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A B S T R A C T   

There is a paucity of air quality data in sub-Saharan African countries to inform science driven air quality 
management and epidemiological studies. We investigated the use of available remote-sensing aerosol optical 
depth (AOD) data to develop spatially and temporally resolved models to predict daily particulate matter (PM10) 
concentrations across four provinces of South Africa (Gauteng, Mpumalanga, KwaZulu-Natal and Western Cape) 
for the year 2016 in a two-staged approach. In stage 1, a Random Forest (RF) model was used to impute Mul
tiangle Implementation of Atmospheric Correction AOD data for days where it was missing. In stage 2, the 
machine learner algorithms RF, Gradient Boosting and Support Vector Regression were used to model the 
relationship between ground-monitored PM10 data, AOD and other spatial and temporal predictors. These were 
subsequently combined in an ensemble model to predict daily PM10 concentrations at 1 km × 1 km spatial 
resolution across the four provinces. An out-of-bag R2 of 0.96 was achieved for the first stage model. The stage 2 
cross-validated (CV) ensemble model captured 0.84 variability in ground-monitored PM10 with a spatial CV R2 of 
0.48 and temporal CV R2 of 0.80. The stage 2 model indicated an optimal performance of the daily predictions 
when aggregated to monthly and annual means. Our results suggest that a combination of remote sensing data, 
chemical transport model estimates and other spatiotemporal predictors has the potential to improve air quality 
exposure data in South Africa’s major industrial provinces. In particular, the use of a combined ensemble 
approach was found to be useful for this area with limited availability of air pollution ground monitoring data.   

1. Introduction 

Exposure to ambient air pollution is linked with several adverse 
health outcomes and is a major environmental risk factor associated 
with about 5 million deaths in 2019 (Murray et al., 2020). The World 
Health Organization (WHO) reported that 87% of the 3 million deaths 
estimated to be attributable to ambient air pollution in 2012 occurred in 
low and middle income countries (LMICs) (World Health Organization, 
2016). Recently new findings from Northern America (Pinault et al., 
2017; Shi et al., 2020) and Europe (Stafoggia et al., 2022; Strak et al., 
2021) have provided evidence that adverse health effects are associated 

with air pollution even at levels less then national and international 
standards. This adds to the growing body of evidence supporting the 
revised 2021 WHO Air Quality Guidelines, where, for example, the 
guideline value for annual mean of particulate matter less than or equal 
to 10 μm in aerodynamic diameter (PM10) was lowered from 20 μg/m3 

to 15 μg/m3. In addition to higher emission of air pollutants in LMICs, 
barriers to an improved air quality in these regions include gaps in 
infrastructure, lack of data openness, unwillingness to share data to not 
hinder economic perspectives and capacity for air quality management 
(Mak and Lam, 2021; World Health Organization, 2021). The health 
impact of exposure to air pollution could be related to the current 

☆ This paper has been recommended for acceptance by Admir Créso Targino. 
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epidemiological transition of diseases from communicable diseases to 
non-communicable diseases in sub-Saharan African (SSA) countries 
(Adebayo-Ojo et al., 2022; Gouda et al., 2019; Koné et al., 2019). 
However, the limited number of monitoring sites for air pollutants in 
SSA countries has been a major challenge in investigating the associa
tion between exposure to air pollutants and adverse health outcomes 
(Amegah, 2018; Amegah and Agyei-Mensah, 2017). Air pollution 
monitoring sites in South Africa are sparsely distributed. These sites are 
mostly located in the designated air pollution priorities areas based on 
historical evidence of poor ambient air quality (Department of Envi
ronmental Affairs, 2016). These areas includes the Highveld, the Vaal 
triangle, the South Durban Basin and Waterberg areas located in four 
different provinces (Gauteng, Mpumalanga, Western Cape and 
KwaZulu-Natal) of South Africa (Arowosegbe et al., 2021b; Feig et al., 
2019; Tshehla and Wright, 2019). There is also a substantial gap in 
historical and current air quality measurement data in South Africa due 
to inadequate technical and financial capacity to continuously operate 
these sites. Our previous work in South Africa used the most complete 
air pollutant monitoring data set, PM10, to compare methods to impute 
missing daily PM10 concentrations across sites located in four provinces 
of Gauteng, Mpumalanga, Western Cape and KwaZulu-Natal (Arowo
segbe et al., 2021b). In addition, large differences in PM10 concentra
tions exist between these provinces with monitoring sites in Gauteng 
exceeding the WHO air quality guideline 24-h PM10 concentration of 45 
μg/m3 38% of the time between 2010 and 2017 compared to only 3% in 
Western Cape. Across the provinces, PM10 concentrations were highest 
in the winter months between June and August (Arowosegbe et al., 
2021a). 

