evaluiert.  

Die Ergebnisse aus der Analyse der vertikalen Genauigkeit zeigen, dass Unsicherheiten in DEMs sehr 

vielfältige Ursachen besitzen können. Nicht nur die räumliche Auflösung, sondern auch die 

Aufnahmetechnik und der Grad der vorgenommenen Verbesserungen am DEM haben einen 

wesentlichen Einfluss auf das Vorkommen von Fehlern in einem DEM. Darüber hinaus haben das Relief 

und das Vorkommen von Objekten auf der Oberfläche einen erheblichen Einfluss auf die Genauigkeit 

von DEMs. Insgesamt zeigen die Ergebnisse in steileren Regionen, dass der Genauigkeitsverlust bei 

einem 90 m DEM zwei- bis dreimal so hoch ist im Vergleich zu DEMs höherer räumlicher Auflösung. 

Während sehr hoch aufgelöste DEMs mit einer geometrischen Auflösung von 12 m oder höher nur ca. 

1 m Genauigkeitsverlust pro 10° steigender Hangneigung aufweisen, sinkt die Genauigkeit bei 30 m 

DEMs im Durchschnitt um etwa 2 m und bei 90 m DEMs um mehr als 3 m bis hin zu 6 m. Die Ergebnisse 

zeigen darüber hinaus für DEMs gleicher Auflösung deutliche Unterschiede in der Genauigkeit in 

Abhängigkeit von Relief und Landbedeckung. In Bezug auf unterschiedliche Landbedeckungsklassen ist 

feststellbar, dass Wald- und Wasserflächen in den mittleren Breiten Unsicherheiten von 

durchschnittlich 6 m in DEMs verursachen, andere Landbedeckungsklassen lediglich einen Fehler von 

nur 1 – 2 m im Durchschnitt. 

Die Ergebnisse des zweiten Teils dieser Arbeit zeigen, dass die sorgfältige Auswahl eines geeigneten 

DEMs für bestimmte Anwendungen wichtiger ist als für andere. Die Wahl des DEMs hatte einen sehr 

großen Einfluss auf die Ergebnisse der Landformklassifikation. Geländemodelle mit mittlerer Auflösung 

(30 m) erzielten eine bis zu 30 % niedrigere Gesamtgenauigkeit als hochauflösende DEMs mit einer 

geometrischen Auflösung von 5 m. Im Gegensatz zu den Ergebnissen der Landformklassifikationen, 

zeigten die vorhergesagten Bodentypen in der zweiten Studie einen nur geringen 

Genauigkeitsunterschied von weniger als 2 % zwischen der Nutzung eines räumlich hoch aufgelösten 

DEMs (15 m) und eines niedrig aufgelösten 90 m DEMs. Abschließend wurden die Ergebnisse dieser 

beiden Fallstudien mit weiteren Ergebnissen aus der Literatur in anderen Anwendungsgebieten 

verglichen und diskutiert. Es erfolgte eine Zusammenfassung und Einschätzung des aktuellen 

Wissensstandes über die Auswirkungen, die die Wahl eines bestimmten Geländemodelles auf die 

Ergebnisse verschiedener Anwendungen hat.  

Zusammenfassend lässt sich festhalten, dass die erzielten vertikalen Genauigkeitsmaße der einzelnen 

getesteten DEMs einen ersten Versuch darstellen, individuelle Fehlerwerte für jedes DEM zu ermitteln, 

die unabhängig von Relief und Landbedeckung interpretierbar sind und eine bessere Übertragbarkeit 

auf andere Regionen zulassen. Dies könnte Anwendern zukünftig helfen, die Genauigkeit eines 

getesteten DEMs in einer bestimmten Landschaft besser einschätzen zu können. Die Folgen der 

Geländemodellwahl auf weiterführende Ergebnisse hängt stark von Ziel und Inhalt der Studie und dem 

Detailgrad des Untersuchungsgebiets ab. Es konnte der aktuelle Wissensstand über die Auswirkungen 

von Unsicherheiten in Geländemodellen auf verschiedene Anwendungen aufgezeigt werden. 

Allerdings sind die vorliegenden Ergebnisse nur ein erster Schritt in diese Richtung und es sind weitere 

zukünftige Arbeiten notwendig, um dieses Wissen auf weitere und bisher nicht untersuchte Themen 

zu erweitern.  
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1 Introduction 

1.1 Preface 

The relief is a key driver for a multitude of processes that occur on Earth. It affects the formation of 

soils, influences climatic conditions of humidity, wind and temperature as well as the presence or 

absence of certain species of flora and fauna (Franklin, 1995; Franklin, 2020; McBratney et al., 2003). 

In addition, different topographical forms and slopes influence gravity driven processes of hydrology, 

geomorphology and geology, such as landslides as well as erosion and accumulation processes 

(Hawker et al., 2018; Kirkby and Chorley, 1967; Pandey et al., 2016). Accurate information about the 

topography helps to describe and understand these processes and is therefore important for many 

scientific, commercial, industrial and even military applications (Mesa-Mingorance et al., 2017; 

Tarquini and Nannipieri, 2017). The importance of relief for current planning-relevant issues, such as 

the siting of transmission towers in telecommunications or of wind turbines to produce renewable 

energy, has increased significantly in recent decades (Chias and Abad, 2013; Murgatroyd et al., 2021; 

Shi and Xue, 2016). Furthermore, digital height information is used in a great variety of geohazard risk 

management purposes, such as hydrological modelling to predict water flow and determine flooding 

risks (Bajabaa et al., 2014; Callaghan and Wickert, 2019; Hoch et al., 2017) or for the prediction of 

landslide risks and slope instabilities (Baharvand et al., 2020; Iwahashi et al., 2021; Liu et al., 2021; 

Sturzenegger et al., 2021). Hence, numerous applications usually rely on digital height information of 

an appropriate accuracy and spatial resolution to represent the topography of an area.  

Nowadays, using height information from digital sources is an established method to represent the 

Earth’s relief. Digital elevation datasets, such as digital elevation models (DEM) or triangulated 

irregular networks (TINs), directly provide the height component of the surface. Based on digital height 

information, a multitude of land surface parameters can be derived by a DEM that provide additional 

information, such as terrain steepness and direction, roughness, moisture or visual exposure (Olaya, 

2009). A vastly increasing and sophisticated range of datasets and techniques for topographic analysis, 

modelling and visualization has been established during the last decades. In former times, surveying 

the world was conducted by the use of traditional terrestrial instruments, which was a time consuming 

and laborious process. Nowadays, with photogrammetry, RADAR (InSAR) and laser scanning (LiDAR), 

three methods have been developed that enable large-scale surveying of elevation information with 

remote sensing techniques (Maune and Nayegandhi, 2018; Wilson, 2018). In particular, the RADAR 

based Shuttle Radar Topography Mission (SRTM) in February 2000 was an important step forward in 

the development of nearly globally available elevation data of remarkable spatial resolution. 

Additionally, satellite-based acquisition methods gained popularity as an efficient way of large-scale 

terrain mapping of high resolution. 

Except for the pole-near areas, almost the entire surface of our planet has been mapped many times 

with varying accuracy, resolution and by different sensors. Significant improvements in DEM quality 

and resolution have been achieved over the past decades (Farr et al., 2007; Gesch et al., 2012; Hodgson 

and Bresnahan, 2004; Tachikawa et al., 2011). However, according to Ariza-Lopez et al. (2018) and 

Polidori and El Hage (2020), the acquisition and processing of data is still subject to various limitations 

and uncertainties. More knowledge should be developed on how the error behaviour as well as the 

spatial resolution of DEMs impacts the results of different research applications. The selection of an 

appropriate DEM is crucial for the outcome of many analyses and applications. According to a survey 
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carried out by Ariza-Lopez et al. (2018), over 85 % of participants, who use DEMs, state that a poor 

quality of the DEM product has a medium to high negative impact on their results. They also reveal 

that there is little knowledge among scientists on the relationship between DEM quality and results 

for their use case scenarios and the resulting economic consequences. For instance, results of Kaminski 

(2020) show in the context of landslide susceptibility prediction that a DEM of poor quality can cause 

misconceptions, which may have fatal consequences in the estimation of risks. For several scientific 

modelling purposes, a low spatial resolution can lead to uncertainties in prediction results. Likewise, 

the usage of different DEMs for the prediction of movements of past people at archaeological sites 

results in considerably different catchment sizes or travelling paths (Becker et al., 2017; Lewis, 2021). 

The results show that significant variations are observable in the calculated routings and prehistoric 

catchment sizes that can be potentially reached within a certain time.  

These examples reveal that a poor quality of a DEM can cause serious issues on the results of further 

applications. In order to make the best possible estimation about the accuracy of certain application 

results, knowledge about the quality of input data is of great importance. Hence, much work has 

already been done to evaluate the accuracy of DEMs for different scientific applications, scales and 

landscapes. Mesa-Mingorance and Ariza-Lopez (2020) stated that more than 170 scientific documents 

have been published during the last 30 years that focus on the accuracy assessment of DEMs. However, 

most of them compared only a limited number of DEMs and mostly only for one specific region or 

scale, but the accuracy of a DEM depends on a multitude of factors such as the relief and land cover 

as well as the acquisition platform and spatial resolution. These factors make it difficult to transfer the 

results of a local study into other regions as acquisition parameters and the landscape characteristics 

may be completely different between two sites (Polidori and El Hage, 2020). Furthermore, all these 

accuracy factors can lead to an accumulated error which has an impact on subsequent analysis tasks 

where these DEMs are used. This means, the output of an analysis process is affected by the accuracy 

of the topographic input data. Therefore, it is of great importance to gain more knowledge about the 

quality of digital elevation datasets and the implication of its quality on further analysis tasks (Ariza-

Lopez et al., 2018; Guth et al., 2021; Polidori and El Hage, 2020). However, the impact of DEM quality 

on other applications is diverse and needs to be considered separately for each task. Thus, there is still 

a lack of knowledge about which applications really require highly accurate DEMs of high spatial 

resolution.  

 

1.2 Research objectives and study aims 

This contribution is settled on the need of accurate elevation information in numerous applications 

and has two overall research objectives. The first part of this thesis aims to provide an encompassing 

vertical accuracy assessment of a multitude of DEMs with a spatial resolution between 5 m and 90 m. 

These DEMs are derived from many different sources, such as the SRTM mission, the TanDEM-X 

WorldDEM™ data or from stereo-photogrammetric imagery. Subsequently to this analysis of DEM 

accuracy, the second part of this contribution focuses on the impact of accuracy and spatial resolution 

of a DEM on further geoscientific applications. It is examined for the applications of digital soil mapping 

and landform classification how the results of these applications are affected by DEMs of different 

sources and spatial resolutions. 
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Part one of this contribution aims to gain more information about the vertical error behavior of DEMs 

caused by different slopes and land cover. Overall, this part contributes to existing research by 

providing accuracy values for a multitude of different DEMs and enhancing the analyses by regarding 

error values in connection with different slopes, landforms and land cover. For this purpose, the 

studies of vertical accuracy assessment were conducted in two different study sites to gain a 

comprehensive overview. One study was settled within the hyperarid Chilean Atacama Desert, the 

other in the typical mid-latitude landscape of the Rur catchment in Germany. The goal is to not only 

mention the differences in accuracy between various topography settings, but rather quantify the 

expectable error values of DEMs in relation to landscape and topography. Thus, a relief-dependent 

error is established, which enables the possibility to estimate the uncertainty of every tested DEM in 

all terrain slopes. Additionally, the influence of relief unbiased land cover classes on the accuracy of 

DEMs has been calculated. These accuracy values can help a user to predict the accuracy of a DEM on 

a certain study area for a given application. Overall, the contribution finds an answer to the following 

questions regarding the accuracy of a DEM: 

 How accurate are different DEMs in certain relief and land cover situations?  

 What is the most accurate DEM in which area? 

 How much is the accuracy of a DEM influenced by spatial resolution, different acquisition 

techniques as well as relief and land cover? 

 How much differences in quality consist between DEMs of local and global coverage? 

In a second step, this contribution investigates the influence that the quality of DEMs and their derived 

parameters have on the analysis results of further applications. It was evaluated how much the results 

of a certain application are affected by DEMs of different sources and spatial resolution. For this 

purpose, two practical studies have been conducted within this contribution. It was exemplarily 

examined for the applications of digital soil mapping and landform classification, how much the results 

depend on the choice of an appropriate DEM. Additionally, further literature on this topic has been 

reviewed for other applications to overall obtain an answer to the following questions: 

 How important is the right choice of a certain DEM for a particular application? 

 How much are the analysis results of this application influenced by DEMs of a certain 

spatial resolution or a particular source? 

 When is it advantageous to use a more accurate and expensive DEM over the freely 

available ones? 

 

1.3 Study outline 

To evaluate different DEMs and their effects on further applications, a general introduction about the 

basic principles of DEMs is given in chapter 2. This includes the definition of different digital elevation 

data types and structures as well as the description of different acquisition techniques to gain DEM 

data. Furthermore, this chapter introduces the different fields of scientific applications where DEMs 

are a widely used source for their analysis. Additionally, potential sources of errors in DEMs and 

common methods of accuracy assessment of DEMs are presented. Finally, chapter 2 ends with a brief 

introduction to the three study areas of this contribution. 
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The subsequent chapters 3 to 5 contain a comprehensive vertical accuracy assessment of a large 

number of different spaceborne DEMs. An overview of the DEMs used in the individual chapters is 

provided in Table 1-1. The assessment was conducted in two regions of the world that are rather 

contrastive in their terrain and land cover. The first research study has been performed in the hyperarid 

region of the Atacama Desert in Chile with large elevation differences and very sparse vegetation and 

settlement areas (chapter 3). Subsequently, chapter 4 provides an additional assessment of further 

newly released DEMs in the same study area to extend the results of chapter 3. In chapter 5, a second 

study has been carried out focusing on a vertical accuracy assessment of DEMs in the mid-latitude Rur 

catchment area in Germany. As this area is vastly different to the Atacama Desert, these results help 

to provide a more representative overview of the strengths and weaknesses of the individual DEMs. 

Table 1-1: Overview about the different elevation datasets that were used and analysed in the different chapters 

of this contribution.  

DEM 

Spatial 

resolution Acquisition source 

Chapter 

3 4 5 6 7 

ALOS W3D 30 m Stereo imagery x  x   
ASTER GDEM 30 m Stereo imagery x  x x  
Copernicus DEM 30 m X-band RADAR  x x   
Copernicus DEM 90 m X-band RADAR  x x   
DGM1 1 m Airborne laser scanning     x 

EU-DEM 25 m C-band RADAR/Stereo imagery   x   
NASADEM 30 m C-band RADAR  x x   
Pléiades DEMs 5 m Stereo imagery x   x  
SPOT DEMs 5 m Stereo imagery x     
SRTM 30 m C-band RADAR x  x x  
SRTM 90 m C-band RADAR x  x   
TanDEM-X 12 m X-band RADAR x     
TanDEM-X 90 m X-band RADAR x   x   x 

The second part of this contribution contains two different case studies where DEMs and derived land 

surface parameters are necessary and crucial sources. Both studies are conducted to achieve more 

information about the influence that the choice of different DEMs has on the results of this application. 

Chapter 6 contains different input DEMs and compares the classification results of landforms with 

different classification approaches. The study in chapter 7 contains the prediction of different soil types 

with two different machine learning algorithms. DEMs and derived environmental parameters are key 

drivers in soil development and thus in the area of digital soil mapping (McBratney et al., 2003). By 

using two different DEMs and derived parameters in this approach, the influence on the prediction 

results for this approach is analysed. 

In chapter 8, the results of the previously presented studies are discussed and interpreted concerning 

the objectives that have been presented in chapter 1.2. In the first part of the discussion, the gained 

results of the vertical accuracy assessment in chapters 3 to 5 are discussed and interpreted for all 

tested DEMs. The results are analysed with regard to the influence that environmental factors of relief 

and landscape have on the accuracy of DEMs from different acquisition sources. Furthermore, relief- 

and land cover adjusted accuracy values are derived. The second part of the discussion disputes the 

importance that the selection of a certain DEM of different source and spatial resolution has on the 

results of different applications. Thus, the results of the two studies of this contribution and additional 

findings from other studies on this topic are discussed here. Finally, a conclusion and a brief outlook is 

given in chapter 9.  
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2 Background 

2.1 Digital elevation data types and structure  

The relief can be generally understood as the boundary between the lithosphere/pedosphere and the 

atmosphere/hydrosphere (Dikau and Schmidt, 1999). Thus, it is the shape of the ground surface and 

represents the height differences over a predefined area. A digital elevation dataset is the numerical 

storage of this 3D terrain information. It is a digital representation of the Earth’s relief and reflects its 

elevations in all various forms. To date, several terms have been established for digital elevation 

datasets and their definitions have to be clarified first, because they are sometimes used confusingly 

in literature. 

The term digital elevation model is mostly used as a generic term for digital topographic datasets in all 

different forms (Guth et al., 2021). It normally depicts bare-earth elevations but may also include 

vegetation or manmade objects, depending on the acquisition technique. It also normally implies the 

water surface of lakes and rivers and does not reflect the ground below (Maune and Nayegandhi, 

2018). Additionally, two nominal surfaces can be considered by elevation models with the digital 

surface model (DSM) and the digital terrain model (DTM). The difference between both definitions is 

illustrated in Figure 2-1. The DSM represents all elevations including surface objects, such as vegetation 

and buildings (Guth et al., 2021; Maune and Nayegandhi, 2018). In contrast, a DTM encompasses only 

bare-earth elevations without any natural or artificial objects that are located on top of the ground 

(Guth et al., 2021; Maune and Nayegandhi, 2018). The earliest definition of a DTM was given by Miller 

and Laflamme (1958) as “a statistical representation of the continuous surface of the ground by a large 

number of selected points with known XYZ coordinates in an arbitrary coordinate field”. In the current 

contribution, the term DEM is used as a synonym of DSM as all investigated DEMs of this thesis cover 

the Earth’s surface as a surface model. 

 

Figure 2-1: Illustration of the differences between digital surface model (DSM) and digital terrain model (DTM). 

DEMs usually exist either as a 3D or as a 2.5D dataset. DEMs can be understood as 3D when their 

elevation data was directly measured or generated from the source and each 2D position can be 

represented by multiple points of different height information (Lenk and Heipke, 2002). In contrast, 

2.5D DEMs are originally 2D data sets whose locations subsequently received only single elevation 

information (Lenk, 2001; Lenk and Heipke, 2002). These 2.5D DEMs are commonly used in GIS software 

as a raster dataset to represent the Earth’s surface. 

Digital elevation data can be represented and stored in different forms (Figure 2-2). The most 

frequently used structure is the storage of elevations as a regular grid. Over 90 % of all users who work 
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with digital elevation data use this data type for their analysis (Ariza-Lopez et al., 2018). Raster DEMs 

store elevation information in a series of rows and columns as a regular matrix of uniform grid width. 

The major advantage of raster DEMs is the possibility to relatively easy and fast handle the data for 

further applications and processing due to the simple and regular data structure (Hengl and Evans, 

2009; Maune and Nayegandhi, 2018; Moore et al., 1991). A disadvantage of this storage technique is 

the inability to store points and lines of characteristic surface changes. This often leads to an under-

representation of complex relief. Raster datasets are often generated by interpolating point-based 

elevation information to the regular grid structure of a desired spatial resolution. Several different 

interpolation methods exist, such as the Inverse Distance Weighted (IDW) interpolation, the Natural 

Neighbour interpolation or geostatistical approaches (Mitas and Mitasova, 1999).  

 
Figure 2-2: Illustration of different digital elevation data types. 

Another common form of digital terrain representation is the vector-based surface by triangulated 

irregular networks. TINs consist of irregularly spaced 3D points that were connected to non-

overlapping triangles (Moore and Hutchinson, 1991). These data points store the topological 

relationship between neighbouring triangles (Kumler, 1994; Maune and Nayegandhi, 2018). In 

comparison to raster datasets, TINs can better reflect surface changes as the density of triangles can 

vary depending on the complexity of terrain (Moore and Hutchinson, 1991). A major disadvantage of 

TINs is the greater difficulty to handle the data due to their more complex data structure. 

As a third form of illustration, topography can also be represented by contour lines. These are 2D 

elevation isolines, with each line representing equal heights. They are well suitable for visual human 

interpretations, but have weaknesses in computational analyses. Contours are usually used in maps to 

illustrate the relief and show the steepness of slopes to support the visualization of specific regional 

relief characterizations and specific landforms (Carrara et al., 1997; Moore et al., 1991; Wilson, 2018). 

 

2.2 Horizontal and vertical datum 

To define the 3D position of an object on the Earth’s surface by means of coordinates, it is necessary 

to know its datum in horizontal and vertical direction. The datum can be seen as a defined starting 

point of an abstract coordinate system that determines its connection to the Earth. The Earth’s shape 

can be seen as a three-dimensional ‘potato’ that cannot be described exactly neither mathematically 

nor physically. This leads to some difficulties when the exact location of a point feature has to be 

determined. A model is needed that, on the one hand, ‘fits’ the shape of the Earth as accurately as 

possible, but on the other hand, is also mathematically calculable. Due to the existence of different 
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global, regional, national and local datums, the same position on the planet can have many different 

geographic coordinates. Therefore, it is important to know to which reference system the measured 

point is located. For individual identification, all datums are ideally assigned to a unique European 

Petroleum Survey Group (EPSG) code. 

The horizontal datum is used to determine a specific position on the Earth's surface in coordinate 

systems. It can be defined in terms of geographic coordinate systems (i.e., latitude and longitude) or 

plane coordinate systems, such as UTM. Height measurements in a vertical direction can be seen as 

the vertical distance from a reference level surface (Guth et al., 2021; Hengl and Evans, 2009). These 

were defined by a vertical datum that represents a surface of zero height. Several types of reference 

surfaces have been established. The most traditional is the definition of height above mean sea level 

(MSL). This method has been practiced over several centuries and defines the mean surface of a large 

water body as a natural reference for elevations (Maune and Nayegandhi, 2018). However, water is 

usually not a static object and is affected by varying tides, waves and atmospheric impacts. Therefore, 

the datum is defined as the arithmetic mean of hourly sea level heights over a period of about 19 years 

(Maune and Nayegandhi, 2018). As the effects of local gravity are not considered, the altitude of MSL 

varies around the world. Transferring the MSL heights over land surface can be a cumbersome process 

by generating a high-precision levelling network (Kahmen, 2006).  

Due to the previously mentioned difficulties of measuring sea level, the geoid has been established as 

another reference surface. The geoid is defined by the gravity field of the Earth. Considering the water 

of a sea as a freely moving mass, which is subjected only to the gravitational force composed of gravity 

and centrifugal force, then the surface of the oceans can be seen as a level surface of the gravity 

potential (Kahmen, 2006; Maune and Nayegandhi, 2018). Its equipotential surface in the gravitational 

field approximates the mean sea level as best as possible. This idealized sea level can be imagined to 

be continued under the continents so that it forms a closed surface, the geoid (Dietrich, 2021). Due to 

the irregular distribution of mass density in the Earth's body, the geoid cannot be described by an 

algebraic surface equation. It must be determined by terrestrial or satellite geodesy measurement 

methods (Kahmen, 2006; Maune and Nayegandhi, 2018).  

Another definable reference surface is based on the mathematical model of ellipsoids. These so-called 

rotational ellipsoids are the most accurate mathematical description of the Earth's surface, as they 

consider the polar flattening of the globe (Maune and Nayegandhi, 2018). The center of such an 

ellipsoid can coincide with the center of gravity of the Earth (geocentric rotation ellipsoid) which is 

usually used for global observations. However, there are also ellipsoids which are displaced in their 

position from the center of the Earth to obtain higher accuracies for certain parts of the Earth's surface. 

These local coordinate systems can only describe a particular section of the globe with sufficient 

accuracy and are unsuitable for other locations (Dietrich, 2021). Thus, unlike the geoid, which has a 

unique definition, a large number of different ellipsoids exist for different parts of the world. The 

schematic difference between a reference geoid and ellipsoid is depicted in Figure 2-3.  

To date, hundreds of horizontal and vertical datums were established for local and global coverage 

(Maune and Nayegandhi, 2018). For users of geospatial datasets, the datum is of high importance, as 

the difference between different datums can exceed tens of meters. This may cause problems in their 

practical use and interpretation, resulting in large errors. For example, the undulation between the 

geoid and the World Geodetic System 1984 (WGS84) ellipsoid can be up to 100 m depending on the 

location on Earth (Guth et al., 2021; Hengl and Evans, 2009). The undulation between different 
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reference ellipsoids can also be up to several meters (Kahmen, 2006). Therefore, it is important to 

transform different elevation datasets into the same datum before usage. 

 
Figure 2-3: Schematic illustration of the differences between geoid, ellipsoid and local ellipsoid. The geoid 

approximates a (hypothetical) global mean sea level that represents the equipotential gravitational surface of 

the Earth. An ellipsoid is the approximation of the geoid by the mathematical model of ellipsoids. 

 

2.3 Acquisition techniques 

Many different remote sensing techniques have been evolved in the last decades that can be used to 

acquire elevation data. The most common methods will be described in the following sections. All 

methods are suitable for the acquisition of 3D surface data from a terrestrial, airborne and spaceborne 

position. In general, two different types of sensors can be distinguished for acquisition, active and 

passive sensors. Active sensors have their own source of light or signal for measurement, actively send 

the source of illumination to the ground and measure the reflected backscatter. In contrast, passive 

sensors do not streamline any source of emission signal on their own. They use the reflected or 

absorbed and re-emitted energy of the target location.  

 

2.3.1 Photogrammetry 

Photogrammetry is a remote sensing technique that enables the reconstruction of the position and 

shape of objects from imagery (Kraus, 2004). The pioneering work of Albrecht Meydenbauer in 

gathering 3D objects from photographical data and the introduction of stereo-photogrammetry by Carl 

Pulfrich in 1901 (Naturwissenschaftliche Abtheilung, 1901) made it possible to obtain the 3D position 

of a specific point from two or more overlapping images. The photogrammetric generation of elevation 

data can be done with imagery from terrestrial, airborne (including UAVs) or spaceborne platforms. It 

is a passive remote sensing technique that does not directly emit any kind of energy source for 
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measurement and only detects reflected or absorbed and re-emitted energy (Albertz, 2009). Hence, 

photogrammetric acquisition requires for its functionality naturally occurring energy, which is usually 

only available during daytime when corresponding parts of the Earth are illuminated by the sun.  

The principle of photogrammetry is illustrated in Figure 2-4 and bases on the mathematical model of 

triangulation, where the same point in space is targeted from at least two different positions (Lillesand 

et al., 2015). In practice, the imaging geometry at the time of acquisition must be restored. This can be 

done according to the rules of central projection by following the collinearity condition (Kraus, 2004; 

Lillesand et al., 2015). Thereby, each image defines a direction to the real object point P for an imaged 

point P' together with the projection center O of the respective camera (Kraus, 2004). Knowing the 

position and orientation of the camera in space at the time of image recording (external orientation) 

as well as the geometry of the image layer inside the camera (internal orientation) allows to determine 

every ray in space. The internal orientation is usually determined during a camera calibration of the 

projection center position in relation to the sensor or is provided by the manufacturer. The external 

orientation is often determined by using the Global Positioning System (GPS), Global Navigation 

Satellite Systems (GNSS) and inertial navigation systems (Albertz, 2009; Kraus, 2004). Satellite systems 

are usually providing orbital, geometric and radiometric parameters by GNSS positions and star 

cameras as metadata information together with their imagery (Jacobsen, 2017; Maune and 

Nayegandhi, 2018).  

 
Figure 2-4: Basic geometric principle of stereo photogrammetry for the acquisition of 3D terrain information.  

With the knowledge of these parameters, 3D information can be extracted by using the equation of 

collinearity. As input for the triangulation, ground control points (GCPs) and tie-points are measured 

on the overlapping imagery. In a first step, the relative orientation of two images can be defined by 

measuring identical points (tie-points) in two overlapping images and calculating the 3D coordinates 

of the depicted point in a local coordinate system. To date, many software packages provide 

automated tie-point measurement techniques where image operators were used to identify well-

defined tie-point candidates in the overlap areas on each image. These match the appropriate 

candidate points between images by using the approximate image orientations and image correlation. 

In contrast to a time-consuming manual definition of tie-points, this method generates a large number 

of tie-points and builds a highly accurate triangulation as a solid geometry between both images 

(Maune and Nayegandhi, 2018).  
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With the relative orientation, the mutual spatial position of the ray bundles of image pairs is 

reconstructed. This means, all corresponding (homologous) projection rays intersect and form a spatial 

(stereo) model that is similar to the terrain in a mathematical sense. Thus, it has the same shape, but 

the scale is still random and it has an oblique position in space. Therefore, in a second step, the stereo 

model must be brought to the desired scale and the correct position in space by the absolute 

orientation. This must be done with surveyed and photo-identifiable GCPs of high accuracy and known 

horizontal and vertical position. With these points, the system can be transformed with a Helmert 

transformation from the local image coordinate system into a global coordinate system (Kraus, 2004). 

Seven parameters are necessary to transform a 3D point from one coordinate system to another. Three 

shifting parameters to move the point in space in X, Y, Z direction, one scale parameter and three 

rotation angle parameters. The relationship between the x, y, z coordinates in the model system and 

the X, Y, Z coordinates in the global coordinate system can be expressed by the following formula:  

����� =  �������
� + 
 ∙ � ∙  ����      (2-1) 

Where: 
 = scale parameter � = Rotation matrix 

�������
� = Undulation parameters between both coordinate systems 

In the past, the extraction of elevation information was primarily focused on producing topographic 

information from aerial stereo imagery that was digitized from analogue cameras (Jensen, 1995). With 

the increase of available digital (ortho)image products from airborne or spaceborne sensors, as well as 

the presence of GIS and other applications which utilize digital terrain data over the last decades, 

elevation information as raster datasets is the most common product (Maune and Nayegandhi, 2018). 

The civil photogrammetry from stereo satellite imagery started in 1986 with images from the SPOT-1 

satellite. Satellite images have the advantage over aerial images that they can be generated without 

bureaucratic obstacles and allow image acquisition even in countries with aerial image restrictions. 

However, for nationwide projects in developed countries, aerial imagery is still sometimes cheaper 

than satellite imagery (Jacobsen, 2017). 

A major disadvantage of elevation generation by photogrammetric principles is that only the ‘visible’ 

surface can be captured by imagery. Thus, DEMs derived by stereo-photogrammetry are always DSMs 

containing buildings, trees and other objects above the ground. As the imagery includes tree canopies, 

the DEM outcome is also often affected by seasonal effects, particularly in regions where trees are not 

covered by leaves during the whole year. Several atmospheric limitations are also evident. Cloud-free 

days with low haze conditions and no more than 10 % of cloud coverage are required, which decreases 

the flexibility in obtaining suitable scenes. Furthermore, long shadows on the imagery should be 

avoided by appropriate sun angles during the acquisition time (Maune and Nayegandhi, 2018). 

Photogrammetric DEMs often also have a higher risk for artefacts, such as spikes or pits in places where 

two points from the stereo-imagery were incorrectly matched. Another disadvantage is that this 

method requires highly accurate GCPs for georeferencing that may be not available or hard to obtain. 

Furthermore, it must be considered that the generation and processing of DEMs from imagery can 
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require considerable hardware and software resources, depending on the image resolution and size of 

the area.  

 

2.3.2 RADAR/InSAR 

The radio detection and ranging (RADAR) technique is an active remote sensing method and operates 

with microwave pulses of 1 to 100 cm wavelength that were transmitted to the surface and reflected 

(Albertz, 2009; Lillesand et al., 2015). A major advantage of RADAR technology over optical imagery is 

the independency from natural energy sources as microwaves are capable to penetrate the 

atmosphere under almost all conditions. This enables the collection of data by night and day, as well 

as under cloudy, foggy or hazy conditions (Lillesand et al., 2015).  

The basic measuring principle consists of a combined transmitter/receiver that is aligned downward in 

a way to constantly emit microwaves in an oblique direction perpendicular to the direction of flight 

(across-track). At a certain point in time, the front of the wave reaches the ground and is partially 

reflected (Figure 2-5). Finally, a certain portion of the reflected signal reaches the antenna of the 

receiver and is registered there as a signal. Since the area being radiated by microwaves moves over 

the terrain, the reflection signals from a narrow strip of terrain can be captured one after the other 

and line-based recorded as an image. The forward motion of the flying object then produces a 

complete line-by-line image (Albertz, 2009; Lillesand et al., 2015). 

 
Figure 2-5: Operation principle of RADAR acquisition. A: Schematic illustration of one emitted RADAR pulse and 

its location over time. B: Received signal from the emitted RADAR pulse. (modified after Lillesand et al. (2015)). 
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However, the spatial resolution of real aperture systems decreases by increasing altitudes due to 

diverging antenna beam angles. Thus, RADAR systems of this type only produce high resolution ground 

measurements by flying at low altitudes and are not applicable for spaceborne measurements (Albertz, 

2009; Lillesand et al., 2015). To reach higher spatial resolutions at high altitudes by satellite systems, 

Synthetic Aperture Radar (SAR) systems are usually used. The principle of the synthetic aperture is to 

replace the single ground record of a large antenna with many recordings of a small, moving antenna 

along-track (Figure 2-6). In the course of this movement, each object in the target area is numerously 

targeted at a varying angle of view and recorded accordingly as long as the target is within the pattern 

of the antenna (Lillesand et al., 2015). With exact knowledge of the antenna position, the aperture of 

a large antenna can be synthesized from the intensities and phases of the received synthetic RADAR 

echoes. The distance that the platform travelled during the time of recording the target determines 

the synthetic antenna size. The result is a high spatial resolution in the direction of antenna motion. 

This leads to the same effect as if one very long antenna of several km lengths would have been used. 

Thus, the resolution in flight direction becomes distance independent.  

 
Figure 2-6: Simplified principle of a synthetic aperture radar system. The along path motion of the airborne or 

spaceborne RADAR sensor is used to record the same point from different positions and perspectives. The 

resulting coherent variations in the signal can be processed to achieve a higher azimuth resolution. 

RADAR imagery only captures 2D information on its own. To derive 3D information, the terrain 

coverage from two different positions is necessary. This technique is called Interferometric Synthetic 

Aperture Radar (InSAR). The InSAR principle assumes that the reflected radiation of the terrain is 

received by two antennas arranged next to each other. Due to the different path lengths to the sensors, 

phase differences occur from which information about the topography of the terrain can be derived 

(Lillesand et al., 2015). In higher operation altitudes, this system requires longer baselines between 
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both sensors to achieve sufficient phase differences (Albertz, 2009). In practice, there are two different 

approaches to realize an InSAR surface measurement from spaceborne carrier systems, single-pass 

interferometry and repeat-pass interferometry (Figure 2-7) (Lillesand et al., 2015).  

With the single-pass interferometry, observations are made at the same time from two different 

antennas in two different positions. This has been successfully conducted in the Shuttle Radar 

Topography Mission in February 2000, where the second antenna was installed on an extended mast 

of 60 m length on the operating spaceship (Figure 2-7 C). This construction enabled the simultaneous 

recording of terrain from 233 km altitude and was the first spaceborne single-pass InSAR system 

(Bamler, 1999). Another example is the constellation of the TerraSAR-X and TanDEM-X satellites, which 

can simultaneously record the surface from two different positions (Figure 2-7 B) (Krieger et al., 2007). 

Another option for interferometric ground coverage is the repeat-pass interferometry where the 

baseline is realized by flying over the same area on two slightly different trajectories (Figure 2-7 A). 

This procedure has the major disadvantage of time decorrelation as both acquisitions do typically have 

a temporal baseline from minutes up to many days. For instance, the satellite RADARSAT has a 

temporal baseline of 24 days (Maune and Nayegandhi, 2018). Due to the time passed between the 

two overflights, the atmospheric conditions may significantly differ and affect the recorded results 

(Albertz, 2009).  

 
Figure 2-7: Illustration of different acquisition strategies. A: Repeat-pass interferometry with one satellite that 

covers the same area from different trajectories. B: Single-pass interferometry with two satellites that cover the 

same area simultaneously from different positions. C: Single-pass interferometry from one platform where the 

baseline between both acquisition perspectives is realized by an installed antenna on the spaceship. 

Nowadays, satellite-based SAR-Systems can reach spatial resolutions of 1 m or higher and their 

positional accuracy is usually higher than optical remote sensing techniques (Bamler and Eineder, 

2017). Several factors affect how a surface is represented in a RADAR image. The roughness of the 

surface significantly influences the backscattered signal. If the roughness is low, then almost all 

wavelengths will be mirrored and only very little signal is scattered back to the receiving sensor 

(Albertz, 2009; Lillesand et al., 2015). This results in a very dark area in the RADAR image. However, 

these reflections can also bounce off from other objects and be redirected to the receiver, where a 

stronger signal is measured afterwards. Rougher surfaces scatter back the incoming beams in many 

directions, resulting in a higher proportion of the signal being reflected back to the receiving sensor 

(Albertz, 2009; Lillesand et al., 2015). Thus, these surfaces usually have a brighter signature on the 
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RADAR image. Besides the roughness, also the electrical properties of a surface have an impact on the 

reflection signal of RADAR beams. The dielectric constant determines the amount of energy that is 

reflected or absorbed by the surface (Maune and Nayegandhi, 2018). For instance, water has a 10 

times higher dielectric constant than dry soils (Lillesand et al., 2015). This enables the differentiation 

of wet and dry soils in the top layer in RADAR images, particularly for longer wavelengths with a higher 

penetration depth. 

Modern spaceborne systems typically use wavelengths of approximately 3 cm (X-band), 6 cm (C-band), 

10 cm (S-band) and 25 cm (L-band) (Bamler and Eineder, 2017). Many natural surfaces have a 

roughness structure that is well distinguishable in these wavelengths in SAR imagery. Wavelengths 

smaller than one centimeter are not feasible for satellite remote sensing as they are significantly 

affected by atmospheric conditions due to their inability to penetrate small water droplets (Jutzi et al., 

2017). However, wavelengths from X-band to L-band also have different penetration depths, which 

influences the recorded signal depending on the structure of the surface being observed (Figure 2-8). 

In general, shorter wavelengths of X-band and C-band are better for the detection of crop and tree 

canopies as these wavelengths are predominantly backscattered by the leaves and do not penetrate 

the underlying soil. In contrast, longer wavelengths are better suitable for the recording of underlying 

objects, such as tree trunks or the ground soil (Lillesand et al., 2015). Repeat-pass systems usually use 

shorter wavelengths as these are less affected by temporal decorrelations, particularly in vegetated 

areas (Maune and Nayegandhi, 2018). 

 
Figure 2-8: Schematic illustration of different penetration depths of X-band, C-band and L-band wavelengths. 

 

2.3.3 Laser scanning/LiDAR 

The method of laser scanning is another kind of active remote sensing technique that is commonly 

used for a point-based generation of 3D terrain data. The principle, also known as light detection and 

ranging (LiDAR), operates in a similar way to a microwave RADAR, but in a different range of the 

electromagnetic spectrum. Most modern airborne laser scanners operate within wavelengths of the 
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near-infrared spectrum (750 nm to 1.5 µm) (Lillesand et al., 2015). LiDAR systems use short pulses of 

laser light sent as a narrow beam to the ground and measure the return time of the signal that is 

backscattered from a target surface to the sensor (Renslow, 2012). The distance � from sensor to 

target can be calculated by the formula 2-2, knowing the speed of light � as well as the pulse emission 

time �� and the arrival time ��of the returned pulse signal.   

� =  ��� ���  ∙ �       (2-2) 

With this principle, known as time-of-flight (TOF), the distances between the ground and the sensor 

are calculated. TOF measurements can be used in the range of one meter to several kilometers (Jutzi 

et al., 2017). Another common acquisition method is the measurement of phase shifts between the 

emitted and the returned signal. These systems emit a constant laser beam of one or multiple phases. 

Although this measurement principle has the capability to achieve higher accuracies over short 

measurement distances, it has weaknesses over longer distances due to ambiguity problems (Beraldin 

et al., 2010; Jutzi et al., 2017). It is not possible to derive the absolute distance information, as different 

wavelength peaks cannot be counted and related to each other. Thus, a signal is only unambiguously 

identifiable within the range of the half wavelength. To avoid this problem, multiple waveforms of 

different frequencies can be used. Nevertheless, for airborne or even spaceborne LiDAR measurement, 

this system is usually not sufficient and only very rarely used (Beraldin et al., 2010). 

A large number of individual 3D points can be acquired with LiDAR measurement methods, which in 

their entirety can geometrically describe the observed surface. The absolute position of each point in 

space can be determined with additional GPS/INS systems that accurately measure the sensor location 

and its angular orientation with respect to the observed ground. Overall, all measured points result in 

a point cloud determining the observed surface. For coarser resolutions of terrain mapping, 0.5 to 2 

points per m² are used. For a more detailed mapping, particularly in more complex areas, at least 10 

to 50 points per m² are required (Lillesand et al., 2015). Modern laser scanning systems can capture 

five or more returns per pulse. Point clouds do usually provide surface models including objects, such 

as trees or buildings. This allows not only the measurement of features, such as a tree canopy and bare 

ground, but also multiple returns of transmitted pulses from surfaces in between if there are sufficient 

gaps in the canopy (Danson et al., 2007; Koch et al., 2006; Liu et al., 2013). In comparison to 

Photogrammetry and RADAR, LiDAR is probably the most accurate technology to measure ground 

elevation through vegetation. Due to shorter wavelengths and a narrower beam angle, compared to 

RADAR, LiDAR can pass smaller gaps within the canopies without the entire signal being reflected from 

the canopy (Neuenschwander and Magruder, 2019). 

While terrestrial laser scanning (TLS) and airborne laser scanning have become popular methods for 

acquiring highly accurate areal terrain information, the acquisition of data with LiDAR from space is 

relatively rare. To date, only six LiDAR missions have been carried out from a spaceborne platform with 

the objectives of atmospheric observation of clouds, aerosols and clean air wind speed (CALIPSO, CATS 

and Aeolus), the observation of forests (GEDI) and the measurements of ice-cap volumes (Ice, Cloud, 

and land Elevation Satellite (ICESat) 1 and 2) (Hancock et al., 2021; Neuenschwander and Pitts, 2019; 

Schutz et al., 2005; Smith et al., 2019; Zwally et al., 2002). The point-based elevations measured by the 

ICESat-1 and 2 satellites provide vertical accuracies of several decimeters, which is higher than those 

of other spaceborne products (Duong et al., 2009; Fricker et al., 2005). However, a downside of 

spaceborne LiDAR is that an own energy source is required for the illumination of the surface. Since 
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relatively high energy is necessary to illuminate every point that has to be measured first, it limits the 

area that can be covered. Thus, LiDAR from space is only capable to cover the surface very sparsely on 

a narrow track compared to other acquisition techniques (Figure 2-9). To date, LiDAR technique from 

space is not able to produce seamless elevation data and is not suitable for a continuous DEM 

generation. However, the measured elevation points of ICESat are often used as reference material to 

improve the accuracy of other spaceborne generated DEMs (Yue et al., 2017). 

