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Abstract 

Background:  Semi-field experiments with human landing catch (HLC) measure as the outcome are an important 
step in the development of novel vector control interventions against outdoor transmission of malaria since they 
provide good estimates of personal protection. However, it is often infeasible to determine whether the reduction in 
HLC counts is due to mosquito mortality or repellency, especially considering that spatial repellents based on volatile 
pyrethroids might induce both. Due to the vastly different impact of repellency and mortality on transmission, the 
community-level impact of spatial repellents can not be estimated from such semi-field experiments.

Methods:  We present a new stochastic model that is able to estimate for any product inhibiting outdoor biting, 
its repelling effect versus its killing and disarming (preventing host-seeking until the next night) effects, based only 
on time-stratified HLC data from controlled semi-field experiments. For parameter inference, a Bayesian hierarchical 
model is used to account for nightly variation of semi-field experimental conditions. We estimate the impact of the 
products on the vectorial capacity of the given Anopheles species using an existing mathematical model. With this 
methodology, we analysed data from recent semi-field studies in Kenya and Tanzania on the impact of transfluthrin-
treated eave ribbons, the odour-baited Suna trap and their combination (push–pull system) on HLC of Anopheles 
arabiensis in the peridomestic area.

Results:  Complementing previous analyses of personal protection, we found that the transfluthrin-treated eave 
ribbons act mainly by killing or disarming mosquitoes. Depending on the actual ratio of disarming  versus killing, the 
vectorial capacity of An. arabiensis is reduced by 41 to 96% at 70% coverage with the transfluthrin-treated eave rib-
bons and by 38 to 82% at the same coverage with the push–pull system, under the assumption of a similar impact on 
biting indoors compared to outdoors.

Conclusions:  The results of this analysis of semi-field data suggest that transfluthrin-treated eave ribbons are a promis-
ing tool against malaria transmission by An. arabiensis in the peridomestic area, since they provide both personal and 
community protection. Our modelling framework can estimate the community-level impact of any tool intervening 
during the mosquito host-seeking state using data from only semi-field experiments with time-stratified HLC.
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Introduction
Although malaria transmission has decreased substan-
tially since 2000, primarily due to the use of insecti-
cide-treated nets (ITNs), the incidence of clinical cases 
has plateaued in the last few years. Despite room for 
improvement in coverage, it is evident that residual 
transmission will persist since not all malaria transmis-
sion can be stopped by ITNs and indoor residual spraying 
(IRS) [2]. New vector control tools against residual trans-
mission need to be invented, developed, evaluated and 
selected [3]. There is growing evidence that a substantial 
part of residual malaria transmission occurs outdoors 
[4–7] and in the evening as well as mornings [8]. A large 
focus of human outdoor activities during mosquito biting 
times is the peridomestic area [9, 10], which we define as 
the space near houses, usually within 10 m, where house-
hold members spend time before going indoors to sleep. 
Spatial repellents are a promising tool to target the peri-
domestic area and other confined outdoor spaces, espe-
cially in view of costs and minimal requirement of user 
compliance [11]. Volatile pyrethroids impregnated into 
hessian fabric [12–14] and recently applied as eave rib-
bons [15, 16] have shown particular promise.

Depending on the active ingredients and the dosage of 
spatial repellents, different modes of action are known 
[17, 18], with very different impacts on malaria transmis-
sion. We categorise the modes of action into the follow-
ing effects:

•	 Repellency, here defined as inhibiting landing on a 
protected host but otherwise not affecting the mos-
quito and potentially increasing biting of unprotected 
hosts, which provides only personal protection;

•	 Disarming, here defined as inhibiting host-seeking 
behaviour until the next night without killing the 
mosquito, which provides both personal and com-
munity protection;

•	 Killing before biting, which provides both personal 
and community protection; and

•	 Killing after biting, which provides only community 
protection.

An important drawback of spatial repellents with a repel-
ling effect is that mosquitoes might be pushed towards 
unprotected hosts, thereby increasing their biting risk 
[19]. Therefore, spatial repellents may be combined with 
odour-baited traps [20] to form a push–pull system, 
with the goal of diverting mosquitoes to a trap to kill 
them instead of diverting them to another host. Earlier 
studies found a significant reduction of house-entry by 
push–pull systems compared to push–only systems [21, 
22], while studies focusing on outdoor biting found that 
the push–pull system was only marginally more effective 

than [23] or equally effective [24] as the corresponding 
push formulations in reducing outdoor transmission. 
Recently, a large semi-field study in Kenya and Tanza-
nia identified and tested candidate spatial repellents, 
odour-baited traps and combined push–pull systems 
targeting outdoor transmission in the peridomestic area. 
The Kenyan data showed a strong reduction of outdoor 
HLC counts by the transfluthrin-treated eave-ribbons, a 
more moderate reduction by the push–pull system and 
no effect of the Suna trap baited with the human odour 
mimic ‘Mbita blend 5’ (MB5) and carbon dioxide [16].

Semi-field experiments in screen houses are an impor-
tant step in the product development of spatial repel-
lents and other tools targeting outdoor transmission. 
They allow experiments to be conducted with freely fly-
ing insectary-reared mosquitoes that are disease free 
and safe to human volunteers conducting human landing 
catches (HLC). Such experiments provide good estimates 
of user-level impact via the relative reduction of HLC 
counts (‘protective efficacy’). Unfortunately, it is difficult 
to distinguish different modes of action in such semi-field 
experiments, since all modes manifest in a reduction of 
HLC counts while it is often not feasible to recapture 
the mosquitoes—dead or alive—that were not caught by 
HLC. However, to quantify the community-level impact 
of a given product on malaria transmission it is necessary 
to know its effect(s) in terms of repellency, disarming and 
killing both before and after biting. In an extreme case, it 
may happen that in a semi-field experiment a tool X with 
high repelling but low killing effect shows higher protec-
tive efficacy than a tool Y with high killing effect, while 
in the field, tool Y would reduce outdoor transmission 
much more than tool X.

Here, we present a new stochastic model for semi-field 
experiments with HLC that is able to estimate the differ-
entiated effect of spatial repellents in terms of repellency 
on one hand, and disarming or killing on the other hand, 
based on time-stratified HLC data only. This mechanis-
tic modelling approach is needed because a purely sta-
tistical model applied to the semi-field data would only 
estimate the reduction of biting on the user of the inter-
vention during 12 h and fail to accurately estimate the 
effect of the intervention on vectorial capacity, which 
also includes the community effect due to the disarming 
and the increased mortality of the mosquito population. 
Odour-baited traps are included in the model to allow 
for analysis of push–pull experiments. This stochastic 
model is based on parts of the deterministic ‘malaria in 
mosquito’ model [25], which is then used to predict the 
community-level impact (vectorial capacity) of the tested 
tool based on the differentiated effect estimates obtained 
from the stochastic model. Hierarchical Bayesian model-
ling is used to account for night-specific variability, and 
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credible intervals are used to quantify estimation uncer-
tainty. For dengue vector control, a similar modelling 
approach was pursued by ten Bosch et al. [26] to predict 
the effect on transmission of spatial repellents tested 
in semi-field experiments, with the advantage that the 
experimental design focusing on house entry of Aedes 
mosquitoes allowed for direct measures of mortality dur-
ing the host-seeking state.

We use this model, to predict the community-level 
impact of insecticide-treated eave ribbons, the Suna trap 
and their combination (push–pull) by incorporating both 
bite prevention and mosquitocidal effects estimated from 
recent semi-field studies in Kenya and Tanzania [16]. This 
complements the analysis carried out in that study [16] 
which focused on user-level impact. With this modelling 
framework we hope to help accelerate product develop-
ment by providing estimates of community-level impact 
in the early stage of semi-field experiments.

Methods
Semi‑field experiments
We briefly describe the semi-field experiments with 
time-stratified HLC as conducted in Kenya and Tanzania 
in order to assess spatial repellents (push), odour-baited 
traps (pull) and their combination (push–pull); for more 
details see [16].

Interventions
The spatial repellent consisted of hessian strips (roughly 
woven sisal fabric) impregnated with 2.5  g transfluthrin 
per square meter as described in [12, 13] and placed at 
the eaves of the experimental hut as described in [15]. 
Throughout this article we refer to this specific interven-
tion as the ‘spatial repellent’, denoted as ‘R’. The odour-
baited trap consisted of the Suna trap [27], baited with 
a cartridge containing the human odour mimic MB5 
[28, 29] and with carbon dioxide produced by yeast and 
molasses fermentation [30]. Throughout this article we 
refer to this specific intervention as ‘trap’, denoted with 
‘T’. The combination of trap (‘pull’) and spatial repellent 
(‘push’) is called a ‘push–pull’ system, referred to with the 
letter ‘P’.

Experimental sites
The semi-field experiments were conducted at the Inter-
national Centre of Insect Physiology and Ecology (icipe) 
campus in Mbita, Kenya, and at the Ifakara Health Insti-
tute (IHI) campus in Bagamoyo, Tanzania. Mbita (0°41′N, 
34°19′E; 1150 m a.s.l.) lies in western Kenya at the shores 
of Lake Victoria, and Bagamoyo (6°26′S, 38°54′E; 8 m 
a.s.l.) lies on the Tanzanian coast. Parallel treatment 
and control experiments were carried out at two large 
semi-field sites (screen houses; 27 × 11 m, 4.4 m high) 

in each location. The ground of the screen houses was 
cleared of vegetation to avoid sugar feeding, and spiders 
were removed. Inside the screen house an unoccupied 
experimental hut was positioned at about one-third of 
the length of the screen house. The volunteer conduct-
ing HLC was positioned 2.5 m from the hut and the trap 
positioned 5 m from the hut, both towards the center of 
the screen house.