Long- and short-term spatially varying air pollution data is important 
for air pollution mitigation strategies and epidemiological studies to 
protect the health of vulnerable populations. However, there are rela
tively few reference monitoring networks globally to capture the vari
ation in air pollution around where people live and work (Martin et al., 
2019). Consequently, a number of approaches including dispersion 
modeling, interpolation and land-use regression modeling have been 
used for long-term air pollutant exposure assessment in epidemiological 
studies (Bertazzon et al., 2015; Eeftens et al., 2012; Gulliver and Briggs, 
2011; Wong et al., 2004). To better capture the spatial and temporal 
variation of air pollution required for epidemiological studies, hybrid 
statistical models have been implemented by several studies (de Hoogh 
et al., 2018; Mandal et al., 2020; Schneider et al., 2020; Stafoggia et al., 
2019). Hybrid statistical models, for example, leverage the spatial and 
temporal coverage of satellite retrieved Aerosol Optical Depth (AOD) 
which quantifies the amount of light extinction by absorption or scat
tering that occurs in the column when light passes through suspended 
particles (Hoff and Christopher, 2009). 

Recently, machine learning algorithms have been used to explore the 
relationship between ground-monitored air pollution data, AOD, spatial 
and temporal predictors (e.g. land use and meteorology). Machine 
learning algorithms are increasingly being used to model air pollution 
levels because of their ability to capture the underlying relationship 
between ground-monitored air pollution data and spatiotemporal pre
dictors (de Hoogh et al., 2018; Mandal et al., 2020; Schneider et al., 
2020; Sorek-Hamer et al., 2020; Stafoggia et al., 2019). Several variants 
of the hybrid statistical models have been implemented mostly in 
developed countries with good ground-monitored data to model 
long-term air pollution exposures (de Hoogh et al., 2016) and short-term 
air pollution exposures (de Hoogh et al., 2018; Lee et al., 2011; Stafoggia 
et al., 2019). Many previous air pollution modeling studies have either 
used single statistical models at different stages of their modeling 
approach or selected the best model out of several models to estimate air 
pollution concentrations (Bertazzon et al., 2015; Stafoggia et al., 2019; 
Stafoggia et al., 2020; Stafoggia et al., 2017). The application of machine 
algorithms to model PM10 concentration across South Africa presents an 
opportunity to assess the performance of this method in an area with 
limited ground-level monitoring data. Despite the flexibility and 

predictive performance of machine learning algorithms, these models 
are prone to overfitting especially when characterizing spatial predictors 
(Meyer et al., 2018). To improve the predictions from individual algo
rithms, ensemble averaging of different machine learning algorithms 
has been utilized in air pollution exposure modeling studies. Ensemble 
averaging takes advantage of the strengths of the individual machine 
learning algorithms to improve the accuracy of models predictions (Di 
et al., 2019; Mandal et al., 2020; Shtein et al., 2019). 

Hybrid statistical models have been identified as a potential solution 
to bridge the gap in ground-monitored air pollution data in LMICs, 
especially in SSA countries (Pinder et al., 2019). In this study, we 
developed a hybrid statistical model based on ensemble averaging for 
predicting daily PM10 concentrations at a 1 km × 1 km spatial resolution 
across four provinces of South Africa for the year 2016. The year 2016 
was selected as it was the year with the largest available number of PM10 
monitoring sites operating in recent years (i.e. between 2010 and 2017 
the respective number of sites were: 21, 41, 42, 40, 39, 32, 46 and 41 
sites). The performance of hybrid statistical models is largely dependent 
on the availability of air pollution monitoring data used to calibrate the 
models. Consequently, this study aims to explore the possibility of using 
remote-sensing data in combination with other spatial and temporal 
predictors and monitoring data to predict daily PM10 concentrations at 
1 km × 1 km spatial resolution across four provinces of South Africa. 

2. Materials and methods 

2.1. Study area 

South Africa is located at the southernmost tip of Africa. The surface 
area is 1,219,912 km2, with an estimated population of 58.8 million 
(2019) (Department of Statistics South Africa, 2019). South Africa has a 
long coastline that stretches more than 2500 km along the Atlantic and 
Indian oceans. Its coastal plain is dominated by a plateau surrounded by 
a great escarpment. The central and eastern part of the plateau is known 
as the Highveld, which is between 1500 and 2100 m above sea level. The 
highest edge of the escarpment is the Mpumalanga province (Drakens
berg) in the east from where it then extends south-west to Free State and 
Gauteng Provinces. Gauteng province, the smallest province with a land 
area of 18,176 km2, has the largest population of approximately 15 
million (about 26% of the total South Africa population) and is bordered 
to the east by Mpumalanga. Mpumalanga is home to most of South 
Africa’s coal factories and is bordered by KwaZulu-Natal to the south. 
The coastal province of Western Cape occupies a land area of 129,462 
km2. South Africa is characterized with distinct climatic conditions; the 
eastern part of the country has a tropical climate while the 
south-western part has a Mediterranean climate with year-round wind. 
These climatic features coupled with a mountainous escarpment influ
ence the spatial and temporal pattern of air pollutants across the 
country. South Africa has four climatic seasons: Autumn (March–May), 
Winter (June–August), Spring (September–November) and Summer 
(December–February). 