 
Figure 2-9: Sampling geometry of the ICESat-2 satellite with a 3x2 beam pattern. 

 

2.3.4 Conventional topographical surveys 

Ground-based surveying techniques can be carried out by measurement instruments that require a 

line-of-sight so that the entire area to be surveyed is visible through the instrument. These 

conventional methods have been used since more than 3000 years and are the most traditional way 

to capture elevation information from the ground. They are based on measurements of horizontal and 

vertical angles between points as well as the distances between the points and their relative elevations 

(Kahmen, 2006; Nelson et al., 2009). The surveys were conducted with theodolites and precise 

levelling. Theodolites survey horizontal and vertical angles to a target and enable the calculation of 

positions by trigonometric principles (Kahmen, 2006; Nelson et al., 2009). Additionally, differential 

level instruments are commonly used to determine relative elevation differences between two points. 

The instrument consists of a telescope rotating around a vertical axis, in which a horizontal target line 

can be generated that determines the differences in height between two points. By using level rods at 

specific points, the deviations above and below this exact levelling line can be determined from the 

horizontal line-of-sight (Ghilani and Wolf, 2015; Kahmen, 2006).  

Nowadays, mostly digital electronic devices are used for the measurement of 3D points. Total station 

instruments combine a digital theodolite with an integrated electronic distance measurement (EDM) 

using a laser or infrared beam. These instruments can measure both angles and distances 

simultaneously and transmit the results to a built-in computer in real-time (Ghilani and Wolf, 2015). 
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Point measurement with total stations is based on open or closed polygon traverses where from each 

traverse station a set of characteristic points is targeted (Florinsky, 2016; Kahmen, 2006). With this 

measurement method, it is possible to achieve elevation information with an accuracy of less than 

1 cm. However, the method is time consuming and requires a lot of effort and experience by the 

surveyor (Nelson et al., 2009). 

Static or kinematic GPS or Differential Global Positioning System (DGPS) measurements are a faster 

way to obtain elevation information by creating large-scale 3D points with the usage of the global 

positioning satellite system and GPS receivers mounted on a vehicle or moved by an operator 

(Florinsky, 2016; Ghilani and Wolf, 2015). With a good constellation of satellites, vertical accuracies of 

1 – 2 m can be achieved by DGPS measurements (Nelson et al., 2009). Nevertheless, an area-wide 

terrain survey with these conventional survey methods is very cumbersome and only feasible for very 

small areas. 

 

2.3.5 Terrestrial vs. airborne vs. spaceborne acquisition techniques 

As already mentioned before, the acquisition of terrain data can be obtained by terrestrial 

observations or by measurements from airborne or spaceborne platforms. The selection of the most 

suitable platform depends on several factors, such as the purpose of the study, accuracy requirements, 

scale and size of the area, type of terrain, costs, available equipment and time (Ghilani and Wolf, 2015). 

All three platform systems have their advantages and disadvantages regarding the area that can be 

covered and the spatial resolution of the ground that can be measured by different acquisition 

platforms. Figure 2-10 gives an overview about the differences of acquisition platforms regarding the 

scale and spatial resolution that they are able to capture. 

 
Figure 2-10: Schematic illustration of different DEM acquisition platforms in terms of their acquisition capability. 
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DEMs generated from a terrestrial based platform can achieve accuracies of a few mm to cm which is 

by far the most accurate way to capture ground elevation (Ghilani and Wolf, 2015; Nelson et al., 2009). 

However, these methods are usually only capable to survey a limited area of up to a few kilometers as 

these methods are time consuming, require a lot of effort and expensive equipment. Thus, capturing 

larger areas is often too expensive in comparison to airborne or spaceborne alternatives. Furthermore, 

the physical accessibility of terrain can often be an issue due to difficult terrain conditions or visiting 

restrictions. Terrestrial surveying methods are therefore often only used if these high accuracy 

standards are required in very large-scale analyses. However, the acquisition of 3D surface information 

with TLS has been established as a common method in applications that requires a very high accuracy, 

such as the monitoring of morphological surface movements (Day et al., 2013; Hoffmeister et al., 

2020), modelling of small-scale roughness of agricultural soils (Aguilar et al., 2009), the 

characterization of river morphology (Heritage and Milan, 2009; Resop et al., 2012), the 

documentation of archaeological sites (Hoffmeister et al., 2016b; Marin-Buzon et al., 2021; Perez-

Alvarez et al., 2020), or plant height monitoring (Guo et al., 2019; Hoffmeister et al., 2016a; Tilly et al., 

2014). Furthermore, it is a common method for engineering tasks, such as control measurements to 

detect damage or deformation of infrastructural objects (Erdelyi et al., 2020; Qiu and Cheng, 2017; Wu 

et al., 2022), or for the construction of 3D models from buildings and objects (Gardzinska, 2021; Wu et 

al., 2022). 

Since the first attempts in 1840, aerial photos have been a widely used source for the generation of 

topographical information (Lillesand et al., 2015). Generating DEMs from airborne platforms, mainly 

from stereo-imagery but also with LiDAR technique, is a practical solution to accurately cover much 

larger areas than with terrestrial acquisition methods. Airplanes are the most common platform for 

airborne measurements as they provide a good performance in terms of high spatial resolution and 

accuracy. Furthermore, they are relatively flexible in operation and can cover much larger areas than 

it is possible from the ground. However, flying and maintaining an aircraft produces considerable costs. 

Additionally, the circumstances where data can be obtained are not optimal as atmospheric 

conditions, such as clouds, fog or turbulences can affect the measurements (Jacobsen, 2012; Lillesand 

et al., 2015). 

In recent years, also the use of UAVs has largely increased and established as an alternative to manned 

aircrafts or terrestrial acquisition methods. With their ability to rapidly cover the Earth from low 

altitudes, their products are able to reach resolutions of a few centimeters and can compete terrestrial 

measurement methods (Ajayi and Ajulo, 2021; Coveney and Roberts, 2017; Leitao et al., 2016). In 

particular, low-cost UAVs have become a valuable alternative to terrestrial methods due to lower costs 

and higher agility by producing datasets of similar accuracies (Bareth et al., 2016; Hoffmeister et al., 

2020; Kim et al., 2019; Tsunetaka et al., 2020; Yurtseven, 2019).  

Additionally, the use of spaceborne platforms to acquire DEMs has vastly increased over the last 

decades. One of the major advantages of spaceborne platforms is the ability to rapidly cover large 

areas up to the entire globe. This leads to a relatively cost-effective acquisition of huge areas in a rapid 

timely manner. Thus, spaceborne platforms are the only possibility to generate DEMs of global 

coverage with revisit times of a few days. With the increasing quality of spaceborne image camera 

systems that are nowadays capable to produce images with a ground sampling distance of a few 

decimeters, they can compete with aerial imagery for DEMs of regional coverage (Hobi and Ginzler, 

2012; Jacobsen, 2012).  
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Satellites operate at altitudes of 500 to 800 km with large speeds and require large telescopes to 

produce high resolution imagery. Thus, for a long time, the biggest downside of satellite-based systems 

was the inability to produce high resolution data compared to ground-based or airborne platforms. 

The first attempts of producing global DEMs were made in 1988 with the ETOPO5 DEM. This dataset 

was created by the National Oceanic and Atmospheric Administration (NOAA) and depicted the 

topography of land and submarine surfaces with a spatial resolution of 5 minutes (NOAA, 1988). 

Several others followed with the GTOPO30 (Gesch et al., 1999; USGS, 1996) and Altimeter Corrected 

Elevations (ACE) DEM (Berry et al., 2002). 

However, these DEMs all had spatial resolutions of more than 30" (≈ 1 km at the Equator) which is only 

applicable for very small-scale analyses but not sufficient for applications of larger scales. The first 

global DEM product with a significantly higher spatial resolution was the SRTM, which was firstly 

released in 2003 with a spatial resolution of 1" (≈ 30 m) (Rabus et al., 2003). Over the last years, the 

supply of freely distributed DEMs with a spatial resolution of 3" and 1" has largely increased. An 

overview of all so far publicly available DEMs with nearly global coverage and a spatial resolution of 3" 

or higher is provided in Table 2-1. 

In addition to the presented DEMs of Table 2-1, several other DEM products of much higher resolutions 

exist but were only commercially distributed. These have an even higher spatial resolution of up to 

1 m. For example, several WorldDEM™ products exist that were extracted from the acquired X-band 

RADAR data of TerraSAR-X/TanDEM-X satellites between 2011 and 2015 (Rizzoli et al., 2017; Wessel 

et al., 2018). They were distributed as 1" (≈ 30 m) and 0.4" (≈ 12 m) DEM products by the DLR and 

Airbus DS (German Aerospace Center (DLR), 2018a; German Aerospace Center (DLR), 2018b). Most 

recently, Airbus has additionally released the WorldDEM™ Neo elevation model that contains 

additional data from both satellites and has a spatial resolution of 0.15" (≈ 5 m) (Airbus Defence and 

Space, 2021). Furthermore, several very high resolution DEMs from stereo satellite imagery exist, such 

as the ALOS W3D products from JAXA in the spatial resolutions of 0.075" (2.5 m) and 0.15" (≈ 5 m) 

(Takaku et al., 2018). Also, from Airbus DS several GEO Elevation products with spatial resolutions from 

1 m to 30 m exist that were processed from SPOT or Pléiades imagery (Airbus Defense and Space, 

2015). 
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2.4 Land surface parameters 

Biotic and abiotic factors, such as climate, soil components, vegetation distribution or other dynamic 

hydrological, geomorphological and biological processes are mainly influenced by spatial 

heterogeneity (Moore et al., 1991; Stein and Kreft, 2015). A key component to characterize this 

complexity is the relief by creating corresponding land surface parameters, such as slope or aspect. 

digital elevation models offer an efficient way to automatically extract distinct terrain features to 

provide more detailed information about characteristics and variations of topography. Besides using 

the ‘pure’ elevation from a DEM, numerous other land surface parameters can be extracted that help 

to understand the landscape properties of a study region. Overall, more than 100 of those land surface 

parameters exist that can be calculated from a DEM (Wilson, 2018). To mention all of them would go 

beyond the scope of this contribution. Therefore, only the most important and commonly used 

parameters are listed in Table 2-2. A more detailed overview of available parameters can be found in 

Wilson (2018) as well as Olaya (2009).  

Land surface parameters can be categorized into two categories. The first category includes all primary 

land surface parameters that can be directly derived from the DEM without further knowledge or the 

use of additional datasets (Wilson and Gallant, 2000a). Typical parameters are slope, aspect and 

curvature that can be calculated from the first and second derivatives of a gridded elevation dataset 

(Evans, 1972; Shary, 1995; Zevenbergen and Thorne, 1987). A visual example of these surface 

parameters is given in Figure 2-11. The surface parameter slope specifies the steepness at each cell of 

a raster surface and can be calculated in degree or percent. It is of great importance for hydrological 

or geomorphological analysis as it directly affects the gravity-induced flow of water and other surface 

material (Wilson and Gallant, 2000b).  

Table 2-2: Description of most common land surface parameters that can be derived from DEMs. 

Parameter Description Source 

Elevation Surface heights.  

Slope Slope gradient from a raster cell. Evans (1972); Zevenbergen and Thorne 
(1987) 

Aspect Calculated downward direction of each surface cell. Zevenbergen and Thorne (1987) 

Curvature Downslope (profile) and along-slope (plan) curvature 
of the raster surface. 

Dikau (1989); Evans (1972); Shary (1995); 
Zevenbergen and Thorne (1987) 

Terrain ruggedness 
index 

Calculation of terrain complexity by the average 
elevation change in a user defined area. 

Riley et al. (1999) 

Topographic 
openness 

Maximum vision angle from a point on the land 
surface in a user defined radius. 

Yokoyama et al. (2002) 

Flow direction Direction of water flow. Jenson and Domingue (1988); Tarboton 
et al. (1991) 

Flow accumulation Amount of water that flows through the cell. Jenson and Domingue (1988); Tarboton 
et al. (1991) 

Topographic 
wetness index 

Calculation of saturation zones. Beven and Kirkby (1979) 

Watershed areas Contributing drainage area based on flow algorithm.  

Solar radiation Calculation of the potential solar radiation over a 
certain time period reaching the surface. 

Kumar et al. (1997) 

Hillshade A shaded relief considering a user defined 
illumination source angle. 
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Figure 2-11: Exemplary illustration of the derived primary land-surface parameters slope, aspect, profile and plan 

curvature. 

The parameter aspect determines the direction of the slope in degrees from 0 (true north) to 360 (true 

north again) in a full circle (Wilson and Gallant, 2000a). Flat areas without slope direction usually 

receive the value -1. Curvature is a collection of several surface parameter types used to describe the 

shape of a surface. Whereas slope and aspect are based on the first derivative, the curvature is based 

on the second derivative to distinguish convex (positive curvature) and concave (negative curvature) 

surfaces (Olaya, 2009). The most common curvatures are the vertical (profile) and horizontal (plan) 

curvature (Zevenbergen and Thorne, 1987). Figure 2-12 shows nine surface shapes classified by Dikau 

(1989) depending on their plan and profile curvature. They divided a sloped landscape into convex, 

straight and concave curvatures in horizontal and vertical direction to characterize distinct landform 

elements.  

 

Figure 2-12: Classification of form elements based on profile and plan curvature (modified after Dikau (1989)).  
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Another example of a primary land surface parameter is the terrain roughness which also exists in 

many different types of calculations from the DEM (Olaya, 2009; Wilson and Gallant, 2000b). A famous 

parameter to determine surface roughness is the terrain ruggedness index (TRI). It quantifies the 

roughness of terrain and is a morphometric measure for the complexity of land surface (Riley et al., 

1999). A primary land surface parameter in a hydrological context is the flow direction that describes 

the routing of draining water streams (Jenson and Domingue, 1988). Following the flow direction, also 

the flow accumulation can be calculated as the potential runoff flowing through a certain point and 

determines the upstream area that drains into the considered raster cell (Jenson, 1991; Tarboton et 

al., 1991; Wilson and Gallant, 2000a). These parameters help to identify river networks and to define 

watershed catchment areas where all water accumulated in this area drains to a single outflow point. 

They are mainly used in hydrological studies, for example, to predict the water flow in rainfall events 

and to identify potential flooding zones (Tarboton et al., 1991; Wilson, 2018). 

The second category of land surface parameters includes derived terrain parameters from the DEM by 

the additional usage of two or more of the previously mentioned primary surface parameters or other 

additional input sources for calculation (Wilson, 2018). These are called secondary terrain parameters. 

The most popular one is the topographic wetness index (TWI), which is calculated by additionally using 

slope and flow direction. The TWI describes the spatial distribution of saturated zones for runoff 

generation as a function of upslope contributing area and slope (Beven and Kirkby, 1979). The TWI is 

largely used in studies of hydrological processes (Saleem et al., 2019). Another example of a secondary 

land surface parameter is the topographic radiation to calculate the solar insolation over a defined 

time period for a certain point at the Earth’s surface (Kumar et al., 1997). This parameter helps to 

estimate meteorological processes, such as surface and air temperature, heat fluxes or wind by 

identifying shadowed areas and zones gaining high solar energy. It can be used in biological studies, 

e.g. for the modelling of flora and fauna sites, as well as in hydrological applications, such as water 

balance studies (Jaroslav, 2013; Kumar et al., 1997).  

 

2.5 Fields of applications for DEMs and derived land surface parameters 

DEMs are a valuable source for modelling and mapping tasks in numerous scientific disciplines, since 

the topography is a significant factor that influences many natural processes. Thus, numerous 

applications use elevation datasets in their GIS and remote sensing environment for analysis and 

modelling purposes. The most common use cases of DEMs are settled within scientific hydrological 

purposes and environmental tasks in the topics of disaster assessment, biodiversity as well as 

geomorphology and geology, ecology, soil science and agriculture (Ariza-Lopez et al., 2018; Mesa-

Mingorance et al., 2017; Sofia, 2020; Tarquini and Nannipieri, 2017). These topics will be further 

explained in detail in the following paragraphs by stating several examples from literature where DEMs 

have been used.  

Many geomorphologic studies focus on the description and categorization of the Earth’s surface. The 

automated classification of landforms has been an increasing task that incorporates considerations of 

surface texture, pattern and context. In former times, landforms have been traditionally identified by 

the interpretation of aerial photos, but with the increasing availability of high resolution DEMs the 

(semi-)automatic extraction of terrain features has become an active research field. Thus, several 

approaches for the delineation of landforms from DEMs have been developed over time (Dikau et al., 
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1995; Dragut and Blaschke, 2006; Jasiewicz and Stepinski, 2013; MacMillan et al., 2000; Marques et 

al., 2018; Weiss, 2001). Furthermore, several studies focused on the extraction of distinct landforms 

(Cuthbertson et al., 2021; d'Oleire-Oltmanns et al., 2013; Smith et al., 2006) or the classification of 

terrain for a specific landscape (Dekavalla and Argialas, 2017; Kuhni and Pfiffner, 2001; Schneevoigt et 

al., 2008; Zhao et al., 2017; Zhu et al., 2018). Overall, more than 100 studies are available to date that 

focused on the classification of landforms and the systematic categorization of terrain features. 

Furthermore, the modelling of land surface changes and the role of surface processes in terrain 

evolution has been done by using DEMs and topographic parameters (Bishop et al., 2003; Li et al., 

2021).  

In addition, the prediction of landslide hazards has become an important application in the field of 

geomorphology, where the usage of DEMs has a long tradition (Zhong et al., 2020). According to 

Kakavas and Nikolakopoulos (2021), more than 200 studies are available that have focused on the 

analysis of rockfalls and landslides. As the source areas and downslope paths of landslides mainly 

depend on topography, many applications have assessed slope instability as well as the risk and extent 

of potential hazards (Chudy et al., 2019; Gawrysiak and Kociuba, 2020; Iwahashi et al., 2021; Liu et al., 

2021; Niculita, 2016; Nugraha et al., 2015; Rashid et al., 2020; Stumpf et al., 2014; Sturzenegger et al., 

2021; Valentine and Kalnins, 2016; Xu et al., 2020). DEMs have also been widely used to investigate 

tectonic structures and mapping folds for volcanic or seismic activities (Abolins and Ogden, 2021; Baize 

et al., 2020; Dirscherl and Rossi, 2018; Gomez, 2018; Gottwald et al., 2021; Khan, 2019). 

Since the flow of water highly depends on topography, elevation information is essential to model and 

determine water flow and possible inundation areas in flood events. Thus, many studies exist that used 

DEMs for their hydrological analysis. They have focused on the delineation of drainage networks 

(Hanief and Laursen, 2019; Liu and Zhang, 2011; Schwanghart et al., 2013) and watersheds from DEMs 

(Li et al., 2019; Liu et al., 2020a; Seyler et al., 2009; Wu and Lane, 2017) as well as the identification 

and evaluation of groundwater zones (Ardakani et al., 2020; Arya et al., 2020; Kadhem and Zubari, 

2020; Maity and Mandal, 2019; Mishra and Singh, 2019). Additionally, much work has been done in 

the field of flood modelling and the creation of flood hazard maps (Bajabaa et al., 2014; Callaghan and 

Wickert, 2019; Dingle et al., 2020; Fleischmann et al., 2020; Pena et al., 2021). 

In the field of soil science, topographic information is a valuable parameter for the prediction of soil 

types and soil genesis that has been widely used in numerous studies. Many soil-related studies based 

on the SCORPAN approach of McBratney et al. (2003) that lists all environmental factors responsible 

for soil genesis. These factors are an enhancement of Jenny’s (1941) statement that the occurrence of 

different soils depends on climatic properties (c), organisms (o), relief (r), parental material (p), age (a) 

and the spatial position (n). To cover the factor (r), the usage of DEM and derived topographic variables 

as input variables for model predictions is a common method in the literature. Thus, numerous studies 

have used DEMs in the field of soil science to automatically predict different soil types (Adhikari et al., 

2014; Brungard et al., 2015; Dornik et al., 2018; Gruber et al., 2019; Mansuy et al., 2014; Massawe et 

al., 2018; Ngunjiri et al., 2019; Taghizadeh-Mehrjardi et al., 2019) or distinct properties such as soil 

organic carbon or soil organic matter (Devine et al., 2020; Drouin et al., 2011; Grimm et al., 2008; 

Lamichhane et al., 2019; Piccini et al., 2020; Piccini et al., 2014; Qin et al., 2012; Zhang et al., 2012; 

Zhong and Xu, 2009). 

DEMs and derived topographic parameters are also used in climatic and meteorological studies to 

adjust meteorological measurements with local topography. They are utilized to interpolate values 
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from weather stations over larger areas as well as input parameters for climatic modelling and 

meteorological predictions (Bianchi et al., 2016; Lloyd, 2005; Otgonbayar et al., 2019; Park et al., 2019; 

Thornton et al., 1997). Another common application is the detection of glacier changes over time by 

measuring the thickness of the ice layer with DEMs produced at different dates (Berthier et al., 2014; 

Gharehchahi et al., 2020; Jabbar et al., 2020; Ke et al., 2019; Larsen et al., 2007; Paul et al., 2007; Paul 

et al., 2020; Rieg et al., 2018; Semakova and Semakov, 2017; Zhang et al., 2020a; Zhang et al., 2020b; 

Zhang et al., 2018; Zheng et al., 2018). 

Furthermore, vegetation directly depends on environmental conditions and several ecological studies 

have used land surface parameters to predict the occurrence of vegetation and plant species as well 

as the presence or absence of specific plants over very short distances (Cruzan et al., 2016; Gottfried 

et al., 1998; Kakembo et al., 2007; Leempoel et al., 2015; Nilsen et al., 1999; Pradervand et al., 2014; 

Steven et al., 2007). Derivatives of elevation data have also been used to classify the distribution of 

tree species in forests (Chaves et al., 2018; Mohtashamian et al., 2017; Tracz et al., 2019) and for 

wildfire management (Brown et al., 2016; Kushla and Ripple, 1997; Rim et al., 2018; Tufekcioglu et al., 

2017). Furthermore, DEMs are an important source for the identification of suitable land for 

agroforestry (Ahmad et al., 2019; Ahmad et al., 2018b; Jarasiunas, 2016) and the analysis of wildlife 

and habitats of animals (Ahmad et al., 2018a; Aini et al., 2015; Aspinall and Veitch, 1993). Additionally, 

DEMs are used in many other applications, such as for the orthorectification of satellite images or the 

3D visualization of objects (Aguilar et al., 2013; Casana and Cothren, 2008; Liu et al., 2007) as well as 

in several applications of archaeology, e.g. for the prediction of human travelling paths or the detection 

of archaeological features and sites (Becker et al., 2017; Casana and Cothren, 2008; De Clercq et al., 

2016; Lewis, 2021; Stular et al., 2021). 

 

2.6 Assessing the accuracy of DEMs 

2.6.1 Error sources 

How accurately the real surface is represented in a DEM is crucial for its reliability, since a DEM is 

always an abstraction and approximation of the ground surface. Thus, the assessment of its quality is 

an important step before using the DEM in any type of application. The vertical accuracy of a DEM is 

the main criterion to specify its quality. It is determined as the elevation difference between the 

heights of the DEM and the real surface. Before going more deeply into detail on how the accuracy of 

a DEM can be determined, a glance at the error sources should be thrown. According to the 

terminology from photogrammetry and surveying, three main sources of errors can occur during the 

acquisition and processing of measured data: blunders, systematic and random measurement errors 

(Fisher and Tate, 2006; Kahmen, 2006).  

In principle, this system can be adapted to digital elevation models where these three error sources 

can also occur (Wise, 2000). Blunders usually result from an incorrect usage of the measuring device, 

defective devices or poor surveying conditions. They are usually visually recognizable as artefacts and 

outliers afterwards as they show a very large deviation from the other measured values (Reuter et al., 

2009). Systematic measurement errors are expressed in a constant deviation of the measured value 

from the ‘true’ value in only one direction. They are usually caused by inaccuracies of the data 

acquisition equipment or the interpolation method (Hu et al., 2009). The systematic error can be 

determined afterwards by comparing the median elevation differences between the DEM and a more 
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accurate reference dataset (Höhle and Höhle, 2009). In contrast, random errors are caused by 

unpredictable occurring processes that cannot be determined afterwards. They lead to a scattering of 

the measured values around the mean value and thus affect the precision of the measurement series 

(Maune and Nayegandhi, 2018). Random errors are considered to be normally distributed and can be 

measured by calculating deviation measures of the elevation differences in comparison to a reference 

dataset. 

However, evaluating how accurately a DEM reflects the real surface is complex and goes beyond the 

previously named error sources. It contains further aspects that need to be considered. As a geographic 

dataset, deviations in DEMs are often spatially autocorrelated and neighbouring points have similar 

errors (Amatulli et al., 2018; Fisher and Tate, 2006). Thus, it must be assumed that the random error 

of DEMs is not fully randomized and independent from the values of neighbouring cells. Rather, it has 

an autocorrelated component that depends on local behaviours such as the morphometric 

characteristics of terrain or land cover (Polidori and El Hage, 2020). Overall, finding an answer to the 

question of how accurate and reliable a DEM is for a specific application is rather complex. The 

accuracy of a DEM depends on the method of acquisition and processing, the type of terrain and the 

spatial resolution.  

In addition to statistical measures, the quality of a DEM also depends on how accurately the surface 

roughness, shape and certain terrain features are represented in the model, as well as the consistency 

of the measured elevations over the entire area (Florinsky, 2012; Purinton and Bookhagen, 2021; 

Reuter et al., 2009). The covered terrain itself with its varying surfaces, roughness or land cover can be 

determined as an important source for errors in the DEM and has to be considered during the 

evaluation process. Furthermore, relief influences the elevation measurements directly and indirectly 

in combination with the spatial resolution. The spatial resolution of the acquisition data is particularly 

important for raster datasets as a larger pixel size covers for each pixel a larger area with more 

elevation differences that the terrain model cannot depict (Figure 2-13). This effect increases in 

rougher terrain, whereas in flat landscapes a large pixel size is usually less problematic. Furthermore, 

DEMs with larger spatial resolutions depict the real surface in less detail and have a higher potential 

for larger errors (Fisher and Tate, 2006).  

 

Figure 2-13: Illustration of elevation differences between a DEM and the true topography that are caused by 

spatial resolution. The effect of elevation difference is increased for steeper slopes and less significant in flat 

areas. 

Spatial resolution is the main limiting factor for the identification of different terrain features and 

objects, since a coarser resolution captures fewer details of the terrain surface (Guth et al., 2021). If 
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the resolution is too coarse, small terrain features are not identifiable and cannot be extracted by 

terrain derivatives. This could lead to issues in further analyses when the detection of these features 

is crucial and necessary for further interpretations. For instance, several studies have shown that the 

overall slope values are decreasing in DEMs with coarser resolutions (Deng et al., 2007; Kienzle, 2004; 

Thompson et al., 2001; Vaze et al., 2010). This issue is of particular concern in applications that use the 

slope for landslide or erosion mapping, which may lead to an underestimation of risks.  

In contrast, a too fine spatial resolution could overrepresent very small features, which could also lead 

to misleading results (Dikau, 1989). Several studies indicate that a higher spatial resolution does not 

always produce better results in certain applications (Cavazzi et al., 2013; Dai et al., 2019a; Keijsers et 

al., 2011; Mashimbye et al., 2019; Penizek et al., 2016; Sofia, 2020). For example, it has been shown 

that a coarser resolution could be beneficial in forested areas (Polidori and Simonetto, 2014). 

Moreover, Kienzle (2004) showed that in certain situations a coarser spatial DEM resolution can be 

advantageous for the extraction of surface parameters, in contrast to a finer resolution. Some research 

has been done to address this issue by using filtering techniques to reduce unwanted noise of too small 

topographic features (Clubb et al., 2014; Pelletier, 2013). Nevertheless, the scaling factor of the 

underlying research interest is important for the choice of the most suitable DEM with an appropriate 

spatial resolution. 

DEM accuracy also depends on the acquisition method, since different sensors have different 

weaknesses and uncertainties that can be sources of elevation errors. The accuracy of conventional 

terrestrial surveys essentially depends on systematic instrumental errors, atmospheric refractions and 

errors made by the operator (Ghilani and Wolf, 2015; Kahmen, 2006). In the case of GPS-based 

measurements, the accuracy also depends on satellite geometry and biases of satellite and receiver 

clock (Ghilani and Wolf, 2015). The accuracy of DEMs generated from stereo imagery mainly depends 

on the camera resolution as well as the stability of airplane or satellite, camera distortion, atmospheric 

conditions and the image processing technique (Florinsky, 2012; Ghilani and Wolf, 2015; Kraus, 2004). 

For LiDAR derived DEMs, scan angle, flight speed, distance to the surface as well as the surface 

reflectivity and slope gradient of the terrain are sources for potential elevation errors (Brenner et al., 

2007; Florinsky, 2012). RADAR based DEMs contain the error sources of weak baseline and inclination 

angle, receiver phase instabilities, atmospheric conditions as well as physical properties of the surface 

(Brenner et al., 2007; Bürgmann et al., 2000; Florinsky, 2012). 

When assessing the quality of a DEM, primarily the vertical accuracy is meant and all previously 

mentioned error sources aim at the vertical accuracy of the DEM. However, the error of DEMs has also 

a horizontal dimension as a planimetric shift of elevation points influences the vertical accuracy as 

well. These shifts in horizontal direction can be caused by various factors during the data acquisition 

process, as well as during the processing of the data. For RADAR datasets, mainly atmospheric 

conditions, geometric distortions in shadowed or layover areas and signal discontinuities are 

responsible for horizontal inaccuracies of elevation data (Guan et al., 2020). For stereo imagery, the 

horizontal error mainly depends on the exterior and interior orientation parameters and can be 

compensated with highly accurate GCPs (Guan et al., 2020). Horizontal errors can affect significantly 

the vertical accuracy of DEMs. Especially in undulated areas with large elevation changes over short 

distances, a horizontal offset of elevation can have a great impact (American Society for 

Photogrammetry and Remote Sensing (ASPRS), 2004). 
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2.6.2 Quantitative accuracy assessment 

A common method to assess the vertical accuracy of DEMs is the comparison with more accurate 

reference data using statistical measures. To achieve reliable results, a reference dataset should fulfil 

three requirements. It should be (1) independently surveyed, (2) at least three times more accurate 

than the evaluated DEM and (3) well distributed over the entire area to ensure representative results 

(Höhle and Höhle, 2009; Maune and Nayegandhi, 2018; Polidori and El Hage, 2020). The most common 

reference datasets used for the evaluation of DEMs are elevation data from GNSS, topographic maps, 

data from ground surveying or other DEM products (Mesa-Mingorance and Ariza-Lopez, 2020). 

According to Mesa-Mingorance and Ariza-Lopez (2020) almost 90 % of evaluations are conducted with 

point-based or grid-based datasets. Only minor evaluations were done with linear features, such as 

roads or runways (Becek, 2014; Becek et al., 2016).  

Several common statistical measure formulas are listed in Table 2-3. Basic measures are the mean 

error and the standard deviation. The mean error provides the ability to compare the mean elevation 

of two datasets to detect systematic over- or underestimation of elevations (Fisher and Tate, 2006). 

The standard deviation gives an insight into the variability of the dataset and is a common measure for 

the random error of a dataset (Fisher and Tate, 2006; Höhle and Höhle, 2009). The most common 

statistical measure for the evaluation of DEM accuracy is the root mean square error (RMSE). It is an 

easy to calculate and reliable indicator for the vertical accuracy of DEMs. However, the RMSE assumes 

a normal distribution of errors, which is often not the case for DEMs due to filtering and interpolation 

errors. The presence of many outliers in the dataset can lead to a poor performance of the RMSE 

(Höhle and Höhle, 2009). To overcome this issue, the normalized median absolute deviation (NMAD) 

has been established as a more robust measure against outliers. This measure uses the median of all 

deviations instead of the mean, which is less sensitive to unbiased outliers (Höhle and Höhle, 2009). 

Table 2-3: Common statistical accuracy measures for DEMs. In the table, ∆ℎ�  denotes the elevation difference 

between the assessed DEM and the reference DEM, � is the number of pixels and 
∆� the median of all elevation 

differences. 

Accuracy measure Formula 

Mean error  ! =  ∑ ∆ℎ�#�$%�  

Standard deviation &' =  (∑ )∆ℎ� −  !+�#�$% )� − 1+  

Root mean square error � &! =  (-∑ )∆ℎ�+�#�$% .�  

Normalized median absolute deviation / 0' = 1.4826 × 
789:�)|∆ℎ� − 
∆�|+ 

 

 

2.6.3 Visual accuracy assessment 

Besides a statistical evaluation of DEM accuracy, a qualitative assessment on the reliability of 

represented land surface and relief in the DEM is important. Unlike the quantitative assessment, the 

visual evaluation usually does not have a formalized framework (Mesa-Mingorance and Ariza-Lopez, 
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2020). It is often the initial step in the evaluation process to identify major issues in the DEM. The visual 

evaluation is mostly done visually by reviewing the degree of realism of the relief. Typically, it quickly 

reveals major issues in the DEM and identifies problematic sites. However, it depends on the 

experience of the person who conducts the visual control, as this is an intuitive evaluation approach 

based on human experience without quantitative GCPs. 

DEMs can be visually reviewed in several different ways. A common method is the visual inspection of 

a hillshade derived from the DEM (Maune and Nayegandhi, 2018; Polidori and El Hage, 2020). A 

hillshade is a computed shaded relief created by a hypothetical illumination source at a specific 

position that illuminates the shapes of the landscape. It depends on the relative orientation of the cells 

to the light source. This technique provides a realistic view of the terrain similar to our view on 

landscapes in reality. Hillshades are particularly helpful for the identification of spikes and artefacts 

that cause unrealistic shapes or unwanted noise in the DEM (Figure 2-14) (Arrell et al., 2008; Polidori 

and El Hage, 2020).  

The 2D perspective of a hillshade sometimes suffers from being limited to a single illumination source. 

This leads to features that are not visible to the viewer if they are hidden in the shadowed parts or 

parallel to the light source (Maune and Nayegandhi, 2018; Novak and Ostir, 2021). Therefore, it can be 

beneficial to calculate several hillshades with illumination sources from different perspectives. 

Another possibility to avoid this issue is the creation of a 3D model from the DEM that can be inspected 

in a software program. This allows the reviewer to rotate the data and view it from different 

perspectives. Some issues may be more apparent from additional perspectives than only from the 2D 

‘bird’s eye’ view (Maune and Nayegandhi, 2018).  

 

Figure 2-14: Example of artefacts in the DEM (left image) and hillshade (right image). 

 

2.7 Study areas 

The studies of this contribution have been conducted in three study areas at totally different places in 

the world. The areas are the Atacama Desert in northern Chile, the Rur catchment in western Germany 

and the Iranian Loess Plateau located in the northeast of Iran (Figure 2-15). In order to obtain 

representative results on the accuracy of DEMs, it is necessary to test their suitability in different 

landscapes in terms of land cover and terrain roughness. Hence, the accuracy assessment of the DEMs 

was performed in two study areas that have completely different landscape characteristics.  
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Figure 2-15: Geographic location of the three study areas of this contribution. 

The analyses in chapters 3 and 4 have been conducted in one of the driest areas on Earth. The Atacama 

Desert is located in the administrative areas of Tarapacá and Antofagasta in the northern part of Chile. 

A detailed introduction to this study area is given in section 3.2. It consists of large elevation changes 

from the Pacific coast to the high Andes, resulting in a relatively high average slope steepness. The 

landscape offers a great variety of different relief types from broad and flat areas to very steep and 

dissected zones. A cross-section of the morphodynamical zonation of the area is illustrated in 

Figure 2-16, showing schematically the elevation differences from the Pacific Ocean in the west to the 

high Andes in the eastern part of the area. The area is characterized by very sparse vegetation and the 

absence of any land cover objects in most parts of the area. An impression of the landscape is given in 

Figure 2-17. 

 

Figure 2-16: Schematic cross-section of the physiographic landscape units of the Atacama Desert. 
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Figure 2-17: Landscape of the Chilean Atacama Desert (Picture taken by Dirk Hoffmeister). 

As a second study area for the vertical accuracy assessment of DEMs, the Rur catchment was chosen 

(chapter 5). This study site is mainly located in western Germany in the German Federal State of North-

Rhine Westphalia. The location of the study area and its landscape properties is described in detail in 

section 5.2. It can be described as a typical mid-latitude landscape that is highly different to the 

hyperarid Atacama Desert. The Rur catchment consists of a very diverse land cover with a mixture of 

forested, urban and agricultural areas. The region has mostly flat landscapes in the northern part and 

moderately shaped terrain in the southern part of the catchment. The overall steepness of the Rur 

catchment is lower than in the Atacama Desert study area in Chile. While the Chilean study area has 

an average slope of 4.6°, the average slope of the Rur catchment is significantly lower with 2.1°. Since 

the Rur catchment additionally has a very heterogeneous soil type structure, the analysis of the digital 

soil mapping application in chapter 7 was also carried out in this area. A more detailed description of 

the occurring soils is provided in section 7.2. Figure 2-18 exemplary illustrates the landscape of the 

northern and southern parts of the Rur catchment. 

 

Figure 2-18: Landscape of the Rur catchment. A: panoramic view of the northern part of the catchment with 

mostly flat and rural landscape. B: landscape of the southern part of the catchment with predominantly undulated 

and forested areas. 
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The analysis on the application of landform classifications from DEMs in chapter 6 was carried out in 

two small areas situated in the Iranian Loess Plateau. Both areas are located about 15 km apart and 

have a size of 100 km² each. The Loess Plateau is located in the province Golestan in the northeast of 

Iran near the state border of Turkmenistan. The area mainly consists of deposited quaternary 

sediments. In addition to the deposition of marine and fluvial sediments, mainly loess was deposited 

there during the last glacial cold periods (Ehlers, 1980; Frechen et al., 2009). Loess is a homogeneous 

and mostly unstratified light yellowish sediment, which was mostly formed and aeolian deposited 

during the Quaternary glacial (Pécsi and Richter, 1996). After the deposition of loess sediments, the 

landscape of the Iranian loess plateau was mainly formed by extensive erosion processes during the 

Holocene that have led to the development of a very small-scale differentiated relief (Kehl, 2010). 

Nowadays, the western part of the study area consists of a hilly landscape, which is dissected by a large 

number of narrow v-shaped valleys with steep slopes. The eastern part of the study area has a flatter 

relief characteristic with several valleys of different widths cut into the relief. A detailed overview of 

the study areas is provided in section 6.2. The characteristics of the landscape is illustrated in Figure 2-

19. 

 

Figure 2-19: Landscape of the Iranian Loess Plateau. A: western study area with a multitude of hills and narrow 

valley incisions. B: eastern study area with a more levelled relief and broader incised valleys cut into the landscape 

(Pictures taken by Dirk Hoffmeister).  
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Abstract: Many geoscientific computations are directly influenced by the resolution and accuracy of 

digital elevation models (DEMs). Therefore, knowledge about the accuracy of DEMs is essential to 

avoid misleading results. In this study, a comprehensive evaluation of the vertical accuracy of globally 

available DEMs from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 

Shuttle Radar Topography Mission (SRTM), Advanced Land Observing Satellite (ALOS) World 3D and 

TanDEM-X WorldDEM™ was conducted for a large region in northern Chile. Additionally, several very 

high resolution DEM datasets were derived from Satellite Pour l’Observation de la Terre (SPOT) 6/7 

and Pléiades stereo satellite imagery for smaller areas. All datasets were evaluated with three 

reference datasets, namely elevation points from both Ice, Cloud, and land Elevation (ICESat) satellites 

as well as very accurate high resolution elevation data derived by unmanned aerial vehicle (UAV)-based 

photogrammetry and terrestrial laser scanning (TLS). The accuracy was also evaluated with regard to 

the existing relief by relating the accuracy results to slope, terrain ruggedness index (TRI) and 

topographic position index (TPI). For all datasets with global availability, the highest overall accuracies 

are reached by TanDEM-X WorldDEM™ and the lowest by ASTER Global DEM (GDEM). On the local 

scale, Pléiades DEMs showed a slightly higher accuracy as SPOT imagery. Generally, accuracy highly 

depends on topography and the error is rising up to four times for high resolution DEMs and up to 

eight times for low resolution DEMs in steeply sloped terrain compared to flat landscapes. 

Keywords: accuracy assessment; digital terrain model; stereo satellite imagery; topography; terrestrial 

laser scanning; topographic position index; terrain ruggedness index; unmanned aerial vehicles 

 

3.1 Introduction 

Relief plays a main role for numerous geomorphological, climatic, hydrologic and ecologic processes. 

Therefore, a detailed understanding of the prevailing terrain conditions is essential (Wilson, 2012). 

Nowadays, geomorphometric relief information is available by digital elevation models (DEMs), which 

provide a 2.5D digital representation of the Earth’s relief using regularly spaced elevation data. 

The first digital elevation datasets with a global coverage were DEMs from the Shuttle Radar 

Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) with a resolution of 30 m, which have revolutionized the use of DEMs (Farr et al., 

2007; Tachikawa et al., 2011). While analyses in former times only were possible for small areas, these 

DEMs enabled the possibility of analysing larger surface areas up to almost the whole Earth. In recent 

years, the Advanced Land Observing Satellite (ALOS) World 3D as a third global DEM with a ground 
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sampling distance (GSD) of 30 m was made publicly available (Tadono et al., 2014; Takaku et al., 2014). 

The most recent dataset with global coverage is the TanDEM-X WorldDEM™ dataset with a GSD of 

12 m, which is expected to be the new standard in geometric resolution and accuracy (Krieger et al., 

2007; Rizzoli et al., 2017). However, all of these DEMs usually are less accurate and capture less terrain 

details due to lower GSD in comparison to very high resolution elevation models derived by stereo 

satellite imagery. These datasets normally have a higher GSD and vertical accuracy. However, they are 

often not suitable for larger areas due to high costs and time-consuming processing. Therefore, these 

are only usable for large scale analyses. 

Elevation models generally enable the possibility of a quantitative characterization of relief and are 

used by geomorphometry as a multifaceted interdisciplinary subject in a multitude of different 

scientific fields (Sofia et al., 2016). Hence, DEMs are widely used sources in numerous geospatial 

studies for the terrain-based identification of environmental features. Many studies about landform 

distribution analyses (Dragut and Blaschke, 2006; Huang et al., 2018; Kramm et al., 2017; Mokarram 

et al., 2015; Newman et al., 2018b), geomorphology (Bishop et al., 2012) and the human impact on 

geomorphology (Tarolli and Sofia, 2016) were conducted. Furthermore, in the field of hydrology DEMs 

are required for stream network analysis (Drisya and Kumar, 2016; Schwanghart et al., 2013) and 

groundwater flow modelling (Rossman et al., 2018). Terrain features derived by DEMs are also used as 

a predictor for digital soil mapping (Guo et al., 2019; Kalambukattu et al., 2018; Marques et al., 2018). 

