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A B S T R A C T

Malaria persists at low levels on Zanzibar despite the use of vector control and case management. We use
a metapopulation model to investigate the role of human mobility in malaria persistence on Zanzibar, and
the impact of reactive case detection. The model was parameterized using survey data on malaria prevalence,
reactive case detection, and travel history. We find that in the absence of imported cases from mainland
Tanzania, malaria would likely cease to persist on Zanzibar. We also investigate potential intervention scenarios
that may lead to elimination, especially through changes to reactive case detection. While we find that some
additional cases are removed by reactive case detection, a large proportion of cases are missed due to many
infections having a low parasite density that go undetected by rapid diagnostic tests, a low rate of those
infected with malaria seeking treatment, and a low rate of follow up at the household level of malaria cases
detected at health facilities. While improvements in reactive case detection would lead to a reduction in malaria
prevalence, none of the intervention scenarios tested here were sufficient to reach elimination. Imported cases
need to be treated to have a substantial impact on prevalence.
1. Introduction

Despite a global reduction in malaria burden in 2000–2015, im-
provements in case incidence have stagnated in the United Republic
of Tanzania at around 6 million cases per year since 2010 (World
Health Organization, 2020). Zanzibar, a semi-autonomous region of
Tanzania, has seen a substantial decline in malaria prevalence since
2000 due to the use of long-lasting insecticidal nets (LLINs), indoor
residual spraying (IRS) and artemisinin-based combination therapies
(ACTs) (Björkman et al., 2019). These strategies have aided in reducing
malaria prevalence by 10- to 23-fold as measured by rapid diagnostic
tests (RDTs) and microscopy, with prevalence estimated to be below
5% (Björkman et al., 2019; Stuck et al., 2020) on both main islands of
Zanzibar: Unguja and Pemba.

Additionally, the Zanzibar Malaria Elimination Programme (ZA-
MEP) has implemented a reactive case detection (RCD) programme
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from 2012 onwards (van der Horst et al., 2020). RCD involves following
up clinical malaria cases that present at a health facility and testing
their household members for malaria using RDTs. This helps to treat
both asymptomatic cases, and symptomatic cases that may not report
to a health facility, with the aim to reduce onward transmission. RCD
has been implemented with varying levels of success in countries and
regions with low malaria prevalence such as China (Zhou et al., 2015),
Eswatini (Sturrock et al., 2013; Hsiang et al., 2020a), India (Van Eijk
et al., 2016), and Zambia (Yukich et al., 2017). ZAMEP was aiming
to achieve follow up for 100% of confirmed cases by 2018 (Zanzibar
Malaria Elimination Program, 2016), but analyses of health facility data
suggests that only 35.3% of diagnosed cases are followed up at the
household level within 3 days (van der Horst et al., 2020).

Despite these substantial efforts, elimination has not been achieved
in Zanzibar. The persistence of a low level of transmission despite high
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coverage of interventions has been attributed to geographic foci of
transmission, a reservoir of sub-patent infections that are not detected
and eliminated by routine surveillance-response activities, and repeated
importation of infections (Björkman et al., 2019). The impact of these
factors on disease transmission can be studied through mathematical
modelling. Failing to account for these factors when modelling the
disease can lead to overly optimistic estimates of the time or resources
needed to eliminate malaria from a setting (Björkman et al., 2019;
Zanzibar Malaria Control Program, 2009).

Previous studies of RCD in Zambia and Namibia have suggested that
it will only lead to malaria elimination in limited settings, particularly
in areas that have reduced transmission recently (Chitnis et al., 2019;
Reiker et al., 2019; Gerardin et al., 2017; Searle et al., 2016; Hsiang
et al., 2020b). The effectiveness of RCD can be improved by shifting
to a reactive focal mass drug administration (rfMDA) programme, so
that the probability of treating an infection is not dependent on the
diagnostic test sensitivity (Searle et al., 2016; Hsiang et al., 2020b).
Diagnostic test sensitivity has been identified as a major impediment
to RCD programmes in various settings, including Zanzibar (Stuck
et al., 2020), Zambia (Yukich et al., 2017), and Eswatini (Hsiang
et al., 2020a), due to a high prevalence of very low density infections.
Additionally, it has previously been suggested that RCD may not be
useful in areas seeing large numbers of imported cases, as RCD relies on
clusters of cases arising from local transmission (Perera et al., 2020). On
the other hand, as members of households often travel together, there
is evidence that testing among the co-travellers of imported cases has a
higher likelihood of yielding positive results (Stuck et al., 2020). Thus,
it is unclear how useful RCD may be in the face of ongoing importation.

Previous studies of malaria importation have examined the impact
of continuous importation of cases to Zanzibar from mainland Tanza-
nia, where malaria prevalence is substantially higher (Zanzibar Malaria
Control Program, 2009; Le Menach et al., 2011; Morgan et al., 2020;
Smith et al., 2013). Parasite importation has also been shown to be
an important factor for the persistence of malaria in settings outside
of Tanzania (Churcher et al., 2014; Lynch et al., 2015). Churcher
et al. (2014) use branching process theory to calculate the reproduction
number based on the proportion of detected cases that are classed as
imported cases. If greater than 50% of detected cases are imported
cases, the area is said to have a reproduction number below 1 and
thus have halted endemic transmission (Churcher et al., 2014), that
is, indigenous incidence of malaria infection would not persist if all
importation were halted (Cohen et al., 2010). Estimates of the propor-
tion of clinical malaria patients in Zanzibar with a recent history of
travel to mainland Tanzania have ranged from 9% to 49% (Björkman
et al., 2019; Stuck et al., 2020). Whole genome sequencing of isolates
from Zanzibar and mainland Tanzania has also highlighted the close
relatedness of Plasmodium falciparum strains on Zanzibar and coastal
Tanzania, suggesting some cases on Zanzibar have a recent history of
importation (Morgan et al., 2020).