Mosquitoes
All experiments were conducted with the Mbita strain of 
Anopheles arabiensis mosquitoes, which shows moderate 
resistance to pyrethroids (around 92% mortality in the 
World Health Organisation cone bioassays). Mosquitoes 
used in the experiments were reared in insectaries, were 
aged 3–5 days, never had a blood meal prior to the exper-
iment and were starved prior to the experiment.

Experimental design
All interventions—spatial repellent (R), trap (T) and 
push–pull (P)—were tested in 16 replicates (nights), 
each with its own control consisting of the same device 
with active ingredients removed. The experiments were 
fully blinded and volunteer as well as screen house were 
randomised. At the start of the experiment at 7:00 pm, 
a total of 160 An.  arabiensis mosquitoes are released 
from four cups placed at the corners of the screen house. 
The release number was later corrected by the number 
of mosquitoes (dead or alive) found in the release cup 
at the end of the experiment. Time-stratified HLC was 
conducted during hours 0–1, 1–2 and 2–3, as counted 
from the start of the experiment, as well as again during 
hours 11.5–12 the following morning in order to remove 
all remaining mosquitoes from the screen house. For the 
trap experiments, the number of trap catches was evalu-
ated after 3 and 12 h, while for the push–pull experi-
ments trap catches were only measured after 3 h. When 
the cumulative HLC count in the control experiment was 
less than half of the release number, then all experiments 
of that night were discarded and repeated. For the experi-
ments run in Bagamoyo, HLC was conducted during 
hours 0–1, 1–2, 2–3 and 3–4, and the mosquitoes caught 
with HLC were kept in the insectary for 12 h after the end 
of the semi-field experiment in order to measure delayed 
mortality. An example of the collected data for one repli-
cate of push–pull with control is shown in Table 1.

Overview of modelling methodology
An overview of the modelling methodology is shown in 
Fig.  1, including an introduction to the existing deter-
ministic ‘malaria in mosquito’ model.
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Deterministic ‘malaria in mosquito’ model
We base our modelling framework on a determinis-
tic, discrete-time model of the ‘dynamics of malaria in 
a mosquito population feeding on, infecting and getting 
infected from a heterogeneous population of hosts’ [25]. 
This model couples the mosquito feeding cycle with the 
dynamics of infections with malaria in mosquitoes and 
allows us to compute entomological endpoints, such as 
the vectorial capacity and the entomological inoculation 
rate (EIR), as a function of parameters describing the vec-
tor bionomics, the host population and the vector control 
interventions. The model [25] is linked to an individ-
ual-based stochastic model of malaria in humans in the 
simulation platform OpenMalaria [31, 32], which is not 
used here but which will prospectively allow us to pre-
dict effects on clinical incidence of malaria for the given 
interventions.

The mosquito feeding cycle in this deterministic model 
[25] consists of the five states listed in Table 2, each with 
a fixed duration.

In each state, a proportion of the mosquitoes move to 
the next state and the rest die, with exception of state A 
of duration 1 day, which can be repeated multiple times. 
All mosquitoes in state A start host seeking at the begin-
ning of the night and encounter a host with host type-
specific availability rates or die at a constant per capita 
rate. Host types are indexed by i and could, for example, 
consist of humans protected and unprotected by a spe-
cific vector control intervention. We define ‘encounter-
ing’ as a commitment to either feed on a particular host 
type or die, and mosquitoes that are deterred but not 
killed are therefore considered to always have remained 
in the host-seeking state. If at the end of the night (of 
duration θd ), they have neither encountered a host nor 
died, they remain in the host-seeking state until the next 
night. For each host type there is a distinct cycle with dis-
tinct transition probabilities, in which a mosquito stays 
after encountering a host until it reaches state A again or 
dies, as illustrated in Fig. 2a. The model does not distin-
guish between indoor and outdoor biting explicitly, and 
represents the weighted average over both indoor and 
outdoor biting.

Modelling vector control interventions
Vector control interventions are modelled by introducing 
a separate host type for the hosts protected by the inter-
vention, with transition probabilities altered according to 
the intervention effect. How transition probabilities are 
altered by interventions intervening in the host-seeking 
state is captured by the parameters listed in the last col-
umn of Table  2. The coverage level of a given interven-
tion is implemented by the number of hosts of the host 
type protected by the intervention. In contrast to this, we 
implement traps by adding for each trap a dummy host 
that kills all mosquitoes after encountering, parameter-
ised solely by the relative availability of a trap compared 
to an unprotected human host.

To incorporate the killing and disarming effects of an 
intervention we add for every protected human host a 
’shadow host’ that is unable to contract and transmit 
malaria, equipped with an availability rate correspond-
ing to the killing/disarming effect of the intervention. To 
model killing we set the proportion of mosquitoes that 
die after encountering a shadow host to 1. To model dis-
arming (here defined as inhibiting host-seeking behav-
iour until the next night, without killing the mosquito) 
we add the proportion of mosquitoes encountering a 
shadow host to the proportion of mosquitoes staying 
in host-seeking state A and otherwise do not consider 
shadow hosts in the feeding cycle. Modelling inhibition 
of host-seeking behaviour for multiple days is addressed 
in Additional file 1: Appendix E.

To parameterise a given intervention from semi-field 
experimental data we developed two novel stochastic 
models: The stochastic semi-field system (SFS) model for 
HLC data corresponds to the deterministic continuous-
time model for state A of the feeding cycle in the model 
[25] and is developed in four steps in the following sec-
tion. Apart from intervention parameterisation, this 
model also provides estimates of baseline parameters of 
the semi-field system to better understand the dynam-
ics of the semi-field experiments as such. All param-
eters of this model are fitted to data from the semi-field 
experiments conducted in Mbita. The stochastic delayed 
mortality model for delayed mortality in mosquitoes col-
lected by HLC corresponds to the deterministic model 

Table 1  Example of semi-field data for one night

HLC, Human landing catch

n denotes the number of mosquitoes who left the release cups; xH1 , xH2 , xH3 and xH4 denote the number of mosquitoes caught in HLC periods 1, 2, 3 and 4, 
respectively; xT denotes the number of mosquitoes caught in the trap (T); xL denotes the number of mosquitoes lost to follow-up throughout the night

Experimental setting n xH1 xH2 xH3 xH4 xT xL

Control 158 52 15 14 1 0 70

Intervention 145 21 10 12 8 1 93
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for state C of the feeding cycle in the model [25] and is 
described in a separate section. All parameters of this 
model are fitted to data collected from Bagamoyo.

Model for experiments in semi‑field system with HLC data
Continuous‑time Markov model for host‑seeking behaviour 
of individual mosquitoes
We develop a stochastic process for the host-seeking 
behaviour of a single mosquito which corresponds to 
the deterministic ordinary differential equation (ODE) 
model for the population level dynamics in state A of 
the feeding cycle in [25]. A stochastic process model has 

the advantage that the stochasticity is built in the behav-
iour of each single mosquito, while a statistical model 
for fitting the existing ODE model to data would need to 
impose assumptions on the probability distribution of the 
data. The chosen continuous-time Markov chain model 
is the simplest stochastic process that recovers the exist-
ing ODE model in the mean. The notation agrees largely 
with the one in [25], but we omit state B, which is difficult 
to observe in semi-field experiments with outdoor HLC. 
The new notation is introduced in the main text and also 
displayed in Tables 3, 4 and 5.

Fig. 1  Overview of modelling methodology with the two novel models ‘stochastic SFS model’ and ‘stochastic delayed mortality model’

Table 2  States of the mosquito feeding cycle in the deterministic model [25]

The index i represents specific host types; for example, ‘unprotected humans’ and ‘humans protected by some intervention’

The last column lists the parameters describing the effect of vector control interventions on the corresponding stage of the feeding cycle

State Description Intervention parameterisation

A Host seeking Repelling effect ( π ), killing/disarming effect 
during host seeking state ( κ ), relative trap avail-
ability ( ρ)

Bi Encountered host of type i –

Ci Fed on host of type i Postprandial killing effect ( ξ)

Di Resting after having fed on host of type i –

Ei Ovipositing after having fed on host of type i –
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For a given experimental night k ∈ {1, . . . , 16} , a mos-
quito starts in host-seeking state (A) at the beginning of 
the experiment and can move to one of the three absorb-
ing states, namely HLC (H), trap (T) or death/disarmed 
(M) at any time during the experiment. Note that death 
cannot be distinguished from being disarmed until the 
end of the night in the present experiment as either end-
points make the mosquito unresponsive to the HLC. 
Hence, both endpoints are combined into one definitive 
state. We assume that the probabilities 
PH(h),PT(h),PM(h) to move to the respective states 
within a short time h can be approximated linearly in 
time h with constant rates αHk

 , αTk
 and µk , respectively. 

These assumptions uniquely define a time-homogeneous, 
continuous-time Markov chain X(t) on the finite state 
space {A,H, T,M} with probabilities PA(t) to stay in A, 

PH(t) to move to H, PT(t) to move to T and PM(t) to 
move to M within any time t, as illustrated in Fig.  2b. 
When plugging in the maximal host seeking duration per 
day for t, these probabilities correspond to the propor-
tions in the deterministic model [25]. Alternatively, this 
stochastic process can be characterised as leaving state A 
with a negative exponentially distributed waiting time 
with mean (αHk

+ αTk
+ µk)

−1 , and then picking one of 
the states H, T or M with probability 

αHk
αHk

+αTk
+µk

,
αTk

αHk
+αTk

+µk
 or µk

αHk
+αTk

+µk
 , respectively. 

