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Malaria is a serious threat to global health, with over 95% of the cases reported in 2020 by the World 
Health Organization in African countries, including Sudan. Sudan is a low-income country with a 
limited healthcare system and a substantial burden of malaria. The epidemiology of malaria in Sudan 
is rapidly changing due to factors including the rapidly developing resistance to drugs and insecticides 
among the parasites and vectors, respectively; the growing population living in humanitarian settings 
due to political instability; and the recent emergence of Anopheles stephensi in the country. These 
factors contribute to changes in the distribution of the parasites species as well as malaria vectors 
in Sudan, and the shifting patterns of malaria epidemiology underscore the need for investment in 
improved situational awareness, early preparedness, and a national prevention and control strategy 
that is updated, evidence based, and proactive. A key component of this strategy is accurate, high-
resolution endemicity maps of species-specific malaria. Here, we present a spatiotemporal Bayesian 
model, developed in collaboration with the Sudanese Ministry of Health, that predicts a fine-scale 
(1 km × 1 km) clinical incidence and seasonality profiles for Plasmodium falciparum and Plasmodium 
vivax across the country. We use monthly malaria case counts for both species collected via routine 
surveillance between January 2017 and December 2019, as well as a suite of high-resolution 
environmental covariates to inform our predictions. These epidemiological maps provide a useful 
resource for strategic planning and cost-effective implementation of malaria interventions, thus 
informing policymakers in Sudan to achieve success in malaria control and elimination.

Mosquito-borne diseases yield a huge burden of disease around the world and lead to about 700 million in cases 
and 1 million in deaths from mosquito-borne diseases each  year1–3. Malaria is a mosquito-borne protozoan 
disease caused by one of the five species of Plasmodium parasites, namely Plasmodium falciparum, P. ovale, P. 
malariae, P. vivax and P. knowlesi4. Malaria is currently endemic in tropical and subtropical areas in Africa, Asia 
as well as South America. According to the World Health Organisation (WHO) estimates, in 2020 there were 
241 million in malaria cases in the 85 malaria-endemic countries, leading to 627, 000 deaths. Of these cases, 
96% occurred in  Africa4. Estimated malaria-related morbidity and mortality have increased by 6% and 12% , 
respectively, from 2019 to 2020, partly due to disruptions to malaria prevention and treatment services caused 
by the COVID-19  pandemic4–6.

From 2000 to 2020, malaria incidence in the WHO Eastern Mediterranean Region (EMRO) decreased from 
21 to 11 cases (per 1000 populations at risk). This decline, coupled with population growth, led to a drop in cases 
from 7 million to 5.7 million  cases4. The majority of this decline was driven by intervention efforts including 
increased availability of artemisinin-based combination therapy (ACT), indoor residual spraying (IRS), and 
insecticide-treated bed nets (ITNs)7. The Republic of Sudan has the highest malaria incidence in the EMRO 
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Region, contributing 56% of estimated  cases4. Despite the declining malaria incidence rates within the Region, 
cases in Sudan nearly doubled between 2015 and  20194,6,8. This alarming increase is likely the result of many 
intertwined factors. In the past 3 years (2018–2020) Sudan had experienced unusually heavy rainy seasons that 
caused flash  floods9. In 2018, these floods caused difficult operational environments leading to humanitarian 
emergencies as well as a huge population displacements, with over 200, 000 people in 15 states affected/displaced. 
The overall economic difficulties that the country is facing, as well as ongoing political instability, conflicts, and 
the growing size of the population living in humanitarian settings in the country, contribute to the complex 
epidemiological situation in Sudan. These factors are potentially as important to malaria transmission as climate 
change and environmental drivers such as temperature and  precipitation9,10.

In Sudan, the transmission of malaria is believed to have been sustained almost entirely by Anopheles arabien-
sis along the Nile Valley north of Khartoum to the southern Egyptian  border11,12. Other malaria vectors in Sudan 
include An. gambiae s.s., An. pharoensis and An. funestus but these are rare and limited only to the eastern and 
southern part of the  country13,14. In the year 2019, the presence of the invasive Asian malaria vector An. stephens 
was reported in Sudan for the first time, which increased malaria risk in urban  areas15–18. This vector is rapidly 
spreading and expanding it is geographical distribution in the Horn of  Africa19,20. Unlike native malaria vectors 
in Africa, An. stephensi breeds mainly in water containers and quickly adapt to harsh local  environments21. It 
can tolerate the dry season’s high temperatures, when malaria transmission is at its lowest levels, thus increas-
ing potential transmission during the dry seasons. Furthermore, resistance to the four classes of IRS and ITNs 
recommended by the WHO has been reported in several populations of An. stephensi’s, increasing the challenge 
for the vector  control6,18,22.