A modelling analysis of malaria importation on Zanzibar has previ-
ously been conducted using mobile phone data to track human move-
ment to and from mainland Tanzania (Le Menach et al., 2011; Tatem
et al., 2009). Using call data from the busiest period of travel to and
from Zanzibar in 2008, Le Menach et al. (2011) estimated around
1.6 (falling within a range of 0–3.7) cases were imported per 1000
people per year to Zanzibar. The controlled reproductive number, 𝑅𝑐 ,
is the expected number of secondary human infections stemming from
one untreated infection in an area with vector control measures in
place. 𝑅𝑐 was estimated to be within 0–0.56 in urban Unguja, 0.71–
0.91 in rural Unguja, and 0.92–0.98 in rural Pemba, using an adapted
Ross-Macdonald model. Another study looking at quantifying migration
across country borders in East Africa using census data suggests that the
majority of case importation in Tanzania from long-term migration is
likely to occur near country borders, away from Dar es Salaam and
Zanzibar (Pindolia et al., 2014). To the best of our knowledge, no
2

modelling study has yet been conducted on quantifying the impact of
reactive case detection on malaria transmission in Zanzibar, particu-
larly in the presence of ongoing human movement and case importation
rates that change in line with changes in prevalence in other areas.

In this paper, we use a compartmental metapopulation model to
examine the impact of RCD and rfMDA, combined with ongoing short-
term human movement, on the persistence of malaria in Zanzibar
and the potential impact of treating imported cases. Using malaria
prevalence estimates for the islands of Pemba, Unguja and mainland
Tanzania, along with data on the RCD programme, we consider the
potential effects of improving or reducing the RCD programme cur-
rently in place, including changes in follow up, improvements in the
number of cases reporting to health facilities, additional testing of
neighbours of index cases, and shifting to an rfMDA intervention. We
also consider possible synergies to be gained by combining rfMDA with
treating neighbours as well as index households. Finally, combining the
malaria prevalence estimates with travel history data, we estimate the
likely impact of treating a proportion of imported infections on malaria
prevalence on Zanzibar.

2. Methods

This analysis uses two main models: a compartmental susceptible–
infected–susceptible (SIS) population model that was adapted to de-
scribe transmission dynamics in the presence of short-term human
movement, and a stochastic implementation of this model including
an ongoing RCD programme in Zanzibar. The first model is used to
understand the role played by human movement in the persistence of
malaria on the islands, and the second model is used to understand
the impact of interventions strategies such as RCD and the treatment
of imported cases in reducing the endemic equilibrium on the islands.
Both models consisted of three patches: Pemba, Unguja, and mainland
Tanzania.

2.1. Study setting

The Zanzibar archipelago lies to the east of the mainland of the
United Republic of Tanzania. According to the 2012 census, the two
main islands, Unguja and Pemba, had populations of 896,721 and
406,848, respectively. The islands are connected to mainland Tanzania
via ferries and two airports (Fig. 1). In addition to this, there is regular
small boat traffic between mainland Tanzania and Zanzibar, often by
traditional dhows.

ZAMEP runs an RCD programme to effectively target test-and-treat
efforts towards foci of infection. When patients on either island are
diagnosed with malaria at a health facility, they should ideally be
followed up within 3 days at their household by a district malaria
surveillance officer (DMSO), and all household members should be
tested with an RDT for malaria. Those who return a positive test
result are treated with artesunate–amodiaquine and a single dose of
primaquine. The Reactive Case Detection in Zanzibar: System Effec-
tiveness and Cost (RADZEC) study included an examination of the
operational coverage of the RCD programme (van der Horst et al.,
2020). Across the 150 public health facilities and 51 private health
facilities, a mean of 32 and 12 malaria cases arrived at a health
facility per district per month in Unguja and Pemba, respectively,
corresponding to 6.4 cases per day in the whole of Unguja, and 1.6
in Pemba. Of those diagnosed at a health facility, 35.3% were followed
up at the household by a district malaria surveillance officer within 3
days, 47.9% within 6 days, 59.9% within 15 days, and 62.0% within
21 days. The mean household size for index households was found to
be 7.0 people per household on Pemba and 6.2 people per household
on Unguja, including index cases (Stuck et al., 2020).

This data, along with rolling cross-sectional survey data from the
RADZEC study, were used to parameterize the RCD parameters in the

model.



Epidemics 41 (2022) 100639A.M. Das et al.
Fig. 1. Map of Zanzibar, with the RADZEC study districts in white. Airports and ferry terminals are highlighted.
Source: Figure adapted from Stuck et al. (2020).
2.2. RADZEC cross-sectional survey data

The rolling cross-sectional survey component of the RADZEC study
was conducted between May 2017 and October 2018. It involved
following DMSOs on visits to the households of patients diagnosed with
malaria at a health facility (from now on referred to as the index case).
A cross-sectional survey was conducted at these households, which
included a questionnaire, RDT tests, and collecting blood samples for
quantitative polymerase chain reaction (qPCR) tests. The survey in-
cluded three types of households: index case households, neighbouring
households, and a transect of households stemming from the index
household. Neighbouring households consisted of the four households
nearest to the index case household, and transect households consisted
of five households along a 200 m transect starting from the index
household. The full survey details are described elsewhere (Stuck et al.,
2020).

The survey collected data on a range of factors including demo-
graphics, a recent history of illness, and detailed travel history from
the last 60 days. The median trip length was found to be six nights.

Within the survey population, 12,487 residents were tested with
RDTs for malaria and 6281 with qPCR tests. The sensitivity of RDTs
to detect qPCR-detectable infections was found to be 34% (Stuck et al.,
2020).