Elaboration of the Markov model including the equations 
for the probabilities PA(t),PH(t),PT(t) and PM(t) are 
provided in Additional file 1: Appendix A. For a situation 
without trap, the probability PH(t) of a mosquito to get 
caught by HLC is essentially determined by the human 
availability rate αHk

 controlling the speed of increase and 

a b

Fig. 2  Schematics for mosquito feeding model. a The deterministic mosquito feeding cycle according to the model described in [25]. (Model is 
reproduced here with permission [25]; notations are provided in Table 2). Mosquitoes emerge from breeding sites and survive to the host-seeking 
state (A) at rate Nv0 . From among all mosquitoes in the host-seeking state (A), a proportion PAi encounter a host of type i ( Bi ). For all available host 
types indexed with i, a proportion PA stay in state A and a proportion PAµ die. Depending on the host type encountered, the mosquitoes follow 
distinct cycles until they reach state A again or die. Of all mosquitoes in state Bi , a proportion PBi successfully feed on a host of type i ( Ci ) and a 
proportion PBiµ die ( PBiµ = 1− PBi ). Of all mosquitoes in state Ci , a proportion PCi move to the ‘resting state after having fed on a host of type i’ ( Di ) 
and a proportion PCiµ die ( PCiµ = 1− PCi ). Of all mosquitoes in state Di , a proportion PDi

 move to the ‘ovipositing state after having fed on a host 
of type i’ ( Ei ) and a proportion PDiµ die (PDiµ = 1− PDi

 ). Of all mosquitoes in state Ei , a proportion PDi
 find a ovipositing site, lay eggs and return to 

the host-seeking state (A) and a proportion PEiµ die ( PEiµ = 1− PEi ). b Continuous-time Markov model for the behaviour of an individual mosquito 
in the host-seeking state (A) of a feeding cycle with three host types. A, H, T and M represent the states of host seeking, HLC, trap catch and death, 
respectively. PA(t), PH(t), PT(t) and PM(t) represent the probabilities to move within a time window of duration t from state A to state A, H, T and M, 
respectively. It is assumed that these probabilities are independent of how long the mosquito has already stayed in state A before the given time 
window (Markov property)
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by the mosquito mortality/disarming rate µk controlling 
how quickly it plateaus, as illustrated in Fig. 3.

Due to the time-homogeneity of the model, the prob-
ability that a given transition occurs between two time 
points only depends on the duration between the two 
time points, and not on their external clock time. Con-
sequently, the probability to stay in state A until at least 
time t1 and to then move to state H until at most time 
t2 ≥ t1 is given by

and analogously for states A, T or M instead of H. Hence, 
we also have

Multinomial likelihood for semi‑field experiments 
over a single night
We denote the experimental data of a given night k by 
Dk = (xH1, xH2, xH3, xH4, xT, xL) (see Table  1 for nota-
tion). Our probability model assumes that all mosqui-
toes released during a single night in the same screen 
house behave independently and that all follow the same 
Markov model. As a consequence, Dk follows a multi-
nomial distribution, and we denote the corresponding 
probabilities with pH1 , pH2 , pH3 , pH4 , pT and pL . These 
probabilities are given in terms of the probabilities of the 
Markov model, with time measured in hours, by use of 

(1)
P[X(t) = A for 0 ≤ t ≤ t1,X(t2) = H] = PA(t1)PH(t2 − t1),

(2)PA(lt) = PA(t)
l for any number l > 0 .

Eqs. (1) and (2) as well as the requirement that they must 
sum up to 1:

The link between the probabilities with lowercase p 
(multinomial model) and uppercase P (Markov model) 

(3)

pH1 = PH(1)

pH2 = PA(1)PH(1)

pH3 = PA(1)
2PH(1)

pH4 = PA(1)
3PH(9)

pT = PT(12)

pL = 1− PH(1)(1+ PA(1)+ PA(1)
2)− PA(1)

3PH(9)− PT(12).

Table 3  Notation for semi-field data and semi-field model

Symbol Description Unit

C Wildcard for control arm of any experiment

Wildcard for intervention arm of any experiment

n Number of mosquitoes released at the beginning of the experimental night Dimensionless

xH1, xH2, xH3 and xH4 Number of mosquitoes caught in HLC period 1, 2, 3 and 4, respectively Dimensionless

xT Number of mosquitoes caught in the trap at the end of the experiment Dimensionless

xL Number of mosquitoes lost to follow-up at the end of the experiment Dimensionless

k Index for night k ∈ {1, . . . , 16}

Dk , Dk [I] or Dk [C] Data (xH1, xH2, xH3, xH4, xT, xL) from night k of unspecified, control or intervention arm, respectively Dimensionless vector

D, D[I] or D[C] Collection of Dk , Dk [I] or Dk [C] over all available nights k of respective arm Dimensionless vector

t Time Hour

PA(t) Probability to stay in host seeking state ( A ) within time t Probability

PH(t) Probability to get caught by HLC (move from A to H ) within time t Probability

PT(t) Probability to get caught in the trap (move from A to T ) within time t Probability

PM(t) Probability to die (move from A to M ) within time t; PM(θd) corresponds to PAµ in Fig. 2a Probability

pH1, pH2, pH3, pH4 Probability for a mosquito to get caught in HLC period 1, 2, 3 or 4, respectively Probability

pT Probability for a mosquito to get caught in the trap Probability

pL Probability for a mosquito to be lost to follow-up throughout the semi-field experiment, irrespective 
of being dead or alive.

Probability

pr Logarithm of probability density function Log-density

Table 4  Dependent parameters of semi-field model

Parameters may be equipped with [C] or [I] to denote a control or intervention 
arm, respectively, to which they are fitted

k is the index for a given night, as defined in Table 3

Symbol Description Unit

αHk
Human availability rate in night k h−1

αTk Trap availability rate in night k h−1

µk Mosquito mortality or disarming rate in night k h−1

αH Mean human availability rate over all nights h−1

αT Mean trap availabitrap availability rate acts as an 
additional lity rate over all nights

h−1

µ Mean mosquito mortality or disarming rate over all 
nights

h−1
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is shown in Fig. 4. Note that the fourth HLC period was 
actually from hour 11.5 to 12, but is used as a proxy for 
HLC measured from hour 3 to 12.

Hence, the log-likelihood function for the semi-field 
model of a single night in terms of the rates αHk

,αTk
,µk , 

given data Dk , is

where c represents some constant and the probabilities 
are functions of the rates via Eq. (3) and the Markov 
model.

The likelihood function (Eq.  4) allows us to infer the 
shape of the expected HLC count curve (solid curves in 
Fig. 3) and hence to estimate the underlying parameters, 
including mortality or disarming, from time-stratified 
HLC data, despite a complete lack of direct experimental 
measurements. With only cumulative HLC counts over 
the night, we could not infer the availability and mortal-
ity/disarming rate, as illustrated in Fig. 3 with two differ-
ent sets of parameters leading to the same expectation of 
cumulative HLC counts after 12 h.

Intervention parameterisation
The model described in Eq. (4) can be fitted to control and 
intervention experiments of a given night k separately, 
yielding control parameters (αHk

[C],αTk
[C],µk [C]) 

and treatment parameters (αHk
[I],αTk

[I],µk [I]) . Even 
if the absolute values of these control and intervention 
parameters are unrealistic for field situations, a good 
metric for the difference between control and interven-
tion parameters might be reasonably consistent between 
semi-field and field situations. Here, we introduce a set of 

(4)l1(αHk
,αTk

,µk |Dk) = c + xH1 log(pH1)+ xH2 log(pH2)+ xH3 log(pH3)+ xH4 log(pH4)

+ xT log(pT)+ (n− xH1 − xH2 − xH3 − xH4 − xT) log(pL),

parameters capturing the difference between the control 
and intervention parameters in order to parameterise the 
intervention and, ultimately, predict the effect in a field 
situations.

Repellency  To estimate repellency of a given interven-

tion we take the relative reduction of the human availabil-
ity rate:

The reduction in availability can be due to diversion, 
masking human odours, confusing or some combination 
of these. Repellency is characterised by π ∈ (0, 1] , while a 
tool with π < 0 would increase the attractiveness of the 
human host.

Killing and/or  disarming effect during  host‑seeking 
state  To estimate the killing and/or disarming effect 
during the host-seeking state (referred to as the killing/
disarming effect in the following text) of the given inter-
vention, we take the difference of the mosquito mortality/
disarming rates divided by the human availability in the 
control:

Negative values for κ would indicate an increase in mos-
quito survival and are excluded due to requirements of 

(5)π = 1−
αHk

[I]

αHk
[C] ∈ (−∞, 1].

(6)κ =

µk [I]−µk [C]
αHk

[C] ≥ 0.

Table 5  Independent parameters of semi-field model

k is the index for a given night, as defined in Table 3

Symbol Description Unit Prior

a Mean of log(αHk
) log(h−1) N (0, 6)

b Mean of log(αTk ) log(h−1) N (0, 6)

m Mean of log(µk) log(h−1) N (0, 6)

σa Standard deviation of log(αHk
) log(h−1) Half-Cauchy(0, 1)

σb Standard deviation of log(αTk ) log(h−1) Half-Cauchy(0, 1)

σm Standard deviation of log(µk) log(h−1) Half-Cauchy(0, 1)

φk Normalised deviation of log(αHk
) from log(αH) Dimensionless N (0, 1)

ηk Normalised deviation of log(αTk ) from log(αT) Dimensionless N (0, 1)

ψk Normalised deviation of log(µk) from log(µ) Dimensionless N (0, 1)

π Repellency parameter Dimensionless (1−π) ∼ Lognormal(0, 5)

κ Killing/disarming parameter Dimensionless Lognormal(0, 5)

ρ Relative availability of trap Dimensionless Lognormal(0, 5)
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the malaria simulation platform OpenMalaria [31], nev-
ertheless they were allowed in the fitting procedure.