2.2. PM10 monitoring data 

PM10 hourly data were collected from 46 monitoring sites jointly 
maintained by the Department of Environmental Affairs, South Weather 
Services, provincial, local governments and private industries. Of those 
46 sites, 19 sites are located in Gauteng province, 16 sites in Mpuma
langa, 7 sites in Western Cape and 4 sites in KwaZulu-Natal (Fig. 1). The 
data were obtained from the South African Air Quality Information 
System (https://saaqis.environment.gov.za/. Accessed on October 22, 
2018). Data quality checks were undertaken for each monitoring station 
including removing outliers defined as negative values or observations 
greater or less than four times the interquartile range of each monitoring 
sites. Hourly PM10 data were aggregated to daily values if 75% of hourly 
data were valid. For this study, 2 Gauteng province sites, 9 Mpumalanga 
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sites, 4 Western Cape sites and 3 KwaZulu-Natal sites had at least 70% of 
annual PM10 data. Missing daily PM10 values for these sites were 
imputed as explained in our previous paper (Arowosegbe et al., 2021b). 
In brief, we imputed missing daily PM10 concentration by combining 
spatial and temporal predictors with ground-level monitored PM10 
concentrations at sites with at least 70% of annual PM10 data in a 
Random Forest (RF) model. In contrast to the distribution of the pre
dictions from National and Provincial RF models, the site-specific 
models PM10 predictions distribution were more comparable to the 
observed PM10 concentration distribution (Arowosegbe et al., 2021b). 
The final monitoring dataset used in this study included measured and 
imputed daily PM10 concentrations for a total of 18 sites. 

2.3. Spatial and temporal predictors 

Table 1 presents the data used as predictor variables in this study. All 
analysis were performed at a 1 km x 1 km-grid covering the entire study 
area, and each predictor variable was calculated to this spatial scale. 
Geospatial analyses were performed in ESRI ArcGIS 10. The next section 
describes the data in more detail. 

2.3.1. Aerosol optical depth (AOD) 
Aerosol Optical Depth (AOD) is a columnar integrated value that 

quantifies the amount of light absorbed or scattered by suspended par
ticles as it passes through the atmosphere. AOD serves as an indicative 
measurement of particles in the column of the atmosphere at a given 
time. The Multi-Angle Implementation of Atmospheric Correction 
(MAIAC) product of AOD from the Moderate Resolution Imaging 
(MODIS) instrument on the Terra and Aqua satellites provides daily AOD 
estimates (Lyapustin et al., 2011). The MAIAC AOD product is provided 
at 1 km × 1 km spatial resolution (from https://lpdaac.usgs.gov/produ 
cts/mcd19a2v006/. Accessed on October 20, 2018). The Terra and Aqua 
satellites travel across South Africa at a different time; Terra between 

09:00 and 11:00 local time and Aqua between 13:00 and 15:00. Due to 
the two different measurement times, we combined daily AOD mea
surements of wavelength 470 nm from both the Aqua and Terra satel
lites. We used measurements from Aqua and combined it with AOD 470 
nm measurements from Terra when Aqua AOD 470 nm measurements 
were missing. Data quality checks were performed to remove spurious 
measurements of AOD from cloud masking, values adjacent to cloud, 
high uncertainty flags and values within a 2.5th percentile moving 
window variance. The final MAIAC AOD data set for input in stage 1 for 
the year 2016 contained 62% of all possible observations. 

2.3.2. Spatial and temporal predictors 
Meteorological variables play an important role in the dispersion of 

air pollutants (De Visscher, 2013; Laña et al., 2016). We used daily 
global climate reanalysis of total precipitation, temperature, boundary 
layer height, vertical velocity, the component of the horizontal wind 
towards the east (U wind component) and the component of the hori
zontal wind towards north (V wind component) from the European 
Center for Medium-Range Weather Forecasts Reanalysis 5th Generation 
(ERA5) climate reanalysis dataset at a spatial resolution of 0.125◦ ×

0.125◦ (approximately 10 km × 10 km) for the year 2016. We extracted 
Copernicus Atmosphere Monitoring Service (CAMS) Reanalysis daily 
columnar ensembles estimates of PM10, nitrogen dioxide and ozone at a 
spatial resolution of 0.125◦ × 0.125◦ (approximately 10 km × 10 km) 
from the CAMS data store (https://ads.atmosphere.copernicus. 
eu./Accessed on October 30, 2018). Bilinear resampling was used for 
the spatially coarse meteorological and CAMS datasets (10 km × 10 km) 
to downscale to our 1 km x 1 km-grid using information from the four 
nearest grid cells values of these variables. 