Additionally, DEMs are crucial for ecological analysis, such as vegetation and plant distribution 

research (Kellndorfer et al., 2004; Leempoel et al., 2015; Moudry et al., 2018). Climatic issues, like the 

observation of glacier changes (Blaszczyk et al., 2019), sea-level rise (Gesch, 2018) or climatic modelling 

(Mmbando and Kleyer, 2018), are also fields of application where terrain information is needed. 

All of these applications have raised increasing needs for accessible DEMs of higher resolution and 

accuracy. However, if the process or object of interest is spatially smaller than the GSD of the utilized 

elevation datasets, the risk of misleading results increases (Goodchild, 2011). Likewise, it is well known 

that the GSD of a digital elevation model directly influences derived terrain variables, such as slope or 

aspect. For instance, Kienzle (2004) showed that the mean slope can differ from 13.9 % on a 50 m grid 

to 8.8 % on a 250 m resolution DEM. This effect even increases for higher resolutions and steeper 

terrain. Zhang and Montgomery (1994) derived mean slope differences of up to 24 % between a 2 m 

and a 90 m DEM for the same area. Kramm et al. (2017) showed that the accuracy of detected 

landforms can range up to 30 % for the same algorithm and area by using DEMs in different resolutions. 

Likewise, also different DEMs with the same grid size result in significant differences in the delineated 

landforms. 

Thus, the effects of scale and the impact of the DEMs GSD when deriving topographical features are 

well documented (Deng et al., 2007; Kim and Zheng, 2011; Smith et al., 2006; Sörensen and Seibert, 

2007) and also the first techniques for multiscale analysis are available (Grohmann et al., 2011; Lindsay 

et al., 2015; Newman et al., 2018a). Furthermore, it is crucial to analyse the accuracy of DEMs in order 

to select the most suitable one regarding the aim, accuracy and scale of the study. Large-channel 

profiles over wide distances are easily possible to identify even with 90 m resolution data, landscapes 

on large scales require elevation data with 1 – 30 m GSD for a successful identification of individual 

hillslopes and ridges (Grieve et al., 2016a; Grieve et al., 2016b). However, a DEM with a higher GSD is 

not always advantageous, as elevation models with a very high resolution can depict too many details, 

which are not relevant for the study. 
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In recent years, numerous studies have investigated the accuracy of available DEMs. Much research 

was already done on the accuracy of SRTM and ASTER Global DEM to examine their performance in 

different situations and sites (Mukherjee et al., 2013; Rexer and Hirt, 2014; Satge et al., 2015; 

Suwandana et al., 2012b; Zhao et al., 2011). All of these investigations indicate that the expectable 

root mean square error (RMSE) for the ASTER GDEM is about 3 – 4 m in flat terrain and 7 – 8 m with 

up to 16 m (RMSE) in steeper relief. For the SRTM1 DEM, the results show an average error of 3 – 4 m 

in flat landscapes up to 7 – 8 m in mountainous areas. Additionally, the accuracy of the newer ALOS 

World 3D (Caglar et al., 2018) and the TanDEM-X WorldDEM™ (Altunel, 2019; Wessel et al., 2018; 

Zhang et al., 2019a) was assessed by comparing them with various reference datasets. Several studies 

directly compared the performance of different global elevation models in various geographical 

settings. The accuracy of the 30 m resolution DEMs from SRTM, ASTER Global DEM and ALOS W3D was 

assessed by many studies (Alganci et al., 2018; Florinsky et al., 2018; Hu et al., 2017; Jain et al., 2018; 

Li and Zhao, 2018; Yahaya and El Azzab, 2019). They indicate a slightly higher accuracy of ALOS W3D 

in comparison to SRTM and ASTER GDEM. The result showed an average error of 2 – 3 m (RMSE) in flat 

terrain and 6 – 7 m (RMSE) in steeper sloped landscapes for the ALOS W3D. However, less studies are 

available yet that compare the performance of the newly available TanDEM-X WorldDEM™ with other 

globally available DEMs. Some studies investigated the accuracy of TanDEM–X WorldDEM™ with 

elevation models from SRTM and ASTER Global DEM (Becek et al., 2016; Pipaud et al., 2015; Podgorski 

et al., 2019). Others compared the accuracy of SRTM, ASTER GDEM, ALOS World 3D and TanDEM-X 

WorldDEM™ for coastal relief settings (Gesch, 2018; Zhang et al., 2019b) or for relatively small areas 

(Grohmann, 2018; Purinton and Bookhagen, 2017). They all showed a relatively high performance of 

the TanDEM-X WorldDEM™, which is mostly superior to the accuracy of the 30 m global DEMs. The 

results indicate an average error of less than 3 m for the 12 m TanDEM-X WorldDEM™, but some recent 

studies also showed weaknesses of this DEM in very steep terrain (Podgorski et al., 2019).  

Nevertheless, a comprehensive analysis of the accuracy of all four global DEMs over large areas is still 

missing. Furthermore, fewer studies evaluated the accuracy of DEMs on different scales and compared 

them to very high resolution elevation models derived by stereo satellite imagery. Alganci et al. (2018) 

included some local DEMs derived from Satellite Pour l’Observation de la Terre (SPOT) and Pléiades 

satellite imagery in their study of an urban area with anthropogenic landscape. Thus, an analysis of the 

performance of these DEMs in a landscape which is not anthropogenic influenced is still missing. 

The goal of this study is to conduct a comprehensive accuracy assessment on the vertical accuracy of 

a multitude of different DEMs, both for a regional coverage and for local coverages. The regional 

coverage for the selected study area, the Atacama Desert in northern Chile, is given by datasets with 

nearly global coverage, namely the TanDEM-X WorldDEM™, ASTER Global DEM, ALOS World 3D and 

SRTM DEM. Local areas are covered by DEMs derived from stereo-satellite imagery recorded by SPOT 

6/7 and Pléiades satellites with areas of 100 to 400 km². The accuracy assessment was performed with 

three control datasets, which are the light detection and ranging (LiDAR)-based elevation points from 

both Ice, Cloud, and land Elevation (ICESat) satellites and very accurate high resolution elevation data 

derived by unmanned aerial vehicle (UAV)-based photogrammetry as well as terrestrial laser scanning 

(TLS). The accuracy analysis is based on the root mean square error (RMSE) and normalized median 

absolute deviation (NMAD). Furthermore, fewer studies have systematically investigated the influence 

of different terrain conditions on the vertical accuracy of DEMs. Some work has been done to 

investigate the appropriateness of DEMs for delineating different landforms (Pipaud et al., 2015) and 

the relationship of DEM errors in correlation to various landform types and altitudes (Liu et al., 2019). 
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Additionally, the accuracy of DEMs for several small areas with plain, hilly and mountainous terrain 

(Hu et al., 2017) and with different slopes (Podgorski et al., 2019) was assessed. Nevertheless, more 

information about the impact of relief over larger areas on the vertical accuracy of DEMs is necessary. 

Thus, in this study the accuracy is addressed and evaluated with regard to the existing topography by 

linking terrain ruggedness index (TRI), topographic position index (TPI) and slope to error values, as the 

terrain has a direct influence on accuracy (Grohmann, 2015; Holmes et al., 2000; Mukherjee et al., 

2013). 

 

3.2 Study area  

The study was conducted in the northern part of Chile (Figure 3-1). The area covers the Chilean part of 

the Atacama Desert, represented by the administrative regions of Tarapacá and Antofagasta. The 

region, which is one of the driest areas on Earth, is characterized by its hyperarid climate with less than 

10 mm/year rainfall on average (Houston and Hartley, 2003) lying in the ‘Arid Diagonal’ of South 

America. This hyperaridity of the Atacama is caused by a combination of subtropical subsidence, 

coastal upwelling of the cold Humboldt current and rain-shadow effects of the high Andes (Hartley et 

al., 2005), which might have been established since the mid-Miocene or earlier (Dunai et al., 2005).  

The relief shows large height differences from the coast of the Pacific to the mountains of the Andes 

with altitudes up to 6700 m above sea level. Furthermore, the study area consists of a diverse 

topography with steep, seaward cliffs and deeply incised canyons as well as large alluvial fans and 

volcanos in the mountain range of the Andes. Thus, the landscape offers a cross-section of different 

relief types from flat and broad landscapes to steep and dissected terrain with hardly any vegetation 

cover. The morphodynamic zonation of the Atacama from west to east is described by the coastal 

ranges with the coastal cordillera reaching up to 2500 m above sea level, the central depression at 

about 1000 m above sea level and the pre-Andean or western cordillera, as well as the Altiplano 

(≈ 3800 m above sea level). DEMs are for instance used for geomorphometric analysis of alluvial fans 

at the coastal range (Walk et al., 2020) as well as the geomorphometric characterization of the unique 

so-called zebra stone stripes, described as contour-parallel bands of dark gravels with contrasting 

bands of fine-grained soil (May et al., 2019). 

 

3.3 Materials and methods 

3.3.1 Global digital elevation models (GDEMs) 

The accuracy of several DEMs with a global coverage was validated in this study that is described in 

the following sections. Except for the 12 m TanDEM-X WorldDEM™, all utilized DEMs are freely 

available. All of these DEMs were evaluated for an area of around 190,000 km2 (Figure 3-1). To make 

the heights of all DEMs comparable, a conversion to the same vertical datum is essential. Therefore, 

in this study all elevation models were converted to the World Geodetic System 1984 (WGS84) 

ellipsoid as the vertical datum. 
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Figure 3-1: Overview map of the study area and locations of digital elevation models (DEMs) and ground truth 

data. Map is based on Shuttle Radar Topography Mission (SRTM) elevation data. 
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3.3.1.1 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM 

The ASTER Global DEM was produced by processing the entire optical imagery archive from the ASTER 

sensor onboard of National Aeronautics and Space Administration’s (NASA) Earth Observing System 

Terra satellite, which was launched in December 1999 (Abrams et al., 2010; Tachikawa et al., 2011). 

The mission’s aim was primarily to collect multispectral data of the Earth, but in addition to the 

multispectral bands, the ASTER sensor has a near infrared sensor that is inclined by 27.6° and enables 

stereoscopic recording according to the ‘as-track’ principle (Hirano et al., 2003). 

A first version of this dataset was released for open access in June 2009 by the NASA and the Japanese 

Ministry of International Trade and Industry covering all land areas from 83°N to 83°S latitude. The 

second version was released in October 2011 with a GSD of 1 arc-second (≈ 30 m). It includes additional 

scenes from 2008 to 2011 and an improved water mask to achieve various improvements in the overall 

accuracy and to reduce artefacts mainly caused by cloud edges (Tachikawa et al., 2011). The last 

update was created by including even more Level 1-A ASTER scenes acquired between March 2000 

and November 2013 and conducting a more effective cloud masking to reduce artefacts. Furthermore, 

voids were filled with additional data from SRTM1 and the Global Multi-resolution Terrain Elevation 

Data 2010 (GMTED2010) for most areas of the world. The average vertical accuracy of the ASTER GDEM 

Version 3 was estimated with a standard deviation of 12.1 m, which is 0.5 m superior to the prior 

version (Abrams and Crippen, 2019).  

The utilized ASTER GDEM Version 3 in this contribution was originally referenced horizontally to the 

WGS84 and vertically to the Earth Gravitational Model 1996 (EGM96). Thus, the DEM was converted 

to WGS84 ellipsoid with a calculated raster of the undulation between EGM96 geoid and WGS84 

ellipsoid for the whole region. The creation of the undulation raster was done with the software MSP 

GEOTRANS v.3.8. To do so, a net of points that were equally distributed over the whole area was 

created for which the undulation was calculated by the software. Subsequently, a raster was processed 

by interpolating the undulation points with Kriging algorithm. Finally, the heights of the undulation 

raster were added to the ASTER GDEM heights. 

 

3.3.1.2  Advanced Land Observing Satellite (ALOS) World 3D 

The ALOS was launched in 2006 by the Japan Aerospace Exploration Agency (JAXA). Onboard the 

satellite was the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) sensor that 

operated from 2006 to 2011 with the aim to generate global elevation data from along-track triplet 

stereoscopic panchromatic images with 2.5 m GSD (Tadono et al., 2009; Takaku et al., 2014). During 

the sensor´s operation time, approximately 6.5 million scenes, covering the entire globe, were 

produced that were used to generate a global DEM with a GSD of 5 m. To check data quality during 

the generation process, an automatic check by comparing the data with reference information of 

ICESat GLAH14 heights and SRTM as well as by visual human interpretations was conducted to achieve 

a target height accuracy of 5 m (Takaku et al., 2014). Besides the 5 m DEM that is only distributed 

commercially, JAXA released a freely available 1 arc-second (≈ 30 m) ALOS DEM for non-commercial 

purposes in 2016, which was produced by resampling the original 5 m version (Takaku and Tadono, 

2017). The provided ALOS World 3D (W3D) dataset (version 1), which was used in this study, is already 

referenced to WGS84 horizontal and WGS84 ellipsoidal vertical datum. Therefore, no further 

georeferencing was necessary for this dataset. 
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 3.3.1.3  Shuttle Radar Topography Mission (SRTM) 

While the previously presented ASTER and ALOS DEMs were generated by passive remote sensing 

techniques, the SRTM recorded actively the Earth’s surface in February 2000 with two synthetic 

aperture radar systems. A C-band system (5.6 cm, SIR-C), operated by NASA’s Jet Propulsion Laboratory 

(JPL), and a X-band system (3.1 cm, X-SAR), controlled by the German Aerospace Centre (DLR) and the 

Agenzia Spaziale Italiana (ASI, Italy), scanned the Earth for 11 days with the aim to map its topography 

between latitudes 60°N and 60°S (Farr et al., 2007). 

A first global DEM version of the C-band data was released by the USGS in 2003 with a GSD of 3 arc-

seconds. Furthermore, a DEM with 1 arc-second resolution was made available, but at first only for the 

US. For the rest of the world, SRTM DEM data with 1 arc-second resolution followed in 2015. Since 

their initial release, the SRTM-1 and SRTM-3 datasets have been continuously improved in several 

versions. In 2003, the data was initially published unprocessed, i.e. they contained regions without 

data or with incorrect elevation information. Furthermore, any processing of coastlines and water 

bodies was missing, which took place in a revised second version. In a third revised version, regions 

without data were filled mainly with elevation data from ASTER GDEM2 (Rodríguez et al., 2005). For 

the SRTM-3 dataset, a 4th version was processed by the Consultative Group of International Agricultural 

Research-Consortium for Spatial Information (CGIAR-CSI), which used various interpolation techniques 

described by Reuter et al. (2007) and extra auxiliary DEM data for void filling.  

The overall accuracy of the SRTM DEM is determined by Farr et al. (2007) with an absolute vertical 

height error of 6.2 m and a relative height error of 5.5 m for South America. The horizontal positional 

accuracy was assessed with an absolute geolocation error of 9.0 m. In this contribution, the SRTM-1 

version 3 DEM with a GSD of 30 m and a SRTM-3 version 4.1 dataset with 90 m resolution were used. 

Both are referenced horizontally to WGS84 and vertically to the EGM96 geoid. The conversion to a 

vertical WGS84 datum was done analogous as described for the ASTER GDEM dataset. 

 

3.3.1.4  TanDEM-X WorldDEM™ 

The TanDEM-X mission from 2010 to 2015 was launched as a public-private effort between the DLR 

and Airbus Defence and Space to produce a precise global DEM between the latitudes 90°N and 90°S 

with higher accuracy and resolution than the recently existing ones. The Earth was measured from two 

satellites (TerraSAR-X and TanDEM-X) in a controlled orbit with a baseline of 250 – 500 m with X-band 

RADAR interferometry (InSAR) (Rizzoli et al., 2017; Wessel, 2016). The TanDEM-X WorldDEM™, which 

is subsequently denoted as ‘TanDEM-X’, was produced in the original version with 0.4 arc-seconds 

(≈ 12 m) GSD as a commercial product of the TanDEM-X mission. The DEM heights were calibrated 

with heights of the ICESat GLA14 data product (Wessel et al., 2018). Furthermore, a 1 arc-second 

(≈ 30 m) version was generated from the unweighted mean values of the underlying 12 m pixels 

(Wessel, 2016). Additionally, a 3 arc-seconds (≈ 90 m) elevation model has been released by the DLR 

in 2018, which is free of charge for use in academic research. This DEM was also created by resampling 

the original 0.4 arc-second dataset. 

The originally intended accuracy for the produced TanDEM-X DEM was an absolute error of less than 

10 m in horizontal and vertical direction (Grohmann, 2018; Rizzoli et al., 2012; Wessel et al., 2018). 

Several studies showed that the DEM product reaches this goal (Rizzoli et al., 2017; Wessel et al., 2018). 
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However, they indicate that the accuracy is even higher than originally assumed. For the 90 m DEM, 

only few studies are available yet that investigated its accuracy, but they suppose a higher accuracy 

than the SRTM 90 m DEM (Altunel, 2019; Keys and Baade, 2019). In this study, the TanDEM-X DEM was 

used in two different resolutions of 12 m and 90 m. The horizontal datum for both DEMs is WGS84 and 

the heights were already referenced to WGS84 ellipsoid heights. 

 

3.3.2 Local digital elevation models 

In addition to the globally available elevation models with lower spatial resolution, 10 elevation models 

were derived from Pléiades satellite stereo imagery, seven DEMs from SPOT 6 and four from SPOT 7 

satellite imagery. The DEMs are distributed over the whole area, depicted in Figure 3-1, and each DEM 

covers an area of about 100 – 400 km2. These datasets were processed with the software PCI 

Geomatica 2018 OrthoEngine with automatic ground control point (GCP) and tie-point collection. For 

the GCP collection process, an additional orthorectified image was used to improve the accuracy of 

extracted GCPs. The orthorectified image was calculated with provided rational polynomial 

coefficients (RPCs) information and elevation data from the TanDEM-X 12 m DEM to reduce 

topographical distortions in the original satellite images. For each dataset, around 80 GCPs and 50 tie-

points were extracted. The points were checked manually to receive a calculated residual error of less 

than 1 m (RMSE). All derived elevation models were resampled to 5 m during the generation process 

to avoid small artefacts in the DEM product. 

 

3.3.2.1  Pléiades 

The Pléiades system consists of a constellation of two satellites operated by the French Space Center 

(CNES) and ASTRIUM GEO-Information Services. The first satellite (Pléiades 1A) was brought into a sun-

synchronous orbit on 16 December 2011. The second one (Pléiades 1B) followed on 2 December 2012 

(Astrium GEO-Information Services, 2012). Both satellites are equipped with optoelectronic, charge-

coupled device (CCD) scanners, which scan the Earth’s surface transversely to the direction of flight 

and convert the measured radiation into a measurable electrical signal. It is recorded in a panchromatic 

channel and four multispectral channels, each with five line sensors (de Lussy et al., 2006; Gleyzes et 

al., 2012). The line sensors of the panchromatic sensor have a width of more than 6000 pixels and the 

multispectral sensors have a resolution of 1500 pixels. Thus, the satellite achieves a GSD of 0.5 m in 

the panchromatic channel and 2 m in the multispectral channels (Astrium GEO-Information Services, 

2012). The Pléiades satellites thus belong to the satellite systems with a very high GSD. The positional 

accuracy is indicated with 8.5 m at nadir and 10.5 m within an angle of 30°. Due to the high agility of 

the satellites, the Pléiades system is able to acquire three or more nearly synchronous images of the 

same area (Poli et al., 2013; Rieg et al., 2018). 

 

3.3.2.2  SPOT 6/7 

The SPOT 6 satellite was launched in 2012 by EADS Astrium, SPOT 7 followed in 2014. Both satellites 

operate with high resolution pushbroom sensors and record images in one panchromatic channel and 

four multispectral channels. They are able to produce images with a GSD of 1.5 m in the panchromatic 

and of 6 m in the multispectral channels (ASTRIUM, 2013). They also have the capability of tri stereo 
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imaging. The expectable geolocation accuracy for SPOT image products with primary standard, which 

are also used in this study, is stated with a circular error of less than 10 m at the 90th percentile 

(ASTRIUM, 2013). 

 

3.3.3 Ground truth elevation data 

For a vertical accuracy assessment, highly accurate evaluation data is necessary that should be at least 

three times more accurate than the evaluated dataset (Maune and Nayegandhi, 2018). In this study, 

the evaluation check was conducted by comparing the DEM heights with several highly accurate 

elevation data, which are described in the following. 

 

3.3.3.1 Ice, Cloud, and Land Elevation satellite (ICESat) 

The primary goal of NASA’s ICESat mission was to observe the cryosphere and to measure changes in 

the polar ice sheet mass balance (Schutz et al., 2005). One of the utilized instruments of the ICESat 

satellite is the Geoscience Laser Altimeter System (GLAS), which has a 1064 nm laser channel for 

surface altimetry measurements (Zwally et al., 2002). It operated between February 2003 and October 

2009 and the surface elevation data was measured during two to three observation periods each year 

of about 1 month each. The laser footprints have 172 m spacing along-track and approximately 42 km 

cross-track spacing (Schutz et al., 2005; Zwally et al., 2002). 

During its operation period, ICESat has acquired a huge database of raw and processed data organized 

in 15 data products. Of interest for this contribution is the 14th product ICESat/GLA14 data as this 

dataset contains highly accurate elevation data with a vertical accuracy of 0.1 m for flat locations and 

1 m for undulated terrain (Duong et al., 2009; Schutz et al., 2005). Thus, several studies showed a 

successful vertical accuracy assessment over a broader regional extent with ICESat data (Huang et al., 

2011; Zhao et al., 2017). 

The originally provided ICESat/GLA14 land surface elevation data points were referenced to the 

Topex/Poseidon ellipsoid. To make them comparable with the elevation models of this study, a 

conversion to the WGS84 ellipsoid was conducted by using Equation (3-1) (Baghdadi et al., 2011).  

ℎ<=>?@ = ℎABCDE − 0.707 
                                   (3-1) 

To detect outliers, e.g. from cloud reflections, all ICESat points with a height difference value greater 

than 60 m compared to the TanDEM-X heights were eliminated prior to the evaluation. Finally, a total 

number of around 450,000 points was used to evaluate the accuracy of the regional elevation models. 

Their locations are depicted in Figure 3-1. For the local elevation models, an average number of 500 

elevation points was used for each scene. Scenes with less than 50 points were not evaluated in this 

study. Therefore, for 12 local DEMs no accuracy assessment with ICESat points was possible due to 

insufficient availability of elevation points. 

  



Chapter 3: A relief dependent evaluation of digital elevation models on different scales for northern Chile 

 

 
42 

 

3.3.3.2 ICESat-2 

The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) was launched in September 2018 as the follow-

on mission for ICESat (Markus et al., 2017; Neuenschwander and Pitts, 2019). It collects altimetry data 

from the Earth’s surface with the Advanced Topographic Laser Altimeter System (ATLAS) instrument, 

which is a LiDAR system with a photon-level detection sensitivity. The outgoing single laser beam 

(532 nm) is split into three pairs of beams spaced approximately 3.3 km apart with a 90 m distance 

within the pairs. Furthermore, the laser emits a pulse signal every 0.7 m (Neuenschwander and Pitts, 

2019). Therefore, it has a denser sampling and point coverage in comparison to its predecessor. 

For accuracy assessment, the measured terrain heights of the ATL03 and ATL08 version 001 products 

were used in this study. The ATL03 product contains height information of all received photons with a 

point density of 0.7 m along each track. All heights of the ATL08 dataset are processed in fixed 100 m 

data points along-track that contain at least 50 signal photons. They include the best fit terrain 

elevation of each 100 m segment calculated by interpolating all photons within the segment. Only a 

few studies about the accuracy of these datasets are available yet. The terrain height accuracy of the 

ATL08 best fit dataset was denoted with a RMSE of 0.82 m for a large region in Finland 

(Neuenschwander and Magruder, 2019). 

Prior to the accuracy assessment, all points in both datasets were eliminated that differ more than 

30 m from TanDEM-X 12 m DEM heights. In this study a total of around 400,000 points were used from 

the ATL03 dataset and of around 650,000 points from the ATL08 dataset to evaluate the accuracy of 

the regional elevation models (Figure 3-1). For each local DEM, between 800 and 270,000 additional 

ATL03 points were used for evaluation. From the ATL08 dataset, an average number of 500 height 

points were used to evaluate each scene. The datasets were already provided with WGS84 horizontal 

and WGS84 ellipsoidal vertical datum. Therefore, no further georeferencing was required for this 

study. 

 

3.3.3.3 Very High Resolution DEMs Derived by Unmanned Aerial Vehicle (UAV) 

To evaluate the accuracy of the DEMs for large scale terrain, the height accuracy was compared to 19 

elevation models derived with UAV-based photogrammetry with very high resolution. Figure 3-2 gives 

an overview about the covered terrain by these DEMs. They were achieved by imagery captured with 

two different systems. First, a 12 megapixel FC330 camera and a 20 mm full frame equivalent lens, 

fixed by a shock-absorbent gimbal on a rotary-wing quadrocopter (type: DJI Phantom 4), set to capture 

images every 10 secs. The camera was set to shutter speed priority (1/1000) with ISO-100. Second, an 

octocopter (type: Mikrokopter MK-Easy) with a 36.4 MP full-format Sony Alpha 7R with a Sony 28 mm 

lens (type: SEL28f20) was applied.  

Flights at all sites were manually conducted between 10 am and 12 am local time on cloud-free days 

in a line-based pattern at two different heights, flying slower than 2.5 ms−1 to improve the accuracy of 

planimetry and altitude. Missions result in a high overlap of > 9 images per point. Subsequent image 

processing was conducted with AgiSoft Photoscan Professional (vers. 1.4.2). Images were mostly 

aligned using evenly distributed GCPs measured by real-time kinematic (RTK) positioning (type: Topcon 

GR5) and at 7 sites the direct Global Positioning System (GPS) measurements of the UAV recorded for 

each image were used. Processing in ultra-high quality for the dense point cloud generation resulted 
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in a GSD of 1 cm to 8 cm for the DEM and each scene covers an average area of about 0.04 km2. Average 

errors range from 3 cm to 1.5 m for the datasets without GCPs in the horizontal direction and 3 cm to 

1 m in the vertical direction. All data was exported in WGS84 UTM Zone 19S (EPSG: 32719). To evaluate 

the vertical accuracy of all DEMs, their GSD was up-sampled to the resolution of the UAV elevation 

models. Then, pixel-wise errors were derived by subtracting the heights of UAV derived DEMs from 

the other elevation models. 

 

Figure 3-2: Perspective view of the covered relief of the 19 unmanned aerial vehicle (UAV) digital elevation 

models. Depicted relative altitudes of the raster datasets are from low (green) to high (red). 

 

3.3.3.4 Terrestrial laser scanning  

The topography at several areas (see Figure 3-1) was recorded by a terrestrial laser scanner (type: Riegl 

VZ-2000) in combination with the same RTK positioning system (type: Topcon GR5) for registration of 

the final point cloud. The derived raw point clouds were filtered and afterwards interpolated by inverse 

distance weighting to a raster dataset with a 50 cm cell size in ArcGIS Pro 2.2.4 (Environmental Systems 

Research Institute) for the estimation of the statistics comparable to the other analyses. The covered 

terrain of these raster datasets is depicted in Figure 3-3. In addition, subsampled point clouds with a 

similar mean point distance were compared with raster datasets in CloudCompare and analysed by 

the M3C2 algorithm in order to calculate detailed, reliable differences (Lague et al., 2013).  
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Figure 3-3: Perspective view of the covered relief of the four terrestrial laser scanning (TLS) derived elevation 

raster datasets. Depicted relative altitudes of the raster datasets are from low (green) to high (red). 

 

3.3.4 Accuracy assessment 

To assess the quality of the digital elevation models, the deviation of height differences was calculated 

against all previously presented datasets. At first, the root mean square error for all digital elevation 

models compared to each available ground truth dataset was calculated from height differences with 

the following equation: 

� &! =  H-∑ )∆hi+2n
i=1 .

n
                                          (3-2) 

 where  
 ∆ℎ�= elevation difference between assessed DEM and reference DEM. 
  � = number of pixels. 
 
Additionally, the normalized median absolute deviation was conducted as height differences tend to 

be not normal distributed and this is a more robust measure against outliers (Höhle and Höhle, 2009). 

The equation is: 

/ 0' = 1.4826 × 
789:�)|∆ℎ� − 
∆�|+                             (3-3) 

where 
  ∆ℎ�= elevation difference between assessed DEM and reference DEM. 
 
∆� = median of all elevation differences. 
 

If error values are normally distributed, the NMAD is identical to the RMSE, otherwise the RMSE will 

be larger than the NMAD. 

 



Chapter 3: A relief dependent evaluation of digital elevation models on different scales for northern Chile 

 

 
45 
 

Accuracy values are only comparable if they can be related to the existing relief, since it is evident that 

different landscapes affect the accurateness of DEMs (Mukherjee et al., 2013). Therefore, a relief-

adjusted evaluation of the ICESat heights was conducted by relating the accuracy of digital elevation 

models to specific terrain characteristics. In order to achieve this, several terrain parameters were 

calculated. First, the TRI was computed and divided into seven classes after Riley et al. (1999) from 

levelled surfaces to extremely rugged terrain. Second, the slope was calculated and classified into five 

classes from flat (<5°), gentle (5°–15°), moderate (15°–25°), steep (25°–35°) to extreme (>35°). 

Additionally, the TPI after Weiss (2001) was computed to assign the height errors to specific landforms. 

The number of classes was reduced to seven by combining the three ridge classes and two drainage 

classes into one class each. The TPI evaluation was only conducted for all global available datasets as 

the coverage region of the others was too small to gain enough evaluation data for all classes. All 

landforms and terrain features were derived over the whole region on the basis of the 12 m TanDEM-X 

elevation model (see Figure 3-4). 

 

Figure 3-4: Spatial distribution of extracted terrain features slope, terrain ruggedness index (TRI) and topographic 

position index (TPI). Map is based on SRTM elevation data. 
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3.4 Results 

3.4.1 Overall accuracies 

All determined overall accuracies are presented in the Appendix Table 3-1 and Figure 3-5. Mostly, they 

show similar results for each dataset compared to all reference data. The ICESat-2 ATL08 dataset 

generally produced the highest error values for the DEMs in comparison to the other reference 

datasets. For the TanDEM-X 90 m and the SPOT 125 datasets in particular, a very high RMSE (13.9 m 

and 11.6 m) was calculated. Overall, for 17 DEMs the highest RMSE and for 21 DEMs the highest NMAD 

values were calculated with the ICESat-2 ATL08 dataset. For the UAV data, the lowest differences 

between RMSE and NMAD values can be observed for most datasets in comparison to all ICESat and 

TLS datasets. While the mean difference between RMSE and NMAD values is 0.4 m for the UAV dataset, 

it is more than 1.7 m for the other datasets. The highest differences between RMSE and NMAD can be 

observed for the TLS point cloud dataset with a mean difference of 4.8 m. 

 

Figure 3-5: Comparison of all calculated overall accuracies for each digital elevation model. 
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For all global DEMs, the lowest RMSE and NMAD values are detectable for the TanDEM-X 12 m dataset. 

The highest RMSE of 5.7 m was calculated for TanDEM-X with the ICESat-2 ATL08 dataset, the lowest 

with the UAV dataset (2.0 m). The NMAD is generally lower with values between 0.8 m and 2.2 m. The 

calculated accuracy values for the ALOS W3D dataset are slightly higher with a RMSE between 3.3 m 

and 6.2 m and a NMAD between 2.4 m and 3.3 m. Thus, the ALOS W3D accuracies are higher in 

comparison to the other 30 m datasets. 

The lowest accuracies were detected for the 30 m ASTER GDEM, which also tend to be lower than the 

calculated accuracies of both DEMs with 90 m GSD. The calculated RMSEs for the ASTER GDEM V3 are 

between 5.7 m and 10.9 m and the NMAD ranges between 5.8 m and 9.5 m. The smallest differences 

between RMSE and NMAD are detectable for the SRTM 30 m dataset, with a relatively small range 

between 4.8 m and 6.0 m (RMSE) and 3.2 m and 4.6 m (NMAD). In contrast, for the 90 m TanDEM-X it 

is noticeable that the discrepancy between the calculated RMSE and NMAD values are rather high, 

especially for all three ICESat datasets. The RMSE ranges between 6.4 m and 13.9 m, the calculated 

NMAD between 2.0 m and 6.8 m. Thus, the NMAD values are generally lower compared to the 90 m 

SRTM, which are between 3.0 m and 7.6 m. The calculated RMSEs of the SRTM 90 m dataset are on a 

similar level with values between 5.2 m and 10.1 m. 

The results of the local scaled DEMs, derived by Pléiades and SPOT imagery, showed the highest overall 

accuracies for the SPOT-based Pampa de Tana scene with a RMSE between 1.1 m and 3.3 m. The 

calculated NMAD values for this dataset range between 1.1 m and 1.4 m. For the majority of the local 

DEMs, the calculated RMSE ranges between 2.0 m and 4.0 m and the NMAD between 1.0 m and 3.0 

m. Relatively high RMSE values were calculated for the Pléiades Rio Loa W (9.9 – 11.4 m) and Badlands 

W (7.1 – 11.4 m) datasets. The SPOT Paposo S (15.1 m) and Pléiades Shoreline (13.9 m) datasets also 

achieve very high RMSE values for the ICESat-2 ATL03 dataset. While for the Pléiades Shoreline dataset 

the NMAD is also very high with 9.6 m, it is extremely low (1.0 m) for the SPOT Paposo S DEM. 

Compared to the ICESat-2 ATL08 reference data, the results show for the SPOT 125 DEM the highest 

error values with 11.6 m (RMSE) and 12.3 m (NMAD). However, the error values for this dataset are 

significantly lower in comparison with the ICESat (RMSE: 5.7 m; NMAD: 3.2 m) and ICESAT-2 ATL03 

(RMSE: 3.9 m; NMAD: 3.2 m) dataset. For the Pléiades S DEM, a relatively high RMSE error was 

measured with the TLS point cloud data (RMSE: 8.7 m), whereas it is generally lower for all other 

reference datasets. 

 

3.4.2 Terrain dependent accuracies 

The results depicted in Figure 3-6 show the RMSE and NMAD of all digital elevation models calculated 

with the ICESat reference dataset according to their terrain ruggedness index. The calculation of error 

values was conducted here only for corresponding datasets with at least 10 available elevation points 

for more than one class. All other datasets were not considered. The diagram shows for most elevation 

models only a minor increase of error from class ‘level’ to class ‘highly rugged’. Both DEMs with a 90 

m GSD have a higher increase of uncertainty from class ‘intermediate rugged’ terrain to ‘extremely 

rugged’ terrain. For all elevation models, the biggest loss in accuracy is visible in the category 

‘extremely rugged’. The 90 m TanDEM-X in particular shows a very high accuracy in levelled terrain, 

which is similar to the 12 m TanDEM-X, but in rough terrain the accuracy decreases more than for all 

other DEMs and is even lower than for the SRTM 90 m DEM in ‘extremely rugged’ terrain. The freely 
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available ALOS W3D dataset shows a better overall accuracy and terrain independency than the other 

30 m DEMs. Lowest accuracies were detected for the 30 m ASTER GDEM. Only in category ‘extremely 

rugged’ the 90 m TanDEM-X and 90 m SRTM perform with similar error values. 

 

Figure 3-6: Calculated RMSE and NMAD of elevation differences according to the classified terrain ruggedness 

index from level to extremely rugged. Categorization of classes was conducted after Riley et al. (1999). Classes 

are level (l), nearly level (nl), slightly rugged (sr), intermediate rugged (ir), moderately rugged (mr), highly rugged 

(hr), extremely rugged (er). 

The highest accuracies according to their terrain ruggedness were detected for the high resolution 

Pléiades S DEM in flat and rough terrain. For the Pléiades Rio Loa W and Pléiades Badlands E DEMs, a 

strong increase of RMSE is detectable in the category ‘extremely rugged’, whereas the RMSE is rather 

low for these DEMs in all other categories. Furthermore, the NMAD of these two elevation models in 

the highest category is also rather low and does not show such an increase in error. 
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Figure 3-7 shows the RMSE and NMAD of all elevation models according to their slope. All values were 

calculated against the ICESat reference dataset and only datasets with at least two classes with more 

than 10 reference points are considered here. Similar to the results of TRI classes, an increase in RMSE 

and NMAD values for steeper slopes is observable here. For DEMs with lower GSD, a stronger decrease 

in accuracy is detectable for rising slope gradients. Thus, the results show for the 90 m SRTM (RMSE: 

20.6 m, NMAD 19.6 m) and the 90 m TanDEM-X (RMSE: 22.2 m, NMAD 21.0 m) the highest drop of 

accuracies in steep slope terrain. 

 

Figure 3-7: Calculated RMSE and NMAD of elevation differences according to the slope. Derived slope classes are 

flat (fl), gentle (ge), moderate (mo), steep (st) and extreme (ex).  

Generally, the local DEMs derived from Pléiades and SPOT scenes achieved the highest accuracy 

values. Though, the diagram curves indicate a slightly higher accuracy for Pléiades datasets compared 

to SPOT scenes. For very steep slopes, only the TanDEM-X with a GSD of 12 m is able to achieve similar 

accuracy values (RMSE: 9.7 m, NMAD: 6.0 m) compared to the very high resolution DEMs, which have 

an average accuracy of RMSE 6.6 m and NMAD of 6.1 m here. 
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Figure 3-8 depicts the RMSE and NMAD for all global available DEMs according to their respective TPI 

landform class. The results show for all elevation models the lowest RMSE and NMAD values for the 

class ‘plains’. All other classes achieved significantly lower accuracies. The highest error values were 

determined for the landform classes ‘gully’, ‘drainage’ and ‘ridge’. The highest accuracies are 

calculated for the 12 m TanDEM-X, which also has the lowest error values for class ‘plains’ (RMSE: 

1.0 m, NMAD: 1.1 m) and the highest RMSE for class ‘drainage’ with 5.0 m. For the NMAD calculation, 

the highest error values are determined for the classes ‘gully’ and ‘drainage’ with 2.4 m.  

 

Figure 3-8: Calculated RMSE and NMAD of elevation differences according to topographic position index (TPI) 

classes classified with the 12 m TanDEM-X. 

Again, in comparison to the other 30 m DEMs the ALOS W3D achieved higher accuracies between 

2.4 m (RMSE) and 1.8 m (NMAD) for class ‘plains’ and 6.1 m (RMSE) and 4.8 m (NMAD) for the classes 

‘gully’ and ‘drainage’. The lowest accuracies are generally measured for the 30 m ASTER GDEM with 

values between 7.6 m (RMSE) and 5.9 m (NMAD) for class ‘plains’ and 11.4 m (RMSE) and 9.8 m (NMAD) 

for class ‘gully’. Only the calculated RMSE for the 90 m TanDEM-X DEM was even higher for the classes 

‘gully’, ‘drainage’ and ‘ridge’ with values of 11.7 m, 12.2 m and 11.3 m. The highest NMAD values are 

calculated for the ASTER GDEM in all classes. The biggest differences in accuracy are also observable 

here for the 90 m TanDEM-X elevation model. Whereas its error values are very low for class ‘plains’ 

(RMSE: 1.7 m, NMAD: 0.9 m), these rise significantly for all other classes. 

 

3.4.3 Local scale evaluation 

Figure 3-9 depicts the distribution of errors of each individual UAV scene. The results show for RMSE 

and NMAD that the deviations between the different UAV scenes rise for elevation models with 

coarser GSDs. Thus, the highest range is measured for the TanDEM-X 90 m elevation model with 

calculated RMSE values between 4.4 m and 11.2 m. NMAD values range from 2.8 m to 10.9 m. In 

contrast, the differences for the TanDEM-X 12 m DEM only range between 1.0 m and 4.6 m (RMSE) 

and 0.9 m and 3.0 m (NMAD). For the ALOS DEM, also relatively low variations are detectable with 

RMSEs from 2.1 m to 5.1 m and NMAD values from 1.6 m to 4.2 m. For the very high resolution Pléiades 

and SPOT scenes, varying differences are observable. Especially for SPOT Paposo N, the results show 

relatively large differences that are greater than the differences of TanDEM-X 12 m and ALOS W3D. 

For SPOT 120 and Pléiades S, almost no deviation of the results was measured. 
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Figure 3-9: Distribution of calculated RMSE and NMAD of the individual UAV-derived reference datasets 

compared to elevation models. 

A visual interpretation on a local scale shows that height differences are mainly affected by small scale 

landforms with large height differences at small areas. It is depicted in Figure 3-10 for two example 

sites that DEM heights in depressions tend to be higher than the heights of the reference elevation 

data. In contrast, the heights of ridges and summits tend to be lower in comparison to reference data. 

It can be observed that this effect is increased for the TanDEM-X 12 m DEM compared to the 5 m 

Pléiades S elevation model. All DEMs with a coarser GSD were not at all able to depict the sample 

canyons in a sufficient way. 

 

Figure 3-10: Spatial distribution of elevation differences of Pléiades S and TanDEM-X 12 m data compared to UAV 

reference data at two different sites. Pléiades satellite imagery data: © CNES (2016), Distribution Airbus DS. 

TanDEM-X WorldDEM™ data: © DLR (2017). 
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3.5 Discussion 

The overall accuracies of the global DEMs are within the expected range when comparing them with 

findings from other studies. As the relief of the study area represents a cross-section of flat to very 

steep landscapes, the overall accuracies can be taken as an average error value over a broad landscape. 

Thus, the achieved overall accuracies are lower than those conducted by studies in mostly flat terrain 

(Becek et al., 2016; Caglar et al., 2018; Gesch, 2018; Zhang et al., 2019b). However, the results of these 

studies mostly fit well with the achieved results in flat landscapes. Likewise, the calculated overall 

accuracies in this study are generally higher than findings from many studies with predominantly 

undulated to very steep terrain conditions (Florinsky et al., 2018; Liu et al., 2019; Pipaud et al., 2015; 

Podgorski et al., 2019). Nevertheless, these results are also consistent with the calculated error values 

in very steep terrain. 

Of all globally available elevation datasets, only the 12 m TanDEM-X was able to achieve similar 

accuracies in comparison to the local DEMs derived from Pléiades and SPOT imagery. Also, small-scale 

analyses show that this DEM is able to depict most terrain features compared to the other global DEMs. 

The results are generally consistent with the findings of other studies, which also showed that the 

accuracy of the new TanDEM-X generally outperforms the accuracy of ASTER GDEM and SRTM (Becek 

et al., 2016; Grohmann, 2018; Purinton and Bookhagen, 2017; Zhang et al., 2019b). Only the freely 

available ALOS W3D dataset was able to achieve similar results with only slightly lower overall 

accuracies. In comparison to all 30 m DEMs, the ALOS W3D seems to be superior compared to SRTM 

and ASTER. Therefore, similar findings from other studies can be agreed here (Alganci et al., 2018; 

Boulton and Stokes, 2018). It shows a good agreement with both evaluation scales and is more stable 

over all terrain types, slopes and landforms, only slightly worse than the TanDEM-X 12 m dataset. In 

mountainous areas with steep slopes in particular, the performance of ALOS W3D seems to be far 

superior compared to the other 30 m elevation models. This is probably caused by the fact that it is 

resampled from a higher resolution dataset and still more terrain features remain in the 30 m elevation 

data. Furthermore, optical imagery is often less affected by relief distortions due to usually small 

viewing angles. Nevertheless, the goal of 5 m vertical accuracy for ALOS W3D can only be reached here 

in flat to undulated terrain. In very steep terrain, the uncertainties are still higher. 