Note that an intervention with either π < 0 or κ < 0 
may still reduce host-biting if it entails at the same time 
a strong killing/disarming effect or a strong repelling 
effect, respectively. Even an intervention with no direct 
mortality effect, i.e. κ = 0 , but with a repelling effect, i.e. 
π > 0 , will lower the mean mosquito life span, since in 
each feeding cycle the mosquitoes will spend more time 
in the host-seeking state where the mortality rate is usu-
ally higher than the average mortality rate over the other 
states.

Relative trap availability  To estimate the availability of 
a trap we take the ratio of the trap availability rate over the 
human availability in the control:

If as many mosquitoes would be caught by a trap as 
would encounter a human, then this trap would be 
characterised by ρ = 1 . We ignore potential interaction 
effects of the traps with the human availability rate or 
the mosquito mortality/disarming rate. An intervention 
consisting of a trap with ρ > 0 and otherwise no repelling 
or killing/disarming component, i.e. π = κ = 0 , reduces 

(7)ρ =

αTk
[I]

αHk
[C] ∈ [0,∞).

host biting since the trap availability rate acts as an addi-
tional mortality rate.

We can now give the joint log-likelihood for interven-
tion data Dk [I] and control data Dk [C] for any interven-
tion in terms of the intervention parameters π , κ and ρ:

where the first term on the right-hand side represents 
the control and the second term represents the interven-
tion arm of the experiment. The parameters αHk

 and µk 
represent the control rates, but we omit the usual [C] for 
notational convenience and since replicating the model 
over multiple nights with night-specific rates but con-
stant intervention parameters will make αHk

 and µk also 
depend on the intervention experiment. It is necessary 
to include αTk

[C] in the analysis of the control arm since 
unbaited control traps occasionally catch mosquitoes.

There are other possible metrics for the difference 
between control and intervention parameters; we chose 
metrics that are consistent with requirement of the 
malaria simulation platform OpenMalaria [31].

(8)
l2(π , κ , ρ,αHk

,αTk
,µk |Dk [I],Dk [C])

= l1(αHk
,αTk

,µk |Dk [C])+ l1((1− π)

αHk
, ραHk

,µk + καHk
|Dk [I]),

Fig. 3  Made-up examples of host-seeking behaviour model without 
trap for three situations: high availability rate and low mortality 
rate (black), low availability and low mortality rate (dark grey), high 
availability and high mortality (light grey). The solid curves represent 
the probability PH(t) to get caught by HLC, the dashed curves 
represent the probability PM(t) to die and the dotted curves represent 
the probability PA(t) to be in the host-seeking state. All curves can 
also be interpreted as the corresponding expected cumulative count 
for 160 independent mosquitoes being released. The first situation 
(black) could be interpreted as host seeking on an unprotected host; 
the second (dark grey) as host seeking on a host protected by an 
intervention that repels mosquitoes; and the third situation (light 
grey) as host seeking on a host protected by an intervention that kills 
mosquitoes; the last two situations would be indistinguishable when 
only looking at the cumulative HLC counts after 12 h

Fig. 4  Schematic of multinomial model for semi-field experiments 
over a single night. Modelled outcomes and their probabilities are 
shown in a table, with columns representing the states host seeking 
(A), HLC (H), trap catch (T) and death (M), respectively, and rows 
representing the HLC periods during hours 0–1, 1–2, 2–3 and 3–12. 
Boxes in light grey and dark grey represent observed and unobserved 
outcomes, respectively. Note that only the cumulative trap catches 
over the whole night (hours 0–12) are observed. For notation of 
probabilities see Fig. 2b or Table 3
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Hierarchical Bayesian statistical model for variation 
of experimental conditions over multiple semi‑field nights
Semi-field experiments are typically replicated over mul-
tiple nights for statistical power and to account for night-
specific variation in HLC response. We denote the control 
data over 16 nights by D[C] = (D1[C], . . . ,D16[C]) and 
the intervention data over the same 16 nights by 
D[I] = (D1[I], . . . ,D16[I]) . We use a hierarchical Bayes-
ian model to allow the rates to vary between nights on 
a scale inferred from the data itself. This is comparable 
to partial pooling with frequentist methods. For every 
night k ∈ {1, . . . , 16} , we take an independent human 
availability rate αHk

 , an independent trap availability rate 
αTk

 and an independent mortality/disarming rate µk with 
distributions

where a, b and m are unrestricted hyperparameters and 
σa, σb as well as σm are positive hyperparameters. For a 
single experimental arm (regardless of whether control or 
intervention) with data D = (D1, . . . ,D16) , we obtain by 
Bayes’ theorem the joint log-probability density function 
(log-posterior) of all parameters:

 where c is some normalisation term and l1 is the likeli-
hood function defined in Eq. (4). The hierarchical priors 
of the night-specific availability and mortality/disarm-
ing rates are given by Eq. (9) in terms of the hyper-
parameters. The log-probabilities on the last line are 
hyperpriors. The posterior distribution of the hyperpa-
rameters a, b,m, σa, σb and σm contain all information on 
the mean rates, i.e. the rates αH,αT and µ of any further 

(9)

αHk
∼ Lognormal(a, σ 2

a )

αTk
∼ Lognormal(b, σ 2

b )

µk ∼ Lognormal(m, σ 2
m),

(10)

pr[a, b,m, σa, σb, σm,αH1 , . . . ,αH16 ,αT1 , . . . ,αT16 ,µ1, . . . ,µ16|D]

=

16
∑

k=1

{

l1(αHk
,αTk

,µk |Dk)+ pr[αHk
|a, σa] + pr[αTk

|b, σb] + pr[µk |m, σm]
}

+ pr[a, b,m, σa, σb, σm] − c,

unknown night, via the expectation for the Lognormal 
distributions (Eq. 9):

This is all we want to know for a specific arm of a semi-
field experiment; the night-specific rates αH1 , . . . ,αH16 , 
αT1 , . . . ,αT16 and µ1, . . . ,µ16 are nuisance parameters.

To parameterise an intervention from control data 
D[C] = (D1[C], . . . ,D16[C]) and intervention data 
D[I] = (D1[I], . . . ,D16[I]) over 16 nights, we use the 
same hierarchical model for the control rates. The hier-
archical model agrees with the intervention param-
eterisation in the sense that Eqs. (5)–(7) also hold for 
the mean rates αH,αT and µ . In particular, we have 
E[µk [I]] = µ[C] + καH[C]. Bayes’ Theorem gives the 
joint log-probability density function (log-posterior) of 
all parameters:

where c is some normalisation term and l2 is the likeli-
hood function defined in Eq. (8). The hierarchical priors 
of the night-specific availability and mortality/disarming 
rates are given by Eq. (9) in terms of the hyperparame-
ters. The log-probabilities on the last line are priors and 
hyperpriors. This approach matches control and inter-

vention data by night, as we only allow the rates to vary 
by night, and not by experiment. Matching is suggested 
by the experimental design and justified since the volun-
teer and screen house are randomised.

Bayesian parameter inference for semi‑field model
We use a Markov chain Monte Carlo (MCMC) method to 
generate a sample of the posterior distributions specified 
in Eqs. (10) and (12). Specifically, we use the Hamiltonian 

(11)

αH = E[αHk
] = exp(a+ σ 2

a /2)

αT = E[αTk
] = exp(b+ σ 2

b /2)

µ = E[µk ] = exp(m+ σ 2
m/2).

(12)

pr[π , κ , ρ, a, b,m, σa, σb, σm,αH1 , . . . ,αH16 ,αT1 , . . . ,αT16 ,µ1, . . . ,µ16|D[C],D[I]]

=

16
∑

k=1

{

l2(π , κ , ρ,αHk
,αTk

,µk |Dk [I],Dk [C])
}

+

16
∑

k=1

{

pr[αHk
|a, σa] + pr[αTk

|b, σb] + pr[µk |m, σm]
}

+ pr[π , κ , ρ, a,m, σa, σm] − c,
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Monte Carlo method implemented in Stan [33, 34], 
which is advantageous for models with many param-
eters. Computations are performed with Rstan [35], the 
Stan integration in R [36]. To avoid parameter correlation 
originating from the hierarchical model structure (see 
[37] for consequent sampling problems), we implement 
non-central equivalents of the models in Eqs. (10) and 
(12) in Stan, as detailed in Additional file 1: Appendix B. 
The Stan code corresponding to Eq. 10 for a single exper-
imental arm is provided in Additional file 2: S1 and Addi-
tional file  3: S2. The Stan code corresponding to Eq.  12 
for both the intervention and control arm is provided in 
Additional file 4: S3, Additional file 5: S4 and Additional 
file  6: S5. We use the priors displayed in Table  5. We 
checked that posteriors of the parameters of interest do 
not change when varying the parameters of the priors in 
same range; in particular, much larger scale parameters 
were tested. We run four Markov chains, each with 6000 
iterations, including 3000 for the burn-in. The diagnos-
tics provided by Stan were used to confirm convergence 
of the chains; in particular, the ˆR-statistic was checked to 
be reasonably close to 1. We checked trace plots of the 
Markov chains to check mixing; and we plotted pair-
wise scatter plots of the posterior sample to check for 
non-correlation and to exclude potential identifiability 
problems (see Additional file 1: Appendix C.5 and D.5). 
One experimental night of the push–pull experiments, in 
which the number of mosquitoes recaptured was higher 
than the number of mosquitoes released, was discarded 
for the model fit.

For an unmatched analysis we fit Eq. (10) separately 
to each experimental arm (results shown in Additional 
file 1: Appendix C). We parameterise the repellent by fit-
ting Eq. (12) to the repellent data while omitting all terms 
involving the trap, i.e. by setting ρ, b, σb,αT1 , . . . ,αT16 all 
equal 0. The trap is parameterised by fitting Eq. (12) to 
the trap data while fixing π = κ = 0 . Finally, we param-
eterise the push–pull system by fitting Eq. (12) to the 
push–pull data while setting ρ to the value estimated 
from the trap data. Note that for the push–pull system 
the numbers of trap catches were only measured over 3 h 
instead of 12 h as for the trap experiments.