The spatial variables used for this study were calculated at a 1 km ×
1 km grid covering the study area. The 2018 South Africa National Land 
cover dataset with 72 land use classes were reclassified into the five 
main categories (1) residential area, (2) industrial area, (3) built-up 

Fig. 1. The spatial distribution of PM10 Monitoring Sites.  
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area, (4) water bodies and (5) agricultural area. Sum of major road and 
sum of other road length was calculated for each 1 km x 1 km-grid cell 
using road data extracted from OpenStreetMap. Similarly, population 
density at each grid cell was calculated based on the data extracted from 
the Socioeconomic Data and Application Center (SEDAC). Other spatial 
variables such as the light at night were extracted from Visible Infrared 
Imaging Radiometer Suite-Day/Night Band (VIIRS-DNB) and averaged 
at the 1 km × 1 km spatial resolution. Impervious surface and elevation 

data were respectively obtained from the National Oceanic and Atmo
spheric Administration and the Shuttle Radar Topography Mission 
Digital Elevation databases. 

2.4. Statistical methods 

We implemented a multi-stage machine learning modeling approach 
aimed at 1) imputing missing MAIAC AOD data using modelled esti
mates of CAMS AOD and 2) modeling the ground-monitored PM10 with 
AOD data, meteorological predictors, land use and land cover pre
dictors. The calibrated model was then used to predict daily PM10 con
centration at 1 km × 1 km grid cells over the four provinces of South 
Africa. In this study, we applied three machine learning algorithms at 
different stages of the analysis (Fig. S1). 

2.5. Stage 1 

We developed a model to impute missing MAIAC AOD data. The 
percentage of missing satellite-AOD measurements in South Africa, 
mainly caused by cloud cover, was 38%for the year 2016. We explored 
the statistical relationship between MAIAC AOD 0.47 μm wavelength, 
modelled co-located CAMS AOD estimates (469 nm, 550 nm, 670 nm, 
865 nm and 1240 nm) day of the year, latitude and longitude using an 
optimized RF model: 

PredMAIAC.AODi, t = MAIAC.AODi, t

∼ f (CAMS.AODi, t,z1− 5 + day of the year+ latitudei + longitudei) (1)  

where PredMAIAC.AODi,t is the predicted MAIAC AOD 0.47 μm at grid 
cell i, on day t; MAIAC. AODi,t is the target variable representing MAIAC 
AOD 0.47 μm wavelength estimates at grid i on day t; CAMS.AOD esti
mates the main predictor at grid cell i, on day t, at five wavelengths (z =
0.47 μm, 0.55 μm, 0.67 μm, 0.87 μm and 1.24 μm); day_of_the_year from 
1 to 366; latitudei and longitudei represent the coordinates of grid cell 
centroid i. 

2.6. Stage 2 

A predictive model for daily PM10 concentrations was constructed by 
exploring its relationship with spatial and temporal predictors and AOD 
estimates from stage 1. We used an ensemble averaging approach using 
three different machine learning learners. The learners were RF (Brei
man, 2001; Kwok and Carter, 1990), support vector regression (SVR) 
(Vapnik, 1999; Vapnik et al., 1997) and extreme gradient boosting 
(XGBoost) (Chen and Guestrin, 2016). We selected tree based learners 
(RF and XGBoost) and SVR to account for complex non-linear relation
ship and patterns in explaining the variation in PM10 concentrations 
across the four South African provinces. We also implemented ensemble 
averaging of the predictions from the individual learners using a RF 
models that included the longitude and latitude of the 1 km × 1 km-grid 
cells to prevent the overfitting of the individual models. All the indi
vidual models were trained on the training data and optimized models 
were achieved through grid search, learners’ internal parameter tuning 
and cross-validation processes. The RF parameter tuning includes grid 
search for the number of variables used to split each tree (mtry). 
Random variables of 2, 4, 6, 8, 10 and 12 were assessed in the grid 
search. We also searched for the number of random trees from 100 to 
500 trees for an optimized model. The XGBoost model parameters grid 
space of maximum tree depth ranged from 4 to 14, maximum child 
weight from 2 to 10 and the subsample ratio from 0.4 to 0.9 were 
assessed to select the optimized model. The sigma and gamma values of 
the SVM were also selected based on grid search. 

The individual learners were defined as: 

YY PredPM10i,t = PM10i, t ∼ f (SPT1i,t, .. .., SPT10i,t,…, SP20i,..., SP24i) (2)  

Table 1 
Description of spatial and temporal predictors.  

Variable Description Source Resolution 

Population density Mean population 
within 1 km × 1 km 
grid cell 

SEDAC ~1 km 

Land cover South Africa 
National Land Cover 
2018 densities 
(summary of meters 
within the grid cells 
by land cover 
categories of 
Natural, Built-up, 
Residential, 
Agricultural, 
Industrial) 

South Africa 
Department of 
Environmental 
Affairs. 