The landscape in Sudan extends over five ecological zones, including the Sahara in the North, coastal and 
sub-coastal areas in the east, poor Savannah in the central and western regions, the rich Savannah and mountain 
vegetation regions in the South. As a result, there is a noticeable gradient in the endemicity of malaria across 
the  country23. Malaria is considered hypoendemic in the desert fringe in the Northern, Red Sea (excluding Port 
Sudan), River Nile and North Darfour (excluding Elfashir) states. The Eastern, Southern and Western parts of 
Sudan fluctuate between mesoendemic and hyperendemic depending on seasonal rainfall and the associated 
mosquitoes’ abundance. These naturally occurring environmental conditions influence malaria epidemiology 
along with areas impacted by large-scale irrigation projects, conflicts, and humanitarian crises. Irrigated areas 
constitute around 1.5% of the total farmland, in Al-Gezira, Elzidab, Asalia, Kinana, New Halafa, West Sinnar 
and Elrahad, thereby increasing suitable mosquito breeding sites and stable transmission of malaria throughout 
the year. The emergency and conflict regions are mainly due to internally displaced populations (IDP) from 
conflicts in Darfour, Kordofan and Abyei, as well as from neighbouring countries. In 2018, the number of vulner-
able refugees and asylum seekers reached 1.2 million, whereas the total number of IDPs mounted to 3 million.

The two main dominant malaria species in Sudan are Plasmodium falciparum ( ∼ 87.6% ), and Plasmodium 
vivax ( ∼ 8.1% ), with Plasmodium ovale and coinfections of both Plasmodium falciparum and Plasmodium vivax 
representing the remaining infections in the country (see table 1, Sudan MIS 2016). Generally, the Plasmodium 
vivax prevalence varies between states and is higher in IDP camps compared to rural and urban areas. It is also 
higher in children, males, pregnant women and lower wealth quintiles compared to adults, females and non-
pregnant women (Sudan MIS 2016). Plasmodium vivax and mixed infections were found to be higher in urban 
( 16.9% ) than in rural areas (P-value =< 0.0001 ; Sudan MIS 2016). However, the dominant Plasmodium species 
varies among states in  Sudan24–26. In the past, Plasmodium falciparum caused more than 95% of malaria cases 
in Sudan, but the proportion of Plasmodium vivax cases has been increasing throughout the country in recent 
years. Severe Plasmodium vivax malaria is more prevalent in eastern parts of Sudan and the states bordering 
 Ethiopia25. A possible cause of the increase in Plasmodium vivax malaria was the influx of migrants from Eritrea 
and Ethiopia following the construction of roads that link and facilitate the travel between these three countries. 
However, human migrations do not explain the presence of Plasmodium vivax in other parts of Sudan, particu-
larly the western states. This suggests that Plasmodium vivax is adapting to new epidemiological contexts and 
challenging the notion of refractory Duffy-negative  populations27.