Model for delayed mortality
To parameterise an intervention with potential killing 
effect, one also needs to quantify the postprandial killing 
effect, i.e. the killing effect on mosquitoes after they have 
fed on a human host protected by the tool. It is important 
to distinguish between mortality before and after bit-
ing because of their differential impact on transmission 

and because of different exposure intensities to repellent 
products during host seeking and while biting. We use 
a hierarchical binomial model for the delayed mortal-
ity data from Bagamoyo to infer the postprandial killing 
effect of the spatial repellent. All notations and all param-
eters for this model are shown in Table 6.

For a given night k, let yk denote the number of mos-
quitoes caught by HLC over all HLC periods and let zk 
denote the number of mosquitoes among yk that are dead 
12 h after the end of the semi-field experiment. We model

where Bin stands for the binomial distribution and pk 
denotes the probability for a mosquito that is caught by 
HLC to be dead 12 h after the end of the semi-field exper-
iment in night k. We use qk to denote the complementary 
survival probability, i.e. the probability for a mosquito 
that is caught in HLC to be alive 12 h after the end of the 
semi-field experiment in night k. The corresponding like-
lihood function is

We then define the postprandial killing effect ξ to be the 
real number in [0, 1] such that

where q[I]k = 1− p[I]k denotes the survival probability 
in the intervention experiment and q[C]k = 1− p[C]k 
denotes the survival probability in the control experi-
ment. Equivalently, we have

To allow these probabilities to vary among multiple 
nights with a scale inferred from the data itself, we set

where r is a unrestricted real number, ωk is a random var-
iable and σr is a positive real number. The expectation of 
the death probabilities in a control and in an intervention 
experiment are then

 respectively, which correspond to PBµ from [25] for con-
trol and intervention human-host type.

By Bayes’ theorem we infer the log-probability density 
function (log-posterior) of the parameters from the data 
as

(13)zk ∼ Bin(yk , pk),

(14)l(pk |yk , zk) =

(

yk

zk

)

p
zk
k (1− pk)

yk−zk .

(15)q[I]k = (1− ξ)q[C]k ,

(16)p[I]k = p[C]k + ξ(1− p[C]k).

(17)
p[C]k = logit−1(r + ωkσr) with ωk ∼ N (0, 1),

(18)
p[C] = E(p[C]k) and p[I] = p[C] + ξ(1− p[C]),
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where the likelihood function l is defined in Eq. (14) and 
p[C]k as well as p[I]k are given by Eqs. (16) and (17). 
The log-probabilities for ωk are given by their standard-
normal distribution, while for ξ , r and σr , priors are 
chosen according to Table  6. The parameter r is given 
a logistic(0, 1) prior so that pk [C] has a nearly uniform 
prior, while slightly fatter boundaries are due to the 
hierarchical term ωkσr . We fit this model with the same 
methodology as described above for the SFS model. The 
corresponding stan code is provided in Additional file 7: 
S6 and Additional file 8: S7. Negative values for ξ would 
indicate a reduction of the death probability due to the 
intervention and are excluded for fitting reasons. We use 
the same parameterisation for the push–pull intervention 
because these experiments were only conducted for the 
spatial repellent.

Effect on vectorial capacity
Relative reduction of vectorial capacity
Vectorial capacity is a measure of the ability of the vec-
tor population to transmit malaria that is independent 
of the infectiousness of humans. It was originally defined 
as ‘the average number of inoculations with a specified 
parasite, originating from one case of malaria in unit 
time, that a vector population would distribute to man if 
all the vector females biting the case became infected’ in 
[38]. We compute the vectorial capacity at steady state of 
the deterministic ‘malaria in mosquito’ model [see [25], 
Eq. (20)]. To quantify the effect of the repellent, trap and 
push–pull system deployed at a given coverage level, we 
use the relative reduction of vectorial capacity in this sit-
uation versus the baseline vectorial capacity. The relative 
reduction of vectorial capacity is independent of the lar-
val carrying capacity of the environment since the vecto-
rial capacity is proportional to the mosquito emergence 
rate.

Baseline for entomological setting
For the baseline we use the parameters specific to 
An.  arabiensis as published in the supplement (see 
Table  8) to [39]. We display all baseline parameters in 
Table 7, denoted with a subscript b and converted to time 
measured in hours.

These parameters assume the role of the control param-
eters from the semi-field experiments, but in contrast to 

(19)

pr[ξ , r, σr ,ω1, . . . ,ω16|y[C], z[C], y[I], z[I]]

=

16
∑

k=1

{

l
(

p[C]k |y[C]k , z[C]k
)

pr[ωk ] + l
(

p[I]k |y[I]k , z[I]k
)

pr[ωk ]

}

+ pr[ξ , r, σr] − c,

the semi-field parameters they represent a realistic field 
situation.

Implementation of parameterisation of interventions
Adding to the baseline situation one of the vector con-
trol intervention means specifying a host type for pro-
tected humans with availability rate (1− π)αHb

 as well 
as proportion (1− ξ)PCb

 of mosquitoes successfully bit-
ing, a shadow host type with availability rate καHb

 and 
a dummy host type with availability rate ραHb

 and mos-
quito death proportion after encountering PBTµ = 1 (if 
traps are deployed). Killing or disarming are modelled by 
either killing all mosquitoes that encountered a shadow 
host or by keeping them in the host-seeking state A, 
respectively. To simulate repellent, traps and push–pull, 
the corresponding parameterisation is sampled from the 
posterior of the corresponding intervention parameteri-
sation. The number of human hosts protected by a cer-
tain intervention, as well as the number of corresponding 
shadow hosts, is given by the total number of human 
hosts (N) multiplied with the coverage level. The number 
of traps is obtained by multiplying the coverage level with 
the total number of human hosts, divided by the average 
household size (H).

Results
We present an analysis including mortality and disarming 
of the semi-field experimental data published in [16], a 
parameterisation for the spatial repellent, trap and push–
pull intervention learned from this data, and our predic-
tion of the impact of these tools on vectorial capacity.

Data and model prediction for semi‑field experiments
Figure 5 shows the cumulative HLC counts and the trap 
catches for each night as proportions with respect to the 
number of mosquitoes released in each night as given 
in the Mbita data. Control and intervention experi-
ments were run with 160 mosquitoes each per night, 
but only the mosquitoes which left the release cup were 
counted as released. The model took into account the 
specific HLC count pattern of each single night, while 
the night-specific data is not shown here. These data are 
underlaid with the prediction by the matched SFS model 
(see Eq. 12) fitted to the data: the mean probability (i.e. 
expected proportion) that a mosquito gets caught by 
HLC or by the trap plotted as a continuous curve over 
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time, and smoothed histograms of simulated data as a 
posterior predictive check. The smoothed histograms 
were produced by the function distributionPlot in MAT-
LAB [40]. In Fig.  5f, the three topmost data points all 
belong to the experimental night with the lowest number 
of mosquitoes released in both arms (126 mosquitoes vs a 
mean of 152 in the intervention arm and 140 mosquitoes 
vs a mean of 154 in the control). A possible explanation 
for these outliers could be that mosquitoes were more 
starved in that night compared to other nights, increasing 
the relative HLC response. Also, smaller release numbers 
are associated with higher variability relative to the mean. 
Night 10 of the push–pull experiments was discarded for 

the model fit since the number of mosquitoes recaptured 
was higher than the number of mosquitoes released.

Figure 5 highlights the concept of the semi-field model: 
The mortality/disarming rate can be inferred from the 
shape of the HLC count pattern over time. In particular, 
the higher the mortality and the disarming, the quicker 
the curve of expected proportion of HLC counts pla-
teaus, indicating that no mosquito is left to respond. If 
only the cumulative HLC count per night was known, no 
information on mortality or disarming during host seek-
ing could be inferred.

Table 6  Data variables, dependent parameters and independent parameters of model for delayed mortality and delayed killing effect

Data variables and parameters may be equipped with [C] or [I] to denote a control or intervention arm, respectively

Symbol Description Unit Prior

k Index for night, k ∈ {1, . . . , 16} Integer

yk Number of mosquitoes caught by HLC over all HLC periods in night k Integer

zk Number of mosquitoes caught by HLC over all HLC periods in night k and dead 12 h after the end of the 
semi-field experiment

Integer

y Collection of yk over all nights Integer array

z Collection of zk over all nights Integer array

pk Probability of a mosquito that is caught by HLC in night k to be dead 12 h after the end of the semi-field 
experiment

Probability

qk Probability of a mosquito that is caught by HLC in night k to be alive 12 h after the end of the semi-field 
experiment

Probability

p Mean of pk [C] Probability

r Mean of logit(pk [C]) Real Logistic(0, 1)

σr Standard deviation of logit(pk [C]) Positive real Half-Cauchy(0, 1)

ωk Normalised deviation of logit(pk [C]) from r Real N (0, 1)

ξ Postprandial killing effect Real ∈ (−∞, 1] Uniform(0, 1)

Table 7  Baseline parameters for deterministic ‘malaria in mosquito’ model for species Anopheles arabiensis 

All values are taken from Table 8 in the supplement to [39], with rates being converted from day−1 to h−1

Symbol Description Value Unit

N Total number of human hosts 100,000 Animals

αHb
Availability rate of human hosts covered only by baseline interventions to mosquitoes of species An. arabiensis 3.75E−07 h−1

H Average number of humans per household 5 Animals

µvA Per-capita mosquito death rate while searching for a blood meal for the mosquito species An. arabiensis 0.01 h−1