20 m 

Light at night 1 km × 1 km 
Intersected 
aggregate 

VIIRS-DNB 750 m 

Impervious surface 1 km × 1 km 
Intersected 
aggregate after 
removing no data, 
clouds, shadows 
data 

NOAA 30 m 

Elevation 1 km × 1 km 
intersected 
aggregate of mean 
elevation 

SRTM Digital 
Elevation 
Database 

90 m 

Roads Summary of road 
length distance to 
nearest road type: 
major roads and 
other roads 

OpenStreetMap Lines 

Climate zones Cold interior, 
Temperate interior, 
Hot interior, 
Temperate coastal, 
Subtropical coastal, 
Arid interior 

South Africa 
Bureau of 
Standards 
2005 

6 Zones 

Copernicus 
Atmosphere 
Monitoring Service 
(CAMS) ensemble 
estimates of AOD 

Daily CAMS 
ensemble estimates 
of AOD bilinear 
resampled at 1 km 
× 1 km 

Copernicus Atmosphere 10 km ×
10 km Monitoring Service 
(CAMS) 

Meteorological 
variables (daily 
modelled planetary 
boundary layer 
height, temperature, 
precipitation, wind 
speed, wind 
direction, relative 
humidity, vertical 
velocity) 

Daily global 
ECMWF re-analysis 
estimates bilinear 
resampled at 1 km 
× 1 km 

ERA5-reanalysis 10 km × 10 km 

Modelled Tropospheric 
estimates of NO2, 
PM10, O3 

Daily Chemical 
transport model 
estimate bilinear 
resampled at 1 km 
× 1 km 

Chemical transport model 
Copernicus Atmosphere 10 km ×
10 km 
Monitoring Service (CAMS) 

Abbreviations: SEDAC (Socioeconomic Data and Applications Center), VIIRS- 
DNB(Visible Infrared Imaging Radiometer Suite-Day/Night Band), NOAA(Na
tional Oceanic and Atmospheric Administration, SRTM (Shuttle Radar Topog
raphy Mission), ERA-5 (European Center for Medium-Range Weather Forecasts 
Reanalysis 5th Generation(Hersbach et al., 2020)). 
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where YY_ PredPM10i,t stands for RF, XGBoost or SVR, PredPM10i,t is the 
predicted PM10 at grid cell i, on day t; PM10i,t is the ground-monitored 
PM10 at the monitoring site in grid cell i on day t. SPT1-10i,t are 
spatio-temporal predictor variables numbering 1–10 in grid cell i and on 
day t and SPi represent spatial predictor variables numbering between 
20 and 24 in grid cell i on day t. 

The RF averaging meta-model was defined as: 

PredPM10i,t = PM10i,t ∼ f (RFpredPM10i,t +XGBoostpredPM10i,t + SVRpredPM10i,t

+ latitudei + longitudei)

(3)  

where PredPM10i,t is the ensemble averaged predicted PM10 at grid cell i, 
on day t; PM10i,t is the ground-monitored PM10 at the monitoring site in 
grid cell i on day t, while RF_predPM10i,t, XGBoost_predPM10i,t and 
SVR_predPM10i,t are the predicted PM10 concentrations in grid cell i on 
day t from RF, XGBoost and SVR respectively. The latitudei and longi
tudei represent the coordinates of grid cell centroid i. 

We included latitude and longitude as additional predictors to the 
individual learners predictions to allow the RF meta-model to capture 
and account for the variation in the performance of the individual 
learners in space. If one learner does better in Gauteng province but 
another in Western Cape province, the RF meta-model will capture the 
underlying interaction, thus, allowing some level of weighting when 
averaging the predictions of the individual learners. The final averaged 
ensemble model was used to predict daily PM10 concentrations across 
the four provinces at 1 km × 1 km. All statistical analyses were imple
mented in R open source programming software using the Caret pack
age, version 4 (R Core Team (2018)). 

2.7. Statistical performance 

We evaluated the performance of the Stage 1 RF model by assessing 
the relationship between observed AOD and predicted AOD estimates in 
the two-third training dataset and the one-third out-of-bag (OOB) 
sample. The percentage of variation of AOD captured by the RF model, 
the R squared (R2), the root mean squared prediction error (RMSPE), the 
intercept and the slope of the linear regression between the observed 
and predicted AOD were computed as the performance metrics. 

For Stage 2 models, a ten-fold cross validation was conducted by 

building the model on 90% of the PM10 data and assessing the ensemble 
model prediction on the hold out 10% PM10 data. Spatial performance 
was assessed through leave-location-out cross-validation (LLO CV). Site 
ID was used as the splitting criterion and the models were divided into 
ten folds to compute the models spatial performance. A model was 
trained on data from all but one-fold of sites (n− 1). The hold-out folds 
were iteratively used to estimate the prediction errors of these models to 
predict for sites not included in the training folds dataset. For temporal 
cross-validation, day of the year was used to divide the dataset into 10 
folds and temporal leave-time-out cross-validation (LTO CV) was used to 
assess the model’s performance in time. 