Possibly, the high accuracy values of TanDEM-X and ALOS W3D compared to the ICESat dataset are 

affected by the fact that ICESat points were already used for quality assessments during the generation 

process of both elevation models (Gruber et al., 2012; Huber et al., 2009; Takaku et al., 2016). Thus, 

some correlation between these DEMs and the evaluation dataset cannot be excluded. However, the 

results of the evaluation with completely independent elevation data from UAV and TLS 

measurements produced similar results and a significant positive influence of ICESat data on the 

accuracy of both DEMs cannot be observed here. 

The ASTER GDEM achieved the lowest overall accuracies in comparison to all global datasets. 

Furthermore, except for very steep terrain, its accuracies seem to be lower than the accuracies of both 

90 m DEMs. Numerous studies showed that the previous 2nd version of the ASTER GDEM achieved the 

least accurate terrain representation compared to other freely available DEMs (Graf et al., 2018; 

Mouratidis and Ampatzidis, 2019; Rexer and Hirt, 2014; Suwandana et al., 2012a). Although a direct 

comparison of the latest two ASTER GDEM versions was not conducted here, the results indicate that 

also the last update of ASTER GDEM is not able to achieve the accuracies of the other global elevation 

datasets. 
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For all DEMs, a decrease in accuracy in rougher terrain compared to flat landscapes can be observed. 

This effect is particularly stronger for elevation models with coarser GSD, which have a higher decrease 

in accuracy compared to high resolution elevation models. For the 90 m TanDEM-X in particular, which 

is similarly accurate in flat terrain to the 12 m TanDEM-X elevation model, a very high drop in accuracy 

can be observed in rougher terrain with steep slopes. A similar trend was also observable for the SRTM 

90 m DEM, but the decrease in accuracy is even higher for the 90 m TanDEM-X. This is in accordance 

with findings of Altunel (2019), who already noticed some overestimations of 90 m TanDEM-X for cliffy 

terrain and a high accuracy in flat areas. Generally, a comparison of the two 90 m elevation datasets 

leads to the conclusion that TanDEM-X is significantly more accurate in flat landscapes, but the SRTM 

90 m still seems advantageous in steeper relief. Furthermore, the difference between the calculated 

RMSE and NMAD is conspicuously high for the TanDEM-X 90 m dataset. It can be assumed that more 

outliers exist in this DEM in its first version compared to the other global elevation models that were 

already revised several times. Nevertheless, the results lead to the conclusion that both DEMs with 90 

m GSD are not suitable for accurate large-scale terrain analyses, especially in rough landscapes. 

Likewise, the results of the ASTER GDEM show that the accuracy of this DEM is already lower in flat 

landscapes than the accuracy of high resolution DEMs in rough terrain. Thus, for this DEM the results 

indicate a least suitability for geomorphometric analyses in this area. 

The results for the local DEMs derived from stereo satellite imagery show a varying overall accuracy, 

which highly depends on the topography of each scene. Relating them to slope or TRI tends in most 

cases to lower error values for each terrain category compared to the globally available elevation 

models. Furthermore, the accuracies of Pléiades imagery seem to be slightly higher than images 

derived from SPOT imagery. 

For most DEMs, similar accuracy values could be achieved by the different reference datasets. 

However, for some DEMs some anomalies could be detected. For example, the Pléiades S scene 

achieved relative low accuracies compared to the TLS point clouds, whereas the values were 

significantly lower for all other datasets. This is mainly caused by different locations of the reference 

datasets, even in this small area. While all ICESat datasets and the UAV data mostly cover flatter areas, 

the TLS data is situated on a hillside with relatively steep slopes. Therefore, it can be assumed that also 

for this DEM the error values are much higher in steeper areas compared to flatter landscapes. Also, 

the relatively high error values for the Pléiades Rio Loa W and Pléiades Badlands W DEMs can be 

explained by very steep relief conditions. Both scenes and the evaluation data cover the Rio Loa 

canyon, which is extremely steep at this point with average slope angles of more than 30°. This 

steepness possibly produces more outliers that are represented in the RMSE values, whereas the 

NMAD values are much lower. 

In contrast, the large differences in the overall accuracy results from the Pléiades Shoreline DEM with 

the ICESat-2 ATL03 and ATL 08 reference data cannot be explained here by the relief, as both point 

datasets cover the same track. Therefore, it can be supposed that these differences are originated in 

the reference dataset. A similar contradiction is also evident in the results of the SPOT Paposo S DEM. 

Indeed, in contrast to the results of the Pléiades Shoreline DEM, there is also a large difference 

between the ICESat-2 ATL03 RMSE and NMAD. While the RMSE is with 15.1 m very high, the NMAD is 

extremely low with 1.0 m. This possibly indicates that a great number of outliers exists in the ICESat-2 

ATL03 dataset at this location. 
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It is conspicuous that for most DEMs the highest values were calculated by the ICESat-2 ATL08 dataset, 

which are often not in line with the error values calculated with other datasets. It can be assumed that 

the interpolated ATL08 heights are probably less suitable for DEM accuracy assessment. Thus, it is 

likely that the calculated values by the ATL08 dataset at this early stage overestimate the error of the 

DEMs. In contrast, the ICESat-2 ATL03 mostly fit well with the results from the other reference 

datasets. 

The TLS raster data produced higher error values than the point clouds from TLS measurements. This 

is possibly caused by the height interpolations of some areas that were not covered during the 

measurement process. During the generation process, it was not completely possible to exclude all of 

these areas and some small areas with probably lower accuracy remained for the evaluation process. 

A comparison of elevation differences on a local scale shows that the heights of small incised canyons 

are overestimated at the bottom and underestimated at upper elevations. The results reveal that even 

for the very high resolution DEMs a minor decrease in the deepness of such a canyon is detectable. 

This lack of deepness rises with coarser resolutions. 

 

3.6 Conclusion 

In this contribution, the accuracy of a multitude of digital elevation models was evaluated against 

various reference datasets. Furthermore, the influence of terrain on the accuracy of these DEMs was 

analysed by relating the accuracy values to several extracted terrain features and landforms on a 

regional scale. The results reveal that the rougher and steeper the landscape, the higher resolutions 

are necessary to depict the landscape in an accurate way. For instance, the 90 m TanDEM-X elevation 

model showed eight times higher RMSE error values in terrain with steep slopes (25° – 35°) compared 

to landscapes with flat slopes (0° – 5°). Thus, an average rise of about 5 m RMSE per 10° slope can be 

assumed for this DEM. In contrast, for the 12 m TanDEM-X the increase of error in steep terrain 

(25° – 35°) is only four times as high as in flat landscapes with slopes less than 5° and an average rise 

of 1.5 m RMSE per 10° slope can be supposed here. The results of the very high resolution DEMs from 

Pléiades and SPOT satellites reveal that the RMSE error is increasing by about 1 m per 10° slope. 

Therefore, an increase of error by about three times in terrain with steep slopes compared to flat 

landscapes could be expected for these DEMs. Hence, for analyses in flatter landscapes, a 30 m or 90 m 

DEM could possibly be sufficient. If the relief is steeper, only high resolution DEMs show satisfying 

accuracies. This applies for a regional coverage, but even more for analyses on a local scale with smaller 

landforms. Furthermore, the presented results are valid for regions with almost no vegetation cover. 

It cannot be stated here how the accuracies of different DEMs are affected by vegetation and to which 

degree an increase of error is probably detectable in densely vegetated areas. 

The results of this study point out that of all globally available datasets only the TanDEM-X 12 m and 

partly the 30 m ALOS World 3D are able to depict the landscape in the same accuracy as very high 

resolution DEMs with a GSD of 5 m. Thus, it can be assumed that the 12 m TanDEM-X data are suitable 

not only for global scale analyses, but also has a sufficient accuracy for local scale analysis in flat to 

moderately sloped landscapes. Only in landscapes with very steep terrain they seem to be less accurate 

than DEMs derived by Pléiades and SPOT imagery. All other freely worldwide available elevation 

models were not able to achieve promising accuracies here and seem less suitable for delineating small 

terrain features on large scales. Furthermore, it can be concluded that most reference datasets from 
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different sources produced coherent values. Only the ICESat-2 ATL08 dataset seems to significantly 

underestimate the accuracy, especially of the local-scaled DEMs. 
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4 Additional evaluation of newly released DEMs in northern Chile 

As an extension to the analysis conducted in chapter 3, the accuracy of three additional DEMs was 

evaluated in this chapter. These DEMs are the 30 m NASADEM and the Copernicus DEM with a spatial 

resolution of 30 m and 90 m. All three elevation datasets were published after the completion of the 

study conducted in the previous chapter and are therefore considered separately here.  

 

4.1 Materials and methods 

The NASADEM can be considered the successor of the original SRTM DEM. It was mainly processed by 

the NASA and the National Geospatial-Intelligence Agency (NGA) using the original elevation data 

obtained from the Shuttle Radar Topography Mission in February 2000 (NASA JPL, 2020). It was created 

with newer processing techniques as well as additional datasets from ASTER GDEM, ICESat GLAS and 

PRISM data (Crippen et al., 2016). These datasets were used for ground control to achieve a higher 

overall accuracy and for void reduction to improve its overall quality. The NASADEM was released in 

early 2020 and is currently available in its first version, which was also used for this study.  

The Copernicus DEM was processed from the WorldDEM™ data obtained during the TanDEM-X 

mission funded by the German Aerospace Centre (DLR) and Airbus Defence and Space (Airbus Defence 

and Space, 2020a). It is provided in two different spatial resolutions, 30 m and 90 m. The 30 m version 

was initially released in 2019 and updated in 2020. The most recent product is available in version 3, 

which was also used for evaluation in this chapter. The 90 m Copernicus DEM was released in late 2019 

and has not received any updates to date. Both Copernicus DEMs were obtained from the Copernicus 

Planetary Data Access (PANDA) provided by the European Space Agency (ESA) (Airbus Defence and 

Space, 2020a). The estimated error was stated as 1.51 m for deserts and regions with less vegetation, 

comparable to the Chilean study area (Airbus Defence and Space, 2020b).  

The accuracy assessment of the three previously mentioned DEMs was conducted in the identical 

manner as described in section 3.3 with the same control datasets. These datasets are the ICESat 

GLA14 elevation data from the first ICESat mission as well as the ATL03 and ATL08 elevation datasets 

from the follow-up ICESAT-2 satellite (see sections 3.3.3.1 and 3.3.3.2). In addition, the very high 

resolution DEMs derived by UAV and TLS presented in the previous chapters 3.3.3.3 and 3.3.3.4 were 

used for the evaluation of smaller areas. 

For accuracy assessment, the overall accuracy in the Chilean study area was assessed, as previously 

described in section 3.3.4, by calculating the RMSE and NMAD for all three DEMs compared to all 

mentioned reference datasets. Furthermore, the accuracies calculated with the ICESat reference 

dataset were evaluated with regard to the relief. For this purpose, the errors were related to the 

terrain features of slope, TRI and TPI that were derived from the 12 m TanDEM-X elevation model and 

classified as described in section 3.3.4. 

 

4.2 Results 

The achieved overall accuracies obtained with all control data sets are listed in Table 4-1. For all DEMs, 

the assessment with most reference datasets produced similar results and only minor variations in 
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accuracy are observable. Only the RMSE for the TLS dataset is significantly higher for all DEM. The 

results show that the 30 m Copernicus DEM achieved the highest overall accuracies with all reference 

datasets, slightly higher than the NASADEM. The Copernicus DEM achieved a RMSE of 3.6 m for the 

ICESat and ICESat-2 ATL03 reference datasets. The calculated RMSE in comparison to the ICESat-2 

ATL08 and UVA raster DEMs is similar with 3.0 m and 3.2 m. Only the RMSE achieved with the TLS 

dataset is significantly higher with 9.4 m. The calculated NMAD values for this DEM are all relatively 

low, ranging from 1.4 m with the ICESat-2 ATL03 dataset to 2.9 m with the ICESat-2 ATL08 dataset. The 

achieved accuracies for the NASADEM are slightly lower, being 3.2 m with the ICESat-2 ATL08 dataset, 

4.4 m with the ICESat-2 ATL03 dataset, 4.5 m with the ICESat and UAV datasets and 10.3 m with the 

TLS dataset. The NMAD results are lowest with 2.7 m for the ICESat-2 ATL03 dataset and highest with 

4.3 m for the UAV DEMs. The 90 m Copernicus DEM achieved significantly lower accuracies than both 

30 m DEMs. The RMSE values of this DEM range from 4.0 m (ICESat-2 ATL08) to 7.6 m (ICESat). The 

NMAD values are between 2.9 m (ICESat-2 ATL03) and 4.6 m (UAV DEMs). 

The achieved error values obtained as a function of slope are depicted in Figure 4-1. They show a 

mostly linear decrease in accuracy in steeper terrain for all three DEMs. However, the decrease is much 

larger for the 90 m Copernicus DEM than for the others. Although all DEMs have a similar accuracy in 

flat terrain, ranging between 2 m and 3 m, the achieved accuracy of the 90 m Copernicus DEM in 

extremely steep terrain is much lower. There, the 90 m Copernicus DEM has a RMSE of 26.9 m and a 

NMAD of 24.8 m. In contrast, the achieved error values of the 30 m Copernicus DEM (RMSE: 12.8 m, 

NMAD: 11.6 m) and NASADEM (RMSE: 15.1 m, NMAD: 12.4 m) are approximately half as high as those 

of the 90 m DEM. A comparison of the two 30 m DEMs shows a similar increase of errors for both. 

However, the NASADEM seems to contain more outliers as the difference between RMSE and NMAD 

increases on steeper slopes. 

 

Figure 4-1: Calculated RMSE and NMAD of elevation differences according to the slope. Derived slope classes are 

flat (fl), gentle (ge), moderate (mo), steep (st) and extreme (ex). 

The calculated error values compared to the TRI are shown in Figure 4-2. In flat terrain, an overall 

similar accuracy can be observed for all DEMs, slightly higher for both Copernicus DEMs (1.6 m to 1.8 

m RMSE and NMAD) than for the NASADEM (2.4 m RMSE and 2.1 m NMAD). This error remains at a 

similar level and only slightly increases for both 30 m DEMs in medium to moderately rugged terrain. 

Only the 90 m Copernicus DEM shows a higher increase of error in medium rugged terrain and is here 

on a similar accuracy level to the NASADEM. In highly to extremely rugged terrain, all DEMs reveal a 

strong decrease in accuracy, which is by far the highest for the 90 m Copernicus DEM. While both 30 

m DEMs achieved errors of less than 7 m, the 90 m Copernicus DEM achieved a significantly lower 

RMSE of about 12.7 m and NMAD of 9.2 m.  
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Figure 4-2: Calculated RMSE and NMAD of elevation differences according to the classified terrain ruggedness 

index from level to extremely rugged. Categorization of classes was conducted after Riley et al. (1999). Classes 

are level (l), nearly level (nl), slightly rugged (sr), intermediate (ir), moderately rugged (mr), highly rugged (hr), 

extremely rugged (ex). 

Figure 4-3 compares the calculated error values of the three tested DEMs in comparison to their 

respective TPI landform classes that were derived from the 12 m TanDEM-X. All DEMs show by far the 

highest accuracies in plain terrain with an error of less than 2.7 m. Overall, the 30 m Copernicus DEM 

achieved the highest accuracies in all landform classes, followed by the NASADEM. The 90 m 

Copernicus DEM revealed a comparable accuracy to the NASADEM only in flat terrain. For all other 

landforms, its achieved accuracy is significantly lower compared to both 30 m DEMs. The overall lowest 

accuracies are observable for the landforms ‘gully’, ‘ridge’ and ‘drainage’ with RMSE accuracies of 

about 5 m to 6 m for the 30 m Copernicus DEMs, 8 m to 9 m for the NASADEM and 12 m to 16 m for 

the 90 m Copernicus DEM. 

 

Figure 4-3: Calculated RMSE and NMAD of elevation differences according to topographic position index (TPI) 

classes. 

  

4.3 Discussion 

To compare the tested DEMs of this chapter with the previously tested global DEMs of chapter 3, the 

mean overall accuracy of all achieved RMSE and NMAD results was calculated. These mean overall 

accuracies of each DEM are presented in the ranking of Table 4-2. Overall, it shows that the 30 m 

Copernicus DEM achieved a comparable accuracy to the previously tested ALOS W3D. Comparing the 

accuracies of both DEMs according to slope shows that the observed accuracy of the 30 m Copernicus 
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DEM seems to be slightly higher in flat terrain and slightly worse in rough terrain compared to the 

ALOS W3D DEM. This confirms the results of Karlson et al. (2021), who also showed a slightly higher 

accuracy of the Copernicus DEM over the ALOS W3D DEM in an overall flatter study area than the 

Chilean Atacama Desert. They achieved an average RMSE of 2.44 m for their study area, which is 

comparable to the results of this study in mostly flat areas. In undulated areas, the assessed error 

values of this DEM in this chapter rise significantly up to more than 8 m. This mostly confirms results 

the of Marešová et al. (2021) who stated for three mountainous areas an average RMSE between about 

7 m and 14 m for this DEM. 

The NASADEM reveals a higher overall accuracy than its predecessor, the 30 m SRTM DEM. Thus, the 

new processing techniques and additional datasets used to create the DEM seem to have positively 

affected the quality of this DEM. Nevertheless, it does not reach the accuracy of the ALOS DEM and 

the 30 m Copernicus DEM in all landscape types of the study area. This is in accordance with findings 

from Uuemaa et al. (2020), who also showed a slightly higher accuracy of the NASADEM over the older 

SRTM DEM. Overall, the NASADEM accuracies obtained in this chapter are comparable to the findings 

of Carrera-Hernandez (2021) who achieved an overall RMSE of 5.2 m for the large and diverse area of 

the Mexican country. 

In comparison to the other tested 90 m DEMs, the 90 m Copernicus DEM shows ambivalent results. It 

reveals a high accuracy in flat landscapes, which is slightly lower, but overall comparable to the 90 m 

TanDEM-X. Compared to the 90 m SRTM, its accuracy is considerably higher in flat terrain. In contrast, 

the loss of accuracy in hilly to steep terrain is highest for the 90 m Copernicus DEM and exceeds the 

observed decrease of the 90 m TanDEM-X. Thus, the 90 m Copernicus DEM showed the lowest overall 

accuracies in steep terrain of all investigated DEMs in this study area. This is in contradiction to the 

findings of Marešová et al. (2021) who showed a considerably higher accuracy of the 90 m Copernicus 

DEM compared to the 90 m TanDEM-X for three European mountainous regions. Nevertheless, it can 

be stated that both Copernicus DEMs mostly show a similar behavior in their error distribution 

concerning the relief as the TanDEM-X DEM. This is not surprising as both originally consist of the same 

WorldDEM™ data from the TanDEM-X mission. 

Table 4-2: Ranking of the achieved mean overall accuracies of all RMSE and NMAD error measures for all global 

DEMs evaluated in chapters 3 and 4.  

 RMSE NMAD 

Rank Spatial 

resolution  

DEM Mean OA  

[m] 

Spatial 

resolution 

DEM Mean OA  

[m] 

1 12 m TanDEM-X 3.3 12 m TanDEM-X 1.3 

2 30 m ALOS W3D 4.3 30 m Copernicus DEM 2.2 

3 30 m Copernicus DEM 4.6 30 m ALOS W3D 2.8 

4 30 m  NASADEM 5.4 90 m TanDEM-X 3.3 

5 30 m SRTM 5.4 30 m NASADEM 3.5 

6 90 m Copernicus DEM 6.8 90 m Copernicus DEM 3.5 

7 90 m SRTM 7.7 30 m SRTM 4.0 

8 90 m TanDEM-X 8.5 90 m SRTM 5.0 

9 30 m ASTER GDEM 8.7 30 m ASTER GDEM 7.0 
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Abstract: This study evaluates the vertical accuracy of nine freely available digital elevation models 

(DEMs) with a medium spatial resolution for a typical mid-latitude flat to hilly landscape in the Rur 

catchment in Germany. All datasets were evaluated with two reference datasets, a 1 m DEM and a 

highly precise set of elevation control points. The accuracy was evaluated with regard to different 

slopes, landforms and land use. The results reveal in flat areas an average error of 2 – 4 m, which 

increases about two to three times in undulated terrain. Areas with dense tree cover show a mean 

error of 6 – 10 m. The highest accuracies were achieved by the SRTM DEM, followed by other DEMs 

that mainly implemented SRTM data. TanDEM-X and Copernicus DEM showed ambivalent results 

showing a higher ratio of existing errors in the elevation product for vegetation and water areas that 

prevent a higher overall accuracy of these DEMs. 

 
Keywords: accuracy assessment; digital terrain model; topography; land use; slope 

 

5.1 Introduction 

Digital elevation models (DEMs) as a representation of the Earth’s surface play a key role in many 

scientific disciplines. They enable the possibility of a quantitative characterization of relief by deriving 

terrain variables (e.g. slope, aspect, curvature, topographic wetness index), which are essential inputs 

in numerous environmental analyses (Wilson 2018). Thus, DEMs are widely used sources in numerous 

geospatial studies in the fields of geomorphology (Bishop et al., 2012; Ullmann et al., 2019; Walk et al., 

2020), landform distribution analysis (Dragut and Blaschke, 2006; Huang et al., 2018; Kramm et al., 

2017; Mokarram et al., 2015), hydrology (Drisya and Kumar, 2016; Fenta et al., 2015; Rossman et al., 

2018; Schwanghart et al., 2013), digital soil mapping (Kalambukattu et al., 2018; Kramm and 

Hoffmeister, 2020; Marques et al., 2018), climatic modelling (Mmbando and Kleyer, 2018) or the 

evaluation of glacier changes (Berthier and Brun, 2019; Blaszczyk et al., 2019). In recent years, these 

applications have raised the need for DEMs that provide a highly accurate representation of the Earth’s 

surface. As the outcome of these applications is often limited to the quality of available elevation 

models, it is crucial to gain an understanding of their accuracy in different landscapes with varying 

relief and land cover. 

From 2003 onwards, many freely available digital elevation models with a nearly global coverage and 

a spatial resolution of about 30 m and 90 m have been released that are based on optical imagery or 
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synthetic aperture radar (SAR) interferometry. The first nearly global DEM was released as a product 

of the Shuttle Radar Topography Mission (SRTM) in 2003, followed by DEMs from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) from 2009 onwards, the Advanced 

Land Observing Satellite (ALOS) World 3D (first release in 2016) and the TanDEM-X WorldDEM™ 

(released in 2018). Furthermore, with the EU-DEM (firstly released in 2013), the Copernicus DEM 

(release: 2019) and the NASADEM (release: 2020), several reworked and improved DEMs from the 

previously mentioned sources have been released in recent years that offer the perspective of an even 

higher accuracy than the originally created elevation models. 

A lot of research on the accuracy of many of these elevation models has already been done by 

numerous publications at different sites with varying relief and land cover. Several studies compared 

the vertical accuracy of SRTM and ASTER GDEM (Graf et al., 2018; Luana et al., 2015; Mukherjee et al., 

2013; Pakoksung and Takagi, 2020; Rexer and Hirt, 2014; Satge et al., 2015; Thomas et al., 2014; Zhao 

et al., 2011) as well as the accuracy of the ALOS World 3D in comparison to SRTM and ASTER GDEM 

(Alganci et al., 2018; Hu et al., 2017; Li and Zhao, 2018; Liu et al., 2019; Yahaya and El Azzab, 2019; Yap 

et al., 2019). Furthermore, some studies evaluated the performance of the TanDEM-X WorldDEM™ in 

different resolutions on its own (Altunel, 2019; Baade and Schmullius, 2016; Gdulova et al., 2020) and 

in varying combinations with the three previously mentioned DEMs (Becek et al., 2016; Gonzalez-

Moradas and Viveen, 2020; Nagaveni et al., 2019; Pandey et al., 2017; Tian et al., 2017). Several studies 

have conducted a comprehensive comparison of all four DEMs (Grohmann, 2018; Kramm and 

Hoffmeister, 2019; Kumar et al., 2020; Liu et al., 2020; Uuemaa et al., 2020; Vassilaki and Stamos, 2020; 

Zhang et al., 2019). 

However, only a few studies are available yet that have investigated the newly available EU-DEM, 

NASADEM and Copernicus DEM. Mouratidis and Ampatzidis (2019) have evaluated both available 

versions of the EU-DEM against ASTER GDEM and SRTM DEM. Uuemaa et al. (2020) have tested the 

performance of the NASADEM at four different sites against a set of other DEMs. To date, no evaluation 

is available that has tested the newly available Copernicus DEM. Additionally, a comprehensive analysis 

that compares the accuracy of all of these DEMs in different relief and land cover settings is still 

missing. Therefore, this contribution has the aim to conduct an evaluation of the vertical accuracy of 

these previously mentioned and freely available DEMs with a medium spatial resolution between 25 

m and 90 m. Furthermore, it is the aim to test whether the most recent and newly created DEMs are 

able to outperform the older ones. 

The accuracy assessment was performed with two different reference datasets, a very accurate 1 m 

high resolution digital elevation model (DGM1) that was acquired by airborne laser scanning and a set 

of highly accurate elevation control points (ECPs). The study was conducted in the heterogeneous Rur 

catchment in Germany, which consists of two neighbouring but significantly different landscapes 

regarding their relief and land cover. As the area represents typical mid-latitude landscape types with 

varying agricultural crops, settlements with corresponding infrastructure as well as woods and pasture 

in hilly landscapes, this contribution has the aim of addressing the achieved accuracies with regard to 

these differences in topography and land cover. According to the Copernicus Global Land Cover Map 

from 2019 (Buchhorn et al., 2020), about 10 % of the global land surface is covered by cropland similar 

to the northern part of the Rur catchment. Further 10 % of the global surface is covered by mid-latitude 

evergreen needle-leave or tempered deciduous broad-leave forest as it can be found in the southern 

part of the study area. Therefore, the aim of this study is to produce representative error measures for 
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the different DEMs that can also be transferred to a relatively large area of the Earth. The comparison 

of accuracy in this study is based on the calculated statistical parameters of root mean square error 

(RMSE) and normalized median absolute deviation (NMAD). These error values are linked to slope and 

geomorphometric landform features as the terrain directly influences the accuracy (Grohmann, 2018; 

Holmes et al., 2000; Mukherjee et al., 2013). Furthermore, these errors are compared to different land 

use classes, which can also significantly influence the accuracy of a DEM (Alganci et al., 2018; 

Mouratidis and Ampatzidis, 2019; Uuemaa et al., 2020). 

Overall, the aim of this contribution is to conduct an accuracy assessment of all previously mentioned 

openly accessible DEMs and to provide fully comparable quantitative error measures for each DEM in 

a study area with different mid-latitude landscapes. Thus, the errors are assessed against different 

types of land cover, relief types and steepness in two neighbouring but significantly different 

landscapes. To date, there is no study available that altogether compares all freely available global 

elevation models under the same conditions, which is essential to achieve a full comparability of the 

data. This contribution aims to precisely elaborate on which DEM provides the most accurate 

representation of the Earth’s surface under which conditions and is most likely preferable for a mid-

latitude landscape and different relief types. This knowledge should help further studies to choose the 

most suitable DEM for their research to achieve the most accurate results. Furthermore, general 

average accuracy values shall be determined from the results in relation to relief and land cover that 

can be expected for medium resolution DEMs and also in other but similar mid-latitude landscapes. 

 

5.2 Study area 

The study was conducted in the catchment of the river Rur, which is primarily situated in the German 

Federal State of North-Rhine Westphalia with small neighbouring parts in the Netherlands and 

Belgium. Here, mainly the German parts of the Rur catchment and very small neighbouring areas are 

considered. The location and landscape of the included area is presented in Figure 5-1. The landscape 

of the study area varies significantly from north to south and can be subdivided into two different 

major units with significantly different characteristics. Furthermore, the elevation declines from 740 m 

in the south to about 70 m in the northern part of the study area. 

The northern part is situated in the fertile Germany-Belgium loess belt and is characterized by 

predominantly flat landscapes covered by Tertiary Pleistocene terrace deposits near the rivers Maas 

and Rur as well as aeolian loess deposits and dune sands (Bogena et al., 2018). The average altitude of 

this area lies at 100 m. The area is highly productive for agriculture (Korres et al., 2015) and widely 

used for crop growth, mainly winter wheat, winter barley, winter rapeseed, maize, potato and sugar 

beet (IT.NRW, 2012; Waldhoff et al., 2017). About 5 % of the area is covered by settlements (Bogena 

et al., 2018). A small area within the northern part has been left out from the study as it contains a 

brown coal open cast mine and neighbouring backfilled areas where the landscape and elevations have 

vastly changed during the last decades. This area has been excluded from the study as the evaluated 

DEMs were recorded in different time periods and their elevation data cover different stages of the 

brown coal mine. 

The upland area in the southern part of the catchment is mainly covered by a hilly landscape with a 

low mountain range that consists of Paleozoic to Mesozoic solid rocks of the Rhenish Massif, with 
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alternating sequences of mudstones, siltstones, sandstones and greywackes (Bogena et al., 2018). The 

elevation ranges from 180 m to 740 m with elevation differences of up to 300 m between the valley 

bottom and surrounding ridges. The area consists of mostly forested areas, pasture and several water 

reservoirs (Bogena et al., 2018; Korres et al., 2015). The mean annual precipitation is considerably 

higher in the southern part with 1,400 mm compared to about 700 mm in the northern part of the 

catchment (Korres et al., 2015). 

 

Figure 5-1: Hill-shaded relief and location overview map of the Rur catchment. Elevations are derived from the 

DGM1. A part within the northern study area has been excluded from the study as it contains a brown coal open 

cast mine and neighbouring backfilled areas where elevations have vastly changed during the last decades. The 

background image contains a cloud-free mosaic of Sentinel-2 images from 2017 to 2019 derived from Google 

Earth Engine. 
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5.3 Materials and methods 

5.3.1 DEMs 

The accuracy of nine freely available DEMs was evaluated in this study. All DEMs were assessed for an 

area of about 2,000 km2. Further information about the origin, properties and expectable accuracies 

of all evaluated DEMs is briefly summarized in Table 5-1 and described in the following paragraphs. 

Additionally, the relationship of all DEMs to each other and their original data sources is illustrated in 

Figure 5-2. 

 

Figure 5-2: Relationship of all evaluated DEMs and their original data sources. 

The most recent version of the ASTER GDEM was created by producing images from the ASTER sensor 

that were acquired until November 2013 (Abrams and Crippen, 2019). The ASTER sensor was started 

in December 1999 as part of the National Aeronautics and Space Administration’s (NASA) Earth 

Observing System Terra satellite (Abrams et al., 2010; Tachikawa et al., 2011). The DEM includes 

several improvements such as water masks and filled voids with additional SRTM-1 data and Global 

Multi-resolution Terrain Elevation Data 2010 (GMTED2010). 

Several DEMs used in this study were created from data obtained by the Shuttle Radar Topography 

Mission, which was a cooperation between NASA’s Jet Propulsion Laboratory (JPL), the German 

Aerospace Centre (DLR) and the Agenzia Spaziale Italiana (ASI, Italy). A 1 arc-second resolution (≈ 30 

m) SRTM DEM Version 3 and a 3 arc-seconds (≈ 90 m) SRTM-3 in its 4th version from the acquired 

C-band data will be assessed. Both were produced by the Consultative Group of International 

Agricultural Research-Consortium for Spatial Information (CGIAR-CSI) (Jarvis et al., 2008) and contain 

several improvements, such as coastlines and water bodies and additional elevation data from ASTER 

GDEM2 for void filling (Rodríguez et al., 2005). The 90 m version uses various interpolation techniques 

that are further explained in detail by Reuter et al. (2007). Additionally, the NASADEM is used as a 

renewed product of the original SRTM data. It has been produced as a collaboration between the NASA 

and the National Geospatial-Intelligence Agency (NGA) with additional participation of the DLR and the 

Italian space agency (NASA JPL, 2020). The DEM was created by reprocessing the original SRTM mission 

RADAR data and combining it with newer algorithms and datasets that were not available when the 

original SRTM DEM was processed. Furthermore, ASTER GDEM Version 2, ALOS W3D and ICESat GLAS 

datasets were additionally used to improve geolocation accuracy and to fill voids of no sufficient SRTM 

data (Crippen et al., 2016). 
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The 30 m ALOS World 3D DEM was produced from 5 m resolution satellite imagery of the Panchromatic 

Remote-sensing Instrument for Stereo Mapping (PRISM) sensor on board of the ALOS satellite by the 

Japan Aerospace Exploration Agency (JAXA). The most recent version uses ICESat GLAH14 heights, 

elevations from SRTM and visual human interpretations, as well as additional supplementary data for 

void filling to improve the overall quality of the DEM (Earth Observation Research Center and Japan 

Aerospace Exploration Agency, 2021). 

The EU-DEM is a hybrid digital surface model that was generated within the framework of the EU 

Copernicus program coordinated by the European Environment Agency (EEA). The original version was 

produced as a fusion of SRTM version 2 and ASTER GDEM version 2.1 elevation datasets using a 

weighted averaging approach for the whole European continent. The most recent version 1.1 

(European Environment Agency (EEA), 2016) was improved by addressing geopositioning issues with 

SPOT 2011 imagery as well as the reduction of artefacts and the improvement of vertical accuracy by 

using additional ICESat data as a reference. 

Three DEMs were used that originate from data of the TanDEM-X mission, which was launched as a 

public-private effort between the DLR and Airbus Defence and Space. From 2010 to 2015, the Earth 

was measured by two satellites (TerraSAR-X and TanDEM-X) in a controlled orbit with X-band RADAR 

interferometry (InSAR) between the latitudes 90°N and 90°S (Rizzoli et al., 2017; Wessel, 2016). Due 

to its shorter wavelength, the X-band RADAR is more affected by vegetation heights as it has a lower 

penetration depth than SRTMs C-band RADAR (Schlund et al., 2019; Solberg et al., 2018). One 

evaluated DEM is the freely available 3 arc-seconds (≈ 90 m) TanDEM-X, which was reprocessed from 

the 0.4 arc-second TanDEM-X version and calibrated with ICESat GLA14 elevation data (Wessel et al., 

2018). The other two assessed DEMs were the Copernicus DEMs with a spatial resolution of 30 m (GLO-

30) and 90 m (GLO-90) that also mainly base on the elevation data obtained from the TanDEM-X 

mission and were obtained from Copernicus Planetary Data Access (PANDA) (Airbus Defence and 

Space, 2020a). 

 

5.3.2 Ground truth data 

5.3.2.1  DGM1 

The DGM1 is made available by the Regional Government of Cologne (Bezirksregierung Köln, 2017). It 

is produced from 3D measurement data acquired with airborne laser scanning. With a point density of 

at least four points per square meter, it is a very high resolution DEM that includes after filtering only 

the Earth’s surface without vegetation and buildings (Arbeitsgemeinschaft der 

Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland, 2017). The DGM1 is provided 

as a regular point grid with a point distance of 1 m. The data is updated frequently about every five 

years. For this contribution, a produced version of 2017 was used with acquisition dates in 2015 and 

2016 for the landscape of the study area (Bezirksregierung Köln, 2017). The proposed vertical accuracy 

of the DGM1 is stated with 15 cm in flat to medium elevated landscapes and up to 30 cm in steep 

terrain, the horizontal accuracy can be expected with about 10 cm (Arbeitsgemeinschaft der 

Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland, 2017). To compare the 

elevation of the DGM1 with the other DEM datasets, the provided point cloud was converted to a 

mean elevation raster dataset with a spatial resolution of 1 m. The accuracy of the reference raster 

was tested against the set of elevation control points introduced in the following section. It achieved 
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an accuracy of 0.97 m (RMSE) and 0.46 m (NMAD) for the area of this study and fulfils the requirement 

of a reference dataset to be at least three times more accurate than the evaluated DEMs (Höhle and 

Höhle, 2009; Maune, 2007).  

 

5.3.2.2  Elevation control points 

Highly precise elevation control points are used for several administrative surveying tasks as well as 

the determination of ground movement caused by mining or tectonic origin. For the area of this study, 

the ECPs are provided by the Regional Government of Cologne (Bezirksregierung Köln, 2020). They are 

determined by precision levelling in a highly accurate manner with a relative vertical accuracy of 

1.5 mm. All points are frequently updated every two to six years, depending on the degree of ground 

motion. In this study, the heights of 4715 ECPs were compared with the elevations of all investigated 

digital elevation models. The location and distribution of the control points are depicted in Figure 5-3. 

 

5.3.3 Preprocessing 

To evaluate the elevation differences of all DEMs, it is necessary to convert them to the same 

horizontal and vertical datum. The WGS84 (EPSG: 4326) was used for all datasets as the horizontal 

datum. Thus, the EU-DEM, the DGM1 and the ECPs were transformed in ArcGIS Pro 2.5 from ETRS89 

(EPSG: 25832) to WGS84 coordinates. All other datasets were already supplied in the WGS84 format. 

As most DEMs of this study originally have different vertical reference systems, they also had to be 

projected to the same vertical datum. For this study, the WGS84 ellipsoid was chosen as the vertical 

datum and all DEMs were converted to this datum in a first step. 

The utilized ASTER GDEM, ALOS DEM and NASADEM were originally referenced to the Earth 

Gravitational Model 1996 (EGM96) (EPSG: 5773). To convert them to the WGS84 ellipsoid, a calculated 

raster of the undulation between EGM96 geoid and WGS84 ellipsoid for the entire area was calculated 

with the software MSP GEOTRANS v.3.8. A net of regularly distributed points was created and the 

undulation for these points was calculated by the software. Subsequently, the undulation points were 

interpolated with a Kriging algorithm to generate an undulation raster for the whole area. The 

elevations of the produced undulation raster were finally added to the three DEMs. The same 

procedure was conducted for both Copernicus DEMs that were originally referenced to the Earth 

Gravitational Model 2008 (EGM2008) (EPSG: 3855) vertical datum. The undulation between EGM2008 

and WGS84 ellipsoid was also calculated with MSP GEOTRANS v.3.8 and finally added to the heights of 

the Copernicus DEM. The EU-DEM is referenced to the European vertical reference system EVRF2000 

(EPSG: 5730) with EGG08 Geoid (EPSG: 4258). Both ground truth datasets are referenced to the 

DHHN2016 (EPSG: 7837), which is almost identical to the EVRF2000 with elevation differences of about 

1 cm for the area of this study (Ihde et al., 2002). All three datasets were transformed to ellipsoidal 

heights by calculating the height differences between the reference systems with an online calculator 

tool (http://gibs.bkg.bund.de/geoid/gscomp.php?p=g) for a set of equally distributed points over the 

whole area. These points were subsequently interpolated to a raster and the elevation differences 

were added to the three datasets. The TanDEM-X DEM and the SRTM DEM were originally referenced 

with WGS84 ellipsoid and no projection was needed for these datasets. 

 



Chapter 5: Comprehensive vertical accuracy analysis of freely available DEMs for different landscape types of 
the Rur catchment, Germany 

 

 
77 
 

 

Figure 5-3: Spatial distribution of elevation control points (ECPs) in the Rur catchment. The background image 

contains a cloud-free mosaic of Sentinel-2 images from 2017 to 2019 derived from Google Earth Engine. 
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5.3.4 Accuracy assessment  

The accuracy of each DEM was assessed by calculating the deviation of height differences against both 

reference datasets. For this purpose, the RMSE from the height differences between reference 

datasets and all DEMs was calculated with the following equation: 

� &! =  H-∑ )∆hi+2n
i=1 .

n
                                                                             (5-2) 

where ∆ℎ�= elevation difference between assessed DEM and reference DEM. � = number of pixels. 
 
Furthermore, the NMAD was calculated, which is a more robust measure against outliers and has a 

higher tolerance against not normally distributed error values as it refers to the calculated median of 

the height differences (Höhle and Höhle, 2009). Thus, a not normal distribution generally leads to 

larger RMSE values compared to NMAD. It will be calculated with equation: 

/ 0' = 1.4826 × 
789:�)|∆ℎ� − 
∆�|+                                           (5-3) 

where ∆ℎ�= elevation difference between assessed DEM and reference DEM. 
 
∆� = median of all elevation differences. 
 
The achieved accuracies are only completely interpretable if they can be related to the prevalent relief 

and land cover of the study area. Thus, the error values were evaluated against three datasets that 

represent the landscape and relief features of the study area. First, the slope was calculated in ArcGIS 

Pro from the DGM1 and classified into five classes of different slope angles from ‘flat’ (<5°), ‘gentle’ (5° 

– 15°), ‘moderate’ (15° – 25°), ‘steep’ (25° – 35°) to ‘extreme’ (>35°). Second, a geomorphometric map 

(GMK10) was utilized that consists of a combination of three different categories of DEM extracted 

morphometric relief parameters (Scilands GmbH, 2010). Category one contains bottom areas, summit 

areas and slopes. The second category includes convergent and divergent areas and category three 

divides flat and sloped areas from each other. For this contribution, the provided landform classes 

were reclassified into the four classes ‘Depression/Valley’, ‘Flat’, ‘Hillslope’ and ‘Ridge’. The GMK10 is 

originally provided with a spatial resolution of 10 m. Third, a land use classification of the study area 

from the year 2015 was used that was originally produced by Waldhoff and Lussem (2016). The original 

dataset contains 55 classes of different land use types, which were reclassified into the eight classes 

‘Bare Ground/Grassland’, ‘Coniferous Trees’, ‘Deciduous Trees’, ‘Agriculture’, ‘Residential Area’, 

‘Public/Commercial Area’, ‘Street/Railway’ and ‘Water’. Several remaining classes of small coverage 

that do not fit to these previously mentioned classes were classified into a class ‘Other’ which has not 

been considered for evaluation. The dataset was provided with a spatial resolution of 15 m. An 

evaluation of different crop types of this land use classification has shown an overall accuracy of about 

97 % for these classes (Waldhoff et al., 2017). The spatial distribution of all extracted terrain and land 

cover features in the study area is depicted in Figure 5-4. The distribution of their classes in percent 

for both reference datasets in the entire area and the two subareas is presented in Table 5-2.  
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Table 5-2: Percentage distribution of the DGM1 and ECPs on classified features slope, land use classification and 

geomorphometric map (GMK10) for the entire study area and the northern and southern study area separately. 