θd Maximum length of time that a mosquito searches for a host in 1 day if it is unsuccessful 8 h

PBb Probability that a mosquito bites after encountering a host covered only by baseline interventions 0.95 Dimensionless

PCb Probability that a mosquito finds a resting place after biting a host covered only by baseline interventions 0.95 Dimensionless

PDb
Probability that a mosquito survives the resting phase after biting a host covered only by baseline interventions 0.99 Dimensionless

PEb Probability that a mosquito lays eggs and returns to host-seeking after biting a host covered only by baseline 
interventions

0.88 Dimensionless

τ Time required for a mosquito that has encountered a host to return to host seeking (provided that the mosquito 
survives to search again)

72 h

θs Duration of the extrinsic incubation period. This is the time required for sporozoites to develop in the mosquito 264 h
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Parameterisation of semi‑field experiments
Figure  6 shows the parameter inference for all semi-
field experiments with respect to the human availabil-
ity rate ( αH ) and the mosquito mortality/disarming rate 
before host encounter ( µ ), by use of the semi-field model 
matching control and intervention (see Eq.  12). For the 
trap experiments, control and intervention parameterisa-
tion are identical with respect to human availability rate 
and mortality/disarming rate, so that only one poste-
rior, denoted with ‘T’, is plotted. There are clearly three 
statistically significant clusters: repellent intervention 
( IR ), push–pull intervention ( IP ) and the rest, consist-
ing of the trap intervention and all control experiments. 
Even though not identical, the parameterisations of the 
control experiments all overlap substantially. The cred-
ible regions for the control experiments do not overlap 
completely, possibly because of the different weather 
conditions at the times of the year when the experiments 
were conducted (experiments were conducted in blocks) 
or because the control interventions (unbaited trap with 
working fan, untreated eave ribbon) had a minor effect. 
In Additional file  1: Appendix C.2, separate figures for 
each rate parameter inference are provided, by use of 
the same model as well as by use of the model without 
matching control and intervention, for comparison.

Figure 7 shows the trap availability rates for all control 
and intervention experiments involving unbaited and 
baited traps, respectively, as estimated with the model 
matching control and intervention (see Eq. 12). The scale 
of the horizontal axes is one order of magnitude smaller 
than that shown in Fig.  6. The availabilty rates of the 
baited traps are approximately 20-fold smaller than the 
human availability rates estimated from the respective 
control experiments. The availabilty rates of the unbaited 
traps are not exactly 0, but they are close to 0, as the 
unbaited traps occasionally caught mosquitoes.

Intervention parameterisation
The intervention parameterisation for the spatial repel-
lent (R), trap (T) and push–pull system (P) is presented in 
Table 8. All parameters except for ξ are fitted to data from 
Mbita, with ξ fitted to data from Bagamoyo as shown 
below.

Each intervention is parameterised by a subset of 
four parameters:repelling effect ( π ), killing/disarming 
effect during host seeking state ( κ ), relative trap avail-
ability ( ρ ) and postprandial killing effect ( ξ ). Note that 
killing cannot be distinguished from disarming with 
the available data so that both effects are combined. 
The mean and the 95% credible interval of the form 
[2.5 percentile, 97.5 percentile] of the marginal posterior 
distribution is given for each parameter. The definition of 
a credible interval is that the parameter value lies inside 

the interval with a probability of 95% given the observed 
data, but the given credible interval is generally not the 
shortest such interval (in contrast to highest density 
intervals). The push–pull parameterisation is designed 
as a trap intervention, with parameters estimated from 
the trap-only experiments together with a special spatial 
repellent intervention parameterised for push–pull and 
therefore shares the relative trap availability ( ρ ) with the 
trap intervention.

Figure  8 shows the inference on the intervention 
parameterisation for the spatial repellent (R) and push–
pull system (P) in the π–κ plane. The scale for π goes 
from ‘no change of human availability to mosquitoes’ (0) 
to ‘complete suppression of human availability to mosqui-
toes’ (1). The scale for κ goes from ‘no increase of mos-
quito mortality or disarming before host encounter’ (0), 
to ‘increasing the mosquito mortality or disarming before 
host encounter by 1.2-fold the control human availabil-
ity rate’ (1.2). The shapes of the credible regions (ellipses) 
clearly reveal a negative correlation between repelling 
effect ( π ) and killing/disarming effect ( κ ). In other words: 
within some small range, the model can barely distin-
guish between repellency ( π ) and mortality or disarming 
( κ ). This is not surprising as increasing π and increasing κ 
both lower the probability to encounter a host. However, 
this does not constitute an identifiability problem since 
the credible regions are reasonably small.

Figure 9 shows the inference on the relative trap avail-
ability ( ρ ) for the trap experiments. A relative trap avail-
ability of ρ = 0 would mean that mosquitoes are caught 
in traps with probability 0, and ρ = 1 would mean that 
mosquitoes get caught in traps with the same probability 
as they encounter human hosts.

Parameterisation for delayed mortality and postprandial 
killing effect
Figure  10 shows the estimates of delayed mortality for 
the Bagamoyo data, and Fig.  11 shows the correspond-
ing postprandial killing effect ( ξ ) of the spatial repellent, 
which is also summarised in Table 8. The scale for ξ goes 
from ‘no increase of death probability after biting’ (0) to 
‘probability 1 that mosquitoes die after biting’. Additional 
file 1: Appendix D.2 shows a corresponding figure by use 
of the model without matching control and intervention 
is provided for comparison.

Prediction for relative reduction of vectorial capacity 
of An. arabiensis
In Fig.  12 we predict the relative reduction of vectorial 
capacity of An.  arabiensis if spatial repellents (R), traps 
(T) or push–pull systems (P) are deployed at different 
coverage levels, based on the parameterisation obtained 
from the semi-field experiments. We present a scenario 
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a b

c d

e f
Fig. 5  Data and model prediction by the matched SFS model for all arms of the semi-field experiments from Mbita. Circles represent the 
proportion of mosquitoes caught by HLC in a specific night of the given experiment from the beginning of the night until the hour indicated on 
the horizontal axes. Note that the circles at hour 12 are the proportions of the HLC until hour 3 together with the HLC from hour 11.5 until hour 12, 
as this is used as a proxy for the HLC during the whole night. Triangles represent the proportion of mosquitoes caught by the trap in a specific night 
of the given experiment during the whole night. All proportions are with respect to the the number of mosquitoes released in the corresponding 
night. Solid curves represent the expectation of cumulative HLC counts over continuous time and dashed curves denote the expectation of 
cumulative trap counts over continuous time, as estimated with a model matching control and intervention experiments per night. The coloured 
areas represent histograms of simulated data by the fitted model. Per experiment, an average of 2428 mosquitoes in total was released (2370–2474). 
a, b In total, 1778 (a) and 771 (b) mosquitoes were caught by HLC in these experiments. c–f In total, 1843 (c), 1715 (d), 1980 (e) and 1262 (f) 
mosquitoes were caught by HLC, respectively, in these experiments, and a total of 1, 16, 6 and 46 mosquitoes, respectively, were caught in the trap
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where κ exclusively describes killing, corresponding to 
the assumption that all mosquitoes who stop respond-
ing to HLC in the semi-field experiments due to the 
intervention are dead, and a scenario where κ exclusively 
describes disarming, corresponding to the assumption 
that all mosquitoes who stop responding to HLC in the 
semi-field experiments due to the intervention are dis-
armed. At 70% coverage with the spatial repellent, the 

relative reduction of the vectorial capacity of An. arabien‑
sis falls with 95% probability between 96 and 97% (mean 
97%) under the killing scenario, and between 31 and 50% 
(mean 41%) under the disarming scenario. The relative 
reduction by the same coverage with the push–pull sys-
tem falls with 95% probability between 78 and 85% (mean 
82%) under the killing scenario, and between 26 and 48% 
(mean 38%) under the disarming scenario. The relative 
reduction by the trap falls with 95% probability between 

Fig. 6  Characterisation of separate semi-field experiments from 
Mbita in terms of human availability rate ( αH ) and mosquito 
mortality/disarming rate before host encounter ( µ ), as estimated with 
a model matching control and intervention experiments per night: 
spatial repellent control ( CR , green) and intervention ( IR , blue), trap 
control and intervention together (T, red), as well as push–pull control 
( CP , brown) and intervention ( IP , purple). The parameterisation for trap 
control and intervention experiments are perfectly overlapping in 
terms of αH and µ since they the trap is solely modelled by its relative 
availability, and not by a change of αH or µ . Each characterisation 
consists of a sample of 1000 points from the posterior (transparent 
points), the mean of the posterior (diamonds) and the 95% credible 
region with highest density after normal approximation of the 
posterior (ellipses)

Fig. 7  Trap availability rate αT for all experiments involving traps from 
Mbita, as estimated with a model matching control and intervention 
experiments per night: trap control ( CT , orange) and intervention 
( IT , red), as well as push–pull control ( CP , brown) and intervention 
( IP , purple), presented as histograms of the posteriors (shaded areas) 
and probability density functions fitted to the posteriors with normal 
kernels (solid lines)

Table 8  Intervention parameterisation: repelling effect ( π ), 
killing/disarming effect during host seeking state ( κ ), relative trap 
availability ( ρ ) and postprandial killing effect ( ξ)

Each entry consists of the mean of the marginal posterior distribution 
(minimum mean squared error estimator) and the 95% credible interval of the 
form [2.5 percentile, 97.5 percentile] of the marginal posterior distribution. All 
parameters except for ξ  are fitted to data from Mbita; ξ  is fitted to data from 
Bagamoyo. The estimate of ξ  obtained from the spatial repellent experiments is 
also taken to parameterise the push–pull system, as the push–pull experiments 
were not concluded in Bagamoyo