3. Results 

3.1. Stage 1 imputation of AOD data 

The stage 1 model performance was evaluated by comparing MAIAC 
AOD observations and model predictions in the OOB samples. The 
estimated percentage of variability (R2) captured by the RF model in the 
OOB samples was 0.96 (RMSPE = 0.014, intercept = − 0.001, slope =
1.01). The stage 1 model metrics suggest a good fit between the valid 
observed and the predicted AOD 470 nm. Fig. 2 shows a map of pre
dicted AOD 470 nm for June 6, 2016 for Gauteng province. Example 
AOD prediction maps for the other three provinces are presented in (S2 – 
S4). The spatial coverage of valid MAIAC AOD values in South Africa in 
2016 ranged from 43% in July to 80% in December (Table S1). The 
distribution of the valid MAIAC AOD data was not markedly different 
across the months. However, the month of September recorded the 
highest values of AOD (mean of 0.15). 

3.2. Stage 2 calibrating PM10 with AOD and spatial-temporal data 

Fig. 3 shows scatter plots between predicted and observed PM10 
concentrations of the spatial, temporal and overall cross validation of 
the ensemble model. The overall R2 of 0.81 suggest good correlation 
between ground-level PM10 and ensemble model PM10 predictions. The 
ensemble performed well temporally (R2 of 0.80) but less so spatially (R2 

of 0.48). The cross-validated performance metrics of the individual 
models compared to the ensemble model is presented in Table 2. Of the 

Fig. 2. Gauteng prediction map of AOD 470 nm for June 6, 2016.  
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three machine learning algorithms, the model performance of the 
XGBoost marginally outperformed RF and SVR. In principle, XGBoost 
sequentially optimizes weak trees to improve their performance. This 
might explain the better performance of our XGBoost model. The 
ensemble model monthly mean PM10 predictions follow the observed 
monthly mean PM10 temporal trends across the four provinces (Fig. 4). 
Fig. 5 shows the annual mean PM10 concentrations estimated at 1 km ×
1 km resolution for the four provinces. The spatial distribution of the 

annual PM10 concentrations highlights highly populated and industri
alized areas of Gauteng province. Our models identified Johannesburg, 
Soweto and areas around the Vaal Triangle as PM10 pollution hotspots in 
Gauteng province. Similarly, the Highveld areas of Secunda, Middel
burg, Kriel, eMalahleni and Hendrina emerged as PM10 pollution hot
spots in Mpumalanga province. The cities of Cape Town and Durban are 
highlighted as PM10 pollution hotspots in Western Cape and KwaZulu- 
Natal provinces respectively. The predicted concentrations of PM10 in 
Western Cape and KwaZulu-Natal provinces were lower compared to 
those in Gauteng and Mpumalanga provinces (Fig. S8). To illustrate the 
monthly variation in predicted PM10 concentrations, Fig. 6 shows sea
sonal patterns in the monthly mean PM10 concentrations for Gauteng 
province (see Supplementary Figs. S5–S7 for the monthly mean maps of 
Mpumalanga, KwaZulu-Natal and Western Cape Provinces). PM10 con
centrations were highest during the winter months from June to 
September, peaking in September. The percentage improvement of the 
models for each variables included in the Stage 2 models are ranked in 
Fig. 7. The relative importance of each predictor quantifies the amount 
of error reduced when used by the models. For ease of interpretation, the 
importance score of each predictor was standardized from 0 to 100% by 
dividing each predictor importance score by the highest importance 
score of the predictors and multiply by 100 using R package Caret. Fig. 7 
shows that the most important predictor was relative humidity, closely 
followed by CAMS_PM10. 

Fig. 3. Scatter plots between predicted and observed PM10 concentrations of the spatial, temporal and overall cross validation of the ensemble model.  

Table 2 
Cross-validated Performance Measures of the Different Stage 2 Models for 2016: 
R2 (percent of explained variability). Overall root mean squared error (RMSE in 
μg/m3), spatial and temporal R2 and RMSE are reported for the ensemble 
averaged model.  

Model CV R2 RSME 

Ensemble Total 0.81 11.4 
Spatial 0.48 20.5 
Temporal 0.80 12.3 

RF Total 0.79 12.0 
Spatial 0.34 23.3 
Temporal 0.78 12.9 

XGBOOST Total 0.81 11.4 
Spatial 0.36 23.9 
Temporal 0.78 12.7 

SVR Total 0.77 12.6 
Spatial 0.14 31.0 
Temporal 0.76 12.3  

Fig. 4. Monthly observed versus predicted PM10 means. Error bars represent standard deviation of the mean.  
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4. Discussion 