In recent years, the transmission of malaria has changed and is more heterogeneous than in the past due 
to the various malaria control strategies implemented by endemic countries in collaboration with the WHO. 
Among these strategies is the subnational level risk stratification in accordance with past and present malaria risk. 
Stratifying malaria risk within a country provides a mechanism for identifying geographically-specific malaria 
intervention strategies. To bring forward a complete stratification plan, local malaria data and high-resolution 
burden maps are essential, especially for optimising the mixture of interventions to maximize the impact and 
cost-efficacy in each stratum. Such strategies are crucial for combating malaria in countries such as Sudan that 
have very limited resources and weak health systems. In this article, we present the results of a spatiotemporal 
Bayesian analysis designed to reveal the distinct spatiotemporal patterns of Plasmodium falciparum and Plasmo-
dium vivax malaria endemicity in Sudan, along with the seasonal profiles of these two diseases (see Fig. 1). This 
Bayesian framework takes fine-scale resolution environmental covariates and monthly clinical incidence reports 
from healthcare facilities as inputs. The clinical incidence reports were obtained from the National Malaria Con-
trol Program for 3 years (2017–2019). The resulting maps of malaria incidence will provide a valuable resource 
for the Ministry of Health in Sudan to plan public health interventions and structure cost-effective malaria 
control strategies. We provide a detailed description of our modelling framework and validation approach in 
the Materials and methods section of the paper.
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Results
Plasmodium falciparum fine scale endemicity surface. The fine-scale map ( 1× 1km) of Plasmodium 
falciparum malaria incidence in Sudan, which was inferred based on our spatiotemporal Bayesian model and fit 
to the yearly routine surveillance data between 2017 and 2019, is shown in Fig. 2. This map reveals the spatial 
heterogeneity of Plasmodium falciparum malaria incidence in Sudan. The Plasmodium falciparum transmission 
gradient in Sudan aligns with the ecological regions of the  country10,23. Plasmodium falciparum incidence in 
the northern part of Sudan is considered hypoendemic, as this region has high levels of aridity except for the 
parts close to the river Nile. River adjacent areas have high levels of malaria transmission due to the proximity 

Figure 1.  An overview of the input data, Bayesian framework structure and model outputs. This figure was 
created in R (https:// www.r- proje ct. org/) using the ggplot package.

Table 1.  The percentage of malaria parasite prevalence in Sudan according to residential status. These data 
were published in the Sudan MIS 2016 report.

Residence Plasmodium falciparum% Plasmodium vivax% Co-infections and others%

Urban 80.4 16.9 2.6

Rural 88.2 6.7 5.2

IDPs camps 94.8 3.1 2.1

https://www.r-project.org/
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to the water source and the associated mosquito breeding sites. There are several regions in the country with a 
higher Plasmodium falciparum malaria burden overall, including the central region (Khartoum area), the west-
ern and south-western region (Darfour and south Kordofan), and the eastern regions (Sennar, White Nile, and 
Al-Gezira). In South Kordofan region, malaria cases in 2019 equalled 5.5% of the state’s  population10. In the 
Darfour area, West Darfour has the highest Plasmodium falciparum malaria burden, this sub-region has been at 
the centre of the ongoing Darfour conflict and thousands of residents have been regularly displaced from their 
homes.

Figure 3 shows the posterior probability from our spatiotemporal Bayesian model fit that the incidence of 
Plasmodium falciparum malaria in Sudan exceeds 1 case per 1000 person-Year-Observed (upper panel) and does 
not exceed 1 case per 10, 000 (lower panel). These maps provide a resource to identify high transmission areas, 
with associated uncertainty, and are amenable for use in risk stratification and malaria intervention planning. 
Moreover, Fig. 4 illustrates a fine-scale map ( 1× 1km) of Plasmodium falciparum incidence of the based on our 
spatiotemporal Bayesian model fit. Maps were made for each calendar month in Sudan based on the monthly 
routine surveillance data between 2017 and 2019. The surveillance data and modelled results support our under-
standing that the peak season of malaria transmission occurs between October and December, following the 
rainy season that typically occurs from June to early November.

The spatiotemporal Bayesian model used to produce the pixel-level endemicity maps includes a suite of fine-
scale resolution environmental covariates as linear predictors that inform the estimation of the incidence rates. 
Each of these covariates has a slope that varies spatially to correspond to the best-fitting model. Figure 5presents 
the most impactful covariates for predicting pixel-level incidence rates. The impacts were estimated by multiply-
ing the scaled pixel value of each covariate by its corresponding slope from the best fitting model. The largest 
leading positive covariates are illustrated in Fig. 5. In our model, the covariates most strongly correlated with 
Plasmodium falciparum incidence in Sudan were precipitation, aridity, tasselled cap brightness, and potential 
evapotranspiration.