Parameter Spatial repellent (R) Trap (T) Push–pull (P)

π 0.416 [0.35, 0.478] – 0.294 [0.231, 0.354]

κ 0.911 [0.795, 1.035] – 0.341 [0.288, 0.398]

ρ – 0.047 [0.037,0.058] 0.047 [0.037, 0.058]

ξ 0.067 [0.013, 0.127] – 0.067 [0.013, 0.127]

Fig. 8  Characterisation of the spatial repellent (R) and push–pull (P) 
intervention in terms of repelling effect ( π ) and killing/disarming 
during the host-seeking state effect ( κ ), as estimated with a model 
matching control and intervention experiments per night from 
the data from Mbita. Each characterisation consists of a sample of 
1000 points from the posterior (transparent points), the mean of 
the posterior (diamonds) and the 95% credible region with highest 
density after normal approximation of the posterior (ellipses)
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3 and 4% (mean 4%). In Additional file  1: Appendix E 
we provide an additional scenario assuming disarm-
ing mosquitoes for 3 days instead of 1 day, which shows 
no significant difference in terms of vectorial capacity. 
Note that the credible intervals of the effect on vectorial 
capacity only reflect the uncertainty of the intervention 
parameterisation and that no uncertainty comes from 
the mosquito life-cycle or dynamics of malaria in mos-
quitoes, since the ‘malaria in mosquito’ model is com-
pletely deterministic. Interventions are maintained at 
the indicated coverage level without decay, and the effect 
is estimated at steady state of the ‘malaria in mosquito’ 
population model [25].

Further findings and inference diagnostics
Figures on intermediate parameters are presented in 
Additional file 1: Appendix C.1 for the semi-field model 
and Additional file 1: Appendix D.1 for the delayed mor-
tality model. Graphics on the nightly variation are pre-
sented in Additional file 1: Appendices C.3 as well as C.4 

for the semi-field model, and Additional file 1: Appendi-
ces D.3 and D.4 for the delayed mortality model. Correla-
tion diagnostics of the Bayesian inference are presented 
in Additional file  1: Appendix C.5 for the semi-field 
model and Additional file 1: Appendix D.5 for the delayed 
mortality model.

Discussion
Impact on transmission of spatial repellent, trap and push–
pull system tested in semi‑field experiments
Recent semi-field experiments in Kenya and Tanzania 
measured the impact of a spatial repellent (transfluthrin-
treated eave ribbons), an odour-baited trap (Suna trap 
baited with MB5 and carbon dioxide from molasses 
fermentation) and a push–pull system (combination 
of spatial repellent and trap) on human landing rates of 
An. arabiensis in the peridomestic area. The analysis of 
the Kenyan data showed that the spatial repellent had a 
strong impact, the push–pull system a more moderate 
impact and the trap no impact on personal protection, 
as measured in terms of human landing rates [16]. Com-
plementing these findings in terms of community-level 
impact, our model estimates from the same data sug-
gested that the spatial repellent, as well as the push–pull 
system, can reduce vectorial capacity of An.  arabiensis 
substantially, assuming that the semi-field system rep-
resents the field well enough and that the SFS model is 
valid, as discussed in the model limitations below.

We choose relative reduction of vectorial capacity as 
a measure of transmission intensity since it allows us to 
estimate the effect of an intervention regardless of the 
local absolute mosquito abundance and is therefore suit-
able for comparison across settings with same vector 

Fig. 9  Relative trap availability ( ρ ) for trap intervention (T, red), 
as estimated with a model matching control and intervention 
experiments per night from the data from Mbita, presented as 
a histogram of the posterior (shaded area) and a probability density 
function fitted to the posterior with normal kernels (solid line)

Fig. 10  Delayed death probability (p) for repellent-control ( CR , 
green) and repellent-intervention ( IP , blue) experiments conducted 
in Bagamoyo, presented as histograms of the posteriors (shaded 
areas), as estimated with a model matching control and intervention 
experiments per night

Fig. 11  Postprandial killing effect ( ξ ) for the repellent intervention (R, 
blue) tested in Bagamoyo, presented as a histogram of the posterior 
(shaded area), as estimated with a model matching control and 
intervention experiments per night

Fig. 12  Prediction for relative reduction of vectorial capacity of 
An. arabiensis under deployment of spatial repellents (R, blue), traps 
(T, red) and push–pull systems (P, purple) at coverage levels ranging 
from 10 to 100%, under two distinct assumptions on the effect of 
the transfluthrin-treated eave ribbons: repelling and killing (circle 
markers), or repelling and disarming (diamond markers). Indoor biting 
is assumed to be equally affected by the interventions as outdoor 
biting. Markers denote means and vertical bars denote 95% credible 
intervals from 2.5 percentile to 97.5 percentile
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and host–vector contact characteristics but different 
absolute biting numbers. Relative reduction of vecto-
rial capacity accounts for the full decline of the ability 
of the vector population to transmit malaria to humans 
(both users and non-users of the intervention) and hence 
includes both personal and community protection. Cor-
respondingly, we do not make statements on the impact 
on the absolute transmission intensity of the interven-
tion at hand. Moreover, even though closely related to the 
basic reproduction number R0 , vectorial capacity cannot 
directly supply a criterion for whether the disease will die 
out or not.

Spatial repellent and push–pull system
This methodology allocates the effect of the spatial repel-
lent to repellency on the one hand and mortality or dis-
arming (preventing mosquitoes from host seeking) until 
the next night on the other. Disarming has a higher 
impact on transmission than repelling (though a lower 
impact than killing mosquitoes) and does not increase 
the risk for non-users. We found that the transfluthrin-
treated eave ribbons reduced outdoor HLC to a large 
extent by killing or disarming mosquitoes until the next 
night, and hence can provide both user- and commu-
nity-level protection. We underline that the model can 
only differentiate repellency from disarming or killing, 
but it cannot distinguish between disarming and killing, 
given the available semi-field data. Therefore, a scenario 
assuming that the transfluthrin-treated eave ribbons act 
through repelling and disarming (instead of killing) and a 
scenario assuming killing instead of disarming were con-
sidered, so that the corresponding estimates of the rela-
tive reduction of vectorial capacity of An. arabiensis can 
be interpreted as a lower and upper bound, respectively. 
Under the disarming assumption, the spatial repellent 
and the push–pull system are both predicted to substan-
tially reduce the vectorial capacity of An. arabiensis at a 
realistic scale-up, and there is no significant difference 
between these two interventions over the whole range 
of coverage levels. Under the killing assumption, and 
assuming generalisability to the field, the spatial repel-
lent can reduce the vectorial capacity of An.  arabien‑
sis drastically even at relatively low coverage, while the 
push–pull system achieves a similar reduction only at 
moderate to high coverage. Once the ratio between dis-
arming and killing for a given intervention is known, the 
actual ratio can readily be incorporated into the vecto-
rial capacity estimation. To investigate disarming versus 
killing, similar semi-field experiments in smaller com-
partments allowing all mosquitoes, including dead ones, 
to be recovered were conducted and are currently being 
analysed (personal communication, Mgeni M. Tambwe).

We found that although spatial repellents and the 
push–pull system exhibited similar levels of repellency, 
the spatial repellent had a much stronger killing/dis-
arming effect. This explains the superiority of the spatial 
repellent over the push–pull system in reducing vecto-
rial capacity under the killing assumption. However, 
under the disarming assumption, the push–pull system 
can compensate for its lower disarming effect with the 
killing effect of the trap and achieves the same levels of 
vectorial capacity reduction as the spatial repellent. One 
potential hypothesis for this effect is that push–pull has a 
lower killing/disarming effect because the trap lures the 
mosquitoes away from the human who is sitting close 
to the spatial repellent and therefore reduces mosquito 
exposure to the transfluthrin while, in comparison, the 
trap only catches a small proportion of the mosquitoes it 
lures away. This scenario would be in line with findings 
that the Suna trap provides a high level of attraction but a 
relatively low capture efficiency [41]. However, the higher 
killing/disarming effect of the spatial repellent compared 
to the push–pull system is also likely to be partially due 
to the spatial repellent experiments being conducted in 
a season with higher nightly temperatures than when the 
push–pull experiments were conducted [16], since evap-
oration of transfluthrin increases with temperature [14, 
42] and higher concentrations are likely associated with a 
higher killing/disarming effect.

Trap
Our analysis showed that the trap has only a very minor 
effect on the vectorial capacity of An. arabiensis, although 
this may be only true for the mosquito species An. arabi‑
ensis and the setting tested in the experiments. Especially 
in view of the much higher costs associated with odour-
baited traps compared to treated eave ribbons, these 
findings cannot justify the use of the trap in this setting. 
However, in contrast to the analysis in [16], we found the 
trap effect to be at least statistically significant in terms of 
both mosquito landing rates and vectorial capacity of An. 
arabiensis. The push–pull system under consideration 
was optimised in terms of its components (such as the 
repellent and trap used—see [16] for more details), but 
not in terms of the location, height and orientation of the 
trap. This, in addition to all experiments only being con-
ducted on An. arabiensis, may explain why the trap was 
not as effective as it had been shown to be in previous 
studies [43].