The malaria prevalence on each island was estimated by first taking
the number of PCR-positive test results outside of the index house-
hold above a cut-off of 0.13 parasites/μl, below which the chance
of false positive results increases. The number of people with PCR-
positive results in neighbouring and transect households was divided
by the total number of people tested in neighbouring and transect
households on each island to give the estimated prevalence on each
island. Members of the index household were not included as this would
have led to an artificial inflation of the malaria prevalence as index
households contained a known malaria case (the index case) and had
a higher likelihood of containing additional cases (Stuck et al., 2020).
3

As this data was collected around the households of index cases, there
was a possibility that the prevalence in this sample was still higher
than in a random sample. At the same time, as this method directly
excludes index cases and index households, where malaria prevalence
is typically higher, there was a chance that the prevalence found
in neighbouring and transect households would be an underestimate.
In order to compare to a random sample, the qPCR prevalence in
neighbouring and transect households in Micheweni district (north
Pemba) in the RADZEC dataset was compared to the mean prevalence
found by qPCR in a randomly sampled cross-sectional survey conducted
in Micheweni in 2015 (Björkman et al., 2019). The prevalence in
neighbouring and transect households in the RADZEC study was 1.8%
(95% CI: 0.9–2.7), while the prevalence in the cross-sectional survey
conducted in a random sample of households was 1.7% (95% CI: 1.1–
2.4). This suggests that the positivity rate in neighbouring and transect
households is a good approximation of the population prevalence.

The mean number of neighbours tested per index case was 20.4 in
Pemba and 18.2 in Unguja. The ratio of cases amongst index household
members compared to neighbouring and transect households was 3.2
in Pemba and 10.0 in Unguja. The ratio of cases in neighbouring
households compared to neighbouring and transect households was 0.8
in Pemba and 1.3 in Unguja.

Travel data suggested that travellers spend similar numbers of
nights in multiple parts of mainland Tanzania, so the malaria preva-
lence for 2–10 year old children across all of Tanzania, as estimated
by the Malaria Atlas Project, was taken as the baseline for mainland
Tanzania (Hay and Snow, 2006). This is likely an overestimate of the
population prevalence, as the prevalence in 2–10 year old children is
typically higher than in the general population (Brooker et al., 2009).

Time spent away from home, captured in the travel matrix 𝜃𝑖𝑗 (see
Table 1), was calculated by noting which proportion of nights in the
last 60 nights were spent away from home amongst survey respondents
from each patch and where they were spent, where 𝑖 and 𝑗 represent
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Table 1
Descriptions of state variables and parameters for the SIS model with human movement.

Parameter or state variable Description and units

𝐼𝑘 Proportion of people who are infectious in patch 𝑘. Dimensionless.
𝐼∗
𝑘 Proportion of people who are infectious in patch 𝑘 at equilibrium, before changes to ongoing interventions are applied. Dimensionless.
𝑁𝑘 Total number of people in patch 𝑘. Humans.
𝛽𝑘 The effective malaria transmission rate from humans to other humans in patch 𝑘. Day−1.
𝜃𝑖𝑗 The proportion of time the average resident of patch 𝑗 spends in patch 𝑖. Dimensionless.
𝜇 Natural infection clearance rate. Day−1.
S
s
t
i

𝐴

p

Fig. 2. A schematic diagram of the model with two disease states in each patch.
Solid arrows represent transitions between disease states, and dashed arrows represent
transmission.

Pemba, Unguja and mainland Tanzania,

𝜃𝑖𝑗 =
Mean number of nights a resident of 𝑗 spent in 𝑖 over the last 60 nights

60
.

(1)

where ∑3
𝑗=1 𝜃𝑖𝑗 = 1.

As we did not have data on travel to Zanzibar by residents of
ainland Tanzania, we have assumed that the same number of person-
ights are spent in total by residents of mainland Tanzania on Zanzibar
s the other way around. Thus,

Proportion of time spent on mainland × Population of each island
= Proportion of time spent on each island × Population of mainland.

Treatment was not included in the models outside of treatment due
o RCD (which also includes treatment of the index case). Instead, the
aily natural clearance rate was taken to be (1∕200) day−1 (Mandal
t al., 2011; Jeffery and Eyles, 1955).

.3. Model description

Human movement was modelled using a deterministic SIS metapop-
lation model including three patches for Pemba, Unguja and mainland
anzania. This was then extended to include stochasticity and the
ffects of RCD on Pemba and Unguja.

A model schematic can be found in Fig. 2.
4

2.3.1. SIS model including human movement
The total number of people from patch 𝑗 spending time in patch 𝑖,

weighted by the amount of time they spend there, is given by 𝑁𝑗𝜃𝑖𝑗 .
imilarly, 𝑁𝑗𝜃𝑖𝑗𝐼𝑗 gives the number of infected people from patch 𝑗
pending time in patch 𝑖, weighted by the amount of time they spend
here. When combined, the effective proportion of the population that
s infectious in patch 𝑖 is given by

𝑖 =

∑3
𝑗=1 𝑁𝑗𝜃𝑖𝑗𝐼𝑗
∑3

𝑗=1 𝑁𝑗𝜃𝑖𝑗
. (2)

A description of the parameters and state variables can be found in
Table 1.

𝛽𝑖𝐴𝑖𝜃𝑖𝑘 is the contact rate between a susceptible individual from
atch 𝑘 and an infected individual in patch 𝑖. Summing over 𝑖 gives

the total rate at which a susceptible individual in patch 𝑘 comes into
contact with an infected person either in their own patch or another
patch, and becomes infected,

𝐵𝑘 =
3
∑

𝑖=1

⎛

⎜

⎜

⎝

𝛽𝑖
⎛

⎜

⎜

⎝

∑3
𝑗=1 𝑁𝑗𝜃𝑖𝑗𝐼𝑗
∑3

𝑗=1 𝑁𝑗𝜃𝑖𝑗

⎞

⎟

⎟

⎠

𝜃𝑖𝑘
⎞

⎟

⎟

⎠

. (3)

Eq. (3) is adapted from previous work by Ruktanonchai et al.
(2016), accounting for both the infectious people moving in and out
of patch 𝑘, as well as the time spent by residents of 𝑘 in other patches.