Figure 2.  A fine-scale map ( 1× 1km) of the estimated annual incidence of clinical Plasmodium falciparum 
malaria per 1000 in Sudan for years 2017–2019. Hollow circles represent reported cases per year within each 
locality. Colour shading represents predicted values derived from a Bayesian geostatistical model.
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Plasmodium vivax fine scale endemicity surface. Figure 6 illustrates a fine-scale map ( 1× 1km) of the Plasmo-
dium vivax malaria infections in Sudan from our spatiotemporal Bayesian model, which we fit to the annual 
routine surveillance data from 2017 to 2019. Our model suggests that Plasmodium vivax infection is a newly 
unfolding public health issue in the country as it accounts for approximately 10% of malaria cases in Sudan, This 
percentage is higher in the eastern and the central states relative to the rest of Sudan but, contrary to popular 
beliefs, this study demonstrates that Plasmodium vivax is present throughout  Sudan24,25,28–30. It is also notewor-
thy that the Plasmodium vivax incidence rate in the Darfour region is comparable to the eastern and southeast-
ern states bordering Ethiopia and Eritrea.

Figure 7 presents a fine-scale map ( 1× 1km) of Plasmodium vivax incidence per calendar month in Sudan 
inferred based on our spatiotemporal Bayesian model fit to the monthly routine surveillance data between 2017 
and 2019. The peak season of Plasmodium vivax malaria transmission occurs between March-and-May (see also 
Fig. 9) after the end of the Plasmodium falciparum peak season (July–November). Noteably, the transmission 
of Plasmodium vivax and Plasmodium falciparum in Sudan occur even during the dry seasons (March–June). 
These infections could be linked to the spread of a non-native malaria vector in Sudan, Anopheles stephensi22, 
which is known to thrive in urban and peri-urban settings and often breeds in man-made water  containers31.

Similar to the Plasmodium falciparum endemicity analysis, the spatiotemporal Bayesian model used to pro-
duce the pixel-level Plasmodium vivax endemicity map included a suite of fine-scale resolution environmental 
covariates as linear predictors of the incidence rates. Fig. 8 presents the most influential covariates in the Plas-
modium vivax incidence model, covariates that have positive coefficients in the fitted model are illustrated in 
this figure. The most important covariates within the model were precipitation, tasselled cap brightness, and 
Plasmodium vivax temperature suitability index.

Discussion
Malaria endemicity in Sudan exhibits a seasonal, inter-annual, and spatial heterogeneity, resulting from the inter-
play between climate variability (rainfall, temperature, and humidity) and anthropogenic context (population 
density, movement patterns, and human settlements). The main peak of malaria transmission for Plasmodium 
falciparum occurs shortly after the rainy season (July and early November) and a second, less intense peak of 
transmission occur at the beginning of winter (December to early February). In contrast, the main Plasmodium 
vivax transmission peak takes place between March and May, after the winter peak of Plasmodium falciparum. 
A second intense peak of Plasmodium vivax transmission occurs during the rainy season but lasts shorter than 
corresponding peak in Plasmodium falciparum (see Fig. 9).

The Ministry of Health in Sudan has identified six malaria epidemiological strata in the country. Those are 
seasonal, riverine, irrigated schemes, desert-fringe, urban malaria, and emergency and conflict zones  malaria32. 
Our seasonality maps augment this classification of strata by adding a temporal dimension to this stratification. 
In Fig. 4, the transmission of Plasmodium falciparum remains high in Al-Gezira and Sennar states throughout the 
year. These states are both agricultural regions in Sudan with widespread irrigation infrastructure that provides 
suitable Anopheles breeding sites . Currently, only single rounds of IRS are implemented in Al-Gezira and Sennar 
annually for malaria control. Our analysis suggest that an alternate malaria control strategy may be beneficial in 
these states due malaria transmission throughout the year. Possible strategies for these areas include increasing 
coverage of ITNs and Larval Source Management (LSM). The seasonality maps of Plasmodium vivax (Fig. 7) show 

Figure 3.  The posterior probability that the incidence cases of the P. falciparum malaria in Sudan exceeds 1 
case per 1000 Person-Year-Observed (left panel) and does not exceed 1 case per 10,000 Person-Year-Observed 
(right panel) in each pixel based on our spatiotemporal Bayesian model fit. These maps were created in ArcGIS 
(https:// www. arcgis. com) using the ArcMap package.

https://www.arcgis.com
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that Khartoum state (i.e., urban area and the capital of Sudan) has the most stable and highest Plasmodium vivax 
malaria transmission in Sudan regardless of month. Other states with continuous transmission of Plasmodium 

Figure 4.  A fine-scale map ( 1× 1km) of the incidence cases of the P. falciparum malaria per 1000 in each 
calendar month in Sudan inferred based on our spatiotemporal Bayesian model fit to the monthly routine 
surveillance data between 2017 and 2019. These maps were created in ArcGIS (https:// www. arcgis. com) using 
the ArcMap package.

https://www.arcgis.com
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Figure 5.  The covariates with the greatest positive influence in predicting the incidence rate, in each pixel, of 
Plasmodium falciparum malaria in Sudan. These covariates are associated with higher malaria incidence rate in 
the country.