Postprandial killing
We found the postprandial killing effect of the spatial 
repellent to be relatively small compared to the prepran-
dial killing effect. The postprandial killing effect was only 
analysed for the spatial repellent, and the same value was 
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used to estimate the reduction in vectorial capacity for 
the push–pull system, since delayed mortality experi-
ments were not conducted for push–pull. The postpran-
dial killing effect ( ξ ) was estimated from experiments 
conducted in Bagamoyo under different climatic and 
weather conditions. Hence, it may not be appropriate 
to couple parameter estimates from these different sites 
for the vectorial capacity predictions. Since we restricted 
the parameter of the postprandial killing effect to values 
indicating a positive killing effect ( ξ ∈ [0, 1] ), we pre-
cluded possible negative values, and therefore the corre-
sponding credible interval is biased to the right. Hence, 
the signal of the postprandial killing effect might actu-
ally not be statistically significant when relying on 95% 
credible intervals. Moreover, delayed mortality counts 
in the data might be too high, since in the experiments 
all HLC collection cups were placed directly beside the 
volunteer—i.e. close to the transfluthrin-treated eave rib-
bon—until the end of the third HLC period, and mosqui-
toes were therefore exposed to insecticides longer than in 
a field situation. If such data were collected in the future, 
we believe it would be important to bring mosquitoes 
outside of the effective zone of the insecticide immedi-
ately after completion of each HLC collection in order 
not to overestimate the delayed killing effect. Measuring 
delayed mortality 12 h after the end of the semi-field is 
arbitrary and might not be sufficient to capture the full 
delayed killing effect of the intervention. If the time to 
bite would differ significantly between treatment and 
control, measuring mortality after biting over a fixed time 
counted from the start of the experiment could overesti-
mate mortality in the group with earlier biting times.

Scale‑up
Overall, the results of this analysis suggest that trans-
fluthrin-treated eave ribbons can be a promising tool 
against residual malaria transmission in the peridomestic 
area, providing both user and community protection, at 
least in areas where An. arabiensis is the dominant vec-
tor. Assuming generalisability of these findings to the 
field, it seems unnecessary to use a push–pull system in 
this setting as the rational of combining a spatial repellent 
with an outdoor trap is to kill repelled mosquitoes and 
therefore compensate for a potential adverse community-
effect of the spatial repellent. These findings are drawn 
under the assumption that indoor biting is reduced at 
least as much as outdoor biting or that An. arabiensis is 
predominantly feeding outdoors, which may be the case 
in some areas [44].

However, an important drawback of testing spatial 
repellents in semi-field experiments is that mosquitoes 
cannot be pushed beyond the semi-field area. Hence, 
mosquitoes may be forced to stay in the semi-field area, 

whereas they would likely leave this area in a field situa-
tion. If they keep host seeking on the only available host, 
then the model estimates repellency correctly by the 
delayed HLC response, which is a considerable improve-
ment over analyses of cumulative HLC that do not 
account for changes in the time pattern of HLC counts 
due to the intervention. However, they are exposed to 
a high dosage of transfluthrin in the SFS and likely get 
disarmed or killed, resulting in underestimating repel-
lency and overestimating killing/disarming. The semi-
field experiments were designed to keep mosquitoes 
host seeking, in particular by releasing starved mosqui-
toes and by removing all opportunity for sugar feeding 
from the semi-field site, which might prevent mosquitoes 
from being disarmed and therefore correct partly for this 
misestimation.

Therefore, field studies are required to confirm the 
community-level impact and provide more accurate 
estimates than these current estimates from the semi-
field studies. Further studies are also needed to answer 
the important question on how spatial repellents inter-
act with ITNs, since a strong spatial repellent inhibiting 
house entry might reduce the killing effect of the ITN.

Model limitations
As the interventions were designed to target transmis-
sion in the peridomestic area in the evening, no HLC was 
performed between hours 3–11.5 of the experiments, fol-
lowed by a HLC measure only intended to remove mos-
quitoes from the screen house. We assumed that the last 
HLC measure can serve as a proxy for all biting in hours 
3–12 since the HLC response was generally very low dur-
ing hours 3–11.5. Analysing the data only up to hour 3 
would likely not change the point estimates of the impact 
on vectorial capacity, but would increase the correspond-
ing credible intervals.

The HLC data for both the spatial repellent and the 
push–pull intervention is much more dispersed than 
the data for the corresponding posterior simulation. 
This leads to an underestimation of the variability of the 
effect on vectorial capacity. Allowing the parameters for 
the repelling and killing/disarming effect to vary by night 
via a hierarchical structure similar to the ones used for 
the baseline rates may lead to a model that captures this 
overdispersion. However, we believe that the variabil-
ity in the relative landing reduction due to the interven-
tions involving transfluthrin-treated eave ribbons can at 
least partially be explained by a temperature dependence 
of the corresponding repelling and/or disarming/killing 
effect.

As HLC is a measure of mosquito landing, and not 
of biting, we cannot infer a potential biting inhibi-
tion effect of the transfluthrin after successful landing. 
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Correspondingly, we make the conservative assumption 
of no such effect in the vectorial capacity calculation.

The deterministic mosquito model [25] used for our 
predictions assumes that the number of emerging mos-
quitoes is independent of the number of adult mosqui-
toes, which is a valid assumption for settings with high 
mosquito abundance because of strong density depend-
ence in the larval stages. However, when adult mosquito 
populations become very small, due to low baseline 
abundance or because of very strong interventions, this 
assumption breaks down, and the present methodology 
would underestimate the effect. At the very least, the 
results presented here can be seen as a lower bound of 
the effect size in such situations.

Estimating community‑level impact of other interventions 
from SFS experiments with HLC data
Our modelling framework can estimate the effect on 
malaria transmission of any tool acting during the mos-
quito host-seeking state that is tested in semi-field exper-
iments with time-stratified human landing catch data 
and some measure on mortality after biting. In particular, 
the trap can be replaced by any non-human host catching 
mosquitoes and the spatial repellent by any other product 
that has a repelling and killing/disarming effect. Of the 
21 candidate vector control tools that were included in a 
systematic review [45], at least the following seven could 
be tested in semi-field experiments and their transmis-
sion effect then be estimated with the present methodol-
ogy: ‘other attract-and-kill mechanisms’, outdoor effect of 
‘eave tubes and eave baffles’, ‘insecticide-treated clothing 
and blankets’, outdoor effect of ‘insecticide-treated dura-
ble wall linings’, ‘insecticide-treated hammocks’, ‘spatial 
repellents’, ‘topical repellents’. Other potential candidates 
to be tested in semi-field experiments and analysed with 
this methodology include ‘insecticide-treated curtains 
and nets’, ‘insecticide-treated paint’, ‘insecticide-treated 
plastic sheeting in tents or in temporary shelters’, ‘insec-
ticide-treated tents’ (outdoor effect) and ‘live plants as 
spatial repellents’. Our model can also be used to define 
target product profiles for a given effect size in terms of 
the presented parameterisation framework. Other ento-
mological endpoints than vectorial capacity, such as EIR, 
are also possible.

It is straightforward to adapt a different HLC time 
scheme; however, it is important to have time-stratified 
HLC counts over the time of the experiment with the 
highest HLC response. For modelling purposes, we rec-
ommend running preliminary semi-field experiments 
with 15-min intervals for HLC counts and to then choose 
four to ten consecutive HLC periods with approximately 

equal HLC counts. It is not necessary that the differ-
ent HLC periods are of the same length, but they need 
to be consistent over all replicates. Our model can cur-
rently use either indoor or outdoor HLC data collected 
by one volunteer. Experimental designs with volunteers 
performing HLC first outdoors and then indoors, or with 
multiple volunteers in the same semi-field compartment 
are possible after some adjustments of the model. Such 
experiments are important to understand the differential 
impact of spatial repellents on indoor and outdoor trans-
mission and to investigate their interaction with indoor 
tools such as ITNs and IRS. Different interventions at dif-
ferent huts in the same semi-field compartment are also 
possible by estimating deterrency effects per house.

The effect on malaria incidence and mortality of any 
intervention parameterised from SFS experiments with 
time-stratified HLC by the presented methodology can 
be simulated with models of malaria in humans, such 
as the platform OpenMalaria, for a variety of different 
settings.

Conclusions
This analysis of semi-field data suggests, under the 
assumption of generalisability to a field situation, that 
transfluthrin-treated eave ribbons are a promising tool 
against malaria transmission by An.  arabiensis in the 
peridomestic area by providing both personal and com-
munity protection. We found that this tool inhibits mos-
quito landing to a large extent by killing or disarming 
(suppressing host-seeking behaviour for at least 1 day) 
and not only repelling mosquitoes, making the com-
bination with traps less necessary in order to protect 
non-users.

The novel methodology presented here allows us to dif-
ferentiate between the repelling effect on one hand and 
the killing or disarming effect on the other hand of out-
door interventions tested in semi-field experiments from 
time-stratified HLC counts only. With this methodology 
a potential increase of the risk for non-users after deploy-
ment of spatial repellents with incomplete coverage 
can be quantified. We highlight the need for amended 
semi-field experiments to detect disarming, as this can-
not be distinguished from killing using the present data. 
Our methodology enables estimates of the impact of 
the intervention on vectorial capacity, accounting for 
personal as well as community protection under some 
assumptions and including uncertainty intervals. This 
knowledge is important for assessing the effectiveness 
of candidate tools in an early stage of product develop-
ment in order to focus on the right tools to fight outdoor 
malaria transmission.



Page 21 of 22Denz et al. Parasites Vectors           (2021) 14:64 	

Supplementary information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1307​1-020-04560​-x.

Additional file 1: Appendix. A detailed elaboration of the continuous-
time Markov chain model, the non-central version of the hierarchical 
Bayesian model for semi-field experiments over multiple nights, the 
detailed parameter inference for both the semi-field system and the 
delayed mortality model and additional results on the inhibition of host-
seeking behaviour for multiple days. 

Additional file 2: S1. The Stan code for the semi-field system model for a 
single experimental arm (control or intervention) which does not involve 
traps. 

Additional file 3: S2. The Stan code for the semi-field system model for a 
single experimental arm (control or intervention) which involves traps. 

Additional file 4: S3. The Stan code for the semi-field system model 
including both the spatial repellent intervention and the control arm. 

Additional file 5: S4. The Stan code for the semi-field system model 
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