Combining this with the proportion of susceptible individuals in
patch 𝑘, which we represent as 𝑆𝑘 = 1 − 𝐼𝑘, and allowing infected
individuals to recover at the natural clearance rate of the disease gives
the overall equation for the rate of change of 𝐼𝑘:

d𝐼𝑘
d𝑡

=
3
∑

𝑖=1

⎛

⎜

⎜

⎝

𝛽𝑖
⎛

⎜

⎜

⎝

∑3
𝑗=1 𝑁𝑗𝜃𝑖𝑗𝐼𝑗
∑3

𝑗=1 𝑁𝑗𝜃𝑖𝑗

⎞

⎟

⎟

⎠

𝜃𝑖𝑘
⎞

⎟

⎟

⎠

(1 − 𝐼𝑘) − 𝜇𝐼𝑘. (4)

We assume that the majority of trips are short-term trips and people
retain the properties of their residential patch in terms of recovery rate
and, in Section 2.3.2, the RCD programme. Survey responses about
travels in the last 60 days support the assumption of short trips.

We calibrated the model by assuming that malaria prevalence is at
equilibrium. Under this assumption, we can calculate the transmission
rate that would lead to the observed prevalence. Thus, setting the right
hand side of Eq. (4) to 0,

𝜇𝐼∗𝑘
1 − 𝐼∗𝑘

=
3
∑

𝑖=1

(

𝛽𝑖𝐴
∗
𝑖 𝜃𝑖𝑘

)

, 𝑘 ∈ {1, 2, 3}, (5)

where 𝐴∗
𝑖 is 𝐴𝑖 at the equilibrium prevalence.

The transmission parameter, 𝛽, encompasses malaria transmission
from humans to mosquitoes and back again, along with any malaria
control strategies already in place. It can be derived as the solution to
a set of simultaneous equations:

⎛

⎜

⎜

⎜

⎝

𝛽1
𝛽2
𝛽3

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝐴∗
1𝜃11 𝐴∗

2𝜃21 𝐴∗
3𝜃31

𝐴∗
1𝜃12 𝐴∗

2𝜃22 𝐴∗
3𝜃32

𝐴∗
1𝜃13 𝐴∗

2𝜃23 𝐴∗
3𝜃33

⎞

⎟

⎟

⎟

⎠

−1
⎛

⎜

⎜

⎜

⎜

⎜

⎜

𝜇𝐼∗1
1−𝐼∗1
𝜇𝐼∗2
1−𝐼∗2
𝜇𝐼∗3

∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

. (6)
⎝

1−𝐼3 ⎠
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Table 2
Descriptions of RCD programme parameters.

Parameter Description and units

𝜑𝑘 Treatment rate due to RCD programme in patch 𝑘. Day−1.
𝜑∗
𝑘 Treatment rate due to RCD programme at equilibrium in patch 𝑘. Day−1.

𝜏𝑘 Ratio of malaria prevalence in individuals tested within the RCD programme as compared to the general population in patch 𝑘. Dimensionless.
𝜄𝑘 Number of cases followed up by a District Malaria Surveillance Officer per day in patch 𝑘. Humans per day.
𝜄∗𝑘 Number of cases followed up by a District Malaria Surveillance Officer per day at equilibrium in patch 𝑘. Humans per day.
𝜈𝑘 Number of people tested during follow up per index case in patch 𝑘. Dimensionless.
𝜌 Rapid diagnostic test sensitivity. Dimensionless.
𝜆𝑘 The daily rate at which an infected individual seeks treatment in patch 𝑘. Day−1.
𝜂 The proportion of cases arriving at the health facility that are followed up by the DMSO. Day−1.
𝜂∗ The proportion of cases arriving at the health facility that are followed up by the DMSO within 3 days. Dimensionless.
t
i
n
h
i
t
t
i
a

𝜑

We then used the deterministic model to estimate the impact of
uman movement on malaria persistence on the islands of Pemba and
nguja. The impact of no human movement was modelled by keeping

he calibrated transmission and recovery rates constant, but changing
he time spent away from the home patch to 0 in all cases (i.e. 𝜃𝑖𝑗 = 0

for all 𝑖 ≠ 𝑗 and 𝜃𝑖𝑗 = 1 for all 𝑖 = 𝑗 for 𝑖, 𝑗 ∈ 1, 2, 3). This scenario acts
as a counterfactual for deducing how human movement contributes to
the persistence of malaria despite the current use of interventions.

2.3.2. SIS model including human movement and an RCD programme
Eq. (4) is modified in line with previous work by Chitnis et al.

(2019) to include RCD. RCD is modelled by removing a number of
infected individuals proportional to the number of infected people in
that patch. The rate of change in 𝐼𝑘 is now given by

d𝐼𝑘
d𝑡

=
3
∑

𝑖=1

⎛

⎜

⎜

⎝

𝛽𝑖
⎛

⎜

⎜

⎝

∑3
𝑗=1 𝑁𝑗𝜃𝑖𝑗𝐼𝑗
∑3

𝑗=1 𝑁𝑗𝜃𝑖𝑗

⎞

⎟

⎟

⎠

𝜃𝑖𝑘
⎞

⎟

⎟

⎠

(1 − 𝐼𝑘) − (𝜇 + 𝜑𝑘)𝐼𝑘, (7)

where 𝜑𝑘 is the rate of removing people from the infected class due
to the RCD programme. This is the product of the number of cases
followed up by the RCD programme per day, the mean number of
household members in each index house, the ratio of positive tests in
an index house versus the general population, and the test positivity
rate, divided by the total population in that patch,

𝜑𝑘 =
𝜏𝑘𝜈𝑘𝜄𝑘𝜌
𝑁𝑘

. (8)

Parameter descriptions can be found in Table 2. The number of cases
followed up by the RCD programme per day depends on the number of
infected people at any given time, the rate of seeking treatment, and
the proportion of cases followed up by DMSOs,

𝜄𝑘 = 𝜆𝑘𝜂𝐼𝑘𝑁𝑘. (9)

The rate of seeking treatment is assumed to be constant and is
calculated from the observed number of cases arriving at the health
facility at equilibrium,

𝜆𝑘 =
𝜄∗𝑘

𝜂∗𝐼∗𝑘𝑁𝑘
. (10)