Class Entire area [%] Northern area [%] Southern area [%] 

 DGM1 ECPs DGM1 ECPs DGM1 ECPs 

Slope       

Flat 73.0 82.9 95.1 95.9 52.9 68.5 

Gentle 19.9 12.9 4.3 4.0 34.0 22.6 

Moderate 5.2 3.1 0.5 0.1 9.5 6.5 

Steep 1.8 1.0 0.1 0.0 3.2 2.2 

Extreme 0.1 0.1 0.0 0.0 0.3 0.1 

Land Use Classification       

Agriculture 26.1 3.9 48.2 6.4 6.0 0.5 

Bare Ground/Grassland 17.5 5.0 8.7 1.9 25.5 8.6 

Coniferous Trees 11.9 8.2 6.5 6.8 16.9 9.9 

Deciduous Trees 17.5 4.6 6.9 1.0 27.2 8.6 

Water 0.9 0.3 0.6 0.1 1.1 0.4 

Streets/Railways 5.9 39.7 7.9 45.8 4.2 33.3 

Urban/Commercial Area 1.6 4.2 2.2 4.9 1.1 3.4 

Residential Area 3.5 17.1 5.2 21.5 2.0 12.2 

Other 14.9 17.0 13.8 11.6 16.0 23.1 

GMK10       

Depression/Valley 17.8 26.3 31.2 37.9 5.5 13.5 

Flat 32.8 33.1 59.2 52.5 8.7 11.6 

Hillslope 26.0 17.7 6.3 6.4 44.0 30.3 

Ridge 23.4 22.8 3.3 3.2 41.7 44.6 

 

 

Figure 5-4: Spatial distribution of the extracted terrain and land use features (A) slope, (B) land use classification 

from 2015 and (C) the geomorphometric map (GMK10). 
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5.4 Results 

5.4.1 Overall vertical accuracy 

The achieved error measures conducted for the entire Rur catchment are shown in Figure 5-5. 

Depicted are the achieved RMSE and NMAD values for all DEMs in comparison to the DGM1 and the 

ECPs. For all DEMs, the derived error values are slightly higher with the DGM1 than with the ECPs. The 

results show the highest overall accuracies for the 30 m SRTM DEM with a RMSE of 5.6 m (DGM1) and 

4.5 m (ECPs) as well as a NMAD of 3.3 m (DGM1) and 2.5 m (ECPs). In contrast, the lowest accuracies 

of all 30 m DEMs are detectable for the ASTER GDEM with RMSE values of 6.6 m (DGM1) and 6.9 m 

(ECPs). The NMAD is also considerably high for this DEM with 8.0 m compared to the DGM1 dataset 

and 5.6 m in comparison to the ECPs. 

A comparison of all 90 m DEMs also shows the highest overall accuracies for the SRTM with a RMSE of 

6.0 m (DGM1) and 5.5 m (ECPs) as well as a NMAD of 3.2 m (DGM1) and 2.7 m (ECPs). The 90 m 

TanDEM-X and Copernicus DEM achieved similar NMAD values, but considerably higher RMSEs that 

are about 2.5 m higher than those of the 90 m SRTM. For the 30 m Copernicus DEM, a relatively high 

difference is also observable in the results between the achieved RMSE and NMAD values. It achieved 

the overall highest NMAD measures (2.3 m with DGM1 and 2.4 m with ECPs), the calculated RMSEs 

are relatively low (7.1 m with DGM1 and 4.9 m with ECPs). 

 

Figure 5-5: Calculated error values for the entire study area for each digital elevation model in comparison with 

both reference datasets, the DGM1 and the elevation control points (ECPs). 

A comparison of the accuracies in both different areas of the Rur catchment reveals generally higher 

error values for the hillier landscapes in the south compared to the flatter north. All calculated error 

measures for both areas are presented in Figure 5-6. The error values are on a similar level for most 

DEMs in the northern part. Compared to the DGM1, the error of most evaluated DEMs ranges from 

3.1 m to 4.2 m RMSE and 1.2 m to 1.9 m NMAD, whereas the EU-DEM achieved the overall highest 

accuracies. The ALOS W3D achieved slightly lower accuracies of 4.6 m (RMSE) and 2.3 m (NMAD) and 

the overall lowest accuracies were achieved by the ASTER GDEM with a RMSE of 6.1 m and NMAD of 

5.0 m. The results with the ECPs show similar tendencies for this region. All DEMs achieved relatively 

similar error values that range from 2.4 m to 3.2 m (RMSE) and 1.8 m to 2.0 m (NMAD), except the 

ASTER GDEM. The ASTER GDEM achieved considerably higher error values of 5.2 m (RMSE) and 4.8 m 

(NMAD). 
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In the southern part of the Rur Catchment, most DEMs achieved a 3 m to 4 m lower accuracy compared 

to the north. The largest differences are detectable for the TanDEM-X DEM with about three times 

higher error values in this area with a RMSE of 12.0 m and a NMAD of 8.5 m in comparison to the 

DGM1. All other DEMs have considerably lower errors here that range from 6.5 m (RMSE) for the 30 m 

SRTM DEM to 9.4 m for the Copernicus 90 m DEM. The NMAD values of the other DEMs range from 

5.2 m for the 30 m Copernicus DEM to 8.1 m for the ASTER GDEM. Likewise, the lowest RMSE was 

achieved for the 30 m SRTM with 5.7 m and the highest with 9.5 m for TanDEM-X in comparison with 

the ECPs. The lowest NMAD values could also be observed for the 30 m Copernicus DEM (3.0 m) and 

the highest for ASTER GDEM (6.5 m). 

 

Figure 5-6: Calculated error values from the northern and southern part of the study area for each digital elevation 

model in comparison to both reference datasets, the DGM1 and the elevation control points (ECPs). 

 

5.4.2 Land-use dependent accuracies 

The derived errors of all evaluated DEMs according to various land use and land cover types are 

depicted in Figure 5-7. The results show that the highest error values are observable for forest 

landscapes, whereby the different tree types produced mostly very similar results. Only for the 90 m 

TanDEM-X and Copernicus DEM a higher RMSE was observable for class ‘Deciduous Trees’ compared 

to ‘Coniferous Trees’. The highest accuracies in both classes are detectable for both SRTM DEMs with 
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error values of 6.0 m (‘Coniferous Trees’) and 5.8 m (‘Deciduous Trees’) RMSE for the 30 m elevation 

model and 5.9 m (‘Coniferous Trees’) and 6.1 (‘Deciduous Trees’) for the 90 m DEM. Likewise, these 

DEMs also achieved the lowest NMAD values with 6.4 m (‘Coniferous Trees’) and 6.0 m (‘Deciduous 

Trees’) for the 30 m SRTM and 6.1 m (‘Coniferous Trees’) and 5.8 m (‘Deciduous Trees’) for the 90 m 

version. In contrast, the 90 m TanDEM-X and Copernicus DEM achieved the overall lowest accuracies 

in forest regions. The TanDEM-X achieved errors of 10.4 m (RMSE) and 10.6 m (NMAD) for class 

‘Coniferous Trees’ and 12.3 m (RMSE) and 10.2 m (NMAD) for class ‘Deciduous Trees’. For the 90 m 

Copernicus DEM, error measures of 10.4 m (RMSE) and 10.5 m (NMAD) were calculated for class 

‘Coniferous Trees’ and 12.5 m (RMSE) and 10.4 m (NMAD) for ‘Deciduous Trees’. 

 

Figure 5-7: Calculated RMSE and NMAD of elevation differences according to different land use types.  

The lowest error values were calculated for the land use classes ‘Agriculture’ and the urban classes 

‘Residential Area’ and ‘Public/Commercial Area’. For these three classes, all DEMs, except the ASTER 

GDEM, performed on a similar level and achieved average errors of less than 3 m. Only the ASTER 

GDEM showed considerably higher average RMSE and NMAD values for these classes between 4 m 

and 5 m. A considerable difference between both types of urban land cover classes could not be 

detected here. Similar effects are observable for the class ‘Streets/Railways’, where also the accuracy 

of the ASTER GDEM is considerably lower than for the other DEMs. The calculated RMSE results of 

most DEMs are slightly worse in this class compared to the three previously mentioned classes. A 

medium accuracy could be detected for the classes ‘Bare Ground/ Grassland’ and ‘Water’. The lowest 

error values for class ‘Bare Ground/Grassland’ could be detected for the 30 m Copernicus DEM with 

2.5 m (RMSE) and 1.2 m (NMAD). In contrast, the by far lowest RMSE for this class was calculated for 

the TanDEM-X with 8.8 m and NMAD for ASTER GDEM with 4.9 m. For water areas, the lowest errors 

were achieved by the NASADEM (4.2 m RMSE) and EU-DEM (3.4 m NMAD). In contrast, the RMSEs of 
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the 90 m TanDEM-X (12.4 m RMSE) and Copernicus DEM (10.8 m RMSE) are considerably higher 

compared to the other DEMs. The highest NMAD values were achieved by ASTER GDEM (9.0 m) and 

ALOS W3D (7.1 m). 

 

5.4.3 Slope dependent accuracies 

The derived error curves from different slope angles for all DEMs are presented in Figure 5-8. In flat 

terrain, most DEMs performed on a similar level and achieved RMSEs from 4 m to 6 m and NMAD 

values from 2 m to 3 m. Only the ASTER GDEM achieved a significantly higher NMAD with 5.5 m 

compared to the other elevation models. With increasing slope angles, the accuracy is decreasing 

significantly for all evaluated DEMs. However, the decrease in accuracy is different. The lowest error 

values on extremely steep slopes with slope angles of more than 35° were achieved for the 30 m SRTM 

with 8.9 m (RMSE) and 8.8 m (NMAD), followed by the ALOS DEM with only slightly higher errors. The 

results show the by far strongest increase of error for the TanDEM-X DEM. The error rises from 6.7 m 

(RMSE) and 2.6 m (NMAD) in flat landscapes up to 36.6 m (RMSE) and 35.0 m (NMAD) in extremely 

steep terrain. All other DEMs achieved an error of 20 m or less in extremely steep landscapes. The 

increase of error varies significantly for different DEMs. In particular, for the 30 m SRTM, ALOS DEM, 

Copernicus DEM and the 25 m EU-DEM a significant increase is only detectable from flat slopes to 

gentle slopes. For steeper slopes, the decrease in accuracy is only minor for these DEMs. In contrast, 

for the other DEMs a mostly linear decrease in accuracy is observable from flat to extremely steep 

slopes. 

 

Figure 5-8: Calculated RMSE and NMAD of elevation differences according to slope. Derived slope classes are ‘flat’ 

(<5°), ‘gentle’ (5° – 15°), ‘moderate’ (15° – 25°), ‘steep’ (25° – 35°) and ‘extreme’ (>35°). 
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5.4.4 Landform dependent accuracies 

The achieved errors of all DEMs in comparison to four different landforms are depicted in Figure 5-9. 

The results show that the highest accuracies were achieved in flat landscapes, followed by 

‘Depression/Valley’ landforms. For both landforms, it is observable for all DEMs, except the ASTER 

GDEM, that the achieved NMAD values are significantly lower in comparison to the RMSEs. Most DEMs 

achieved a RMSE of 3 m to 5 m and a NMAD that ranges from 1 m to 2 m for landform class ‘Flat’. For 

landform class ‘Depression/ Valley’ they achieved a RMSE from 4 m to 6 m and a NMAD from 1 m to 

3 m. Only ASTER GDEM performed worse with errors of more than 6 m (RMSE) and 5 m (NMAD) for 

both landform classes. The other two investigated landforms, hillslopes and ridges, do not show such 

a difference between RMSE and NMAD. The overall lowest accuracies are observable for landform 

class ‘Hillslope’ with average errors of about 7 m for most DEMs. Only the ASTER GDEM and both 

Copernicus DEMs achieved higher errors of about 9 m and the TanDEM-X performed worst here with 

error values of 12.2 m (RMSE) and 10.6 m (NMAD). For landform class ‘Ridge’, medium average error 

measures of 5 m to 7 m RMSE and 4 m to 6 m NMAD are observable for most DEMs with a slightly 

worse performance of ASTER GDEM and TanDEM-X.  

 

Figure 5-9: Calculated RMSE and NMAD of elevation differences according to the different classes of the 

geomorphometric map (GMK10).  

 

5.4.5 Spatial distribution of elevation differences 

The spatial distribution of elevation differences between the DGM1 and all evaluated DEMs is 

presented in Figure 5-10. It shows that the differences in elevation are mostly low in the northern part 

of the catchment for all DEMs. Only in the northernmost part, some larger differences are observable 

for areas that are covered by trees. Overall, the differences reveal that the ASTER GDEM consists of 

slightly lower heights compared to the reference DEM. For the other DEMs, this effect could not be 

detected. A considerably higher elevation difference is observable for many areas in the southern part 

of the Rur catchment. Thus, notably height deviations are mainly observable in parts with incised 

valleys and in the undulated transition area between the northern part and the southern part of the 

catchment, which is also mainly covered by forests. In particular, all 90 m DEMs reveal relatively high 

elevation differences in these areas. The observable height differences of the ALOS W3D and the 30 m 

Copernicus DEM are also slightly higher here than for the other DEMs.  
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Figure 5-10: Spatial distribution of elevation differences of all DEMs in comparison with the DGM1. 
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5.5 Discussion 

The results clearly show for all DEMs that their accuracy is mainly influenced by different landscapes 

and land cover types. It is observable that the highest elevation differences exist for areas that are 

covered by deciduous or coniferous trees and have high slope angles. Thus, the northern 

predominantly flat area with mostly agricultural and some residential areas is represented in almost 

all DEMs far more accurate than the undulated southern area with extensive forest and grassland 

areas. Overall, the accuracy of most DEMs was considerably higher in urban areas than in areas with 

dense tree vegetation, whereas between different tree types and urban classes only minor differences 

could be observed. The lower accuracy of areas with trees is probably increased due to the fact that 

these areas are mainly situated in undulated areas with steeper relief, while urban areas are mainly 

located in the flatter northern part of the study area. 

Both reference datasets produced predominantly comparable results for all DEMs with only slightly 

lower accuracies in comparison to the DGM1 than with the ECPs. As the ECPs are mostly situated near 

roads and pathways, they overall cover gentler relief than the mean relief of the DGM1, which causes 

the slightly superior accuracy of the tested DEMs in comparison with this dataset. The DGM1 covers 

the entire study area and the results in comparison with this reference dataset are probably more 

representative as it reflects the full terrain variability. 

In comparison to existing landforms, also predominantly flat geomorphometric features such as mostly 

flat plains, depressions and the bottom parts of valleys achieved significantly higher accuracies than 

the landforms hillslope and ridge, which overall contain much more steepness. However, as the 

landform class ‘Depression/Valley’ contains two different types of valleys, with the broader river 

valleys in the north and narrower valleys in the south, the accuracy of this class might be 

overestimated. Due to the fact that the broader river valleys cover the majority area of this class, the 

expectable accuracy might be lower for the narrower valleys in the southern part. 

The evaluation showed the best overall performances for the DEMs that originate from SRTM data. 

Thus, the 30 m SRTM achieved the highest accuracies in this study area. Previously conducted studies 

of this DEM showed an average error of 3 – 4 m in flat landscapes, which can increase up to 7 – 10 m 

in undulated terrain (Kramm and Hoffmeister, 2019; Mukherjee et al., 2013; Rexer and Hirt, 2014; 

Suwandana et al., 2012; Zhao et al., 2011). The results from this study indicate a slightly higher 

performance with an about 1 – 2 m higher accuracy of the DEM in steeper relief than it was observed 

in previous studies. However, they mostly fit well with other findings. 

The 90 m SRTM also showed predominantly high accuracies in most situations, namely 2 – 4 m in flat 

terrain and about 7 – 15 m in areas with steeper relief and high tree density or water. This is also mostly 

in accordance with other studies that showed an average error of 3 – 6 m in flat terrain, which can rise 

up to 20 m in steep landscapes (Becek et al., 2016; Hu et al., 2017; Kramm and Hoffmeister, 2019; Liu 

et al., 2019; Liu et al., 2020; Nagaveni et al., 2019; Yahaya and El Azzab, 2019). Particularly in flat relief, 

almost no notabe differences between the 30 m SRTM and the 90 m DEM could be observed. Only in 

steeper terrain its accuracy dropped significantly and showed errors that were up to 8 m higher 

compared to the 30 m SRTM. However, even in steeper relief, the 90 m SRTM revealed a higher overall 

accuracy in this study than the other DEMs with a similar spatial resolution. 
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The NASADEM, as a successor of the SRTM DEM, did show mostly a similar performance as its 

predecessor. Results from Uuemaa et al. (2020) showed a slightly better performance of this DEM in 

comparison to the older SRTM version. They achieved a RMSE of 6.39 m for the NASADEM in a 

relatively flat rural Estonian landscape that is comparable to the Rur catchment in its land cover and 

relief. Thus, their results are in accordance with the findings of this study with an only slightly worse 

accuracy in the probably steeper southern part of the study area. In contrast, the observed results of 

the northern part are with 3.5 m RMSE higher than the results of Uuemaa et al. (2020), which is very 

likely caused by an overall flatter landscape. Nevertheless, a significant improvement in accuracy over 

the SRTM is not observable for the area of the Rur catchment. The NASADEM even showed slightly 

worse accuracies in very steep areas and forest landscapes compared to the original SRTM. 

The EU-DEM, as a hybrid elevation model generated predominantly from SRTM and ASTER data 

sources, also reveals a good overall performance, which is mostly similar to the previously mentioned 

DEMs. Its slightly higher spatial resolution of 25 m seems not to have a recognizable impact on accuracy 

in comparison to others with a resolution of 30 m. Results of Mouratidis and Ampatzidis (2019) showed 

a slightly higher accuracy of the EU-DEM in vegetated areas compared to the 30 m ASTER and SRTM. 

They achieved an absolute elevation RMSE of 4.3 m for the EU-DEM, which is higher than the observed 

errors in the northern part of this study, but significantly lower than in the southern part. Overall, the 

EU-DEM produced ambivalent results. Whereas it achieved the overall highest accuracies in the 

northern part of the study area, it was about 1 m less accurate than the 30 m SRTM and NASADEM in 

the more undulated southern parts of the Rur catchment. 

The lowest overall performance could be observed for the ASTER GDEM. Particularly in flat areas, this 

DEM revealed the by far highest inaccuracies of all DEMs. Only in very steep relief and forests the 

TanDEM-X and Copernicus DEMs produced higher errors. In most parts of the study area, the ASTER 

GDEM was the least accurate DEM, which was even more inaccurate than DEMs with a spatial 

resolution of 90 m. Overall, the results of this study confirm numerous other studies that showed an 

inferior performance of the ASTER GDEM compared to other freely available digital elevation models 

(Alganci et al., 2018; Becek et al., 2016; Graf et al., 2018; Hu et al., 2017; Kumar et al., 2020; Liu et al., 

2019; Mouratidis and Ampatzidis, 2019; Pandey et al., 2017; Vassilaki and Stamos, 2020; Zhang et al., 

2019). These studies already indicated an average RMSE for the ASTER GDEM of about 3 – 4 m in flat 

terrain and 7 – 8 m with up to 16 m RMSE in steeper relief. Thus, the results of this study in the southern 

part of the Rur catchment fit well with the undulated terrain results and showed a slightly lower 

accuracy in flat landscapes of about 5 – 6 m. 

Ambivalent results are also observable for the ALOS DEM. Several existing studies reported a high 

accuracy of this DEM that is superior to the SRTM DEM in many cases (Alganci et al., 2018; Kumar et 

al., 2020; Liu et al., 2019; Yahaya and El Azzab, 2019). They showed an average RMSE of 2 – 3 m in flat 

landscapes and 6 – 7 m in steeper relief for the ALOS W3D, which fits mostly well with the findings 

from this study. In most parts of the Rur catchment, the ALOS DEMs showed similar accuracies 

compared to the 30 m SRTM. However, particularly in areas with dense vegetation and water the ALOS 

DEM produced about 2 m higher errors than the SRTM DEMs. 

Several recent studies indicated a good performance of the 90 m TanDEM-X DEM, which seems to be 

superior to the 90 m SRTM DEM (Altunel, 2019; Keys and Baade, 2019; Kramm and Hoffmeister, 2019; 

Kumar et al., 2020). These studies indicate an average error of 1 – 4 m in flat terrain and about 
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10 – 12 m in undulated terrain, which can rise to more than 20 m in very steep relief. In this study, the 

accuracies in flat landscapes were similar to other studies. However, particularly in densely vegetated 

and undulated to steep terrain, the accuracy of this DEM was overall lower here than it was observed 

in other studies. In comparison to the 90 m SRTM, the achieved accuracy of the TanDEM-X was similar 

in the mostly flat northern part of the study area, but revealed considerably higher inaccuracies in the 

southern parts of the catchment. Thus, it can be concluded that the accuracy of TanDEM-X is much 

more affected by undulated to steep terrain with dense vegetation and reveals a by far higher decrease 

than the SRTM DEMs. The evaluation with land use classes also shows that this DEM performs 

disproportionately worse in areas with trees and water. As these densely vegetated areas are mostly 

situated in undulated relief with predominantly hillslope and ridge landforms, this DEM achieved the 

highest error values of all tested DEMs in the southern part of the study area. One reason could be 

that the available version of the TanDEM-X DEM is mostly uncorrected yet. In areas with a high density 

of trees and buildings, this leads to potentially higher errors compared to DEMs from SRTM or ALOS 

sources as these DEMs already exist in a higher product version with numerous improvements and 

fixes of erroneous heights. This is also indicated by the larger differences between the achieved NMAD 

and RMSE values for this DEM compared to others. It is likely that the TanDEM-X has basically a very 

high accuracy, but a disproportionately high number of existing outliers is still present for the 

investigated area of the Rur catchment. However, an increased loss of accuracy in steep terrain could 

also be observed in regions with less vegetation (Kramm and Hoffmeister, 2019; Podgorski et al., 2019). 

This leads to the conclusion that the accuracy of the 90 m TanDEM-X in its current form seems to be 

generally lower in undulated relief compared to the 90 m SRTM, but the presence of vegetation might 

increase this effect. In particular, as the penetration depth into vegetation for X-band RADAR is less 

deep than for C-band, this leads to higher elevations in forested areas (Schlund et al., 2019; Solberg et 

al., 2018; Weydahl et al., 2007).  

As the newly released Copernicus DEM is also mainly generated from TanDEM-X WorldDEM™ data, it 

shows a mostly similar behaviour in its accuracies. In particular, the 90 m DEM has also considerably 

high errors over areas with trees and water and reveals similar weaknesses to the TanDEM-X. 

Nevertheless, the results show an overall higher performance of the Copernicus DEM, particularly in 

steep terrain, where it is up to two times more accurate than the 90 m TanDEM-X. This indicates that 

several improvements, which had been conducted to the Copernicus dataset, could increase the 

accuracy in comparison to the original WorldDEM™ product. However, its overall performance mostly 

did not reach the accuracy of the SRTM product here. The accuracy of the 30 m Copernicus DEM is 

considerably high in bare ground and predominantly flat agricultural areas and reveals potentially the 

highest accuracy in these regions of all DEMs. Nevertheless, the DEMs also contain several outliers, 

which is indicated by the considerably higher RMSEs compared to NMAD values. 

It is observable in the results that all DEMs generated partly or completely from data of the Shuttle 

Radar Topography Mission in February 2000 show a higher accuracy in landscapes with dense 

vegetation compared to the DEMs from other resources. One reason could be a higher suitability of 

the C-band RADAR system compared to the X-band system that was used for data acquisition of the 

TanDEM-X mission as it has a higher penetration depth in densely vegetated areas. Furthermore, this 

effect is probably also influenced by the acquisition date of the mission in the mid-European winter 

season, when trees are mostly free of foliage and less dense. Thus, a scan of the ground heights is 

better possible than in other seasons where the ground is not visible due to dense vegetation. 
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5.6 Conclusion 

This contribution evaluated the performance of nine freely available DEMs in the heterogeneous Rur 

catchment in order to establish expectable error values in relation to relief and land cover. Based on 

the results of this study, general accuracy values for these medium resolution DEMs in different types 

of landscape and relief can be stated. These expectable accuracies can be considered in further studies 

where these DEMs are utilized in comparable mid-latitude landscapes. In flat landscapes with a mean 

slope of less than 2°, an error of about 2 – 4 m can be expected. The accuracy of all DEMs dropped 

significantly in undulated terrain and is about two to three times lower in the southern part of the 

catchment with an average slope of about 5° compared to the northern part. Thus, according to the 

results of this study, an expectable average mean error of 6–8 m can be stated for a medium elevated 

terrain. The largest differences in the accuracy between the individual DEMs occur in areas that have 

slope angles steeper than 15°. An average error of 8 – 12 m must be expected for the DEMs in steep 

terrain. Likewise, for areas that are mainly covered by trees a mean error of 6 – 10 m is expectable. 

However, the observed differences between different tree types are only minor and do not have a 

significant impact on the accuracy. The same applies to varying types of urban land cover that also 

showed only minor differences in the achieved accuracy values for the evaluated DEMs. For these 

areas, an average error of 2 – 3 m can be stated. 

Furthermore, we showed the strengths and weaknesses of each individual DEM in different situations. 

In flat terrain, almost all DEMs performed on a very similar level with only minor differences. Only the 

Aster DEM showed higher errors even in flat areas and is probably the worst choice for an accurate 

representation of the surface. Interestingly, the results mostly revealed a higher overall performance 

for the datasets that were created from data of the Shuttle Radar Topography Mission. Nevertheless, 

a superior performance of the NASADEM compared to the original SRTM DEM was not observable and 

both performed on a very similar level. The EU-DEM also showed a good performance, but slightly 

worse in undulated terrain than the original SRTM. The ALOS W3D DEM achieved a good overall 

performance, but however not superior to the SRTM derived DEM products. 

Contrary to other findings, the DEMs from TanDEM-X WorldDEM™ data source could not achieve 

higher overall accuracies in this study area compared to the other DEMs. Particularly in steeper terrain 

and areas with dense land cover, this DEM reveals higher inaccuracies than the DEMs created with 

SRTM data. This is probably mainly caused by the portion of remaining outliers, which is higher than in 

other DEMs that have been corrected with several additional resources and where outliers mostly have 

been removed to date. Thus, although the basic accuracy of TanDEM-X is considerably high, additional 

work on this DEM is necessary for the region of this study to remove outliers. The achieved accuracy 

of the newly available Copernicus DEM is slightly superior to the original TanDEM-X. However, as this 

DEM is mainly based on the WorldDEM™ data, it also reveals a higher number of potential outliers 

than the other DEMs, in both the 30 m and 90 m version. 
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geobasis/rb/fd/hfp_pl_csv/. 

 Enhanced land use classification of 2015 for the Rur catchment in CRC/TR32 Database (TR32DB) at 

https://doi.org/10.5880/TR32DB.19. 
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 GMK10 Rur – Terrainfactors in CRC/TR32 Database (TR32DB) at https://www.tr32db.uni-koeln.de/ 

data.php?dataID=196. 
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Abstract: An accurate geomorphometric description of the Iranian loess plateau landscape will further 

enhance our understanding of recent and past geomorphological processes in this strongly dissected 

landscape. Therefore, four different input datasets for four landform classification methods were used 

in order to derive the most accurate results in comparison to ground-truth data from a 

geomorphological field survey. The input datasets in 5 m and 10 m pixel resolution were derived from 

Pléiades stereo satellite imagery and the ‘Shuttle Radar Topography Mission’ (SRTM) as well as 

‘Advanced Spaceborne Thermal Emission and Reflection Radiometer’ (ASTER GDEM) datasets with a 

spatial resolution of 30 m were additionally applied. The four classification approaches tested with this 

data include the stepwise approach after Dikau, the geomorphons, the topographical position index 

(TPI) and the object-based approach. The results show that input datasets with higher spatial 

resolutions produced overall accuracies of greater than 70 % for the TPI and geomorphons and greater 

than 60 % for the other approaches. For the lower resolution datasets, only accuracies of about 40 % 

were derived, 20 – 30 % lower than for data derived from higher spatial resolutions. The results of the 

topographic position index and the geomorphons approach worked best for all selected input datasets. 

Keywords: digital terrain models; landform classification; geomorphometry; stereo satellite imagery; 

ASTER GDEM; SRTM; loess  

 

6.1 Introduction 

The description of the Earth’s surface by automatic classifications is important to derive insight into a 

landscape. Geomorphometry, as a quantitative analysis of landscape structures, is applied in several 

fields, such as hydrology, geomorphology, soil science, oceanography or civil engineering (Florinsky, 

2012; Pike and Park, 1995). In practice, this valuable geomorphometric information can be used for 

map making, digital soil mapping (Behrens et al., 2014; Behrens et al., 2010; Bishop et al., 2012), 

hydrological simulations (Armstrong and Martz, 2003; Schwanghart et al., 2013) and risk potential 

analysis (Barka et al., 2011; Wood et al., 2011). Furthermore, this information is useful for the 

estimation of arable land as well as areas endangered by soil erosion. Likewise, the achieved 

information allows estimating past landscape evolution (Bishop et al., 2012). 
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To derive landform classifications, geomorphometric parameters, e.g. slope and curvature, of digital 

terrain models are used. These values are utilized for landform classification approaches in different 

ways and a multitude of different algorithms were developed for a systematic landform classification. 

Most of them are working with different terrain parameters and combinations of them to derive 

distinct landform types. For this purpose, most approaches use the assumption of landform types 

distinguishable by a comparison to the corresponding neighbouring elements. The first approaches for 

a digital landform classification were conducted by Pennock et al. (1987), who classified seven 

landform elements from the morphometric parameters slope, plan curvature and profile curvature. 

Dikau et al. (1995) digitalized the landform classification scheme of Hammond (Hammond, 1954; 

Hammond, 1964). Based on Hammond’s work, he calculated three morphometric values for each cell 

with a surrounding moving window and grouped them into different categories. Finally, he combined 

them into five different landform types. 

In the following decades, a large number of alternative and modified classification methods were 

presented. Brabyn (1998) modified the classification system of Hammond and Dikau. MacMillan et al. 

(2000) enhanced the classification scheme of Pennock et al. (1987) and were able to derive 15 different 

landform classes instead of seven. In addition, more complex decision tree-based approaches were 

tested to achieve a systematic landform classification (Iwahashi and Pike, 2007; Klingseisen et al., 

2008). Furthermore, besides these numerous landform classification schemes with ‘crisp, 

unambiguous boundaries’ (Burrough et al., 2000), fuzzy classification methods were introduced 

(Burrough et al., 2000; Schmidt and Hewitt, 2004). To consider the problem that different landform 

types mostly vary strongly in their sizes, Weiss (2001) developed the topographic position index (TPI). 

The TPI measures relative height positions of a certain point compared to its surrounding area in two 

different window sizes, whereas other approaches mostly use only one size for calculation. Thus, this 

approach is more suitable for heterogeneous landscapes (De Reu et al., 2013). Another promising 

approach was conducted by Jasiewicz and Stepinski (2013). Their geomorphons approach creates 

ternary patterns as a set of possible morphological landscape types from elevation differences in a 

certain neighbourhood. 

To take advantage of the segmentation technique over pixel-based classification methods, Dragut and 

Blaschke (2006) introduced a new object-based approach. Pixel-based approaches ignore contextual 

information and only consider values of individual pixels in the classification process. In contrast, 

object-based approaches use segmentation algorithms prior to the classification to partition the data 

into semantic objects that are much better able to divide the landscape in a comprehensible way. 

Therefore, object-based image analysis (OBIA) approaches became very popular in geomorphometry 

and the number of applied approaches increased in the last decade (d'Oleire-Oltmanns et al., 2013; 

Pedersen, 2016; Schneevoigt et al., 2008; van Asselen and Seijmonsbergen, 2006). 

Recently, all developed approaches were applied to many different thematic fields and landscapes. 

They have also become essential for the mapping of natural landscapes at different scales. Besides 

classifications of terrestrial landscape (Dragut and Eisank, 2012) or undersea topography (Dekavalla 

and Argialas, 2017) on global scales, small scale distinct landforms such as gullies (d'Oleire-Oltmanns 

et al., 2013), drumlins or volcanoes (Camiz et al., 2017; Pedersen, 2016) were also classified. All these 

approaches show very promising results. However, a thorough evaluation and comparison of the 

landform classification schemes is missing. In addition, it is rarely shown how different scales and input 

datasets overall work with these approaches. The questions of accuracy and scaling arise in particular 
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for areas with stronger relief variation as such landscapes are more sensitive to changes in digital 

elevation model (DEM) resolutions (Deng et al., 2007). Generally, most experiences indicate that DEM 

pixel resolutions between 5 m and 30 m are most suitable for landform classifications (Kienzle, 2004; 

Zhang and Montgomery, 1994). Likewise, input terrain datasets in a higher spatial resolution are 

available, as satellites nowadays are enabled to record stereo-views of an area. This optical imagery 

for the derivation of DEMs now achieved a submeter pixel resolution, comparable to already available 

datasets derived by airborne laser scanning (LiDAR). Furthermore, a global DEM with a 12 m pixel 

resolution will be available from the TanDEM-X mission, which incorporated two RADAR satellites and 

is nearly finished (Zink et al., 2014). 

In this contribution, the comparison of four different landform classification approaches was 

conducted by three different input datasets for a remote region, which is characterized by a strongly 

dissected relief, the Iranian loess plateau. The input datasets are the publicly available DEMs of the 

‘Shuttle Radar Topography Mission’ (SRTM) and ‘Advanced Spaceborne Thermal Emission and 

Reflection Radiometer’ (ASTER) (30 m pixel resolution) and two digital elevation models derived from 

Pléiades stereo imagery aggregated to a 5 m and 10 m pixel resolution. Based on the presented 

approaches by Dikau et al. (1995), Weiss (2001), Jasiewicz and Stepinski (2013) as well as Dragut and 

Blaschke (2006), landforms were classified in four different ways for each digital elevation model. 

These methods were applied in two different study areas of the Iranian loess plateau. Both study sites 

have slightly varying relief characteristics. One is situated in the western part of the loess plateau and 

has a strongly dissected relief with small valleys and steeply rising hills. The second study area has a 

flatter relief with some deeply incised valleys and is located in the eastern part of the plateau. To 

evaluate the results of the conducted landform classifications, geo-located pictures taken on a field 

campaign in this area were used. The accuracy of the DEMs themselves are compared to 

measurements of DGPS profiling. However, the precision and accuracy of the DEMs is not considered 

here, due to the accessibility of the area and only relative heights are used in the selected approaches. 

 

6.2 Study area 

The Iranian loess plateau is a unique landscape covered by mineral dust, up to at least 70 m thick 

(Frechen et al., 2009). Recent sedimentological and geochronological investigations show that these 

loess deposits have high value as records of Quaternary landscape evolution and climate change. These 

deposits provide a link between the loess deposits in Southeastern Europe and Central Asia (Frechen 

et al., 2009; Kehl, 2010; Khormali and Ajami, 2011; Lauer et al., 2017). However, little information is 

available on its soil, plant cover and the geomorphological evolution of the plateau as well as on 

potentials and problems in land use. 

The loess plateau covers an area of about 2250 km2 in the Turkmen steppe of northern Iran 

(Figure 6-1). It is located at altitudes between about 45 m and 300 m above mean sea level. The base 

of the loess plateau belongs to the western part of the Kopeh Dagh Mountains. It is dissected in several 

fault blocks (Bretis et al., 2012). Differential tectonic uplift is expressed in several escarpments and in 

the sudden altitudinal rise at the boundary of the plateau. Tectonic uplift triggered deep erosion and 

valley incision into the loess and underlying strata, causing the pronounced relief of the loess plateau. 

It is characterized by steep slopes frequently dissected by deeply incised v-shaped side-valleys opening 

to larger valleys with broad floors. Both types are dry valleys with episodic runoff. The ridges in 
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between the valleys rise to about 80 m above the valley floors and mostly consist of loess. Frequent 

loess wells, sinkholes, pipes and gullies reflect intense erosion processes at the land surface and below. 

Small scarp faces and hummocky toes indicate local slumping. In addition, the slope surfaces are 

covered by dense networks of sheep and goat tracks related to severe overgrazing in the area (Kehl, 

2010). 

 

Figure 6-1: Overview of the study area in northeast Iran with the two different Pléiades satellite imagery extents. 

Data provided by Golestan Natural Resources and Watershed Management Central Office (loess areas), ASTER-

GDEM2 and ArcWorld Supplement. 

 

6.3 Materials and methods 

6.3.1 Low resolution digital elevation models 

For the comparison of the different landform classifications, the two global digital elevation models 

(GDEM) in a resolution of 30 m were used. The ASTER sensor is a multispectral imaging system that is 

on board NASA’s ERA (Earth Observing System) TERRA satellite. The mission was launched in 1999 and 

was primarily used to collect multispectral data of the Earth (Abrams, 2000). In addition to the 

multispectral bands, the ASTER sensor has an additional near infrared sensor, which is inclined by 

27.6°. These sensors enable a stereoscopic recording according to the ‘as-track’ principle (Hirano et 

al., 2003). In 2009, NASA and the Japanese Ministry of International Trade and Industry published a 

global digital terrain model for the first time. This ASTER global digital elevation model (GDEM) was 

generated from all collected stereo images. It has a geometric resolution of one arc second, which 
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corresponds to a pixel resolution of about 30 m (Abrams et al., 2015; Tachikawa et al., 2011). In 2011, 

the second version of the ASTER GDEM was released. For the ASTER GDEM 2 used in this contribution, 

further recordings and enhancements were made available (Tachikawa et al., 2011). The accuracy of 

the ASTER GDEM2 was assessed by the ASTER GDEM Validation Team (Tachikawa et al., 2011) with an 

average vertical root mean square error (RMSE) of 8.86 m. Additionally, they reported a RMSE of 6.1 m 

in flatter areas and of 15.1 m in mountainous regions. The horizontal average error was conducted by 

a shift of 0.13 arc-seconds to west and 0.19 arc-seconds to north. 

In contrast to the previously described passive DEM derivation of the Earth’s surface, it was actively 

recorded in February 2000 by the SRTM with the aid of RADAR systems by the InSAR principle (Farr et 

al., 2007). A DEM from the C-band data was first made available by the USGS in 2003 in a one arc 

second geometric resolution for the US and a three arc second resolution for the whole Earth. In the 

course of the year 2015, SRTM data with a geometric resolution of one arc second were made available 

for the rest of the Earth’s surface. Thus, SRTM data for the region of northern Iran with a geometric 

resolution of 30 m was also available for the analysis in this contribution. According to Farr et al. (2007), 

the accuracy of the SRTM DEM is determined by an absolute vertical height error of 6.2 m and a relative 

height error of less than 8.7 m for Eurasia. The horizontal positional accuracy was assessed with a 

circular absolute geolocation error of 8.8 m. 

 

6.3.2 High resolution digital elevation models 

In contrast to the previously presented low resolution models, different models in a higher spatial 

resolution from Pléiades satellite imagery were derived. Pléiades is a satellite system operated by the 

French Space Center (CNES). The first of the two satellites (Pléiades 1A) was brought into a sun-

synchronous orbit on 16 December 2011. One year later, Pléiades 1B followed as the second satellite 

on 2 December 2012, which completed the system (Astrium GEO-Information Services, 2012). This 

system is equipped with optoelectronic CCD scanners, which scan the Earth’s surface transversely to 

the direction of flight and convert the measured radiation into a measurable electrical signal. It is 

recorded in a panchromatic channel and four multispectral channels each with five line sensors (de 

Lussy et al., 2006; Gleyzes et al., 2012). The line sensors of the panchromatic sensor have a width of 

more than 6000 pixels and the multispectral sensors have a resolution of 1500 pixels. Thus, the 

geometric resolution of the satellite is 50 cm in the panchromatic channel and 2 m in the multi-spectral 

channels (Astrium GEO-Information Services, 2012). The Pléiades satellites thus belong to the satellite 

systems with a very high spatial resolution. The panchromatic channel operates in a wavelength range 

between 480 nm and 830 nm. The positional accuracy is indicated with 8.5 m at nadir and 10.5 m 

within an angle of 30° (Astrium GEO-Information Services, 2012). The Pléiades data used in this study 

are two stereoscopic images, which were recorded over the investigation areas on 28 March 2015, 

each representing an area of about 10 by 10 km. From these stereo image pairs, the digital terrain 

models with a pixel resolution of 50 cm were established with the ENVI software. The generation of 

the Pléiades DEMs was conducted with 25 tie-points for relative orientation. No georeferenced ground 

control points (GCPs) were used, due to the accessibility. Therefore, only a DEM with relative heights 

was used in the classification process. From the high resolution dataset, two datasets with lower pixel 

resolution (5 m and 10 m) were resampled by the ‘nearest neighbour’ sampling method, which served 

as the basis for the compilation of the landform classifications. 
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6.3.3 Applied landform classifications 

6.3.3.1  The approach of Dikau 

Following the approach of Dikau in the 1990s, a stepwise classification was conducted, subdivided into 

the derivation of slope, local relief and profile type classifications. The whole procedure is computed 

in ArcMap 10.3 (ESRI) as an automatic tool, implemented with the model builder. Major functions used 

in ArcMap are slope, focal statistics and map algebra. The first step of this approach is to derive slope 

classes for each pixel by an adjustable number of neighbouring pixels building a rectangle containing a 

slope of less than 8 %. Class breaks are 20 %, 50 % and 80 %, resulting in four classes. The number of 

neighbouring pixels is adjusted to the spatial resolution of the input data, as assigned in Table 6-1. 

Table 6-1: Parameters of the moving window sizes in pixels (px) for Dikau used in this approach for the three 

different pixel resolutions. Cell size in meters are shown in parentheses. 

Moving window 5 m 10 m 30 m 

Slope gradient  

(rectangle) 

3 × 3 

(15 m) 

3 × 3 

(30 m) 

3 × 3 

(90 m) 

Local relief window (circle radius)  15 

(75 m) 

10 

(100 m) 

5 

(150 m) 

Profile type (rectangle) 10 × 10 

(50 m) 

10 × 10 

(100 m) 

10 × 10 

(300 m) 

 

The calculation of the local relief is conducted by building height differences for each pixel and the 

previously mentioned neighbouring pixels (Table 6-1). In this case, the neighbouring pixels are 

determined by a circle. Classes are built upon the height differences in six classes with class breaks at 

30 m, 60 m, 100 m, 150 m and 300 m. Likewise, the profile type is calculated by assigning pixels to 

upland or lowland and further using classes of flatness, as described before. The assignment to upland 

or lowland is depending on the position of the pixel in relation to the overall height range of 

surrounding pixels. A pixel with a height higher than half of the height range of all pixels is in upland 

class, a pixel with a height smaller than half of the height range of all pixels is in the lowland class. Four 

classes are built by the combination of these calculations, where low- or upland pixels with a number 

of slope pixels smaller or higher than 75 % are used. 

All possible classes of each classification were serially numbered from one to four for the slope and 

profile type classification and from one to six for the local relief classification. Consequently, each pixel 

became three numbers depending on their assigned class. A combination of these results in 96 possible 

combinations for each pixel (Table 6-2), in which the first digit represents the slope classification, the 

second one the local relief and the third one the profile type. Finally, these sub classes are remapped 

here to five major landform classes (plains, plateau, irregular plains, low hills and moderate hills) that 

fit the results of the other classification approaches. 
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Table 6-2: Reclassification scheme of the derived landform subclasses to final landform classes. 