The application of AOD data to explain the variation in ground- 
monitored air pollutant has been explored in different countries 
because of its spatial coverage. In this study, about 38% of all possible 
AOD data were missing in 2016. The proportion of valid AOD data was 
high when compared to studies from the Northern Hemisphere. A Swiss 
study reported 80.2% missing AOD observation in Switzerland from 
2003 to 2013 while a range of 67%–83% missing AOD observations was 
observed in Italy during the study period of 2013–2015 (de Hoogh et al., 
2018; Stafoggia et al., 2019). The higher number of valid observations 
reported in this study was achieved due to the combination of the Aqua 
and Terra AOD products and favorable meteorological conditions in 
South Africa with fewer days, on average, with cloud cover in South 
Africa compared to Europe. The performance of the model used to 
impute missing AOD data suggested the model was able to capture about 
96% variability in AOD with negligible error metrics. Our result is 
consistent with studies that have employed a similar approach in Great 
Britain and Italy with 98% and >94% percentage of variability in AOD 
captured respectively (Schneider et al., 2020; Stafoggia et al., 2019). 
The maximum value of AOD was recorded in September of 2016 in 
South Africa. This is comparable with results from a South African study 
on the regional and local characteristics of aerosols that also observed 
maximum values of AOD between August and October from 2000 to 
2009 (Hersey et al., 2015). The high values of AOD reported during this 
period have been linked to the burning season in South Africa’s neigh
boring countries of Mozambique and Zimbabwe. Both countries have 
been identified as the major source of aerosols transported to South 

Africa. In addition, August and October also coincide with increased 
windblown dust across South Africa (Hersey et al., 2015). 

The missing 38% of AOD data, although a low percentage compared 
with other study regions, is not random, with the largest fraction of 
missing AOD data observed in the winter (June to August). The winter 
also coincides with the highest observed PM10 concentrations in the 
ground-level measurements due to increased use of fossil fuels e.g. for 
heating purpose (Hersey et al., 2015). This could potentially lead to bias 
in the predicted PM10 concentrations either over- or under-predicting. 
However, we also offered CAMS predicted PM10 which was higher 
ranked in the relative importance compared to AOD 470 nm (Fig. 7), 
which would have reduced the likelihood of potential bias in our 
estimates. 

Recently, the application of ensemble models has become more 
prominent (Di et al., 2019; Mandal et al., 2020; Shtein et al., 2019). The 
argument for the ensemble modeling approach is that by combining 
individual model estimates the individual biases of the different statis
tical models can be reduced. In this study we applied an ensemble 
approach using a generalized linear model to combine three models; RF, 
XGBoost and SVR. The overall CV R2 of 0.81 of the ensemble model was 
within the range of 0.71–0.81 reported by the two Italian studies for the 
years 2006–2012 and years 2013–2015, and substantially higher than 
the R2 of 0.64 reported in Sweden (Shtein et al., 2019; Stafoggia et al., 
2020; Stafoggia et al., 2017). Like the suboptimal performance of our 
model (spatial R2 of 0.48 in hold-out sites), the model fit (total R2) of the 
Swedish study reduced to 0.50 in hold-out sites. The strong decrease in 
our model performance in space is possibly due to the limited number 
and the uneven distribution of the monitoring sites. The monitoring sites 

Fig. 5. Annual mean PM10 concentrations (μg/m3) for 2016 at 1 km × 1 km grid cells aggregated from daily estimates.  
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Fig. 6. Gauteng Province estimated monthly mean PM10 concentrations (μg/m3) for 2016 at 1 km × 1 km grid cells aggregated from daily estimates.  

Fig. 7. Relative importance (scale from 0 to 100%) of the top 20 predictors from the individual models in Stage 2.  
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are located in high pollution priority areas and this might not be suffi
cient to capture the variation in PM10 concentrations beyond the spatial 
domains of the monitoring sites. In addition, due to lack of availability 
we may have missed important predictor variables to characterize PM10 
concentrations in South Africa, for example, detailed emission data. 
Despite this, the geographical variation of the estimated PM10 concen
trations aligns with the spatial pattern of PM10 concentrations presented 
in our previous study on the spatial and temporal characteristics of PM10 
data. The potential to use AOD data to explain the variation of air 
pollution at ground level is dependent on its relationship with 
ground-monitored measurements. In this study, AOD did not emerge as 
a strong variable for explaining the variation in PM10 concentrations in 
South Africa. Hersey et al., (2015) also reported a poor correlation be
tween PM2.5 and PM10 and AOD in South Africa. The persistent and 
frequent dilution of South Africa’s vertical column with plumes from 
biomass burning emissions from the tropics at stable layers between 3 
and 5 km above the majority of South Africa has been posited for the 
poor correlation between AOD and ground-level PM (Campbell et al., 
2003; Chand et al., 2009; Hersey et al., 2015; Tyson et al., 1996). 
Another reason is the likely inability of the satellite retrievals to 
differentiate between ground surface aerosol and concentrated aerosol 
layers from emissions released to the shallow boundary layer, related to 
geographical features, during the winter season in South Africa. Lastly, 
particulate matter concentrations in South Africa are influenced by 
morning and evening air pollution peak times. These peak times do not 
correspond to the different overpass times of the satellites in South Af
rica (Hersey et al., 2015). 