The baseline value for the proportion of cases followed up by a
MSO at the index case household level, 𝜂∗, was taken to be the 3 day

ollow up rate: 35.3%.
Descriptions of RCD parameters can be found in Table 2.
We compared testing only index household members in the RCD

rogramme and testing both the index household and neighbours.
hen considering just index households, the targeting ratio was calcu-

ated by taking the ratio of the positivity rate, as measured by PCR, in
ndex households compared to neighbouring and transect households.
his was then adjusted in the model to ensure that a positive case was

ncluded for the index case, as often the index case had been treated by
he time the DMSO followed up the case at the index household. The
5

argeting ratio, 𝜏(ℎ), given in Table 3 considers only the prevalence in
ndex household members outside of the index case. When considering
eighbouring households as well, the targeting ratio in neighbouring
ouseholds was calculated by taking the ratio of PCR-positive cases
n neighbouring households as compared to both neighbouring and
ransect households. We find that the likelihood of finding a case is 10
imes higher in the index household than in a neighbouring household
n Unguja, and 5 times higher in Pemba. The equation for 𝜑𝑘 was
dapted to

𝑘 =
(𝜏(ℎ)𝑘 𝜈(ℎ)𝑘 + 𝜏(𝑛)𝑘 𝜈(𝑛)𝑘 )𝜄𝑘𝜌

𝑁𝑘
, (11)

where the superscripts ℎ and 𝑛 refer to the index household and
neighbouring households, respectively.

The RCD programme has been running on Zanzibar since 2012.
We assume that the malaria prevalence has reached a steady state
since the introduction of RCD. Case incidence data from 2012 to 2015
shows seasonal trends but relatively stable incidence over this time
period (Ashton et al., 2019). Setting the right hand side of Eq. (7) to
0 and solving for 𝛽 gives the transmission rates in the presence of an
ongoing RCD programme,

⎛
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. (12)

New interventions or potential changes to interventions are only
simulated post-calibration. The transmission parameter on the three
islands is unaffected by the new intervention, since all interventions
considered here only target the infectious reservoir in humans and not
the vectorial capacity.

2.3.3. Treatment of imported cases
Currently prophylaxis is not given to travellers when travelling to

mainland Tanzania or vice versa. Similarly, there is no screen-and-treat
programme for entrants to Zanzibar. We expanded our model to include
treatment of imported cases as a potential intervention, in order to
evaluate what proportion of cases must be treated to achieve different
reductions in prevalence on Pemba and Unguja. Eq. (7) was modified to
have a 𝜃outbound, which included treatment for mainland Tanzanians on
their outbound journey to Zanzibar, and 𝜃return for Zanzibari residents
that receive treatment on their return journey to Zanzibar. Thus Eq. (7)
was modified to

d𝐼𝑘
d𝑡

=
3
∑

⎛

⎜

⎜

𝛽𝑖
⎛

⎜

⎜

∑3
𝑗=1 𝑁𝑗𝜃outbound

𝑖𝑗 𝐼𝑗
∑3 𝑁 𝜃

⎞

⎟

⎟

𝜃return
𝑖𝑘

⎞

⎟

⎟

(1 − 𝐼𝑘) − (𝜇 + 𝜑𝑘)𝐼𝑘, (13)
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Table 3
Variable and parameter values and sources. Where a range of parameter values were tested in the sensitivity analysis, the 95% confidence interval for the range of values tested
is given. For 𝜃𝑖𝑗 , the order of the rows and columns of the matrix correspond to Pemba, Unguja and mainland Tanzania.

Variable or
parameter

Mean values [95% CI] Source

Pemba Unguja Mainland

𝐼∗
𝑘 1.36% [0.96–1.93] 1.18% [0.86–1.61] 7.79% Stuck et al. (2020) and Hay

and Snow (2006)
𝑁𝑘 406,848 896,721 43,625,354 Tanzania National Bureau of

Statistics (2012)

𝜃𝑖𝑗
⎛

⎜

⎜

⎝

0.991 0.004 5.7 × 10−5

0.003 0.970 5.3 × 10−4

0.006 0.026 0.999

⎞

⎟

⎟

⎠

Stuck et al. (2020)

𝜇 0.005 day−1 0.005 day−1 0.005 day−1 Mandal et al. (2011) and
Jeffery and Eyles (1955)

𝜏 (ℎ) 3.2 [2.0–4.8] 10.0 [8.0–12.6] N/A Stuck et al. (2020)
𝜏 (𝑛) 0.7 [0.4–1.3] 1.3 [0.9–1.9] N/A Stuck et al. (2020)
𝜈(ℎ) 7.0 [6.5–7.5] 6.3 [5.9–6.9] N/A Stuck et al. (2020)
𝜈(𝑛) 20.4 [19.4–21.4] 18.8 [17.6–19.9] N/A Stuck et al. (2020)
𝜌 34% 34% N/A Stuck et al. (2020)
𝜂∗ 35.3% 35.3% N/A van der Horst et al. (2020)
𝜂 - range of values
tested

0%, 35%, 48%,
60%, 62%, 100%

0%, 35%, 48%,
60%, 62%, 100%

N/A Values based on DMSO follow
up at the index case
household level observed in
van der Horst et al. (2020)
i
r
i
v
s

2

r
b
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r
e
t
i

where

𝜃outbound =
⎛

⎜

⎜

⎝

0.991 0.004 (1 − 𝑂) ∗ 5.7 × 10−5

0.003 0.970 (1 − 𝑂) ∗ 5.3 × 10−4

0.006 0.026 0.999

⎞

⎟

⎟

⎠

, (14)

nd

return =
⎛

⎜

⎜

⎝

0.991 0.004 5.7 × 10−5

0.003 0.970 5.3 × 10−4

(1 − 𝑅) ∗ 0.006 (1 − 𝑅) ∗ 0.026 0.999

⎞

⎟

⎟

⎠

. (15)

𝑂 represents the proportion of travellers from mainland Tanzania
eceiving treatment such that they are no longer infected upon entering
anzibar, and 𝑅 represents the proportion of Zanzibari residents receiv-
ng treatment such that they are no longer infected upon returning to
anzibar.