Landform sub-classes code Landform type 

111, 112, 121, 122, 131, 132, 141, 142, 151, 152, 161, 162, 211, 212, 221, 222 Plains 

113, 114, 123, 124, 133, 134, 143, 144, 153, 154, 163, 164, 213, 214, 223, 224 Plateau 

231, 232, 233, 234, 241, 242, 243, 244,  

251, 252, 253, 254, 261, 262, 263, 264,  

311, 312, 313, 314, 321, 322, 323, 324,  

331, 332, 333, 334, 341, 342, 343, 344,  

351, 352, 353, 354, 361, 362, 363, 364 

Irregular Plains 

411, 412, 413, 414, 421, 422, 423, 424 Low Hills 

431, 432, 433, 434, 441, 442, 443, 444, 451, 452, 453, 454, 461, 462, 463, 464 Moderate Hills 

 

6.3.3.2  The Topographic Position Index 

The topographic position index was implemented as a tool with ArcMap 10.3 model builder (ESRI) after 

the concept of Weiss (2001). The TPI uses two different scales in order to derive different landform 

classes. The standardized index is built on each scale by comparing the current cell value to the moving 

mean of the neighbouring cells. In this case, neighbouring cells are selected by an annulus with an 

inner and outer cell radius. As previously described, these sizes are selected based on the pixel 

resolution of the input data. As recommended by De Reu et al. (2013), the size of the radius for the 

inner annulus was oriented on the dimensions of the smaller landforms in the study area. The values 

are listed in Table 6-3. Positive index values are assigned as ridge, negative values are assigned as 

valley. In combination with a slope analysis, a differentiation in two classes with values smaller or 

bigger than 5 %, as well as the two different scales, this results in ten classes. In this contribution, the 

number of classes is reduced to seven classes by integrating ridges and drainage classes. 

Table 6-3: Parameters of the moving window sizes in pixels (px) for the TPI used in this approach for the three 

different pixel resolutions. Cell sizes in meters are shown in parentheses. 
 

5 m 10 m 30 m 
 

Inner radius  Outer radius  Inner radius Outer radius  Inner radius  Outer radius 

TPI 300 annulus 5 (25 m) 10 (50 m) 3 (30 m) 5 (50 m) 3 (90 m) 5 (150 m) 

TPI 2000 annulus 62 (310 m) 67 (335 m) 30 (300 m) 33 (330 m) 10 (300 m) 12 (360 m) 

 

6.3.3.3  The object-based approach 

For the object-based approach, slope and curvature are first calculated as further input datasets for 

the segmentation. The segmentation is conducted in eCognition Developer 9.0 (Trimble) by the 

multiresolution segmentation tool. The weighting for each parameter is similar as well as smoothness 

and compactness in the segmentation process. The scale parameter is set to 20, 10 and 5 for the pixel 

resolution of 5 m, 10 m and 30 m. Classes are built by using the mean value of profile curvature (<−0.5, 

−0.5 to 0.5 and >0.5) and slope (<2°, >35°) of each derived object. In addiqon, a peak class is built for 

all segments higher than their surrounding segments and footslope segments are selected from valley 

segments with neighbouring plain segments. Thus, seven classes are derived by this approach: ridge, 

hillslope, valley, plains, steep slope, peak and footslope. 
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6.3.3.4  Geomorphons 

The applied geomorphons approach was developed by Jasiewicz and Stepinski (2013) for the open 

source GIS Software GRASS GIS (GRASS Development Team). It is a pattern recognition approach that 

compares height values of cells in eight different directions to the regarding cell. The approach uses 

input parameters for an inner and outer search radius to set the distance, which is considered for the 

calculation of the height differences. These height differences were calculated after the ‘line-of-sight’ 

principle by Yokoyama et al. (2002). In addition, a parameter flatness threshold is necessary as a 

threshold for flat terrain. The used parameters in this contribution are displayed in Table 6-4. The 

original approach results in ten different landform classes. For a better comparability to the other 

approaches in this contribution, the classes spur, slope and hollow were combined into one class and 

all classes were renamed (Table 6-5). 

Table 6-4: Parameters of the moving window sizes in pixels (px) for the object-based approach used in this 

approach for the three different pixel resolutions. Cell sizes in meters are shown in parentheses. 

Parameters 5 m 10 m 30 m 

Outer search radius (px) 20 (100 m) 10 (100 m) 10 (300 m) 

Inner search radius (px) 10 (50 m) 5 (50 m) 5 (150 m) 

Flatness threshold (degrees) 3 3 3 

 

Table 6-5: Reclassification scheme of the derived landforms to final landform classes used in this contribution for 

comparison of the approaches. 

 Geomorphons class names Used class names 

flat plains 

peak peak 

ridge ridge 

shoulder plateau 

spur, slope, hollow hillslope 

pit gully 

valley valley 

footslope footslope 

 

6.3.4 Methodology of accuracy assessment 

For an accuracy assessment of the derived landform classes as well as for a determination of DEM error 

in the selected areas, a field campaign for ground-truth capture was conducted in September 2015. 

Therefore, a Trimble R3 DGPS was used for measuring some trenches inside the coverage of the 

Pléiades imagery. Due to the rougher relief of the western coverage area, the DGPS profiles were 

measured at steeper slopes at this location and contain height differences up to 60 m. In contrast, the 

measured points in the eastern area depict flatter terrain by only containing height differences of less 

than 20 m. Likewise, 66 geolocations based on the classification results were chosen and measured 

with a handheld GPS. At these locations, pictures were taken with the according orientation. Thus, 

approximately 150 landforms could be identified. As an example, Figure 6-2 shows the picture location 

193 with the according pictures to the North and South. 
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Figure 6-2: Example location for the accuracy assessment: (A) location and viewing direction in the Pléiades scene 

(©CNES (2015), Distribution Airbus DS); and (B, C) pictures of the two viewing directions of this picture point. 

 

6.4 Results 

6.4.1 DEM accuracy 

To evaluate the accuracy of the utilized DEMs, 314 DGPS points were measured during the field 

campaign at six locations (western part: 281 points; eastern part: 33 points). For each point, the 

altitudes of the datasets were compared to the DGPS heights. Hence, a root mean square error value 

was calculated for each dataset. For the Pléiades dataset, the originally achieved version with a pixel 

resolution of 0.5 m was used. The results are listed in Table 6-6. Generally, they show much higher 

deviations for the western than for the eastern study area. For the ASTER GDEM, the highest RMSE 

values were determined in both sites. In contrast, the altitude differences of the SRTM dataset were 

the lowest compared to the others. 

Table 6-6: Calculated root mean square error (RMSE) of DGPS and digital elevation model (DEM) heights for both 

areas. 
 

West [m] East [m] 

Pléiades 11.7 3.2 

ASTER 13.3 4.5 

SRTM 9 2.9 

 

6.4.2 Classification results 

Figure 6-3 presents the percentage of the classified area for each landform class. All approaches 

indicate significant differences between the western and eastern study areas. Generally, they show 

more flat terrain in the eastern area, whereas the western area is dominated by landform classes that 

represent hilly landforms. Therefore, in the eastern site, the flat landscape representing the classes 

plains and plateau have the highest percentages and more than half of the pixels were classified by 

these classes. However, considerable differences between all approaches exist. While the proportion 

of the class plains with approximately 30 % is relatively low for Dikau’s scheme, up to three-fourths of 

the pixels were classified as plains by the object-based approach. In contrast, in the western study area 

less than 20 % were classified as flat areas in high geometric resolution datasets. There, only 15 % were 

classified as plains by the object-based approach and less than 6 % by the others. The proportion of 

this class is largely stable in all spatial resolutions for Dikau’s approach, whereby it is strongly increasing 

for all other approaches in low resolution. 
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Figure 6-3: Percentage distribution of landform classes for each approach, area and pixel resolution. 
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In the western study area, the majority of pixels were classified into landform classes that represent 

hilly areas or incised valley landforms. Over one-fourth of the pixels were classified as valleys, gullies 

or drainage by all approaches in high spatial resolution datasets. In Dikau’s approach, the class irregular 

plains is the best suitable class for valleys. By this approach, 36 % were classified as irregular plains, 

which is the highest rate for incised landforms compared to the other approaches. The results in low 

pixel resolution reveal a strong decrease of classified valleys for the object-based approach. Only 5 % 

and 7 % were classified as valleys with ASTER and SRTM DEM, respectively. For all other approaches, 

there is only a minor decrease of percentages. In the eastern study area, the percentages of valleys 

are slightly lower than in the western site. Apart from that, the results show the same properties in 

both sites. 

Hills are the predominant landforms of the western study area. Therefore, all approaches classified the 

majority of pixels correctly into landforms, which represent hilly landforms. The percentage of these 

landforms with around 73 % is the highest for geomorphons with a high geometric resolution DEM. 

The other approaches classify between 55 % and 61 % as hills. Most of these areas were classified as 

low and moderate hills by Dikau’s scheme and as hillslopes by the others. The percentage of hillslope 

with around 42 – 45 % is relatively high for geomorphons and TPI, whereas only an area of just over 

20 % was classified with this landform class by the object-based approach in high spatial resolution. 

However, in low spatial resolution, the percentage of hillslope pixels is strongly increasing for the 

object-based approach, whereas it decreases for the geomorphons approach. By Dikau’s approach, 

the majority was classified with the class low hills in the western area with a pixel resolution of 5 m. 

With low pixel resolutions, a significant increase in the percentage of the class moderate hills can be 

observed, whereas the class low hills is almost completely missing. The percentage of uprising 

landforms is significantly lower in the eastern study area. There, only 20 – 30 % were classified as hilly 

landforms. Only the TPI shows for the results of 5 m and ASTER a higher proportion of 43 % and 35 %, 

respectively. This is mainly due to a disproportionately high rate of hillslope landforms. 

In Figure 6-4, an exemplary section of the classified landform maps of the eastern classification result 

is illustrated. It compares the results of the four approaches with the different DEMs. Some differences 

in the relief subdivision are noticeable. Generally, the approach after Dikau shows the least relief 

differentiation. All other approaches have more classes to subdivide the relief, whereby a more 

detailed classification result can be achieved. In particular, the TPI and the geomorphons classify the 

landscape in a line-like way, which accents the structure of the landscape best. For the object-based 

approach, the results reveal for the strongly fragmented parts of the landscape some weaknesses of 

the segmentation technique. Some segments seem to be too big, which leads to a less accurately 

classification of the landforms in some areas. 

A comparison of the different geometric resolutions reveals for all approaches the weakest results for 

both 30 m classifications. Compared to the results with high pixel resolution, it is apparent that the 

landforms are classified spatially less accurate and small structures of the landscape were not 

detected. In contrast, the classification results with a pixel resolution of 5 m and 10 m show a much 

more differentiated subdivision of the landscape. Besides, they are less different from each other for 

three of the four approaches. Only for Dikau’s approach, significant changes in the results can be 

observed between all spatial resolution levels. 
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Figure 6-4: Comparison of a selected area, similar to Figure 6-2, for all approaches and different pixel resolutions. 

Background image: Pléiades satellite imagery © CNES (2015), Distribution Airbus DS. 

The classified landscape can be divided into three general landform elements: flat areas, valleys and 

hills. The results of all approaches are compared in the following in detail for these areas. 

 Flat areas: with the highest spatial resolution DEM, the TPI approach yielded the weakest 

results for flat areas in both regions due to a very inhomogeneous classification with the 
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classes plains and hillslope. The best results here can be observed by the object-based 

approach. Especially the segmentation technique leads to a very homogeneous classification 

in wider areas. The geomorphons approach also produces relatively homogeneous results, but 

only in very large flat areas as they exist in the eastern study area. If the flat area is relatively 

small, the results demonstrate many misclassifications with the class footslope. Contrary to 

that, Dikau’s approach seems to be the best to classify small flat areas. Here the results of the 

Western study area show very homogeneous and spatially accurate results, whereas in wider 

areas many mixtures with the class plateau can be observed. 

 Valleys: all results reveal that small valleys only were classified with spatially high resolution 

DEMs. With both 30 m terrain models, only the most distinct valleys were detected by all 

classification methods. The approach of Dikau classifies them barely even with a pixel 

resolution of 10 m. Only with a pixel resolution of 5 m this approach is able to classify valleys 

with the landform class irregular plains. With lower pixel resolutions, this approach is hardly 

able to detect them. Generally, the results of the TPI have the most diversification in the 

classification of valleys, caused by the largest variety of classes to divide these landform 

elements. Therefore, the TPI is the only approach that can distinguish different valley types 

and assign them to different classes. An observable weakness of this approach is that valleys 

were classified too broadly and some areas of the neighbouring hills were also classified as 

valleys (see Figure 6-4). It is also noticeable for this approach that both 30 m results classified 

the majority of valleys with the class gully, while they were assigned to the class valley in 

spatially high resolution results. The weakness of too wide classified areas of the class valley 

can also be observed in the results of the object-based approach. Furthermore, the built 

segments seem to be spatially inaccurate in some places. In contrast, the most accurate 

classification of valley widths was achieved by the geomorphons approach with a high pixel 

resolution DEM. Furthermore, small incisions can be shown separately with the class gully by 

this approach. However, the general subdivision of different incision types is less differentiated 

than by the TPI. 

 Hills: a comparison of the classification results of hilly landforms indicates the least 

differentiation of the relief with Dikau’s approach, caused by the fact that it just classifies these 

areas with the classes low hills and moderate hills. Furthermore, the results of Dikau’s 

classification show a systematic change in the number of classified landforms with the class 

low hills. Whereas with a pixel resolution of 5 m the lower hills of the western part of the 

plateau were assigned correctly as low hills, with both 30 m DEMs almost all hills were 

classified as moderate hills. All other approaches produce much more diversity in their results, 

because their classification scheme is able to subdivide the hills into smaller sub elements. 

Figure 6-5 depicts the classification schemes of the four approaches in spatially high resolution 

on a typical range of hills in the western study area. In particular, the object-based approach 

has many suitable classes for a systematic classification of hills. However, the results reveal 

that the extremely fragmented structure of the hills is often not depicted accurately enough 

by the segments. Therefore, many classified landforms do not fit properly to the relief and 

overlap with areas, which should be better classified with another landform class. This leads 

to the effect that the classification result of the object-based approach seems to be coarser 

than the results of the TPI and geomorphons approach. A specific feature of the object-based 

approach is the differentiation between different slope gradients by the classes steep slope 
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and hillslope. The results demonstrate that the subdivision works properly only with a spatially 

high resolution DEM. It is observable that the amount of classified steep slope areas decreases 

strongly for lower pixel resolutions. With a geometric resolution of 30 m, almost no steep slope 

landforms were detected. The geomorphons approach generally classifies hills with the classes 

hillslope and the upper parts with the classes ridge and peak. Noticeable is that lower parts 

were not classified with the class footslope in the results with high pixel resolutions, although 

this class would be more suitable. A comparison of high- and low resolution results reveals a 

changed system in the classification of hillsides. Whereas the slopes were assigned to the class 

hillslope in spatially high resolution results, most areas were classified with the classes 

footslope and plateau with a low pixel resolution DEM. Furthermore, it is conspicuous that the 

classified landforms are much coarser with both 30 m DEMs. 

The spatially high resolution results of the TPI generally point out a largely reasonable and accurate 

landform classification of hills. It has minor class diversity than the geomorphons and object-based 

approach, but especially the classification of hillslope and ridges is highly consistent and accurate. Only 

the classification of some upper parts of the hills with the class plateau in the western study area seems 

not meaningful. It seems that this class classifies different landform types in the eastern than in the 

western area. Therefore, the class name here is only suitable for the eastern part. 

 

Figure 6-5: Perspective comparison for hilly classes of the different approaches in the highest pixel resolution of 

5 m with the assigned picture position in the western study area. White areas represent flat surfaces. 
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6.4.3 Accuracy assessment 

The final classification results were compared with landforms depicted in 66 pictures from both areas. 

Table 6-7 gives an overview of all achieved overall accuracies. The results show, as expected, a minor 

accuracy for the DEM with a pixel resolution of 30 m. The variation of the results is higher for the ASTER 

dataset than for the SRTM dataset. This is mainly due to the very low accuracy of Dikau’s approach for 

this specific area. The higher pixel resolution of the Pléiades dataset results in an increase of 20 – 30 % 

in the classification accuracy. In addition, the differences in the accuracy between the 5 m and 10 m 

pixel resolution results are very low. Especially the TPI and the object-based approach achieve nearly 

the same accuracies in both spatial resolutions. Generally, the accuracy of the TPI approach is the best, 

followed by the geomorphons approach. The approach of Dikau generated the lowest accuracy, except 

for the SRTM dataset. 

Table 6-7: Overall accuracy of the four approaches and the four different datasets derived as the relation of 

correctly classified to all classified elements from the confusion matrices (Tables 6-8 – A 6-11). 
 

5 m 10 m Aster 30 m SRTM 30 m 

Dikau 63 % 58 % 33 % 42 % 

TPI 72 % 71 % 44 % 41 % 

Object-based 63 % 63 % 42 % 40 % 

Geomorphons 70 % 65 % 39 % 39 % 

 

The error matrices of the four approaches, as listed in Appendix Tables 6-8 – 6-11, generally underline 

the presented results. For the datasets with a lower spatial resolution, the accuracy decreases by about 

20 % to 30 %. For Dikau’s scheme (Appendix Table 6-8), the user’s accuracy is decreasing on lower pixel 

resolutions and SRTM shows slightly better results than the ASTER based classification. Plains and low 

hills are best classified. Likewise, the producer’s accuracy points out a decrease to lower pixel 

resolutions and the classes of irregular plains, low hills and moderate hills show the best fit. In 

particular, irregular plains and moderate hills are mixed. 

For the TPI approach (Appendix Table 6-9), the results of the spatially high resolution Pléiades DEMs 

produced low user’s accuracies for the class of valleys, due to their strong mixture with other flat areas. 

For the other classes, the majority of ground truth landforms were identified correctly by the TPI 

approach. Similar to the other approaches, the accuracies decrease strongly for both 30 m datasets for 

most classes. 

The results of the object-based classification (Appendix Table 6-10) indicate generally more stable 

results over all geometric resolutions. In particular, plains were classified very well in the datasets with 

5 m and 10 m pixel resolution. In contrast, in the classification results of the ASTER and SRTM datasets, 

all steep slope landforms were classified into other landforms and the class was not used at all. Similar 

results can be recognized for the class peak, which was also classified rarely for 30 m pixel resolution 

datasets. As the class was relatively often misclassified into the class ridge, the accuracies are generally 

low. Noticeable is also a strong increase of the number of classified landforms with the classes plains 

and hillslope in both 30 m datasets, due to misclassifications of other landforms into these classes. 

The error matrix of the geomorphons approach in Appendix Table 6-11 shows a general decline of the 

user’s accuracy with both 30 m datasets. The decline between 5 m and 10 m is very small. The 
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classification of the class footslope works less and was mostly mixed with classifications of plains and 

valleys. Interestingly, the accuracy rises for the classes of peaks and hillslopes. 

 

6.5 Discussion 

A comparison of the different landform classification results reveals strengths and weaknesses for all 

approaches. Overall, the TPI and the geomorphons approach achieved the highest accuracies. In 

addition, their classification results give the best visual feedback of the landscape structure of the 

Iranian loess plateau due to their spatially accurate classification of landforms. In particular, the TPI 

seems most suitable for a meaningful classification, as it has the highest class diversity for the 

classification of hills, hillslopes and valleys. However, it revealed some weaknesses in flat landscapes 

due to a very inhomogeneous classification of these areas with high pixel resolution datasets. In 

contrast, the geomorphons approach achieves higher accuracies in the classification of plains and 

valleys. However, it classified the structures of hilly landforms less detailed compared to the TPI, 

although the number of suitable classes is similar. Nonetheless, both approaches seem to have the 

highest suitability to classify such a distinct relief at this scale. 

In this study, Dikau’s approach achieved the lowest accuracies. Moreover, the classification results 

reveal the least relief differentiation compared to the other approaches. Overall, this approach seems 

to be least suitable for the classification of such a strongly dissected landscape. Due to its possible 

landform classes, it is probably more appropriate for the classification of landforms in other spatial 

scales. In addition, many authors demonstrated in their work a better suitability of the Dikau approach 

for landscapes on macroscales (Dikau et al., 1995; Gallant et al., 2005; Hrvatin and Perko, 2009; Martins 

et al., 2016). 

The object-based classification produced ambivalent results. The advances of the segmentation 

technique can only be confirmed here for landforms, which extend over larger areas. Especially flat 

areas were classified best by this approach because of a high degree of homogeneity. In contrast, 

weaknesses in the classification of smaller landforms are recognizable in parts with rougher relief. This 

is mainly the result of a minor spatial accuracy of the built segments in these areas. As a result, the 

classified landform boundaries are spatially less accurate compared to the applied pixel-based 

approaches. A more complex segmentation process on different scales would probably avoid this 

problem. For example, a segmentation on different scale levels, as postulated by Dragut and Eisank 

(2012), accounts the issue of under-segmentation of small objects or over-segmentation of larger ones. 

A comparison of the results in different spatial resolutions clearly demonstrates poor results for all 

approaches with both 30 m DEMs. Small landforms were not detected and the spatial accuracy of 

landform borders is less accurate. Only in extensive flat areas of the eastern part, a lower pixel 

resolution appears to result in a more homogeneous classification compared to the high resolution 

results. However, differences between the ASTER and the SRTM DEMs are recognizable. Generally, a 

higher suitability of the SRTM dataset for landform classifications was postulated by several authors 

(Libohova et al., 2016; Mashimbye et al., 2014; Rexer and Hirt, 2014). This can be confirmed here, as 

the use of the SRTM DEM results in a more homogeneous landform classification. 

Nevertheless, both datasets are not able to achieve promising results in the majority of evaluated areas 

in this contribution. This is basically due to two main reasons. One reason lies in the DEM itself, as the 
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strongly dissected relief structure is already insufficiently contained in the input dataset. Generally, 

lower spatial resolutions lead to a smoother representation of the topography and the relief seems in 

the DEM much gentler and more rounded as it is in reality (Deng et al., 2007). Therefore, neither the 

ASTER GDEM nor the SRTM dataset include enough information to classify the very small landscape 

structures. 

The second reason lies in the characteristic of the moving windows, which were used by most 

approaches in some way to classify landforms. The moving window defines the number of surrounding 

pixels that were included in the classification process to classify a certain pixel. A suitable definition is 

difficult due to different landscape characteristics and landform sizes. In the ideal case, it contains only 

landscape elements, which directly affect the landform of the considered pixel. Bigger window sizes 

result in too many considered pixels by the classification processes that have no influence on the 

considered landform. Thus, the choice of the best possible window size depends strongly on the scale 

of landforms and uneven landscapes mostly require smaller window sizes to represent small features 

(De Reu et al., 2013; Jasiewicz and Stepinski, 2013). Due to the very small landform elements in the 

study area, it was necessary for Dikau’s approach to define a very small 3 × 3 pixel window already for 

the 5 m pixel resolution DEM. Thus, a further reduction of contemplated pixels was not possible for 

lower resolutions, which leads to an enlargement of the window size. The TPI and geomorphons 

approaches were affected by the same problem, as the minimum window size was reached with a 10 

m DEM. As a result, the window size also gets too big with a 30 m pixel resolution DEM. In consequence, 

small landforms were not classified and bigger landforms were interpreted in false dimensions and 

assigned to incorrect classes. This effect is clearly recognizable in the results of the TPI where 

landforms, which were classified as valleys with a high-pixel resolution DEM, were assigned to class 

gully in lower resolutions. Hence, a differentiation between gullies and valleys was not possible. In 

addition, the number of classified peaks decreases significantly in lower resolutions in the results of 

the geomorphons approach. 

The results clearly point out that a geometric resolution of at least 10 m is necessary for an accurate 

classification of such a strongly dissected relief. With both 30 m DEMs, no approaches are able to 

achieve sufficient results. A comparison of the classification results of the western and eastern study 

area indicate that flatter areas are less sensitive to resolution changes. Furthermore, low spatial 

resolutions lead to an increase of homogeneity. Thus, it can be confirmed here that the flatter the 

landscape is, the lower the spatial DEM resolution can be to achieve accurate classification results. In 

this contribution, the best results were achieved with a pixel resolution of 5 m. For such a strongly 

varying landscape, also a higher pixel resolution of around 3 m would probably effectuate results of 

similar quality, but higher pixel resolutions increase the risk of an over-classification of landforms. With 

a decreasing pixel size, too many micro-scaled landforms were identified, which were not necessary 

for further landscape interpretations (Libohova et al., 2016). 

The accuracy assessment method conducted in this contribution provides reproducible results. 

However, a quantitative evaluation of landform classifications is still problematic. First, the acquisition 

of ground truth data is often time consuming and depends on the suitability of the terrain (Dragut and 

Blaschke, 2006; Saadat et al., 2008). Second, in this contribution, a relatively high number of photos 

were required to collect enough ground truth data for all classes to produce a statistically valid dataset. 

Furthermore, weaknesses still exist in the evaluation methodology itself. Several studies have shown 

that an accuracy assessment with ground truth based error matrices is able to produce suitable results 
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for geomorphometric classifications. However, a quantitative accuracy assessment of landform 

classifications is problematic as there still exists a lack of standardized applicable methods. Several 

authors have found different solutions to extract their ground truth data and compare them with their 

results. Some studies interpreted landforms from aerial or ground taken photos and generated ground 

truth samples to conduct an evaluation landform. Schneevoigt et al. (2008) defined test areas for each 

landform from photo material, but evaluated them pixel-based. Others generated a reference map 

from map data or field investigations and compared it pixel-wise to their results (Pedersen, 2016; 

Vannametee et al., 2014). 

A pixel-wise comparison seemed unsuitable in this study, as this would have overrepresented some 

landforms due to their spatial extent. Landforms vary strongly in their extent, as there exist point-

based, line-based and areal landforms (Evans, 2012). Consequently, in a pixel-wise evaluation, the class 

plains as an areal landform would have contained much more pixels in the error matrix than the class 

peak as a point-based landform. This would have led to a significant overrepresentation of some 

landforms in a pixel-wise evaluation process. Therefore, a landform-wise comparison method was 

applied here to avoid the influence of the spatial extent of landforms. In addition, the comparison is 

not biased by positional errors of the input datasets or the varying notation and detail of the applied 

approaches. 

A major problem in geomorphometric analyses is that a clear delimitation of landforms is often not 

possible, as they do not have distinct boundaries (Dragut and Blaschke, 2006; Evans, 2012). Hence, the 

interpretation of these landforms is rather subjective. Moreover, a standardization of the classes 

between the different approaches was not completely possible in this contribution due to the diverse 

creation processes of the different approaches. Landform classes with the same name potentially do 

not exactly represent the same real landform, what makes them not completely comparable. In 

consequence, a high effort and dependency on the knowledge of the interpreter are still necessary for 

the interpretation and delineation of landforms. Furthermore, some influence of subjectivity on the 

evaluation process cannot be prevented. 

 

6.6 Conclusions 

Landform classifications can be derived by a high diversity of possible input data, different approaches 

and result in a multiplicity of landform classes. In this contribution, a comparison of four prominent 

approaches was conducted with four input datasets with different spatial resolutions and different 

measurement methods. The results show for the selected areas of the Iranian loess plateau, which is 

highly dissected, that higher resolution datasets are necessary to achieve satisfying overall accuracies. 

With the 5 m Pléiades DEM, the TPI and geomorphons approach achieved accuracies of greater than 

70 % and the two other approaches reached overall accuracies of greater than 60 %. SRTM data worked 

generally better than ASTER GDEM data, but both elevation models are not able to generate accurate 

classification results here and only achieved accuracies of about 40 %. Thus, a decrease of 20 – 30 % 

for the lower spatial resolution datasets is detected. This variety in accuracy needs to be regarded 

before applying the derived landforms for further calculations. We expect that the applied 

methodological approach will lead to similar results concerning the accuracy of landform classifications 

if applied to other areas with similar landform characteristics. As shown here, the differences between 

the approaches and resolutions are smaller for areas with more flat terrain. All selected approaches 
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show weaknesses; in this case, the TPI and geomorphons approach revealed the best results and are 

more detailed in terms of derivable landform types. The approach of Dikau is generally less suitable 

for these areas and the approach based on the object segmentation is less accurate for areas with a 

rougher relief. However, the selection of moving window size and the accurate derivation of objects 

influences the results. The accuracy assessment of these classifications and the delineation between 

different landforms are influenced by the user. 
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Abstract 

Machine learning (ML) algorithms are a promising alternative to traditional acquisition methods for 

creating new or updating existing soil maps. This study analyses the suitability of two ML techniques 

for the prediction of 36 different soil types in the Rur catchment in North-Rhine Westphalia (Germany). 

For this purpose, the performance of random forest (RF) and artificial neural network (ANN) classifiers 

have been investigated for three different scenarios with varying environmental co-variables for 

prediction and two varying training datasets with different sampling strategies. It has been analysed 

how the accuracy of classified digital soil map products is affected by the diversity of available soil 

types within different landscapes of the catchment, by varying topography as well as different spatial 

resolutions of the co-variables and the distribution of training points. Co-variables derived from a 

digital elevation model (DEM) were once generated with a high resolution DEM from airborne laser 

scanning data in a spatial resolution of 15 m and once with the 90 m TanDEM-X WorldDEM™. Results 

generally show the best performance for the RF classification with overall accuracies (OA) over 70 % 

with a spatially homogenized training dataset. The ANN classifier performed on average about 5 % 

lower compared to RF. Furthermore, it could be shown for both algorithms that the OA is about 15 % 

– 25 % lower for areas in the northernmost and central part of the study area with a very diverse 

distribution of soil types, compared to other regions with only a few dominating soil types. Particularly 

for the ANN classifier with spatially homogenized training samples, the observed drop in accuracy was 

considerably high for heterogeneous regions. A comparison of different predictor variables from 

different DEM sources with greatly varying spatial resolutions showed similar results for both datasets 

and an increase of accuracy with higher spatial resolutions could not be detected here. Overall, the 

classification accuracy is mainly affected by the sampling strategy of training samples, the diversity of 

distributed soil types and the availability of predictive environmental co-variables. In contrast, the 

influence of topography and spatial resolution of the DEM for the generation of predictor variables 

was only minor. 

Keywords: digital soil mapping; random forest; decision tree; artificial neural networks; soil 

classification; digital elevation model  
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7.1 Introduction 

Detailed knowledge about the spatial distribution of different soil attributes and types is necessary for 

many environmental applications. Soil maps provide helpful information for agriculture (Iticha and 

Takele, 2019; Silva et al., 2013), sustainable forest management (Falk and Mellert, 2011), land use 

planning and management (Rossiter, 2004) and soil erosion risks (Le Bissonnais et al., 2002; Lu et al., 

2004). Mostly, this soil information is provided by soil maps from conventional soil surveys on different 

scales. As these traditional soil mapping techniques are very expensive and many field observations 

are required to gain sufficient material for mapping, digital mapping technologies based on remote 

sensing data became more and more popular in the last decades, especially for larger extents (Ma et 

al., 2019; Minasny and McBratney, 2016).  

For an (semi-) automatized prediction of digital soil maps, several machine learning techniques have 

been used. Machine learning is a type of artificial intelligence that provides computers with the ability 

to automatically learn from multi-source data sets and make predictions according to discovered 

patterns in a training dataset (Witten et al., 2011). As the formation of soils is mainly a product of the 

interaction of five environmental factors, namely parental material, time, climate, relief and 

organisms, a key component for soil type prediction is the definition of relationships between different 

soils and environmental co-variates describing these factors (Jenny, 1941). Thus, the selection of 

sufficient environmental covariates is crucial to achieve a comprehensive description of all influencing 

factors for soil genesis. 

There are numerous machine learning algorithms available, which have been successfully applied to 

digital soil mapping on varying scales from large scales to nationwide small-scale predictions of soil 

types. Most common are tree-based learners, such as decision tree or random forest classifiers, which 

have been used by many studies in soil science for the prediction of different soil types (Adhikari et al., 

2014; Barthold et al., 2013; Dornik et al., 2018; Grimm et al., 2008; Gruber et al., 2019; Häring et al., 

2012; Hengl et al., 2017; Hengl et al., 2015; Hounkpatin et al., 2018; Leenaars et al., 2020; Pahlavan-

Rad et al., 2014; Roecker et al., 2010; Stum et al., 2010). Additional algorithms are artificial neural 

networks (Bagheri Bodaghabadi et al., 2015; Behrens et al., 2005; Silveira et al., 2013), support vector 

machines (Kovacevic et al., 2010), k-nearest neighbour (Mansuy et al., 2014) multinomial logistic 

regressions (Kempen et al., 2009; Vasques et al., 2014) and fuzzy classification methods (Qi et al., 2006; 

Yang et al., 2011; Zhu et al., 2010). Furthermore, the predictive power of several combinations of these 

algorithms for the prediction of soils has been compared by several authors (Assami and Hamdi-Aissa, 

2019; Brungard et al., 2015; Heung et al., 2016; Heung et al., 2017; Pahlavan-Rad et al., 2016; Pasztor 

et al., 2018; Taghizadeh-Mehrjardi et al., 2019a; Taghizadeh-Mehrjardi et al., 2019b). 

There is a long tradition of creating soil maps in Germany. Since the end of World War II, the generation 

of soil data is influenced by the federal structure of the country (Behrens and Scholten, 2006). The 

creation and maintenance of large scaled soil maps is in the responsibility of the individual federal 

states of Germany for their territory. For example, large-scale soil maps of the federal state of this 

study area (North-Rhine Westphalia) were provided in two scales of 1:5000 and 1:50,000 by the 

Geological Service of North-Rhine Westphalia. But only the second one is available for the entire area 

of the federal state. These soil maps are still mainly based on data derived from traditional field 

observation methods and additional not ubiquitously available historical large-scale maps with soil 

information (Schrey, 2014). However, existing soil maps need to be updated and improved to gain 
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more detailed and accurate soil information. Although soil surveys are expensive, in particular on 

larger scales, machine learning techniques have hardly been investigated so far for soil type prediction 

in Germany. Häring et al. (2012) did a decision-tree based spatial disaggregation of a 1:25,000 soil map 

for Bavaria and several investigations on co-variables for prediction with neural networks have been 

done for a small area in Rhineland-Palatinate (Behrens et al., 2005; Behrens et al., 2018a; Behrens et 

al., 2018b; Behrens et al., 2010a; Behrens et al., 2010b). 

Most of all previously named studies only differentiated less than 20 different soil classes in their study 

area and there is a lack of investigations of these algorithms for areas with a very diverse distribution 

of soil types. A comprehensive analysis on the performance of several machine learning algorithms to 

distinguish such a high number of different soil types on a catchment scale is still missing. Additionally, 

there is no study yet that directly compares the influence of different areas with varying complexity of 

soil occurrence on the classification result. One objective of this study is to evaluate this influence of 

varying soil heterogeneity in different areas on the prediction performance of random forest (RF) and 

artificial neural network (ANN). Therefore, soil types in a very heterogeneous landscape with 36 

different soil type units on a scale of 1:50,000 were predicted and compared for different areas of the 

catchment with varying complexities of the occurring soil types. 

Several studies revealed that different sampling strategies for training data can significantly influence 

the classification results. Heung et al. (2016) showed that an area-weighted sampling strategy achieved 

higher overall accuracies in digital soil mapping than class-weighted sampling approaches, where the 

number of sampling points was balanced for all soil classes. However, the focus on spatially weighted 

sampling points generally assigns little weight to rare soil classes with small coverages. This leads to an 

underrepresentation of these soil types by ML algorithms (He and Garcia, 2009). Further studies 

showed that sampling and resampling approaches to reduce these imbalances could also improve the 

classification results (Liu et al., 2020; Sharififar et al., 2019; Taghizadeh-Mehrjardi et al., 2019b). 

However, there is still a need for research on the optimization of sampling strategies for ML algorithms 

in digital soil mapping to solve the conflict between spatial homogeneity and class-balancing within 

the training data. To address this issue, two different training datasets were compared in this study: 

one only spatially weighted and one class-balanced training dataset. For these sampling strategies, the 

effect on the results of both ML algorithms in different regions was evaluated. 

Another aim of this study is to investigate how the accuracy of predicted soil types is influenced by 

different sets of environmental co-variables. It should be highlighted to which degree derived relief 

variables are sufficient for soil type prediction or additional variables from other environmental factors 

have an advantageous effect. Furthermore, varying topography of the landscape and the influence of 

environmental co-variables derived from digital elevation models (DEMs) with different spatial 

resolutions are investigated. There is hardly any study yet using the publicly available 90 m TanDEM-X 

WorldDEM™ (TDX) for the derivation of environmental co-variables for soil type prediction and 

comparing it with results based on co-variables derived from a high resolution DEM. This leads to 

another purpose of this study, to evaluate the suitability of DEMs with a coarser spatial resolution for 

the delineation of co-variables for prediction in comparison with a very high resolution DEM from 

airborne laser scanning (ALS) data source. As the accuracy of DEMs is highly influenced by topography, 

an accuracy assessment has been done here for different landscapes with varying topography and soil 

types. 



Chapter 7: Assessing the influence of environmental factors and datasets on soil type prediction with two 
machine learning algorithms in a heterogeneous area in the Rur catchment, Germany 

 

 
125 
 

7.2 Study area 

The Rur catchment is mainly located in North-Rhine Westphalia (Germany) with additional small parts 

in Belgium and the Netherlands (Figure 7-1). In this study, only the German part of the Rur catchment 

is considered, which covers an area of about 2000 km2. It consists of an elevation decline from about 

750 m to 30 m above sea level from south to north. The landscape can be subdivided into two major 

units. The northern part lies in the fertile Germany-Belgium loess belt and has a predominantly flat 

landscape with an average altitude of 100 m. It is mainly covered by Tertiary Pleistocene terrace 

deposits at the terraces of rivers Maas and Rur and aeolian deposits of loess and dune sands (Bogena 

et al., 2018). According to the FAO soil classification, major soils of this area are Haplic Luvisols as well 

as Cumulic Anthosols near drainage lines and Gleysols and Fluvisols nearby the Rur river (Korres et al., 

2015). As these soils are highly productive for agriculture, the area is dominated by arable land, which 

is intensively used for crop growing. The cultivated crops are mainly winter wheat, winter barley, 

winter rapeseed, sugar beet, potato and maize (IT. NRW, 2012; Waldhoff et al., 2017). The southern 

part of the catchment area covers the upland parts with a low mountain range. Geologically, it consists 

of Paleozoic to Mesozoic solid rocks of the Rhenish Massif, with alternating sequences of silt- and 

mudstones as well as sandstones and greywackes (Bogena et al., 2018). The hilly landscape is mainly 

dominated by deciduous forest areas and grass land. Major soil types are Eutric Cambisols and Stagnic 

Gleysols as well as Fluvisols and Gleysols along the Rur river (Korres et al., 2015). Mean annual 

precipitation is about 1400 mm in the southern part and about 700 mm in the northern part of the 

catchment (Korres et al., 2015). 

 

7.3 Material and methods 

7.3.1 Soil map data 

As reference data for soil type prediction in this contribution, the digital version of the official soil map 

of North-Rhine Westphalia, the Bodenkarte 50 (BK50), with a scale of 1:50,000 was used (Geologischer 

Dienst NRW, 2019a). The soil map is created and distributed by the Geological Service of North-Rhine 

Westphalia according to the official German guideline for soil mapping (Ad-hoc-AG Boden, 2005; 

Schrey, 2014). These guidelines base on a morphogenetic approach with regard to soil-forming 

processes and morphologic features. Thus, the BK50 describes the soil structure up to a depth of 2 m 

in a consistent manner. Its digital version is based on the originally produced analogue set of soil maps, 

which were digitised, standardised in nomenclature and systematics and irregularly updated (Schrey, 

2014). For the area of this study, the map consists of 36 different soil type units according to the 

German soil classification system (Ad-hoc-AG Boden, 2005) (Figure 7-1). A complete list of these soil 

types is provided in Appendix Table 7-4. Anthropogenic landscapes with artificially deposited soils (e.g. 

backfilled areas of an opencast mine) were excluded from the study and not considered for prediction. 
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Figure 7-1: Hill-shaded overview of the study area and spatial distribution of BK50 soil type units. Abbreviations 

of soil types are according to the nomenclature of the German soil classification units and further explained in 

Appendix Table 7-4 (Ad-hoc AG Boden 2005). Background image: cloud-free mosaic of Sentinel-2 images from 

2017 to 2019 derived by Google Earth Engine. 
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For soil type prediction and validation, two different point datasets for training and one for evaluation 

were created with Esri's ArcGIS Pro Software. A training dataset with randomly set points was created 

with ArcGIS ‘Create Random Points’ function. For each soil type unit, a set of 1000 points maximum 

with a minimum circular distance of 50 m was generated. This sampling strategy should provide a 

sufficiently large number of training samples for each soil class, but also consider the large differences 

in the occurrence of soil classes. Complex areas with many different soil types should be regarded with 

a higher point density than less heterogeneous areas. For most soil type units, this resulted in a 

considerably smaller amount of prediction points, as these areas are too small to generate such a high 

number of points with a minimal gap of 50 m. The final training dataset for classification with a class-

based sampling strategy (CBS) contained 7211 points (Figure 7-2). Additionally, a second training 

dataset was created with a spatially homogenized sampling strategy (SHS) to maximize areal 

homogeneity in the derived point samples over the whole area. 7211 points were created with the 

ArcGIS ‘Create Spatially Balanced Points’ tool. 

 

Figure 7-2: Location of subareas and training samples. A: location of the three subareas considered in this study. 

B: elevation gradient of the Rur catchment area and location of the 7,211 randomly generated training samples 

with the class-based sampling strategy (CBS). C: elevation gradient of the Rur catchment area and location of the 

7,211 randomly generated training samples with the spatially homogenizes sampling strategy (SHS). The relief is 

indicated by a hillshade in all three images. 

 As the evaluation dataset, a homogeneous raster of points with a regular spacing distance of 50 m 

was created for the entire area. About 770,000 points were classified and evaluated. The evaluation 

was conducted once for the entire area and for three subareas with widely varying landscapes and soil 

types. These areas are the medium elevated upland area in the southern part of the catchment, which 

is mainly dominated by soil type units Braunerde (BB), Pseudogley (SS) and Gley (GG), according to the 

nomenclature of the German soil taxonomy, which is further explained in Appendix Table 7-4 

(Figures 7-2 and 7-3). The relatively flat loess deposit area is mainly covered by soil types 

Parabraunerde (LL) and Kolluvisol (YK) and the fluvial area in the North has a highly heterogeneous 

distribution of different soil types. 
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Figure 7-3: Coverage of soil type units in the Rur catchment area and different sub areas. A: entire area; B: upland 

area; C: loess deposit area; D: fluvial area. Abbreviations of soil types are according to the nomenclature of the 

German soil classification units and further explained in Appendix Table 7-4 (Ad-hoc AG Boden 2005). 