Nonetheless, in the four provinces included in this study, the areas 
around the economic and industrial cities of these provinces recorded 
the highest PM10 concentrations estimates. The estimated annual mean 
PM10 concentration maps of the four provinces also suggest that con
centrations in large parts of the Gauteng province are higher than WHO 
annual PM10 guideline of 15 μg/m3 (World Health Organization, 2021). 
This is not surprising given that the Gauteng conurbation is the most 
densely populated province in South Africa with the highest density of 
anthropogenic emissions from all sources. Furthermore, we previously 
reported higher levels of PM10 concentrations in Gauteng province 
monitoring stations compared to the other three provinces (Arowosegbe 
et al., 2021a). A similar pattern was also reported for PM2.5 by Zhang 
and colleagues (Zhang et al., 2021) showing high modelled PM2.5 con
centrations in Northern and Southern Gauteng of the Highveld region of 
South Africa. The models identified the PM10 pollution hotspots around 
the mining activities of Mpumalanga province, Southern Durban Basin 
industrial Basin of KwaZulu-Natal and Cape Town Metropolitan of 
Western Cape province. To demonstrate the seasonal pattern captured 
by our models, we found an increase in PM10 concentrations between 
May and September. This overlaps with the winter months when there is 
an increase in anthropogenic emissions due to increased use of coal for 
domestic and industrial purposes and the formation of surface inversion 
layers preventing the atmospheric mixing mechanism for the dispersion 
of pollutants (Hersey et al., 2015). 

The ensemble approach used in this study performed well in char
acterizing PM10 concentrations across the four selected provinces of 
South Africa. However, we acknowledge the limited number of moni
toring stations and ground-monitored PM10 data to calibrate these 
models. In addition, the distribution of the sparse monitoring stations 
impacted the stability of the models. The availability of emission data 
could have improved the performance of our models. 

5. Conclusions 

High quality air pollution exposure data to support health studies is 
lacking in many LMICs. With sparse air pollution monitoring data, we 
have shown - for the first time - that is possible to estimate daily PM10 
concentrations for a whole year across four provinces of South Africa by 
leveraging remote sensing and novel spatiotemporal modeling 

approaches. Our spatiotemporal model was successful in capturing the 
day to day temporal variation, but was less efficient in characterizing the 
spatial contrast of PM10. In particular, the chemical transport model 
variable, CAMS PM10, was a highly influential predictor, and in our case 
more important than the satellite–derived variable MAIAC AOD. These 
variables should be considered as crucial predictors when modeling air 
pollution concentration in areas with limited ground monitoring net
works. The potential of spatiotemporal models presented here, however, 
remains largely dependent on good air quality monitoring data as 
demonstrated by our study results. Therefore, efforts to improve air 
quality monitoring in SSA and other LMICs should be encouraged and 
supported to enable derivation of exposure data in these challenging 
settings. 
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Arowosegbe, O.O., Röösli, M., Künzli, N., Saucy, A., Adebayo-Ojo, T.C., Jeebhay, M.F., 
Dalvie, M.A., de Hoogh, K., 2021b. Comparing methods to impute missing daily 

O.O. Arowosegbe et al.                                                                                                                                                                                                                        

https://doi.org/10.1016/j.envpol.2022.119883
https://doi.org/10.1016/j.envpol.2022.119883
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref1
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref1
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref1
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref1
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref2
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref2
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref3
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref3
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref4
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref4
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref4
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref5
http://refhub.elsevier.com/S0269-7491(22)01097-1/sref5


Environmental Pollution 310 (2022) 119883

10

ground-level PM10 concentrations between 2010–2017 in South Africa. Int. J. 
Environ. Res. Publ. Health 18, 3374. 

Bertazzon, S., Johnson, M., Eccles, K., Kaplan, G.G., 2015. Accounting for spatial effects 
in land use regression for urban air pollution modeling. Spatial and spatio-temporal 
epidemiology 14, 9–21. 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. 
Campbell, J.R., Welton, E.J., Spinhirne, J.D., Ji, Q., Tsay, S.C., Piketh, S.J., 

Barenbrug, M., Holben, B.N., 2003. Micropulse lidar observations of tropospheric 
aerosols over northeastern South Africa during the ARREX and SAFARI 2000 dry 
season experiments. J. Geophys. Res. Atmos. 108. 

Chand, D., Wood, R., Anderson, T., Satheesh, S., Charlson, R., 2009. Satellite-derived 
direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci. 2, 181–184. 

Chen, T., Guestrin, C., 2016. Xgboost: a scalable tree boosting system. In: Proceedings of 
the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data 
Mining, pp. 785–794. 

R Core Team, 2018. 2018 R: A language and environment for statistical computing, 
2018. In: R Foundation for Statistical Computing. R.C.T., Vienna, Austria. Austria.  

de Hoogh, K., Gulliver, J., van Donkelaar, A., Martin, R.V., Marshall, J.D., Bechle, M.J., 
Cesaroni, G., Pradas, M.C., Dedele, A., Eeftens, M., 2016. Development of West- 
European PM2. 5 and NO2 land use regression models incorporating satellite- 
derived and chemical transport modelling data. Environ. Res. 151, 1–10. 
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