.4. Simulations

Stochastic simulations were only run with the model with RCD. In
rder to allow for small but finite populations of infectious individuals,
binomial tau-leap adaptation of the Gillespie algorithm was used

o model Eq. (7) (Chatterjee et al., 2005). Following calibration, the
urrent RCD programme (baseline of 35.3% follow up of index cases at
ndex households only) was compared to a range of alternatives:

1. RCD at a range of levels of follow up (see Table 3 for values);
2. Expanding the RCD system to include follow up at four neigh-

bouring households as well;
3. Doubling the daily treatment seeking rate;
4. rfMDA in the index household rather than test-and-treat;
5. Treating 50% of imported cases.

The effects of varying the proportion of cases followed up at the
ousehold level is tested by varying the follow up proportion between
hose seen in 3, 6, 15 and 21 days, as well as stopping the RCD
rogramme altogether (no follow up) and perfectly following up every
ase. The potential benefits of testing and treating all neighbours in ap-
roximately four nearby households as well was considered. As the rate
f seeking treatment amongst those infected is low, we tested doubling
he daily treatment seeking rate (e.g. by promoting early treatment
eeking or broader testing of patients at formal health facilities, or
ue to more individuals being symptomatic due to waning immunity).
dditionally, rfMDA was modelled with the same parameters as for
CD, except the value of the test sensitivity was changed to 100%, as all
6

i

ndex household members, infected or susceptible, would automatically
eceive treatment. Finally, treating 50% of cases imported onto the
slands by either Zanzibari residents travelling to mainland Tanzania, or
isitors from mainland Tanzania were also modelled (𝑂 = 𝑅 = 0.5). 500
imulations were run for each combination of intervention parameters.

.5. Impact of parameter uncertainty

The impact of parameter uncertainty was investigated by testing a
ange of parameter values in a sensitivity analysis. The values were
ased on the uncertainty in the sample data. The parameters varied
nd the distributions from which they were sampled were as follows:

• The equilibrium malaria prevalence on Pemba, 𝐼∗1 ∼ Beta
(32, 2242);

• The equilibrium malaria prevalence on Unguja, 𝐼∗2 ∼ Beta
(92, 3196);

• The targeting ratio in index households in Pemba, 𝜏(ℎ)1 ∼
Beta(20,427)

𝐼∗1
;

• The targeting ratio in index households in Unguja, 𝜏(ℎ)2 ∼
Beta(64,470)

𝐼∗2
;

• The targeting ratio in neighbouring households in Pemba, 𝜏(𝑛)1 ∼
Beta(13,1147)

𝐼∗1
;

• The targeting ratio in neighbouring households in Unguja, 𝜏(𝑛)2 ∼
Beta(26,1619)

𝐼∗2
;

• The number of people tested by the RCD programme in the index
household in Pemba, 𝜈(ℎ)1 ∼ Normal(7.02, 0.24);

• The absolute number of people tested by the RCD programme in
the index household in Unguja, 𝜈(ℎ)2 ∼ Normal(6.36, 0.25);

• The absolute number of people tested by the RCD programme in
neighbouring households in Pemba, 𝜈(𝑛)1 ∼ Normal(20.36, 0.50);

• The absolute number of people tested by the RCD programme in
neighbouring households in Unguja, 𝜈(𝑛)2 ∼ Normal(18.76, 0.58).

Subscripts of 1 and 2 indicate Pemba and Unguja, respectively. 100
andom values were selected from these parameter distributions, and
ach set of values was simulated with five different seeds, forming a
otal of 500 simulations for each intervention. The 95% confidence
ntervals of the distributions used for these parameters can be found
n Table 3.
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Fig. 3. Timeseries of 500 stochastic simulations showing the median, 50% confidence interval, 95% confidence interval, and three individual simulation runs, for the scenario
where all RCD is stopped at year 0.
3. Results

3.1. SIS model including human movement

The SIS transmission model described by Eq. (4) showed stan-
dard dynamics of reaching the equilibrium prevalence seen in the
RADZEC study. When human movement was removed by changing
the movement matrix, 𝜃, to an identity matrix, the equilibrium preva-
lence dropped to zero on both Pemba and Unguja. This result is to
be expected, as the calibrated transmission parameter is lower than
the natural parasite clearance rate in both Pemba and Unguja. The
calibrated values for 𝛽 were 0.0048 (95% CI: 0.0044–0.0050), 0.0037
(95% CI: 0.0025–0.0.047) for Pemba and Unguja, respectively. 𝑅𝑐 ,
given by the transmission rate divided by the recovery rate, was found
to be 0.95 (95% CI: 0.88–1.00) on Pemba and 0.74 (95% CI: 0.50–0.94)
on Unguja.

An analysis of the reproductive number of the whole system showed
that the overall reproductive number is highly dependent on the trans-
mission rate on mainland Tanzania. Details of this can be found in the
Supplementary Information.

3.2. SIS model including human movement and an RCD programme

All simulations were initially calibrated to the baseline scenario of
35.3% follow up of index cases at the household level only. Year 0 is
when the intervention is introduced.

Fig. 3 shows the timeseries expected from removing RCD that is
currently in place. The proportion of index cases followed up by a
DMSO was set to 0 from year 0. We observe a rise in the malaria
prevalence until a new equilibrium is reached. The 50% and 95%
confidence intervals of the 500 simulations at each time point are also
included, alongside the median number of infected individuals. For
illustration purposes, three individual stochastic simulations are also
included to show how the malaria prevalence may vary within a single
simulation. While individual simulations can fluctuate quite a lot, the
median settles to a pseudo-equilibrium. We estimate that removing
RCD would lead to a 10% increase in malaria prevalence on Pemba,
and an 8% increase in prevalence on Unguja.