 

7.3.2 Digital Elevation Models 

Two digital elevation models with different spatial resolutions were used in this study to generate the 

majority of utilized relief based environmental co-variables. Thus, these variables were calculated with 

a 15 m high resolution digital elevation model (DGM1) and a 90 m TanDEM WorldDEM™. Both DEMs 

are described in detail in the following. 

 

7.3.2.1  High resolution digital elevation model (DGM1) 

The high resolution DGM1 is provided by the Regional Government of Cologne (Bezirksregierung Köln, 

2017). The elevation model consists of 3D measurement data from airborne laser scanning. It has a 

point density of at least four points per square meter and includes only the Earth's surface without 

vegetation and buildings. The DGM1 is originally provided in a regular point grid with a point spacing 

density of 1 m. It is updated frequently, for this contribution a version of 2017 was used. The 

expectable vertical accuracy of the DGM1 is about 15 cm in flat to medium elevated landscapes and 

up to 30 cm in steep terrain (Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der 

Bundesrepublik Deutschland, 2019). The provided point cloud was converted to a raster dataset and 

resampled to a spatial resolution of 15 m. 



Chapter 7: Assessing the influence of environmental factors and datasets on soil type prediction with two 
machine learning algorithms in a heterogeneous area in the Rur catchment, Germany 

 

 
129 
 

7.3.2.2  TanDEM-X WorldDEM™  

The TanDEM-X mission was launched as a public private effort between the German Aerospace Center 

(DLR) and Airbus Defence and Space with the aim to produce a highly accurate DEM for nearly the 

entire globe. Thus, the Earth was measured from 2010 to 2015 by two satellites (TerraSAR-X and 

TanDEM-X) in a controlled orbit with a baseline of 250 – 500 m with X-band RADAR interferometry 

(InSAR) (Rizzoli et al., 2017; Wessel, 2016). The TanDEM-X WorldDEM™ was originally generated with 

0.4 arc-seconds (≈ 12 m) ground sampling distance (GSD). Additionally, a resampled version of 1 arc-

second (≈ 30 m) and a freely available 3 arc-seconds (≈ 90 m) version have been released by the DLR 

in recent years. In this study, the TDX DEM in the spatial resolution of 90 m was used to generate a set 

of geomorphometric co-variables for model predictions. Several studies reveal that this DEM has a 

higher accuracy than the comparable 90 m SRTM DEM and shows a good performance, especially in 

flat landscapes (Altunel, 2019; Keys and Baade, 2019; Kramm and Hoffmeister, 2019). 

 

7.3.3 Environmental co-variables  

The genesis of soil mainly depends on a set of several environmental factors. To consider these factors, 

the environmental variables for the prediction of soil types were selected according to the ‘SCORPAN’ 

principle of McBratney et al. (2003), which is an enhancement of Jenny's (1941) equation. Thus, the 

soil class (S) is a function of climate (C), organisms (O), relief (R), parent material (P), age (A) and the 

spatial position (N). A total number of 28 environmental co-variables were used in this study 

(Table 7-1).  

To represent climatic conditions (C) of the study area, the mean annual temperature and precipitation 

between 1971 and 2000, both provided via the geoserver of the German Weather Service (DWD), were 

used. Both datasets were originally provided with a spatial resolution of 1 km and up-sampled to 15 m 

resolution for this contribution. Furthermore, the solar radiation was calculated by using the ‘Area 

Solar Radiation’ function of ArcGIS Pro (Fu and Rich, 2002). For the factor organism (O), which also 

contains land use and land cover information, two different land use classifications were used. First 

one is the land use classification of the Rur catchment for the year 2015 (Waldhoff and Lussem, 2016). 

The classification is provided in a spatial resolution of 15 m. The second land use dataset is the CORINE 

Land Cover (CLC) classification of 2012, which contains a consistent classification of land cover and land 

use for entire Europe with a spatial resolution of 10 ha (European Environment Agency, 2017). This 

dataset was also resampled to a spatial resolution of 15 m for this contribution. 

To describe the relief conditions (R) of the Rur catchment, a large set of topographical variables were 

derived. With both DEMs, the primary terrain parameters of elevation, slope, a combination of profile 

and plan curvature and aspect were calculated in ArcGIS Pro (Olaya, 2009; Wilson and Gallant, 2000). 

The terrain ruggedness index (Riley et al., 1999), as a measure for topographical heterogeneity, was 

calculated with two different window sizes (10 and 100 pixels). The dissection was calculated for a 

9 × 9 pixels window for each DEM (Evans, 1972). Additionally, three different landform classification 

approaches were conducted with the topographic position index after Weiss (2001), the geomorphons 

approach (Jasiewicz and Stepinski, 2013) and the hillslope position after Marques et al. (2018). The 

topographic wetness index was calculated after Beven and Kirkby (1979), which describes the tendency 

of water accumulation for each cell (Gruber and Peckham, 2009). The terrain classification index for 

lowlands (Bock et al., 2007) and the valley depth were calculated with the open source GIS software 
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SAGA (System for Automated Geoscientific Analysis). In addition, a geomorphometric map was used, 

which combines three different categories of derived morphometric relief parameters based on digital 

elevation models (Scilands GmbH, 2010). Category one consists of bottom areas, summit areas and 

slopes, category two includes convergent and divergent areas and category three distinguishes 

between flat and sloped areas. Moreover, the three terrain parameters soil moisture index, relative 

height and a relative slope position, processed for the Rur catchment by the Scilands GmbH (2010), 

were used as co-variables for prediction. 

Table 7-1: Environmental co-variables used for soil type prediction. Listed is their abbreviation code, if they are 

numerical (n) or categorical (c) and if they were derived both from the DGM1 and TDX. 

Variable Code n/c DGM1/TDX Reference 

Climate (C) 

Mean annual precipitation PREC n 
 

German Weather Service (DWD) 

Mean annual temperature TEMP n 
 

German Weather Service (DWD) 

Solar radiation SOL_RAD n 
 

Fu and Rich (2002) 

Organism (O) 

Land use classification 2015 LU2015 c 
 

Waldhoff and Lussem (2016) 

CORINE Land Cover 2012  CLC2012 c 
 

European Environment Agency (2017) 

Relief (R) 

Elevation ELEV n x   

Slope SLO n x   

Aspect ASP n x   

Terrain ruggedness index 10 TRI10 n x Riley et al. (1999) 

Terrain ruggedness index 100 TRI100 n x Riley et al. (1999) 

Topographic position index TPI c x Weiss (2001) 

Geomorphons GEOM c x Jasiewicz and Stepinski (2013) 

Topographic wetness index TWI n x Beven and Kirkby (1979) 

Terrain classification index lowlands TCL n x Bock et al. (2007) 

Soil moisture index SMI n 
 

Scilands GmbH (2010) 

Relative height RH n 
 

Scilands GmbH (2010) 

Relative slope position RSP n 
 

Scilands GmbH (2010) 

Valley depth VD n x   

Crest area index CAI n 
 

Scilands GmbH (2010) 

Dissection DIS n x Evans (1972) 

Curvature CURV n x   

Hillslope position  HP c x Marques et al. (2018) 

Geomorphometric map GMK c 
 

Scilands GmbH (2010) 

Parent material (P) 

Geological main units GMU c 
 

Geologischer Dienst NRW (2019b) 

Lithology LIT c 
 

Geologischer Dienst NRW (2019b) 

Permeability PERM c 
 

Geologischer Dienst NRW (2019c) 

Geochemical composition GC c 
 

Geologischer Dienst NRW (2019c) 

Age (A) 

Geological age AGE c   Geologischer Dienst NRW (2019b) 
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Four environmental variables were derived to represent the parental material (P) of the study area. 

From the geological map of North-Rhine Westphalia (GK100), the geological main units and lithology 

were used as predictor variables (Geologischer Dienst NRW, 2019b). Furthermore, from the 

hydrogeological map of North-Rhine Westphalia (HK100) the permeability of parent material and the 

geochemical composition were extracted (Geologischer Dienst NRW, 2019c). Both maps were 

provided with a scale of 1:100,000 by the Geological Service of North-Rhine Westphalia. Finally, for the 

factor of age (A), the stratigraphy of the geological data was extracted from the GK100.  

 

7.3.4 Machine learning algorithms 

The prediction of different soil type units was conducted with two different classifiers, namely the 

random forest and the artificial neural network classifier. Both algorithms belong to the category of 

machine learning classifiers and are described in detail in the following paragraphs. In this study, the 

prediction of soil types was conducted by a Python script with machine learning algorithms 

implemented in the Scikit-learn library. All predicted point datasets were finally exported to ArcGIS for 

further evaluation. 

 

7.3.4.1  Random forest (RF) 

The random forest classification was introduced by Breiman (2001) and consists of an ensemble of 

built decision trees to predict features. The construction of a decision tree is a top down procedure, 

which starts with a single root node, followed by binary questions to split the data at each level by 

forming new nodes. The objective is to find for each decision node of the tree the best test attribute, 

which allows to differentiate the mixture of classes between each subset. The resulting tree consists 

of many nodes connected by branches. Nodes at the end of the tree are called leaves and represent 

the unique classes. The RF algorithm uses only a limited number of randomly chosen predictor 

variables for each tree. Thus, it creates many weak independent trees that are due to the large number 

of single trees able to discern a pattern, which possibly would be unrecognized by a few strong trees. 

The number of built trees for the classification in this contribution was set to 500, as experimentations 

with higher numbers of trees did not lead to better results. The feature importance was calculated by 

the algorithm with ‘Gini importance‘ (Breiman, 1984). 

 

7.3.4.2  Artificial neural networks (ANN) 

Artificial neural networks are computational networks, which are initially inspired by biological 

processes of the nervous system in a human brain (McCulloch and Pitts, 1943). The structure of an 

ANN consists of a set of interconnected units called ‘neurons’ with the aim to estimate non-linear 

correlations between a set of variables. A neural network consists of an input and an output layer, 

which are (generally) connected by a set of hidden layers. All neurons from one layer are fully weighted 

and connected to neurons in the adjacent layers. The classification was conducted with the multilayer 

perceptron (MLP) classifier, which is a deep multilayer feed forward neural network. For soil type 

prediction, one hidden layer was used with 150 neurons. 
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7.3.5 Classification schema 

With both machine learning algorithms and both training datasets, three different scenarios with 

different combinations of environmental co-variables were calculated for soil type prediction 

(Table 7-2). In the first scenario (‘ALL’), all available variables were used. For the second scenario 

(‘SCORPAN’), only the most important and not correlating variables of each SCORPAN factor were 

used. Due to the high number of variables for relief, two variables were chosen for the factor (R) and 

one each for the other SCORPAN factors. To exclude strongly correlating features, the Pearson 

correlation coefficient was calculated for all numerical co-variables and the Cramer’s V coefficient was 

calculated for all categorical variables. Only numerical variables with a Pearson correlation 

between -0.5 and 0.5 were regarded. Categorical variables were only considered when they have a 

small correlation coefficient of less than 0.3 (Cohen, 1988; Ellis, 2010). The third scenario (‘DEM’) was 

set up to evaluate the predictive power of geomorphometric variables only. It contains only 19 

variables, which were mainly calculated by a digital elevation model. 

Table 7-2: Overview of all co-variables and their utilization in the three different scenarios ‘ALL’, ‘SCORPAN’ and 

‘DEM’. 

 Variable ALL SCORPAN DEM 

ELEV        x x x 

TCL               x  x 

SMI       x  x 

VD x x x 

RH       x  x 

TRI100            x  x 

RSP    x  x 

TRI10             x  x 

GMU x x   

PREC x x   

CAI     x  x 

DIS x  x 

SLO          x  x 

LIT    x    

SOL_RAD   x  x 

TWI               x  x 

CURV     x  x 

AGE x x   

CLC2012           x x   

LU2015            x    

PERM   x    

TEMP         x    

GMK            x  x 

GEOM      x  x 

ASP            x  x 

HP              x  x 

TPI              x  x 

GC x     
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7.3.6 Accuracy assessment 

The accuracy assessment was conducted by counting the number of correctly classified points in 

comparison to the reference soil map BK50. The general accuracy of the predicted soil type units was 

assessed by calculating the overall accuracy (OA). OA is defined as the ratio of the number of correctly 

classified cases to the total number of cases (Congalton, 1991). Additionally, the individual 

classification accuracy of each soil type unit was assessed by calculating the user's accuracy (UA) and 

producer's accuracy (PA). The PA is the accuracy from the perspective of the producer and is defined 

as the ratio of correctly classified cases of one category to the total number of cases belonging to that 

specific category (Congalton, 1991). The UA is the accuracy of each predicted class from the 

perspective of a person who wants to use the predicted map. It is defined as the ratio between the 

number of correctly classified cases and the total number of classified cases for a certain category 

(Congalton, 1991).  

 

7.4 Results 

7.4.1 Comparison of classification accuracies 

OA results of the entire Rur catchment and the three subareas for each scenario are depicted in 

Figure 7-4. It shows a slightly higher accuracy for the training dataset with a spatially homogenized 

sampling strategy compared to the class-based collection method. For the entire area, the scenario 

with RF and all environmental predictor variables has the highest OA with 71.9 % for variables based 

on DGM1 and 72.9 % for the TDX variables with SHS training dataset. The same scenarios with the CBS 

training dataset achieved an accuracy of 68.0 % (DGM1) and 69.1 % (TDX). A comparison of both ML 

algorithms reveals in most cases lower accuracies for ANN. The highest ANN OAs are 69.4 % (DGM1) 

and 69.7 % (TDX) for the scenario with SHS training dataset and all environmental variables. In 

comparison, the first scenario (‘ALL’) with the CBS dataset and ANN achieved an OA of 63.7 % with the 

DGM1 and 62.6 % with TDX variables. The observable differences in accuracy between both ML-

algorithms are generally higher for the CBS training dataset.  

The lowest prediction accuracies could be observed for the ‘SCOPRAN’ scenario with 56.8 % (DGM1) 

and the ‘DEM’ scenario with 55.7 % (TDX) calculated with ANN and the CBS training dataset. For both 

ML-algorithms and training datasets, the scenario ’ALL’ showed the highest accuracies, followed by the 

‘DEM’ scenario. The ‘SCORPAN’ scenario generally performed worse. On average for all scenarios, the 

RF algorithm has a 4.2 % higher accuracy with the SHS dataset compared to the CBS dataset. This 

difference is even higher for the ANN algorithm, which has a 7.8 % higher accuracy with the SHS dataset 

on average. The observable differences in accuracy of the results between DGM1 and TDX are rather 

low. On average, the TDX DEM achieved 1.9 % higher OAs with RF and 1.3 % with ANN compared to 

the DGM1 results. 

Considering only the southern upland parts of the Rur catchment (Figure 7-4), the OAs are higher for 

all algorithms and rise up to 76.6 % with RF and the SHS training dataset and 71.7 % with the CBS 

dataset. The ANN achieved an OA of 75.4 % (SHS) and 68.8 % (CBS) in this area. The OA of predicted 

soil type units with RF increased by 3.5 % on average for all scenarios with CBS dataset and 5.2 % with 

SHS training dataset, in comparison to the results of the entire study area. For ANN, the increase is 

slightly higher with 3.5 % on average with CBS and 5.8% with SHS dataset. For the loess deposit area 
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in the northern lowland area of the Rur catchment (Figure 7-4), similar accuracy results could be 

achieved for both ML algorithms. These are about 3 % (RF) and 5 % (ANN) higher on average compared 

to the accuracies of the entire catchment area. The average increase is slightly lower for the SHS 

training dataset with about 2 % (RF) and 3 % (ANN) in comparison to the entire area. 

 

Figure 7-4: Calculated classification accuracies for each scenario, for the entire Rur catchment area and each 

subarea. 

In the fluvial landscape area, all results show a strong decrease in accuracy and both training datasets 

achieved similar results here which are up to 20 % lower compared to the entire area. The highest 

achieved accuracies are 56.8 % (TDX) for the ‘ALL’ scenario with RF and the SHS dataset and 55.1 % 

with the CBS dataset. The observed accuracies for the ANN algorithm are about 10 % lower compared 

to the RF results with the CBS dataset and about 5 % for the SHS dataset. Comparing the results of 

both training datasets shows the highest differences in accuracy for the upland area. The accuracies 

are on average 6.3 % (RF) and 10.1 % (ANN) higher with the SHS dataset in comparison to the CBS 

dataset. In contrast, the accuracy of SHS is only 2.2 % (RF) and 4.7 % (ANN) higher in the fluvial area. 

The importance for prediction ranking of all environmental variables used by the RF algorithm for both 

training datasets is listed in Table 7-3. Only the DGM1 scenarios are considered here, as observed 

differences between DGM1 and TDX variables were only minor. The results reveal that the DEM height 

plays by far the most important role for prediction here. Generally, many variables from the ‘SCORPAN’ 

factor (R) are of major importance for prediction. Particularly with the CBS scenario, the eight most 

important predictors were relief-based parameters. With the SHS training dataset, parent material 

features (P), such as lithology, geological main units and age are also important predictors. In contrast, 

the importance of land use and landform classifications is low for all scenarios. The importance of the 

climatic factor mean annual precipitation differs between both training datasets. While it is relatively 

unimportant with the SHS dataset (rank 24), it is on rank 10 with the CBS dataset. Mean annual 

temperature and the geochemical composition play almost no role for prediction. 
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Table 7-3: Overview of the importance for prediction (IMP) of the environmental variables based on the first 

scenario calculation for both training datasets. 

  CBS   SHS 

Rank Variable IMP   Variable IMP 

1 ELEV         0.088 
 

ELEV         0.106 

2 TCL               0.062 
 

TCL               0.070 

3 SMI       0.061 
 

TRI100           0.061 

4 VD 0.054 
 

LIT    0.055 

5 RH       0.053 
 

SMI       0.052 

6 TRI100           0.053 
 

RH       0.051 

7 RSP    0.050 
 

GMU 0.050 

8 TRI10             0.043 
 

RSP    0.049 

9 GMU 0.041 
 

AGE 0.047 

10 PREC 0.040 
 

GMK            0.043 

11 CAI     0.039 
 

TRI10             0.041 

12 DIS 0.039 
 

VD 0.040 

13 SLO          0.037 
 

SLO          0.035 

14 LIT    0.036 
 

SOL_RAD   0.034 

15 SOL_RAD   0.036 
 

CAI     0.032 

16 TWI               0.033 
 

DIS 0.032 

17 CURV     0.033 
 

TWI               0.030 

18 AGE 0.031 
 

CURV     0.029 

19 CLC2012          0.026 
 

CLC2012          0.029 

20 LU2015           0.023 
 

LU2015           0.021 

21 PERM 0.021  GEOM 0.019 

22 TEMP         0.021 
 

PERM   0.017 

23 GMK            0.020 
 

ASP            0.016 

24 GEOM      0.018 
 

PREC 0.013 

25 ASP            0.017 
 

HP             0.010 

26 HP              0.011 
 

TPI               0.009 

27 TPI              0.009 
 

TEMP         0.005 

28 GC 0.004   GC 0.004 

 

Figure 7-5 shows the distribution of correctly and erroneous classified areas for all results of scenario 

‘ALL’ in comparison to the BK50 reference soil map. In general, the RF results show the highest 

concordance rate of classified areas over the whole catchment. The spatial pattern of these classified 

areas is very similar for all results and detectable differences are only minor. Between the results of 

DGM1 and TDX almost no observable differences are recognizable. Correctly classified areas are mostly 

regions that are dominated by the soil types LL in the northern part and BB in the southern part. Areas 

with diverse soils in the northernmost and central part of the catchment generally show the highest 

rates of misclassification, particularly for ANN with more erroneous classified areas in the 

northernmost and central part of the catchment compared to the RF results. 
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Figure 7-5: Conforming (green) and not conforming (red) classified areas in comparison with the reference soil 

map BK50. Regarded are the results of scenario ‘ALL’ for both algorithms, random forest (RF) and Artificial Neural 

Networks (ANN), with both training datasets in the Rur catchment. The relief is indicated by a hillshade in all 

images. 
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7.4.2 Derived user’s accuracy (UA) and producer’s accuracies (PA) for each soil type unit 

The Appendix Tables 7-5 and 7-6 list all calculated user’s accuracies and producer’s accuracies for each 

soil type unit. Differences in accuracies between the scenarios with different environmental variables 

and both digital elevation models are minor. Only for rare soil types greater variations in accuracies 

between the different scenarios and different prediction algorithms are detectable. Both accuracy 

values generally decrease for rare soil types compared to the most frequent soil type units of the 

catchment area. Particularly with the ANN classifier, almost none of the rare soils were classified in 

agreement with the reference soil map and the number of completely omitted classes is higher than 

for RF. However, the decline varies between both training datasets. For the two most prevalent soil 

types BB and LL, the PA is about 20 % higher for all scenarios with the spatial homogenized training 

dataset compared to the class-based sampling point dataset. For the remaining more infrequently 

occurring soil type units, the PA values drop significantly and are lower with the SHS training dataset 

than for the CBS dataset. For the UA, an inversed ratio in the achieved accuracy values is detectable. 

While the two most dominant soil types achieved an about 10 % higher UA with the CBS dataset, the 

calculated UA values for the other soil type units are lower for the CBS dataset than for the SHS. 

Comparing the variation of distribution of soil types between classification and reference data in 

Figure 7-6 shows that for the CBS training dataset, the most predominant soil types BB and LL are 

classified less frequently for all scenarios as they occur in the ground truth data. In contrast, the 

medium-frequent soil types SS, GG, YK, SS-LL, PP-BB have a strong positive ratio between classified 

areas of each soil type and ground truth data. Soil types GG-BB, BB-GG and GG-LL mostly show only 

minor differences in their appearance between classification and reference data. The rare soil types 

are mostly classified less often than they occur in the BK50 reference soil map and very rare soil types 

are almost not classified at all. For the SHS training dataset, the distribution of class occurrence differs 

significantly for the more frequently occurring soil types. With this dataset, the two most dominant 

soil types BB and LL are classified more often than they occur in the reference soil map and all other 

soil classes were classified less often compared to the results of the training dataset with a class-based 

sampling strategy. 

A comparison of the different scenarios with various predictor variables shows mostly similar results, 

especially for the scenarios ‘ALL’ and ‘DEM’ with both DEMs. Only some rare soil types in the 

‘SCORPAN’ scenario (BB-RR, BBh, RR) show a higher occurrence with the CBS training dataset than for 

the other scenarios. The observable differences in the results between both DEMs are only minor. 
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Figure 7-6: Distribution change (in percent) of all classified soil types compared to the reference soil map BK50. 

Soil classes are ordered from the most common soil class (BB) to the rarest soil class (RR-BB) of the study area. 
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7.4.3 Evaluation of the upland area results 

Figure 7-7 shows a close-up comparison of the classification results for a small area in the upland part 

of the Rur catchment. The dominating soil type BB of this area was mainly correctly classified by all 

scenarios. The results created with the spatially homogenized sampling points tend to overestimate 

this soil type, which makes the results less diverse in contrast to the other sampling dataset. 

It is recognizable that the scenarios ‘ALL’ and ‘SCORPAN’ with the CBS dataset tend to overestimate 

the appearance of PP on the upper crest areas. In contrast, this soil type was not classified at all in the 

‘DEM’ scenario. The overestimation of this soil type is generally higher with the CBS training dataset. 

A similar pattern is also observable for the BB-RR soil type, which is also mainly situated in crest areas, 

in the southern part of the catchment area. Comparing the results regarding the influence of DGM1 

and TDX derived variables, only minor differences could be detected. Only the ANN classification 

scenarios ‘ALL’ and ‘SCORPAN’ with the SHS training dataset vary considerably from the same scenarios 

with DGM1 predictor variables, as there is almost no classification of the soil type PP.  

The incised areas are mainly dominated by gleyic soil types (GG and GG-AB). It can be observed that 

the classifications of these intersected areas are much more distinct with the CBS training data. 

Furthermore, they are slightly broader for the TDX classifications than for the DGM1 classifications. In 

particular, with the ANN classifier and the SHS dataset, there is almost no classification of small 

incisions with a gleyic soil type. The soil type predictions with RF show for most scenarios with the CBS 

dataset an overestimation of the soil type GG, whereas there is hardly any classification of the soil type 

GN in all scenarios over the whole upland area. Only the ‘SCORPAN’ scenario classified some sparse 

areas with this soil type. The classification of soil type GG-AB shows a high accordance compared to 

the BK50. For the ANN classification, only dominating soil types are classified. Thus, there is almost no 

classification of soil types GGa and GN detectable. 

 

7.4.4 Evaluation of the loess deposit area results 

Major soil types of the loess deposit area are LL and YK (Figure 7-8). All results show that these two 

soil types were mainly classified in accordance with the BK50 reference map by the different scenarios. 

Similar to the upland area, it is observable that the classification results are less diverse for the 

scenarios with the SHS training dataset. Particularly, soil type YK was classified more sparsely with the 

SHS training dataset than with the CBS training points. Less distributed soil types of this area, such as 

BB and RZ, were hardly detected by both ML-algorithms. Only the RF ‘SCORPAN’ scenario with the SHS 

training data classified these soil types considerably often. For the ANN ‘SCORPAN’ results with TDX 

data and the CBS training dataset, a relatively high number of misclassifications with soil type SS-LL are 

detectable. Soil type GG-YK was mainly classified correctly by all scenarios, except the ‘SCOPRAN’ one. 
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Figure 7-7: Comparison of predicted soil types for all scenarios for a small area in the upland part of the Rur 

catchment. The relief is indicated by a hillshade in all images and areas within white dashed lines are not 

considered for classification. 
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Figure 7-8: Comparison of predicted soil types for all scenarios for a small area in the loess deposit part of the Rur 

catchment. The relief is indicated by a hillshade in all images and areas within white dashed lines are not 

considered for classification. 

 

7.4.5 Evaluation of the fluvial landscapes results 

Figure 7-9 shows the classification results of a small area with fluvial topography and a very diverse 

distribution of soil types. The results depict an overestimation of the soil type SS-LL in the southern 
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part of the fluvial area for all scenarios with the CBS training dataset. This soil type was considerably 

less often classified with the SHS training dataset, especially in the ‘SCORPAN’ scenario. Likewise, soil 

type PP-BB is also overclassified with the CBS training dataset, particularly by the ANN classification for 

the ‘DEM’ scenario. Differences between DGM1 and TDX are only minor. The ‘ALL’ and ‘SCORPAN’ 

scenarios show the best agreement in classifying the gleyic soil types. Nevertheless, both ML 

algorithms tend to overestimate the distribution of soil type GG-AB.  

 

Figure 7-9: Comparison of predicted soil types for all scenarios for a small area in the fluvial part of the Rur 

catchment. The relief is indicated by a hillshade in all images and areas within white dashed lines are not 

considered for classification. 
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7.5 Discussion 

The results reveal the highest prediction accuracies for the RF algorithm, which are on average 5 % 

superior compared to ANN. This is in accordance with findings from other studies, which also detected 

generally higher accuracies for predictions with random forest (Assami and Hamdi-Aissa, 2019; 

Brungard et al., 2015; Heung et al., 2016). The achieved accuracies here are significantly higher for 

areas with only a few dominating soil types and strongly decrease for regions with a very 

heterogeneous soil type structure. Therefore, areas with a particularly large distribution of LL in the 

northern part and BB in the southern part achieved high accuracies, whereas the classification of parts 

with a diverse soil type structure is problematic. In particular, the performance of the ANN classifier 

drops significantly in heterogeneous areas, whereas it has only a slightly worse performance than RF 

in the other areas. ANN tends to disregard minor soil types with smaller coverage and mainly classified 

only prevalent soil types. Thus, ANN results are generally more homogeneous than RF and a greater 

variation in classification accuracy could be detected here. It can be concluded that the classifier has 

more weaknesses in classifying very diverse soil structures than RF. 

Classification accuracies from other studies widely range between average OAs of 40 % and 70 %. 

Barthold et al. (2013) achieved an OA of 71.1 % delineating 9 soil classes with RF and also using 

additional geological and land-use data besides DEM-derived variables for prediction. An OA of 64 % 

could be achieved by Assami and Hamdi-Aissa (2019) delineating 13 soil classes with RF. Pinheiro et al. 

(2017) used predictor variables for the soil-forming factors organisms, relief and parental material and 

achieved an OA of 68 % with RF distinguishing between 9 soil classes. These results mostly fit well with 

the results of this study from the upland and loess deposit areas with a less heterogeneous soil 

structure for the scenario ‘ALL’ including a large number of different input variables. Nevertheless, the 

training samples of this study were created from the same soil map as the evaluation data was assessed 

with. This possibly leads to some correlation and higher OA values than with a completely independent 

dataset. It should also be considered that the reference soil map does not necessarily reflect reality 

and contains uncertainties in soil type occurrence.  

For heterogeneous landscapes with an increased number of different soil classes, the achieved results 

are significantly lower. For example, for the northern part with a fluvial landscape and a very 

disordered soil structure with 27 different soil types on a relatively small area, only accuracies of 

50 – 55 % were achieved. Other studies with higher numbers of different soil classes achieved 

considerably lower OAs. For instance, Grinand et al. (2008) reached an OA of 44 % with a decision tree 

classification distinguishing between 31 soil classes. Stum et al. (2010) achieved an OA of 44.8 % for a 

classification of 24 different soil types with RF. Only Pasztor et al. (2018) got higher accuracies of 70 % 

for delineating 41 classes by combining the predicted results of different machine learning algorithms. 

Observed differences between the results with predictor variables derived from DGM1 and TDX 

elevation models are only minor in this study and results with TDX co-variables are slightly superior to 

the results with DGM1 variables. Even in medium rugged landscapes with relatively small incisions and 

hillside slopes up to 40°, the performance of the high resolution DEM is not superior to the 90 m 

elevation model. This is in accordance with other findings, which also indicated that higher spatial 

resolutions of DEMs generally did not lead to higher prediction accuracies (Cavazzi et al., 2013; 

Massawe et al., 2018; Smith et al., 2006). Hence, it can be concluded that the availability of a very high 

resolution DEM is not essential for the prediction of different soil types and the globally freely available 
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TDX 90 m should be appropriate for relief variable delineation in most regions. This might be different 

in extremely rugged terrain with very steep slopes, but for most landscapes a medium to low resolution 

DEMs for co-variable generation should be sufficient. 

Larger differences between the classification results are affected by the selection of different 

environmental co-variables for prediction. Scenario ‘SCORPAN’ generally achieved the lowest 

accuracies in this study, possibly due to the relatively low amount of used co-variables, which seems 

not enough to properly distinguish the soil type units of this catchment area. It is well-known that relief 

is one of the most important factors for soil genesis (Jenny, 1941). Thus, many relief dependent 

variables have a high influence on the classification results here. The features with the highest 

prediction importance are mainly terrain-based attributes derived from elevation models, in particular 

with the CBS training dataset (Table 7-3). In particular, the elevation itself seems to play an important 

role for the prediction of soil types and has by far the highest importance for the RF classification. In 

contrast, geomorphometric features only have minor influence as the importance of geomorphons, 

hillslope position, TPI and the geomorphometric map is relatively low. Contradicting to the findings of 

Barthold et al. (2013), also land use and land cover information seem to have a relatively low impact 

on the results here. Nevertheless, comparing the results of the ‘DEM’ scenario with scenario ‘ALL’ 

shows, that the use of DEM variables only is not sufficient for soil type prediction and further 

environmental predictors, such as geological or meteorological datasets, can significantly improve the 

accuracy. This is also indicated by other studies, which only used relief-based variables for prediction. 

Their results are also considerably lower than those from studies with further predictor variables. For 

instance, Dornik et al. (2018) achieved an OA of 56 % with an object-based approach and 48 % with a 

pixel-based approach by delineating 10 soil type classes only by RF with DEM derived variables. 

Taghizadeh-Mehrjardi et al. (2019a) achieved accuracies of 52 % (RF) and 51 % (ANN) with five soil 

type classes and 41 % (RF) and 39 % (ANN) with nine classes. 

Comparing the results of both training datasets shows some significant differences. On a soil type level, 

a spatially homogenized sampling strategy without any class-based weighting led to an overestimation 

of the two dominating soil types and all other soils were underrepresented here. In contrast, the class-

based sampling strategy with a less imbalanced training dataset overrepresented the medium 

occurring soils. The two very dominating and the remaining very rare soils were underrepresented 

with this sampling strategy. ANN seems more sensitive to different sampling strategies, as the achieved 

differences in accuracy were higher for this ML-algorithm than for RF. Whereas both algorithms 

performed almost on a similar level with a spatially homogenized sampling strategy, the results of the 

RF algorithm were superior to the class-based strategy.  

The spatially homogeneous training dataset generally led to higher overall accuracies here. This is in 

accordance with the findings of other studies (Heung et al., 2016; Møller et al., 2019). They also found 

out that an area-weighted distribution of sampling points has a positive influence on the classification 

overall accuracy. This sampling strategy seems to be advantageous, especially for areas with a less 

complex soil structure. In the upland area with a less distributed soil class structure, the results here 

show a considerably higher accuracy for the SHS training dataset than for the CBS dataset. As the 

dominating soil types of this area got more points in the training dataset, this resulted in a higher 

classification accuracy for these soil types.  
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However, the results also show that a spatially homogeneous sampling strategy increases the 

inequalities between soil classes with different occurrences. For very rare soils, the probability rises 

that not enough training points were generated for these soils. In this study, for the three soil type 

units GG-PP, SSg and RR-BB no sampling points were generated at all with the SHS dataset and more 

than 70 % of the sampling points were located in the area of the three most frequent soils BB, LL and 

SS. In contrast, with the CBS dataset only about 40 % of the points were generated for these three 

major soil classes. 

Complex areas with many soil classes are problematic for both training datasets and the achieved 

accuracy values are similar for all scenarios. Results on each soil type level show that it is difficult to 

classify rare soils with a sparse distribution. With the class-based sampling method, it was the aim to 

create for every soil type unit a sufficiently large training dataset for prediction. Although with the CBS 

method a 2 – 3 times higher point density could be reached for all soil types, except the three most 

dominating ones. For the rarest soils of the Rur catchment, the covered areas were too small to 

generate enough points for a sufficiently large training dataset. Nevertheless, increasing the number 

of samples for rare soils without increasing the absolute number of training points did not lead to a 

higher overall accuracy here. Probably a more efficient sampling strategy to select samples at more 

representative locations could improve the prediction performance of these soils (Liu et al., 2020). 

Results of Taghizadeh-Mehrjardi et al. (2019b) reveal that oversampling techniques that create 

additional synthetic interpolated samples could improve the overall accuracy. However, the prediction 

accuracy is also affected by the absolute number of training points (Sharififar et al., 2019). It is not 

entirely clear to which degree these resampling techniques benefit from the addition of interpolated 

points to rare classes or generally from an increased number of training samples. Creating a fully class-

balanced dataset with an equal number of samples for all soil classes would probably decrease the 

prediction accuracy of the major soils and vastly underestimated them in the classification results.  

Finding an optimal set of training samples for prediction is probably a compromise between several 

things. The minimum number of training points that are required to achieve even for rare soil classes 

a stable and representative description of their environmental properties. Also, a spatially-weighted 

location of these points and a consideration of the differences in the frequency of occurrence of the 

soil classes are important to reduce the over- and underrepresentation of distinct soil classes. 

 

7.6  Conclusion 

This study presents the accuracy of applying ML algorithms for the prediction of soil types with regard 

to several factors that influence the classification accuracy in a heterogeneous area with 36 different 

soil classes. Overall, the RF algorithm seems to be the most promising approach for soil type prediction 

in this study. Results showed that accuracies of around 75 % are possible for random forest in areas 

with less complex soil structures. ANN was able to reach similar OAs for these areas, but only with a 

spatially homogeneous training sample strategy. With the class-based sampling strategy, the results of 

ANN are considerably lower than for RF.  

Areas with the lowest achieved accuracies for soil type prediction were the northernmost part of the 

catchment and the transition region from the mostly flat landscape of the loess deposit area to the 

upland area in the central part of the study area. In these areas with a diverse soil type distribution, a 
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significant drop in accuracy was detectable for both algorithms. The highest decrease of OA was 

detectable for ANN with accuracies of about 25 % lower than in less complex areas. For RF, a decrease 

in accuracy of about 20 % is detectable. Both training sample strategies were able to achieve similar 

accuracies here. 

Comparing both training datasets showed that the selection of training samples is crucial for soil type 

prediction. On the one hand, a spatially balanced dataset leads to higher overall accuracies. On the 

other hand, this sampling strategy increases class imbalances by omitting rare soil classes and leads to 

a less diverse classification result. However, addressing these imbalances by adding more samples to 

rare soil classes without increasing the total number of training samples results in considerably lower 

overall accuracies. 

A higher diversity of environmental co-variables for the prediction achieved better prediction results 

here. Thus, the set of predictor variables should be carefully chosen and ideally as versatile as possible. 

Results showed that using relief-based variables as the only source led to considerably lower OAs than 

using additional environmental parameters from the other ‘SCORPAN’ factors. In contrast, a significant 

influence of different elevation models for co-variable production could not be detected here and the 

90 m TDX elevation model is as suitable as a highly accurate elevation model. It can be concluded that 

classification accuracy here seems mainly affected by the distribution and variation of existing soil 

types as well as the combination and availability of training samples and co-variables for prediction. In 

contrast, the accuracy was affected only minor by topography and spatial resolution of DEMs for the 

generation of predictor variables.  
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7.7 Appendix 

Table 7-4: List of names for all soil type units of the BK50 from the Rur catchment area and their corresponding 

WRB soil classification group. 

  Code Name Corresponding WRB Group 

Te
rr
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tr
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o
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RR Rendzina Leptosol, Chernozem, Kastanozem, 
Phaeozem 

BB-RR Braunerde-Rendzina (Transition subtype of Rendzina) Leptosol, Phaeozem, Chernozem, 
Kastanozem 

RZ Pararendzina Leptosol, Regosol, Phaeozem, 
Chernozem, Kastanozem, Cambisol 

BB Braunerde (Brown Earth) Cambisol, Umbrisol, Arenosol 

BBh Humusbraunerde (Subtype of Braunerde) Umbrisol 

GG-BB Gley-Braunerde (Transition subtype of Braunerde) Cambisol, Gleysol 

PP-BB Podsol-Braunerde (Transition subtype of Braunerde) Podzol, Arenosol, Cambisol 

RR-BB Rendzina-Braunerde (Transition subtype of Braunerde) Cambisol 

SS-BB Pseudogley-Braunerde (Transition subtype of Braunerde) Cambisol, Planosol 

LL Parabraunerde Luvisol 

GG-LL Gley-Parabraunerde (Transition subtype of Parabraunerde) Luvisol 

SS-LL Pseudogley-Parabraunerde (Transition subtype of 

Parabraunerde) 
Luvisol 

PP Podsol  Podzol 

GG-PP Gley-Podsol (Transition subtype of Podsol) Podzol, Gleysol 
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8 Discussion 

The first part of this contribution evaluated the accuracy of a large number of different DEMs with 

various resolutions and scales for very diverse landscapes. The accuracy assessment was conducted in 

the two landscapes of the Chilean Atacama Desert (chapters 3 and 4) and the mid-latitude Rur 

catchment in the western part of Germany (chapter 5). The achieved results enable a comprehensive 

comparison of the strengths and weaknesses of each DEM and provide detailed vertical accuracy 

measures for all tested DEMs in different topography and landscape. A summary as well as a discussion 

and interpretation of these results is presented in section 8.1. Furthermore, the results of both studies 

are combined and used to derive unbiased relief- and land cover adjusted error measures for each 

DEM.  

In the second part of this contribution, it has been investigated in two different case studies to which 

degree the resolution and quality of a DEM have an influence on further applications. One case study 

was the classification of landforms with different approaches and DEMs (chapter 6). The accuracy of 

the different classification approaches and DEMs have been evaluated in this study. The second case 

study focused on the prediction of soil classes with machine learning algorithms, using elevations and 

further DEM derived land surface parameters for model prediction (chapter 7). The importance of 

these parameters was assessed and the results calculated with DEMs of two different spatial 

resolutions were compared. Section 8.2 discusses the strength of influence on these applications 

caused by the choice of a specific DEM. In addition, available studies from other applications that have 

examined the influence of different DEM sources and spatial resolutions on the outcome are discussed 

and summarized in this chapter. 

 

8.1 Accuracy of DEMs 

Eight medium resolution DEMs have been compared both for the Atacama Desert study area (chapters 

3 and 4) and the Rur catchment in Germany (chapter 5). Additionally, the high resolution 12 m 

TanDEM-X and several DEMs from Pléiades and SPOT stereo imagery have been evaluated in chapter 3 

and the EU-DEM in chapter 5. Certain patterns can be discovered here for DEMs of different generation 

sources and resolutions. Their achieved accuracies in flat and undulated landscapes as well as their 

mean overall accuracies over all used reference datasets are listed in Table 8-1. The results do not 

generally show a higher accuracy for the elevation models in one region compared to the other. 

Although both areas are completely different, the achieved overall accuracies are mostly in a similar 

range. This is partly surprising as the differences in the results between the southern and the northern 

part of the Rur catchment in chapter 5 showed that there could be significant differences in accuracies 

between different landscapes. It was expectable that the denser land cover with trees and houses 

above the surface in the Rur catchment would lead to more inaccuracies than in the Atacama Desert 

where the majority of the surface consists of bare ground. However, the overall steepness in the 

Atacama Desert region is higher with an average slope of 4.6° compared to the flat to medium elevated 

Rur catchment with an average slope of 2.1°. This may lead to some kind of balancing effect of the 

inaccuracies in both regions.  
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Table 8-1: Comparison of the achieved mean overall accuracies of all DEMs over all used reference datasets in 

chapters 3, 4 and 5 for the entire study areas and for only flat and moderately shaped landscapes of both areas. 