Figure 6.  A fine-scale map ( 1× 1km) of the incidence cases of the P. vivax malaria per 1000 in Sudan inferred 
based on our spatiotemporal Bayesian model fit to the routine surveillance data between 2017 and 2019. Hollow 
circles represent reported cases per year within each locality.
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vivax malaria are central Darfour and Al-Gezira states. Our Plasmodium vivax seasonality maps reveal new 
malaria epidemiological strata, which differ from to the Ministry of Health classifications. Our analysis shows that 
states like the Northern state (desert ecology) and the Red Sea had low transmission of Plasmodium falciparum 
and vivax. These findings support the most recent National Malaria Strategic Plan (NSP) for 2021–2025, which 
identifies these states as potential targets for elimination.

Sudan has unreliable and erratic rainfall, with great differences between the northern and southern parts for 
the country. In the northern regions, little to no precipitation falls annually ( < 50 mm per year), in the central 

Figure 7.  A fine-scale map ( 1× 1km) of the incidence cases of the Plasmodium vivax malaria per 1000 in each 
calendar month in Sudan based on our spatiotemporal Bayesian model fit to the monthly routine surveillance 
data between 2017 and 2019. These maps were created in ArcGIS (https:// www. arcgis. com) using the ArcMap 
package.

https://www.arcgis.com
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regions annual precipitation ranges from 200 to 700 mm per year, and in some southern regions more than 1500 
mm of precipitation fall each year. Sudan’s precipitation is concentrated in the rainy season that occurs between 
July and September. Unusually intense rainfall in 2018 and 2019 led to widespread flooding, destruction of 
housing, and an increase in malaria  infections9. Such events are likely to increase in frequency as a consequence 
of climate change (see Fig. 9), which will have important implications for malaria in Sudan. The floods in 2018 
and 2019 caused substantial increased the population’s vulnerability to infectious diseases while also trapping 
water destroyed building thus providing additional breeding sites for malaria vectors. The destruction associated 
with the flooding also impacted health facilities and healthcare providers themselves, thereby reducing access to 
healthcare services among the severely damaged communities.

The recent emergence and the yet-unknown distribution of Anopheles stephensi in  Sudan18, may also have 
considerably contributed in the recent epidemics of malaria that have occurred in different regions of  Sudan15–17. 
Our results show an increase of Plasmoidum vivax malaria cases in Urban areas between 2017 and 2019, particu-
larly in the Red Sea, Kassala, Gedarif and Khartoum states. Anopheles stephensi mosquitoes have been detected in 
each of these  states17, suggesting a possible link with Plasmodium vivax malaria cases. A similar scenario occurred 
in Djibouti in 2012 when serious epidemics of malaria took place in urban settings throughout the country and 
subsequent entomological investigations confirmed the first appearance Anopheles stephensi in  Africa33,34. Other 
studies have warned about the serious threat of malaria epidemics brought by the Anopheles stephensi in the 
urban settings of  Africa33,35, as this invasive vector was experimentally proven to be competent in transmitting 
both Plasmodium falciparum and Plasmodium vivax20. Recent studies have indicated that this vector’s distribution 
in Africa is expanding rapidly, but remains undetected in some areas due to the limited surveillance capacity, 
inability to apply molecular techniques for species identification, and the poor implementation of International 
Health Regulations (IHRs 2005)19,21,36. Lastly, evidence-based habitat suitability models suggest that Sudan is 
entirely within the zone that is more likely to be invaded by An. stephensi37.