Fig. 4 shows the impact of increasing the proportion of cases fol-
lowed up by a DMSO in a timely manner from the 3-day follow
up proportion of 35%, to the 21-day follow up proportion of 62%,
and then to 100%. The final malaria prevalence reached under these
intervention scenarios are compared to the baseline malaria prevalence
7

(RCD with 35% of index cases followed up) and a counterfactual which
indicates the pseudo-equilibrium reached when RCD is stopped (Fig. 3).
Increasing follow up with no other changes to RCD has a very small
effect on the final malaria prevalence reached after 40 years. Including
4 neighbouring households in RCD makes a negligible difference to the
malaria prevalence. Shifting to rfMDA leads to some additional cases
being treated due to the removal of testing. This decrease in prevalence
is further compounded when combined with following up all index
cases at the index household. Once again, including neighbouring
households in rfMDA does not make a substantial difference. Doubling
the rate at which infected people seek treatment and are identified as
index cases leads to RCD finding and treating roughly twice as many
cases. Finally, treating 50% of imported cases such that they cannot
lead to further cases on Zanzibar led to large reductions in prevalence,
with a 43% reduction in prevalence on Pemba and a 47% reduction in
prevalence on Unguja.

Treating people who travel would need to achieve high coverage for
both travellers to and from mainland Tanzania to achieve a substantial
reduction in prevalence, as illustrated in Fig. 5. Time-series plots for
a range of treatment proportions can be found in the Supplementary
Information. Due to the transmission rate being substantially higher
on Pemba than Unguja, even treating all malaria importations from
mainland Tanzania would likely be insufficient to lead to elimination
within 40 years on either Pemba or Unguja, as infections would be
imported from Pemba to Unguja, sustaining transmission.

Fig. 6 shows the amount of resources needed for RCD and rfMDA
when including or not including neighbours, or when following up
100% of cases at the index household level. This figure does not
consider the RDTs or ACTs needed outside of RCD (e.g. RDTs used to
detect index cases in the health facility or ACTs distributed through
pharmacies for malaria treatment outside of RCD). It also does not
consider the additional personnel and time needed to expand RCD to
include neighbours. In general, including neighbours leads to a much
larger use of resources but with little gains in malaria prevalence
reduction.

3.3. Impact of parameter uncertainty

Our analysis suggests that switching from RCD to rfMDA (at the
same proportion of index cases followed up at the household level:
35.3%) has a similar impact as increasing the follow up proportion in
the RCD programme to 100%, but neither increase the recovery rate

sufficiently to lead to elimination. A larger decrease in prevalence is
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Fig. 4. Median malaria prevalence reached after 40 years of simulations under different intervention scenarios and with different levels of follow up of index cases arriving at a
health facility. Dashed lines indicate the baseline prevalence and the prevalence expected with no RCD. ‘Baseline’ refers to the malaria prevalence in the presence of RCD with
35% follow up of index cases, as observed in the RADZEC study.
Fig. 5. Heatmap showing the median final prevalence reached after 40 years out of 500 stochastic runs when treatment of travellers is included.
seen if rfMDA is implemented with 100% of follow up at the index
case household level, or if 50% of imported cases are treated. When
parameter uncertainty is included in the simulations, we find that
although the final prevalence reached in 40 years is sensitive to the
varied parameters (see Fig. 7), the overall trends remained the same.
It is worth noting that the median prevalence reached after 40 years
across 100 parameter sets differs from the prevalence reached in previ-
ous figures due to the difference in the median and modal values of the
parameter distributions (see Supplementary Information for details).

4. Discussion

Our results suggest that case importation and the low test sensitivity
of RDTs in asymptomatic patients are the main factors that should
be targeted to substantially reduce Zanzibar’s malaria burden, while
continuing to maintain the vector control measures that are currently in
place. Removing the RCD programme would likely lead to an increase
in malaria prevalence, but increasing follow up to cover all malaria
8

cases arriving at a health facility would still be insufficient for reach-
ing elimination. Treating imported cases, implementing rfMDA at the
household level and increasing the rate at which infected people seek
treatment would help reduce the endemic prevalence on both islands
substantially. 100% imported case treatment is expected to reduce the
prevalence below 1 case per 100,000 on Unguja and 1.4 cases per
10,000 population on Pemba, as Zanzibar acts as a sink for infections
from mainland Tanzania, where prevalence is higher. This result as-
sumes that all current measures are maintained. Relaxing interventions
already in place may lead to the local reproduction number being
higher than 1, and thus elimination would not be achieved even with
treating 100% of imported cases.

As those residing in the same household as index cases are signif-
icantly more likely to test positive for malaria than those residing in
neighbouring households (Stuck et al., 2020), the extra effort of testing
neighbouring residents makes little difference to overall transmission
as compared to increasing follow up at the households of index cases.
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Fig. 6. The cumulative number of RDTs and ACTs used per 10,000 population over 10 years since the start of interventions. Additionally, the crosses represent the malaria
prevalence reached with that intervention. ‘Baseline’ refers to RCD with 35% follow up of index cases. ‘100% follow up’ refers to RCD with 100% follow up of index cases. ‘RCD
inc. neighbours’ refers to RCD with 35% follow up of index cases and testing and treatment at the index household and four neighbouring households. ‘rfMDA’ refers to 35%
follow up and presumptive treatment of index household members. ‘rfMDA inc. neighbours’ refers to following up 35% of index cases and presumptive treatment of the index
household and members of four neighbouring households. Note, this does not include RDTs used for diagnosing index cases, or ACTs used in malaria treatment outside of RCD.
Fig. 7. Bar chart showing the final equilibrium value after 40 years of the SIS model with the current RCD system (baseline), an RCD system with 100% follow up, replacing the
RCD system with rfMDA, both replacing the RCD system with rfMDA and increasing follow up to 100%, and treating 50% of imported cases while maintaining the baseline RCD
programme. The error bars here show the 95% confidence interval for both the stochastic variation and parameter uncertainty.
Expanding RCD to include neighbours requires extra resources and the
reduction in malaria prevalence is minimal in comparison to the extra
RDTs and human resources required. Nonetheless, surveillance is a
key component of establishing when malaria elimination has occurred,
so some form of passive or active surveillance is required to monitor
cases. This can be RCD or just case reporting, but RCD allows for the
surveillance of asymptomatic cases as well.
9

Moving from RCD to rfMDA allows for the treatment of approxi-
mately three times more cases for any given prevalence, particularly
low density infections that are less likely to be detected by RDT, but
may still contribute to onward transmission. It is possible that early
infections in neighbours are missed by RCD as the parasite density may
be too low to be detected by RDTs. A previous field study compared
RCD to rfMDA in the low malaria-endemic setting of Namibia and found
a significant reduction in incidence in the rfMDA arm (Hsiang et al.,
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2020b). rfMDA in this context could also have a prophylactic effect,
preventing onward transmission from the index case. However, rfMDA
involves substantially greater use of ACTs than RCD. This may have a
negative effect on parasite resistance (Legros and Bonhoeffer, 2016; Lee
and Penny, 2019). Increases in drug resistance may lead to increased
treatment failure rates, leading to a resurgence in malaria prevalence,
though this was not found to be a frequent cause of malaria resurgence
in previous work (Cohen et al., 2012).