Listed are the calculated root mean square error (RMSE) and normalized median absolute deviation (NMAD) 

values. Flat landscapes are defined as areas with less than 5° slope. Moderate landscapes are areas with a slope 

steepness of 15°– 25°. The average slope of the entire Chilean study area is 4.6°, of the entire Rur catchment is 

2.1°. 
  

flat (0° – 5°) moderate (15° – 25°) Entire study areas  

    Chile Rur Chile Rur Chile Rur 

DEM Spatial 

resolution  

RMSE 

[m] 

NMAD 

[m] 

RMSE 

[m] 

NMAD 

[m] 

RMSE 

[m] 

NMAD 

[m] 

RMSE 

[m] 

NMAD 

[m] 

RMSE 

[m] 

NMAD 

[m] 

RMSE 

[m] 

NMAD 

[m] 

Pléiades 5 m 1.2 0.8 - - 3.3 2.6 - - 6.0 3.1 - - 

SPOT 5 m 1.9 1.8 - - 5.3 3.7 - - 5.0 3.1 - - 

TanDEM-X 12 m 1.2 0.5 - - 3.4 2.3 - - 3.3 1.3 - - 

EU-DEM 25 m - - 4.3 2.1 - - 8.8 8.8 - - 5.6 2.9 

ASTER 
GDEM 

30 m 7.6 6.0 6.9 5.5 10.7 10.1 10.0 9.9 8.7 7.0 6.8 6.8 

ALOS W3D 30 m 2.5 1.9 5.6 2.8 5.0 4.6 7.5 8.3 4.3 2.8 5.9 3.2 

SRTM 30 m 3.8 3.8 4.5 2.3 7.2 6.8 6.8 7.0 5.4 4.0 5.1 2.9 

NASADEM 30 m 2.7 2.2 4.6 2.4 6.5 5.9 9.6 10.0 5.4 3.5 5.2 2.9 

Copernicus 
DEM 

30 m 1.9 1.5 5.6 1.7 5.5 5.2 9.0 9.8 4.6 2.2 6.0 3.1 

SRTM 90 m 3.8 3.8 4.5 2.2 9.8 9.5 9.9 10.5 7.7 5.0 5.7 2.9 

TanDEM-X 90 m 2.0 0.9 6.7 2.6 10.8 9.9 22.7 22.2 8.5 3.3 7.9 2.9 

Copernicus 
DEM 

90 m 2.6 2.0 5.5 2.0 12.6 11.5 11.7 11.8 6.8 3.5 7.6 3.1 

 

Comparing the tested DEMs achieved overall accuracies in this contribution (Table 8-1) with average 

accuracies stated in the literature (Table 8-2) shows mostly results that are concordant with the current 

literature. Both SRTM DEMs lie within the range that has already been observed in literature with an 

average accuracy of 3 – 4 m in flat areas and about 7 m (30 m SRTM) and 10 m (90 m SRTM) in 

moderately steep landscapes. From the results shown in Table 8-1, it can be further observed that all 

DEMs from the C-band SRTM RADAR data are more accurate in the area of the Rur catchment than in 

Chile. Thus, except the ASTER GDEM, the SRTM DEMs are the only DEMs that are less accurate in the 

bare Earth region than in the region of dense land cover. The C-band RADAR is advantageous over X-

band RADAR and photogrammetry in vegetation areas as it achieves a higher penetration depth 

(Schlund et al., 2019; Weydahl et al., 2007). This is also observable in vegetated areas of the Rur 

catchment where all DEMs from the X-band WorldDEM™ data were 3 – 6 m less accurate in forested 

areas than the C-band RADAR DEMs. Due to the acquisition time of the SRTM mission during the winter 

season in the northern hemisphere with less tree canopy, this effect might be stronger there than in 

the southern hemisphere. However, this assumption cannot be proven by this contribution. 

For the NASADEM, only a few studies are available to date that have evaluated this DEM. Overall, the 

achieved results of this contribution in flat terrain are in accordance with the results of Carrera-

Hernandez (2021) and are slightly better than those observed by Uuemaa et al. (2020) in a study area 

comparable to the Rur catchment. In undulated terrain, a relatively large difference in accuracy 

between the Rur catchment and the Atacama Desert can be observed here. An error of about 6 m in 

Chile is similar to findings of Carrera-Hernandez (2021), The error of about 10 m in the Rur catchment 

is slightly worse. The NASADEM as a successor of the SRTM DEM revealed an overall slightly higher 

performance than the SRTM DEM in this contribution. This was also confirmed by other studies that 
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state an improvement of this DEM over its predecessor (Carrera-Hernandez, 2021; Chen et al., 2022; 

Uuemaa et al., 2020). 

Numerous studies have already stated the inferior performance of the ASTER GDEM in comparison to 

other global DEMs with a comparable spatial resolution (Alganci et al., 2018; Becek et al., 2016; Graf 

et al., 2018; Hu et al., 2017; Kumar et al., 2020; Liu et al., 2019; Liu et al., 2020b; Mouratidis and 

Ampatzidis, 2019; Pandey et al., 2017; Vassilaki and Stamos, 2020; Zhang et al., 2019b). These findings 

can be confirmed in all areas of this contribution. The achieved results of the ASTER GDEM in Table 8-1 

are overall slightly worse in this contribution than in the literature (Table 8-2), but mostly in accordance 

with the findings of Carrera-Hernandez (2021), who found similar errors for flat and undulated terrain. 

With these results, the ASTER GDEM showed the by far overall lowest accuracies in almost all 

situations. It was in many situations even less accurate than DEMs with a lower spatial resolution of 

90 m. Overall, the difference in accuracy between the ASTER GDEM and the other DEMs was larger in 

Chile than in the Rur catchment. Nevertheless, it cannot be recommended to use this DEM in any 

situation considering that there is a wide range of more accurate alternatives freely available in the 

same spatial resolution. 

Table 8-2: Current state of findings from literature about achieved average RMSE accuracies of the global DEMs 

in flat and steep landscapes. 

  Average RMSE  

DEM Spatial 

resolution 

Flat [m] Steep [m]  Reference 

TanDEM-X 12 m 1 – 2 5 – 7 Baade and Schmullius (2016); Becek et al. (2016); Dobre et al. (2021); 

Gdulová et al. (2020); Zhang et al. (2019a)  

EU-DEM 25 m 4 n/a Mouratidis and Ampatzidis (2019) 

ASTER 

GDEM 

30 m 4 – 6  7 – 10  Alganci et al. (2018); Becek et al. (2016); Carrera-Hernandez (2021); 

Dobre et al. (2021); Graf et al. (2018); Hu et al. (2017); Karlson et al. 

(2021); Kumar et al. (2020); Liu et al. (2019); Mouratidis and Ampatzidis 

(2019); Pandey et al. (2017); Uuemaa et al. (2020); Vassilaki and Stamos 

(2020); Zhang et al. (2019b) 

ALOS W3D 30 m 2 – 3  6 – 7  Alganci et al. (2018); Carrera-Hernandez (2021); Dobre et al. (2021); 

Karlson et al. (2021); Kumar et al. (2020); Liu et al. (2019); Uuemaa et al. 

(2020); Yahaya and El Azzab (2019) 

SRTM 30 m 3 – 4  7 – 10  Carrera-Hernandez (2021); Dobre et al. (2021); Mukherjee et al. (2013); 

Rexer and Hirt (2014); Suwandana et al. (2012); Uuemaa et al. (2020); 

Zhao et al. (2011) 

NASADEM 30 m 2 – 6  6 – 11  Carrera-Hernandez (2021); Marešová et al. (2021); Uuemaa et al. (2020) 

Copernicus 

DEM 

30 m 2 – 3  10  Karlson et al. (2021); Marešová et al. (2021) 

SRTM 90 m 3 – 6  10 – 20  Becek et al. (2016); Dobre et al. (2021); Hu et al. (2017); Liu et al. (2019); 

Liu et al. (2020b); Nagaveni et al. (2019); Uuemaa et al. (2020); Yahaya 

and El Azzab (2019) 

TanDEM-X 90 m 1 – 4  10 – 20  Altunel (2019); Dobre et al. (2021); Keys and Baade (2019); Kumar et al. 

(2020); Marešová et al. (2021) 

Copernicus 

DEM 

90 m n/a 6 – 12  Marešová et al. (2021) 
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The EU-DEM was not available for the Chilean area and thus was only assessed for the Rur catchment 

area. As a combination of ASTER and SRTM data, it is clearly more accurate than the original ASTER 

GDEM and mostly showed a good performance, comparable to the other tested 30 m DEMs. 

Mouratidis and Ampatzidis (2019) recognized a superior performance of this DEM for vegetated areas 

compared to ASTER GDEM and SRTM. Their findings are comparable to the findings of this contribution 

in flat landscapes (Table 8-1). Here, it revealed a particularly high performance predominantly in flatter 

areas. However, the slightly higher spatial resolution of 25 m did not show any recognizable impact on 

the quality of this DEM. 

The DEMs generated from X-band WorldDEM™ data revealed the biggest differences between the 

calculated RMSE and NMAD values in both areas (Table 8-1). Thus, it can be assumed that the overall 

accuracy of these DEMs is very high and very likely the highest of all tested DEMs. As the WorldDEM™ 

datasets still contain a relatively high number of outliers, it must be assumed that there is considerable 

room for improvements available for these DEMs. The accuracy of the 30 m Copernicus DEM was the 

overall highest of all tested 30 m DEMs in the Chilean study area with an error of less than 2 m 

(Table 8-1). In the Rur catchment, the observed accuracies were not significantly superior to other 

DEMs of this spatial resolution. This is mostly in agreement with findings from Karlson et al. (2021), 

who showed a similar vertical accuracy of the 30 m Copernicus DEM that is superior to the ALOS W3D. 

The achieved accuracies of 9 – 10 m in undulated terrain of the Rur catchment are in accordance with 

findings from Marešová et al. (2021) listed in Table 8-2. The achieved accuracies in the Chilean study 

area are significantly higher in this contribution with less than 6 m (Table 8-1). However, very few 

assessments on the accuracy of this DEM are available to date and more work needs to be done to 

further examine its quality.  

The achieved results of the 90 m TanDEM-X are mostly in accordance with findings from the literature, 

except in undulated areas of the Rur catchment. There, an error of about 22 m is considerably higher 

than observed in most other studies (Table 8-1). Presumably, this is also caused by existing land cover 

and outliers in the DEM. Overall, both 90 m DEMs from WorldDEM™ data reveal a higher loss of 

accuracy than the 90 m SRTM DEM. In particular, the 90 m TanDEM-X consists of weaknesses in steep 

terrain and is considerably less accurate there. This has also been observed by other studies in very 

mountainous areas (Chen et al., 2022; Podgorski et al., 2019). The 90 m Copernicus DEM, created from 

the WorldDEM™ data of the TanDEM-X mission, overall performed slightly better than the 90 m 

TanDEM-X in most situations. This improvement of the Copernicus DEM has also been observed by 

Marešová et al. (2021) for three European mountainous areas. For the Rur catchment, a significantly 

higher accuracy of the 90 m Copernicus DEM over the TanDEM-X was also observable in this 

contribution, particularly in steeper areas. However, in the Chilean area it revealed in steeper areas 

even more uncertainties than the TanDEM-X DEM. This indicates that this accuracy improvement may 

not occur in all areas of the world. Nevertheless, more work is still necessary to investigate this. Overall, 

it must be stated from the results of this contribution that the WorldDEM™ is only in flat areas 

significantly more accurate than the SRTM DEM with the same pixel size. In steeper terrain, the 90 m 

SRTM is still the most accurate DEM of this spatial resolution. Probably the older 90 m SRTM benefits 

particularly in these areas from several improvements with other datasets, as it is contrary to the 

WorldDEM™ datasets already available in higher product versions. 
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The WorldDEM™ DEMs and the ALOS W3D mostly showed a slightly to considerable weaker 

performance in the Rur catchment than in the Atacama Desert. This leads to the conclusion that these 

DEMs are more affected by land cover than the SRTM DEMs. In particular, the ALOS W3D from stereo 

satellite imagery achieved considerably higher overall accuracies in the Chilean area than in the Rur 

catchment (Table 8-1). Thus, the ALOS W3D DEM seems to be strongly affected by land cover, which 

significantly lowers its accuracy, presumably due to the photogrammetric generation process that fully 

includes all objects on the Earth’s surface. This DEM was only in the bare Earth region of Chile able to 

achieve similar results to DEMs from RADAR data. In areas with denser land cover, stereo imagery of 

this resolution shows disadvantages compared to other acquisition techniques. Overall, existing 

literature predominantly showed a superior accuracy of the ALOS W3D in comparison to SRTM (Alganci 

et al., 2018; Kumar et al., 2020; Liu et al., 2019; Yahaya and El Azzab, 2019) and a comparable accuracy 

to the newer NASADEM (Carrera-Hernandez, 2021; Chen et al., 2022). The results in Table 8-1 show 

for the ALOS W3D a higher accuracy in the Chilean area and a slightly inferior accuracy in the Rur 

catchment in comparison to the DEMs from SRTM data. 

Considering the spatial resolution of the evaluated DEMs generally shows that a higher resolution 

potentially increases the vertical accuracy of DEMs. However, the accuracy depends on more factors 

and coarser datasets are not necessarily less accurate in every landscape. The spatial resolution is 

particularly important in steeper sections and leads to a 2 to 3 times higher accuracy decrease of 90 m 

DEM in steep areas compared to 30 m DEMs. Whereas the accuracy of a 30 m DEM decreased about 

3 m to 5 m on average between flat (0° – 5° slope) and moderately shaped (15° – 25° slope) terrain, 

the accuracy of a 90 m DEM is more than 6 m and up to 15 m lower in undulated terrain than in flat 

landscapes.  

Elevation models with a higher spatial resolution than 30 m were only evaluated for the Chilean study 

area in this contribution. Other studies already stated that the 12 m TanDEM-X provides a high level 

of detail and overall vertical accuracy (Gdulová et al., 2020; Pipaud et al., 2015; Vassilaki and Stamos, 

2020; Wessel et al., 2018). The results of this contribution also show the 12 m TanDEM-X as the overall 

most accurate DEM that covered the entire Chilean study area. Overall, it achieved an accuracy of 

about 1 – 2 m in flat landscapes, which is about 1 – 2 m more accurate than the tested 30 m DEMs. In 

moderately shaped terrain, the 12 m TanDEM-X achieved a vertical error of less than 4 m (Table 8-1) 

which is slightly higher than observed in literature with 5 – 7 m on average (Table 8-2). This is probably 

caused by the absence of vegetation in the Chilean area, in contrast to other study areas in literature. 

The results of Dobre et al. (2021) show similar results for a predominantly non-vegetated area. Overall, 

the 12 m TanDEM-X is on average about 2 – 4 m more accurate than most other 30 m DEMs in steep 

landscapes but showed only a slightly better performance in less vegetated areas than the ALOS W3D 

DEM.  

The very high resolution DEMs derived from stereo-satellite imagery of SPOT and Pléiades were also 

only evaluated for the Chilean study area. The results in Table 8-1 reveal an overall high accuracy, 

although the calculated mean overall error is higher than those of some other DEMs with a lower 

spatial resolution. Since these DEMs did not cover the entire area, it has to be considered that their 

overall accuracy values are not entirely comparable to the other global DEMs. Slope depending 

accuracy values showed comparable results to the 12 m TanDEM-X in both flat and undulated 

landscapes. In very steep terrain, the higher spatial resolution of Pléiades and SPOT imagery was 

advantageous over the 12 m TanDEM-X. Overall, the DEMs derived from Pléiades imagery are slightly 
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more accurate than DEMs from SPOT imagery. In particular, flat landscapes are depicted more 

smoothly in the Pléiades DEMs. 

When interpreting the results of Pléiades and SPOT DEMs, it has to be considered that they were 

generated without the usage of GCPs. It is evident that GCPs can increase the accuracy of high 

resolution stereo DEMs (Barrand et al., 2009; Berthier et al., 2014). Overall, it can be stated that the 

increase of accuracy of the very high resolution DEMs over the global DEMs was relatively low here. 

However, due to the higher spatial resolution they are likely to be able to capture more details than 

DEMs of coarser resolution. As it has been shown in the study of chapter 6, this can be advantageous 

for certain large-scale applications. However, as these high resolution satellite stereo images are 

usually expensive, it's a matter of weighing up whether the price is worth it over entirely freely 

available DEMs with a coarser spatial resolution. 

By the interpretation and comparison of the achieved vertical accuracy results, it has to be generally 

considered that different reference datasets have been used in both areas. While in the Rur catchment 

an area-wide dataset of very high accuracy was available, the distribution of reference points in the 

Atacama Desert was overall more sparsely. It was therefore not possible to evaluate the entire Chilean 

area and compare every height value of the DEMs with a reference dataset. Although a large number 

of reference points have been used, this can have a slight misbalancing effect on the achieved vertical 

accuracies. Moreover, it must be considered that DEMs and reference data were captured at different 

times. Thus, it is unavoidable that a timespan of more than ten years exists between the acquisition 

dates of some DEMs and the utilized reference data. Areas with significant human-made terrain 

changes during this time period, such as open cast mining areas, were excluded from the studies. 

Nevertheless, relief is not a static surface and other areas may also be affected by natural or human 

changes over time. These effects could not be quantified here, but may also have an impact on the 

validation results. 

Additionally, the DEMs in this contribution have been evaluated mainly as they were provided by the 

distributor without any significant corrections or improvements prior to the evaluation process. Thus, 

it must be considered that individual quality improvements of the DEMs can also have positive effects 

on accuracy. Knowledge about the accuracy of a DEM in a certain area is also important as it can help 

to improve the quality of the DEM in the future. For example, the height of tree values can be used to 

remove them in the DEM and to model the ground surface in forested areas (Gallant et al., 2012). Zhao 

et al. (2018) created a corrected SRTM product for vegetated areas by the usage of average canopy 

heights of different vegetation types. With the knowledge of the error behaviour of a DEM, this could 

be extended to other land cover types in future work. Knowledge about the error of a DEM in a 

particular relief could be used for general corrections in these areas. 

Besides internal error sources, such as horizontal georectification, spatial resolution, downsides of 

acquisition techniques or interpolation algorithms, the accuracy of a DEM is mainly influenced by the 

type of landscape that is covered by the DEM (American Society for Photogrammetry and Remote 

Sensing (ASPRS), 2004; American Society for Photogrammetry and Remote Sensing (ASPRS), 2015; 

Mesa-Mingorance and Ariza-Lopez, 2020). The results of both evaluations clearly show that the 

steepness and roughness as well as objects above the surface (land cover) are mainly responsible for 

elevation deviations. It has to be stated, that it is not completely identifiable in the presented results 

to which degree the accuracy of a DEM is influenced by relief and by land cover. Both factors are 

mutually dependent and influence each other. Since there is predominantly no land cover in the 
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Atacama Desert, it can be assumed that the factor relief is the dominating factor affecting the vertical 

accuracy there. In the Rur catchment, the interpretation of both factors is more complex as land cover 

is always influenced by relief and vice versa.  

It was the aim of this contribution to extend the common knowledge of general DEM accuracies 

regarding relief, landform and land cover. To overcome this dependence of error, relief- and land use 

adjusted accuracy measures are derived from the formerly presented slope dependent results of 

chapters 3 to 5. From the achieved RMSE and NMAD values presented in Figures 3-7, 4-1 and 5-8, 

general values for the loss of accuracy per 10° slope were calculated for each DEM. The accuracy 

assessments of chapters 3 to 5 revealed that the slope dependent loss of accuracy was mostly linear 

from flat to moderately shaped terrain. Whether this linearity is also given for very steep relief (>35° 

slope) could not be proven by this contribution, since there were not enough reference points available 

in such steep slopes. Assuming a linear error increase from the achieved slope dependent accuracies 

of chapters 3 to 5, the average gradient of the curves in Figures 3-7, 4-1 and 5-8 is calculated for each 

DEM. The results are presented in Table 8-3 and show the average loss of accuracy per 10° slope for 

each DEM. The values of this table can be interpreted as the expectable loss of accuracy depending on 

the relief up to a steepness of 35° for both study areas individually and a combined value from both 

sites. Although, the derived values for the Rur catchment could be slightly influenced by land use, these 

average accuracies change rates can be stated as an approximate conversion factor between terrains 

of different steepness. Further accuracy values achieved from other areas without land cover could be 

helpful here in the future to consolidate these change rates. However, this was not feasible within the 

framework of this contribution. 

Table 8-3: The calculated average loss of accuracy per 10° slope steepness for all tested DEMs. Listed are the 

average loss values (root mean square error (RMSE) and normalized median absolute deviation (NMAD)) for each 

study area individually and a combined value from both areas together.  

    Chile  Rur  Both areas 

DEM 

Spatial  

resolution RMSE [m] NMAD [m] RMSE [m] NMAD [m] RMSE [m] NMAD [m] 

Pléiades 5 m 1.0 0,7 - - 1.0 0,7 

SPOT 5 m 1.2 0,9 - - 1.2 0,9 

TanDEM-X 12 m 1.3 1,0 - - 1.3 1,0 

EU-DEM 25 m - - 1.8 1,9 1.8 1,9 

ASTER GDEM 30 m 30 m 2.1 2,4 1.9 1,9 2.0 2,2 

ALOS W3D 30 m 30 m 1.6 1,6 0.7 1,3 1.2 1,5 

SRTM 30 m 30 m 2.3 2,0 1.0 1,3 1.6 1,7 

NASADEM 30 m 30 m 2.4 2,1 2.7 2,8 2.5 2,5 

Copernicus DEM 30 m 30 m 2.2 2,2 1.4 2,0 1.8 2,1 

SRTM 90 m 90 m 3.5 0,9 2.5 2,7 3.0 1,8 

TanDEM-X 90 m 90 m 4.7 4,8 7.6 7,3 6.1 6,1 

Copernicus DEM 90 m 90 m 5,6 5,4 3,2 3,3 4,4 4,4 

 

Overall, Table 8-3 shows a significantly greater decrease in accuracy for the 90 m DEMs than for the 

others. In particular, the TanDEM-X and the Copernicus DEM have the largest slope related loss of 

accuracies of all DEMs in their 90 m versions. However, this table also reveals that the decrease 

depends on the acquisition source. These results underline that these DEMs from WorldDEM™ data 

are overall more negatively affected by relief and show the strongest decrease of accuracy in steeper 

slopes, which has also been observed by other studies (Gdulová et al., 2020; Uuemaa et al., 2020). In 
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contrast, the accuracy of DEMs generated by stereo imagery seems less affected by slope changes. In 

particular, the error of the ALOS W3D DEM rises only about 1 m per 10° slope. This is also supported 

by results of other studies that have shown a lower sensitivity of this DEM against steeper relief 

compared to a C-band RADAR SRTM DEM (Mukul and Mukul, 2021; Uuemaa et al., 2020). A reason 

could be the disrupted backscatter ability of interferometric RADAR in steeper relief that causes a 

higher number of larger errors (Liu et al., 2019). Furthermore, SAR acquisition has often larger viewing 

angle geometries than optical stereo imagery which can cause larger relief distortions (Yocky and 

Jakowatz, 2007). This effect is also partly visible in the slope curves of Figures 3-7, 4-1 and 5-8 where 

in extreme slopes the differences between achieved RMSE and NMAD values are often larger for the 

RADAR DEMs, than for others.  

Considering the presented relief dependent changes in accuracy for each DEM in Table 8-3, this 

enables the possibility to additionally adjust the calculated land use dependent accuracy values of 

chapter 5.4.2 (Figure 5-7). The mean slope steepness of the eight land use classes is presented in 

Table 8-4. This shows that these classes are topographically biased and it must be assumed that the 

measured error values in Figure 5-7 are not only induced by land cover. Rather, differences in the relief 

steepness of each class have additionally influenced the measured error values. Correcting these 

values with the overall achieved slope dependent rates of accuracy change in Table 8-3 provides land 

use uncertainties that are homogenized on a hypothetical flat surface for all classes. This allows the 

calculation of a possible DEM error for any point on Earth with comparable land cover, regardless of 

slope.  

Table 8-4: Mean overall slope angles of each land use class considered in the Rur catchment analysis in chapter 5. 

Land use class Mean slope angle [°] 

Bare ground/Grassland 9.3 

Coniferous Trees 7.9 

Deciduous Trees 10.6 

Agriculture 1.8 

Residential Area 3.8 

Urban Public/Commercial Area 2.6 

Streets/Railways 5.0 

Water 2.2 

 

A calculation of such relief independent error values is presented in Figure 8-1. Based on these results, 

it can be stated that both tree classes and the water areas produce the by far largest errors in DEMs 

of about 6 – 7 m. The error caused by other land cover objects is significantly lower with less than 2 m 

on average for most DEMs. The land use class ‘Bare ground/Grassland’ had relatively large error values 

in the analysis of chapter 5 due to their occurrence in predominantly steeper relief than other classes. 

The unbiased results of Figure 8-1 now show that the error induced by this land cover class is not 

significantly higher than of classes ‘Agriculture’ or both urban classes. Overall, the achieved values of 

Table 8-3 and Figure 8-1 enable the calculation of a possible error for any point on Earth regardless of 

slope and land cover. 
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Figure 8-1: Calculated relief independent error values (RMSE and NMAD) for all tested land use classes. All error 

values are calculated for a homogenized hypothetical flat surface of 0° slope for each land use class to remove 

the topographical bias in the results of Figure 5-7. 

To summarize all evaluation results gained in this contribution, Table 8-5 provides an assessment of 

how much the accuracy of DEMs from different sources is affected by relief and land cover. It can be 

stated that the DEMs acquired by RADAR technique are overall more affected by relief than DEMs from 

stereo photogrammetry. In contrast, these stereo photogrammetry DEMs are more sensitive to land 

cover and are more negatively affected in regions with dense land cover. However, also the X-band 

RADAR DEMs derived from the WorldDEM™ are significantly more affected by land cover than DEMs 

from the SRTM mission. 

Table 8-5: Estimation, based on the results of this contribution, about the strength of influence of relief and land 

cover on the accuracy of DEMs depending on their acquisition source (* = low influence; ** = medium influence; 

*** = strong influence). 

DEM data source Acquisition technique Relief Land cover 

SRTM C-band RADAR ** * 

WorldDEM™ X-band RADAR *** *** 

ALOS W3D Stereo-photogrammetry * *** 
ASTER GDEM Stereo-photogrammetry ** ** 
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8.2 Influence of different DEMs on applications 

Digital elevation models are used in a countless variety of different disciplines and applications. In this 

contribution, the influence of using different DEMs was examined for two different applications. (I) the 

classification of landforms with different DEMs in chapter 6 and (II) the prediction of soil types with, 

among other data, relief parameters extracted from elevation models of different spatial resolutions 

in chapter 7. The investigated applications of this contribution show ambivalent results when it comes 

to the question of how accurate a DEM must be to provide sufficient results. It could be shown that a 

careful selection of an appropriate DEM is more crucial for certain applications than for others.  

The classification of landforms at a local scale in chapter 6 showed that the results are strongly 

influenced by different DEMs. For the very complex Iranian loess plateau area, only high resolution 

DEMs derived from stereo imagery were capable to achieve sufficient classification results. Both 30 m 

medium resolution DEMs were not able to detect small landforms in the highly dissected areas and 

achieved overall accuracies that were up to 30 % lower than that of the high resolution DEMs. The 

difference in accuracy was observable for all classification approaches and in both flat and undulated 

areas. A comparison of two different DEMs with the same spatial resolution showed slightly superior 

results for the SRTM DEM than for the ASTER GDEM. This leads to the conclusion that DEMs from 

different acquisition sources may impact the results up to a certain point, but overall the spatial 

resolution of the DEM has much more impact on the classification of landforms. In other words, a DEM 

with an inappropriate spatial resolution produces far less accurate and detailed landforms than a DEM 

of higher resolution. 

The general utilization of a DEM and its derived parameters to predict different soil types at a regional 

scale in chapter 7 showed that the input of elevation information as an environmental parameter was 

the most important factor for the prediction of soil types. Furthermore, many other derived terrain 

parameters, such as terrain classification index lowlands, terrain ruggedness index or valley depth, 

revealed great importance for model prediction. However, the results showed a relatively strong 

robustness of the results to the selection of different DEMs and other factors of the study design had 

a greater impact on the results. The results of the study in chapter 7 showed an accuracy difference of 

only less than 2 % between the very high resolution DGM1 and the 90 m TanDEM-X DEM in all tested 

scenarios. The choice of machine learning algorithm and the sampling strategy of training data resulted 

in greater accuracy differences than the choice of a different DEM. Using different machine learning 

algorithms as well as the selection of different sample strategies resulted in an average accuracy 

difference of about 6 %. Furthermore, the choice of prediction parameters is critical and different sets 

of environmental variables led to significant differences in the prediction power and accuracy 

differences of up to 9 %.  

For the application of digital soil type prediction, the spatial resolution of the DEM and the derived 

input parameters shows a low influence on the results. The classification of soil types in chapter 7 

produced similar results for a 90 m DEM as with a high resolution 15 m DEM. This is consistent with 

the findings of Cavazzi et al. (2013), who also found that a higher resolution does not automatically 

result in a higher accuracy in the prediction of different soil types. They state that a finer spatial 

resolution could be beneficial in areas with a heterogeneous soil type structure, but a coarser 

resolution leads to overall better results in flat and homogeneous areas. Furthermore, very detailed 

environmental parameters can produce too much noise, which can be disadvantageous for soil type 
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prediction algorithms. It can be assumed that more detailed relief parameters will improve the 

prediction accuracy only if there is a strong relationship between the environmental variables and the 

soil type classes being classified (Samuel-Rosa et al., 2015). A study of Costa et al. (2018) also showed 

little effect of the spatial resolution on digital soil mapping prediction results at a local scale. They also 

state that the occurrence of inherent noise and the overall smoothness of a DEM have a greater 

influence on soil type predictions than the spatial resolution of a DEM. If too many artefacts and very 

small features are included in the DEM, this can lead to discontinuous predictions of soil types. 

In addition to the two applications that have been conducted in this contribution, several papers have 

been published that have also investigated the importance of an appropriate DEM selection for specific 

applications. A review of this literature also reveals a diverse image of the influence that the spatial 

resolution of a DEM and its acquisition source has on modelled or classified results in different scientific 

disciplines. A lot of work l has been carried out in the field of hydrology. Several authors stated that 

the resolution of a DEM is critical for delineating stream networks (Ariza-Villaverde et al., 2015; 

Gautam et al., 2019; Mukherjee et al., 2013; Nagaveni et al., 2019; Vaze et al., 2010). They found out 

that the length of predicted stream networks decreases significantly and the shape tends to be more 

abstract with DEMs of coarser resolutions for both local and regional watersheds. Additionally, Lidberg 

et al. (2017) noted that the selection of the preprocessing method for filling sinks in the DEM prior to 

the analysis can also have an impact on the resulting stream networks. Only Wu et al. (2017) recognized 

a minor effect of DEM resolution on their results on a national scale of entire China. Thus, it can be 

concluded, that the influence probably decreases with smaller scales. DEMs from different sources can 

also have a considerable influence on the delineation of stream networks. Several authors state that 

not only the spatial resolution impacts stream network models, also DEMs from different acquisition 

sources can produce different results (Drisya and Kumar, 2016; Mukherjee et al., 2013; Vaze et al., 

2010). Overall, the selection of DEMs seems to play a very important role in applications that require 

an accurate drainage network.  

In contrast, the delineation of watersheds seems to be more robust against DEMs of different spatial 

resolutions. Various authors state that by using different DEMs, fewer differences in the area and 

shape of watersheds can be detected (Keys and Baade, 2019; Nagaveni et al., 2019; Vaze et al., 2010). 

However, different DEMs with the same spatial resolution can also lead to noticeable differences in 

watershed boundaries (Keys and Baade, 2019; Rana and Suryanarayana, 2019). Thus, it can be 

concluded that the selection of DEMs is less critical for watershed delineation than for stream network 

delineation, but may also affect the results. 

Coveney and Fotheringham (2011) conducted a large-scale analysis to examine how the selection of 

different high resolution DEMs has an impact on the prediction of coastal flood and erosion risks. Their 

results show that the quality of results depends less on the spatial resolution than on the overall 

accuracy of the DEMs. In particular, DEMs derived by photogrammetric techniques showed 

weaknesses compared to other generation sources. For the modelling of flood areas in urban 

environments, Muthusamy et al. (2021) used a DEM resampled to different spatial resolutions for their 

modelling and compared the achieved results. They found a considerable relationship between the 

spatial resolution of a DEM and the predicted flood depth and extent. In their study, the flooded extent 

was 30 % larger with a 1 m DEM than with a 50 m DEM. The calculation of inundation areas of six rivers 

by Saksena and Merwade (2015) also revealed a significant influence of spatial resolution on the 

results. They state that coarser DEM resolutions increase the predicted areas of inundation, in 
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particular for urban and steeply sloped areas. However, to which degree different DEM sources might 

influence these results was not investigated by these studies. Nevertheless, it can be concluded from 

these results that the selection of an appropriate DEM and resolution is crucial for flood risk modelling 

and high resolution DEMs are required to achieve reliable results. 

In the field of geomorphometry, only relatively few studies are available that have investigated the 

influence of DEMs on certain applications. Dobre et al. (2021) found that the source of DEMs had only 

little effect on the detection of peaks. Also, the impact of spatial resolution was only minor and all 

investigated DEMs seemed to be suitable for this application. In contrast, for the mapping of gullies at 

a very local scale, Dai et al. (2019b) observed a strong influence of spatial resolution on the detection 

of gullies. However, they state that a very high resolution can lead to an overinterpretation and a 

coarse resolution to an underestimation of gully landforms. Brosens et al. (2022) state for the 

calculation of gully volumes that the spatial resolution of a DEM is critical for this purpose. In their 

work, a 30 m Copernicus DEM did not provide sufficient results and resulted in a strong 

underestimation of these features. However, they also found no significant differences between a 

12 m TanDEM-X and a 0.2 m DEM from UAV data. It can be assumed that a higher resolution has an 

influence on the accuracy only up to a certain point. For the application of ice thickness modelling, 

Chen et al. (2022) showed that a higher resolution moderately improves the model outcome. The 

influence of DEMs from different sources on the model results varied depending on the model that 

has been chosen. 

Much work has already been done in the field of landslide hazard modelling, both at a local and a 

regional scale. Many of them observed that the highest spatial resolution is not always beneficial for 

landslide prediction (Chen et al., 2020; Tian et al., 2008) and could lead to an overinterpretation of 

landslide risks (Keijsers et al., 2011). Tian et al. (2008) stated that the optimal resolution likely depends 

on the size of the study area. A review of existing literature on landslide modelling by Kakavas and 

Nikolakopoulos (2021) indicates that for local scale areas a very high spatial resolution of less than 5 

m is required to achieve optimal results. In contrast, they state that DEMs with an average resolution 

of 20 – 30 m are generally adequate for landslide predictions at a regional scale. DEMs with a pixel size 

of less than 90 m are generally not recommended for this type of application. Therefore, spatial 

resolution is crucial, but the assumption that a finer resolution is always better does not apply to all 

scales in landslide hazard modelling. However, not only the spatial resolution but also the source of 

the DEM seems to be critical. Results from Kaminski (2020), who compared two DEMs of equal spatial 

resolution in terms of their suitability for landslide risk modelling, showed considerable differences 

between DEMs from different sources. In their study, a 20 m DEM derived from LiDAR data showed 

better results than a DEM with the same spatial resolution derived from stereo imagery. For the 

application of landslide risk mapping, it can therefore be assumed that the overall quality of the DEM 

is important for the outcome, at least at a local scale. This has not yet been investigated at a regional 

scale, but it can be assumed that the behavior is similar at this scale. 

In the context of archaeology, Becker et al. (2017) investigated the influence of six DEMs from different 

sources and with different spatial resolutions on the results of cost distance modelling to calculate 

isochrones for prehistoric site catchments. They found out that the calculated size of the catchments 

varies significantly for different DEMs and the choice of an appropriate DEM is of great importance for 

this task. It could be shown in their study that both spatial resolution and overall quality, induced by 

different acquisition and processing techniques, have a major influence on the results. 
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In the field of ecology, some research has been conducted on the effects of different DEMs on plant 

species distribution. However, they mostly show only little influence of DEM resolution and source on 

modelling results, for both local and regional areas (Lassueur et al., 2006; Moudry et al., 2018). Minor 

differences between different DEM sources could be observed for very high resolution DEMs 

(Guillaume et al., 2021; Leempoel et al., 2015) as well as for low resolution DEMs (Moudry et al., 2018). 

Leempoel et al. (2015) suggest the use of multiple resolutions to achieve the best results on a local 

scale. However, the application of plant species distribution seems to be generally more robust to the 

choice of an appropriate DEM and coarser or less accurate DEMs could also provide promising results. 

Another application where the selection of suitable DEMs seems crucial is the orthorectification of 

stereo satellite imagery. The study of Ortiz et al. (2012) reveals that for orthorectification at a local 

level, the spatial resolution is of great importance and a high resolution DEM leads to better results. In 

contrast, Ressl and Pfeifer (2018) observed a low relevance of spatial resolution for nationwide 

coverage in their study. Rather, the overall quality of the DEM had a higher impact on the 

orthorectification accuracy than the spatial resolution. 

An overall summary of all presented findings on the influence of different DEMs on specific applications 

is listed in Table 8-6. The table serves as an indication of how important the choice of a particular DEM 

is for the quality of the outcome results. An estimation is given there concerning the importance of 

spatial resolution and the acquisition source of the DEM for specific applications. After reviewing the 

results of both studies in chapters 6 and 7 as well as several further published studies in different 

applications, it can be stated that the effects of DEM selection on the results of these respective 

applications are very diverse. The choice of an appropriate DEM of high quality and spatial resolution 

is more important for some applications than for others. Users usually tend to select the DEM with the 

highest available spatial resolution for their analysis (Mesa-Mingorance et al., 2017). This is reasonable 

as these DEMs mostly promise a higher accuracy than coarser DEMs. However, analysis results of soil 

type classification in this contribution have shown that the highest resolution is not always necessary 

for all applications. Some studies have even shown that a high resolution can be counterproductive in 

some scenarios (Cavazzi et al., 2013; Penizek et al., 2016). Others showed that the acquisition source 

and how the landscape is overall represented in the DEM has a higher influence on further study results 

than the spatial resolution of a DEM (Coveney and Fotheringham, 2011; Guillaume et al., 2021; Rana 

and Suryanarayana, 2019; Ressl and Pfeifer, 2018). Overall, the selection of a specific DEM seems to 

be less critical for applications that mainly use DEM derived land surface parameters for their further 

analysis. Although it is well known that spatial resolution significantly impacts the accuracy of derived 

land surface parameters (Deng et al., 2007; Grohmann, 2015; Kienzle, 2004; Vaze et al., 2010; Zhang 

and Montgomery, 1994), it is of little importance for many predictive modelling tasks. The results of 

other applications, which mainly derive their results directly from the DEM are more affected by the 

use of different DEMs. 

Another aspect that has to be considered is that DEMs are static datasets. This means, they represent 

the landscape as it was at the time of data acquisition. However, topography and in particular areas 

such as river morphology and floodplains as well as urban areas are dynamic and can change rapidly 

over time. Thus, the date of acquisition may also be an important factor for some applications and an 

up-to-date DEM may be necessary to achieve reliable results (White et al., 2022). For example, up-to-

date DEMs are required for the assessment of flow hazards in areas of active volcanoes (Deng et al., 
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2019). However, actual on-demand acquired DEMs are usually expensive and often only available for 

study areas of limited size.  

Furthermore, for many (but not all) applications, the scale of the study area additionally influences the 

impact of different DEMs on the results. Therefore, the spatial resolution of the DEM must be chosen 

according to the required level of detail of the analysis. Many studies listed in Table 8-6 showed that 

analyses at a local scale require higher spatial resolutions than analyses at a regional or national scale 

because of the size of objects that need to be represented within the DEM. In particular, for the 

delineation of hydrologic stream networks and landslide hazard modelling, it can be stated that the 

scale of the analysis is a very important factor and a study on a national scale is by far less affected by 

the selection of a specific DEM than studies on a local or regional scale (Table 8-6). In contrast, the 

summarized results show that for digital soil mapping and various ecological applications the selection 

of different DEMs had only small effects on the results, both at a local and national scale. Nevertheless, 

in many scientific fields, few studies are available to date that have investigated the impact of the 

choice of a particular DEM on the study outcome. Therefore, more work is necessary to prove existing 

results and widen the knowledge for more applications that have not been investigated to date. For 

most regions of the world, only DEMs with a spatial resolution of 30 m or lower are available free of 

charge. It is therefore also an economic question of whether a particular application needs an 

expensive high resolution DEM to achieve reliable results. 
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9 Conclusion and outlook 

This contribution provides a comprehensive vertical accuracy analysis of a multitude of different DEMs. 

It could be shown that DEMs of identical spatial resolution have significant differences in their 

accuracies depending on relief and land cover. Relief dependent accuracy values were calculated for 

each DEM, which may help users in the future to better estimate the accuracy of each tested DEM in 

a given landscape. For rising slopes, it can be summarized that the loss of accuracy is two to three 

times higher for a 90 m DEM than for DEMs of higher spatial resolution. Furthermore, these measures 

were used in this contribution to derive the uncertainties of different land cover classes for an unbiased 

relief to reduce the influence of topography on these values. Based on these results it can be stated 

that particularly forested and water areas cause uncertainties in DEMs of about 6 m on average. In 

contrast, the other land cover classes, e.g. urban areas, produced minor errors in DEMs of about 

1 – 2 m on average. 

Nevertheless, the results of this contribution reveal that there is no universal solution to the question 

of which DEM is the most accurate one. Not only the spatial resolution, but also the acquisition source 

has a valuable impact on the error behaviour of a DEM. Although the new DEMs from WorldDEM™ 

data have a high overall accuracy, they reveal weaknesses in steeper terrain. In contrast, 

photogrammetric DEMs from stereo-imagery remained with more stable accuracies in terrain of 

varying steepness levels. These DEMs were more affected by land cover and are likely to be less 

advisable in areas of dense land cover. The DEMs from SRTM data contain the oldest elevation data of 

all tested DEMs, which is perhaps problematic in areas of rapid surface changes. However, the dataset 

was improved over the years and is still a valuable alternative in certain situations, as it has been shown 

in the Rur catchment. 

Overall, the assessment of DEMs and the impact of their quality on further analyses is a complex task 

that still needs much attention in the future. It can be assumed that more and more DEM products 

with higher resolutions will be launched in the future, which will have to be evaluated and compared 

with the existing products. Furthermore, there is still a need to find more standardised evaluation 

methods that consider relief and landscape. These should provide quality measures that are 

transferable to a broader region and increase the knowledge on the presence and behaviour of 

uncertainties in DEMs. This contribution provides a first attempt to establish individual error values for 

each DEM that are independent of slope and land cover by determining the individual error caused by 

both factors. In the future, it should be the aim to determine accuracies that are transferable to every 

point on Earth. Furthermore, the knowledge about the average error behaviour of a DEM for a certain 

land cover type can help to improve it for these areas.  

In the second part of this contribution, the results prove that the spatial resolution and acquisition 

source of a DEM can have completely different effects on the results of certain applications. Most 

applications generally benefit from more accurate digital elevation models, but some are more 

affected by differences between the DEMs than others. In the context of this contribution, it has been 

shown in two studies that for digital soil mapping tasks the choice of DEMs was by far less critical than 

for the delineation of landforms. Furthermore, scale often influences the importance of DEM selection. 

Especially for large-scale analyses, spatial resolution often plays a greater role than for applications 

conducted in larger study areas. In summary, the selection of an appropriate DEM highly depends on 

the topic and the level of detail of the study area. Overall, a summarization of the current knowledge 
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on the consequences of DEM choice in different applications was established in the previous section 

8.2. This addresses the increasing need for knowledge about the impact that different error behavior 

of DEMs has on different applications (Ariza-Lopez et al., 2018; Polidori and El Hage, 2020). However, 

the provided list in Table 8-6 is by far not complete and still many applications exist where only a few 

or no studies are available on this topic to date. Therefore, this table can be seen as a basis, but still 

more work is necessary in the future to extend the knowledge with more experiences of these and 

other applications. 
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