The socioeconomic and environmental changes driven by armed conflicts increase the vulnerability of the 
displaced communities including migrants, refugees, and internally displaced  persons38. For instance, dengue 
fever was found only in Eastern Sudan since the 1900s, but this disease has emerged in the Western region of 
the country, namely Darfour in 2014, when this region experienced repeated  conflicts39. Similarly, other vector-
borne viral diseases including the West Nile virus and Crimean-Congo hemorrhagic fever (CCHF) emerged 
in Darfour in 2015–201640. Extreme weather events such as the flooding in Sudan in 2018 and 2019 also have 
disproportionate epidemiological impacts in areas of humanitarian crisis due to very limited services for health-
care and environmental vector control.

In Sudan, the control of malaria transmission is multifaceted problem and is not only limited to the socioeco-
nomic and environmental factors. Recent studies have found evidence suggesting the inaccuracy of rapid diag-
nostic tests (RDTs) results due to histidine-rich protein 2/3 (pfhrp2/3) gene deletion in Plasmodium falciparum 
isolates in  Sudan41–43. The deletions of the pfhrp2/3 genes in Plasmodium falciparum-infected populations leads 
to false-negative diagnoses of malaria based on  RDT44, delaying the immediate administration of antimalarial 
drugs, and consequently the spreading of such genotypes from untreated patients to the entire population. As 

Figure 8.  The most influential covariates for predicting the incidence rate ofPlasmodium vivax in Sudan. These 
covariates are associated with leading the increase in the malaria incidence rate.
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such, populations of Plasmodium falciparum containing these variants of the pfhrp2/3 pose a significant threat to 
ongoing efforts to control and eliminate malaria in  Sudan45. There has been no country-wide survey with which 
the extent of this gene deletion in the Sudan, which poses a further challenge to the Malaria Control Program 
in the country. Another challenge in characterising malaria in Sudan is the lack of a WHO non-hrp2 test that 
distinguishes between Plasmodium falciparum and Plasmodium vivax6,8.

There are reasons this research study should be viewed in the context of some limitations. First, the health 
facility dataset is not designed for the specific purpose of high-resolution spatial predictive analysis, and a high 
degree of prediction uncertainty exists for areas in the country where data is sparse. The inequality in the distri-
bution of health facilities across the country also leads to the under-reporting of malaria, especially in remote 
areas which in terms affects the model results. Another source of uncertainty in this research arises from our 
spatiotemporal model approach, detailed below. This model links ecological-level effects (i.e., measured at the 
level of the aggregation unit, the health facility in this case, where incidence is estimated) to individual-pixel level 
effects. The difference in spatial resolution between individual-pixel level effects and ecological-level effects at 
the health facility introduces some uncertainty in the predicted incidence at pixel levels that increases in loca-
tions with fewer health facilities. Even though this research has limitations, the endemicity maps presented in 
this manuscript will be of great use to the Ministry of Health in strategic planning.

In summary, our results show a high incidence of malaria in the Republic of Sudan in the years between 2017 
and 2019, with recent increases coincident with flooding events in 2018 and 2019. Spatial and species-specific 
heterogeneity at sub-national and local levels largely reflects underlying topological, climatic, and socioeconomic 
factors, including population migration and displacement. We recommend strategic and targeted interventions 
in states with low endemicity like the Northern and the Red Sea states where the elimination of malaria is plau-
sible in the short term. Elsewhere, our endemicity maps provide a potential resource for guiding intervention 
strategies and identifying deficiencies in malaria surveillance. In regions with hyperendemicity, such as the 
central region (Khartoum area), the western and south-western regions (Darfour and south Kordofan), and the 

Figure 9.  The seasonal variation of clinical species-specific malaria incidence in Sudan, Plasmodium 
falciparum (upper panel) and Plasmodium vivax (middle panel). The shaded regions represent the main peak of 
transmission of each species. The lower panel shows annual mean rainfall in Sudan between the year 2009 and 
2019 and the shaded area highlights the modelled years. This figure was created in R (https:// www.r- proje ct. 
org/) using the ggplot package.

https://www.r-project.org/
https://www.r-project.org/
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eastern regions (Sennar, White Nile and Al-Gezira), we strongly recommend the scale-up of all the available 
interventions,particularly during and after the raining season.