These results are broadly in line with findings from other studies
on RCD effectiveness in different settings. A recent study of mass drug
administration campaigns in the Greater Mekong Subregion suggested
that an RCD programme in the region would have missed 99.6% of
Plasmodium infections (Mukaka et al., 2021). When modelling RCD in
outhern Zambia, the number of people presenting to a health facility
ith malaria and being followed up was found to be a limiting factor

or an RCD programme’s success (Reiker et al., 2019). Similarly, an
ndependent study of Zambia’s reactive case detection system found
hat in low-transmission settings, improving case management (the rate
t which patients seek treatment from health facilities) would have
greater impact on onward transmission than further improving the
CD system (Gerardin et al., 2017). Additionally, this study highlighted

hat in both low and high transmission settings, importation manage-
ent was crucial for successful disease elimination. Similar results
ere found by Le Menach et al. when examining malaria importation

ates onto Pemba and Unguja in 2012 (Le Menach et al., 2011). Our
indings also show that importation management is key to interrupting
ransmission on Unguja and substantially reducing disease prevalence
n Pemba. As the average time spent on mainland Tanzania is higher
mongst Unguja residents in the sample, as compared to Pemba resi-
ents, the effect of importation was estimated to be larger on Unguja
han on Pemba.

We calibrate the transmission rate based on the malaria preva-
ence in the three patches and the movement between the patches.

e make the simplifying assumption that factors such as immunity
rofiles, healthcare access, and the proportions of patients who are
symptomatic are identical amongst travellers and non-travellers due
o a lack of empirical data from Tanzania on these factors. This may
ot necessarily be true, as in some areas, migration is associated with
ess use of healthcare facilities and higher malaria risk profiles (Guyant
t al., 2015). This would suggest that malaria in travellers might play
larger role in transmission than described in this study. On the other
and, repeated exposure to malaria among travellers might lead them
o have greater levels of immunity than non-travellers, and so they may
ave lower parasite densities and, subsequently, lower infectiousness
hen infected. In that case, the impact of case importation may be

maller than described. We also assume that longer-term migrants do
ot play a significant role in case importation in Zanzibar. This is
upported by a study looking at census data and malaria transmission
ates in East Africa, which suggests that most migrants from high
ransmission areas settle near the borders of mainland Tanzania, but
ot many come to Zanzibar (Pindolia et al., 2014).

Reconstructing travel history data from survey responses is prone to
nderestimates of travel frequency, as certain trips may not be recalled.
hus, our estimate of the amount of time Zanzibari residents spend
way from home are likely to be underestimates. Therefore, malaria
mportation is likely to play a larger role in malaria persistence than
stimated here. We have also not considered the seasonal variation
n travel. The busiest travel period typically falls between October
nd December, which coincides with the shorter period of seasonal
ainfall (Björkman et al., 2019; Le Menach et al., 2011). This variation
hroughout the year will also impact the rate of case importation into
he region.

As RDTs typically detect cases with a higher parasite density, and
ases with a higher parasite density are more likely to be symptomatic,
10

CD may, over time, lead to the infectious reservoir being skewed i
towards asymptomatic infections. In this model, we model all infections
as having equal infectiousness, whereas these asymptomatic infections
may have a lower infectiousness, and so the impact of RCD may be
greater than that displayed here.

Additionally, we have assumed that malaria transmission is constant
throughout the year on the islands. The data used in this study is
averaged across both high and low seasons of transmission (Stuck
et al., 2020). Seasonal transmission likely increases the importance of
imported cases, as elimination may be achieved in the dry season, but
cases are re-introduced in the wet season when the transmission rate
is higher. Also, reactive vector control is another reactive intervention
that may be considered in the wet season, which would involve spray-
ing insecticide inside index and neighbouring households to prevent
further transmission from known cases. A field study of reactive vector
control found adding it to RCD or rfMDA had an additional benefit in
reducing malaria incidence in Namibia (Hsiang et al., 2020b).

This analysis does not preclude the existence of smaller foci of
transmission that could exist on these islands. Transmission is likely to
be heterogeneous, with local sources and sinks of cases. As there was
insufficient data on local movement patterns within each island, each
island has been treated as homogeneous. Extending this analysis with
other sources of data on travel, such as call record detail data, would
allow for a finer-scale analysis of parasite sources and sinks.

Additionally, as the model presented here is an SIS model, it does
not include the relationship between infection and disease, which
would play a role in the effectiveness of an RCD programme that relies
on patients seeking treatment. This should be considered in future work
conducted in this area.

Here, we have defined malaria elimination as having zero malaria
infections present on an island. In contrast, the World Health Organi-
zation defines a country to have eliminated malaria when they have
zero indigenous cases for three consecutive years, allowing for some
imported and introduced cases (World Health Organization, 2020).
Thus, our definition of elimination is a stricter definition in comparison
to the World Health Organization.

5. Conclusion

Our analysis suggests that the current interventions in place on Un-
guja have sufficiently reduced the transmission rate such that malaria
elimination could be achieved in the absence of imported cases. On
Pemba, the situation is less clear, though the mean controlled reproduc-
tion number is below 1. Current interventions should be maintained,
and improvements to the surveillance-response system are expected to
have an incremental effect on the malaria prevalence. Interventions
with the most impact were found to be those that removed the majority
of cases imported to the islands.
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