Methods
The main dataset used in this work was provided by the National Malaria Control Program (NMCP) of the 
Republic of Sudan. The data consist of monthly malaria confirmed cases in each health facility (n=461) in the 
country, as confirmed by either RDT or microscopy, and containing information on the species type, Plasmodium 
falciparum, Plasmodium vivax, or others including mixed infection of both Plasmodium falciparum & Plasmo-
dium vivax or Plasmodium ovale). The reporting period spans 3 years between January 2017 and December 2019, 
with a 70% overall completeness. In addition to the health facility dataset, we use a suite of ( 1× 1 km resolution) 
environmental covariates as independent variables in our statistical model. These covariates include the acces-
sibility to  cities46,  precipitation47, Potential  evapotranspiration48, aridity  index48, the shuttle radar topography 
mission elevation  measurement49, distance to permanent and semi-permanent sources of  water50, tasselled-cap 
 brightness51, land surface temperature (night-time)52,  slope49, and classified land cover (urban/rural areas)53. 
Each of these covariates has been used extensively in previous spatial malaria models, and has demonstrated 
statistical association with varying malaria  risk54–56.

The main goal of this paper is to generate high-resolution, monthly estimates of the malaria incidence rate for 
Plasmodium falciparum and Plasmodium vivax malaria in Sudan between 2017 to 2019. To calculate the malaria 
incidence rates at each health facility, we first estimate the population of patients likely to seek treatment in each 
facility (i.e., the catchment population). This population is derived based on the time it takes to travel to each 
health facility, using the friction  surfaces46. In this process, we first estimate the travel time to each of the health 
facilities for each pixel. We then model the probability of patients in each pixel seeking treatment in each health 
facility as proportional to the inverse square of the time it takes to reach that health  facility55,56. Our approach 
to the estimation of the catchment populations is similar to the gravity model in which both the availability and 
accessibility to health facilities across defined spatial units are  considered57,58. The resulting catchment population 
for each health facility ( Hk ) is the summation the treatment-seeking probability from each pixel (l) in our grid 
to that health facility Hk multiplied by the treatment seeking-adjusted population of that pixel ( Pl).

The fraction of the population that will seek treatment in any health facility ( Pl ) is estimated using a logistic func-
tion of travel time to any health facility following established approaches  in55,59. We use the WorldPop population 
surfaces to estimate the catchment population for each year between 2017 and  201960.

After calculating the catchment population, we estimate the incidence rate at each health facility in the coun-
try to use as our response variable. We associate the facility-level incidence rate with the environmental covariates 
described above within a Bayesian spatiotemporal model to produce both annual and monthly incidence rate 
surfaces at a 1km× 1 km spatial resolution. We model malaria incidence cases as a Poisson process, i.e., malaria 
incidence cases at a location i and time t is given by:

where ηi t is the observed malaria incidence, ni is the catchment population and τi t is the malaria incidence rate 
at location i and time t. The logarithmic malaria incidence rate is modeled with the following linear regression 
predictors:

where β is a matrix of covariate coefficients, α is the intercept, X is a matrix of z covariates, and f(., t) is a realisa-
tion (for each year, or each month in case of the seasonal incidence rate) of a Gaussian process over space with a 
zero-mean Gaussian Markov random field (GMRF) and a Matérn covariance function. The covariance function is 
parameterised by, σ the marginal standard deviation as well as ρ (the distance beyond which correlation becomes 
negligible). We exploit the Gaussian Markov Random Field  approximation61 to fit our incidence model using a 
combination of the Template Model Builder  package62 as well as INLA  package63 in R  language64. We produce 
associated uncertainty estimates from 2000 samples drawn from a Laplace approximation of the posterior and 
quantify those using the standard deviation and the interquartile range of the posterior distribution, as well as the 
exceeding and non-exceeding probabilities. We derive the prediction of the incidence surfaces for Plasmodium 
falciparum and Plasmodium vivax in Sudan separately, a model that jointly considers the malaria endemicity of 
both species in Sudan is under preparation and will appear in a separate report. We have compiled all the model 
validation results and goodness of fits in tables as well as diagnostic figures that will help the reader assess the 
quality of this converged model in the Supplementary material.

Data availibility
The routine surveillance data are the property of the Sudanese National Malaria Control Program and the 
Sudanese Ministry of Health. All covariates used in this paper are available on the Malaria Atlas Project website 
https:// malar iaatl as. org/54.
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l=1 Pl × Prob (Pixell −→ Hk)
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