
Abstract
The transition from the control phase to elimination of malaria

in China through the national malaria elimination programme has
focussed attention on the need for improvement of the surveil-
lance-response systems. It is now understood that routine passive

surveillance is inadequate in the parasite elimination phase that
requires supplementation by active surveillance in foci where
cluster cases have occurred. This study aims to explore the spatial
clusters and temporal trends of malaria cases by the multivariate
auto-regressive state-space model (MARSS) along the border to
Myanmar in southern China. Data for indigenous cases spanning
the period from 2007 to 2010 were extracted from the China’s
Infectious Diseases Information Reporting Management System
(IDIRMS). The best MARSS model indicated that malaria trans-
mission in the study area during 36 months could be grouped into
three clusters. The estimation of malaria transmission patterns
showed a downward trend across all clusters. The proposed
methodology used in this study offers a simple and rapid, yet
effective way to categorize patterns of foci which provide assis-
tance for active monitoring of malaria in the elimination phase.

Introduction
Malaria is a life-threatening disease caused by Plasmodium

spp. parasites that are transmitted through the bite of infected
female Anopheles spp. mosquitoes. In 2019, the World Health
Organization (WHO) estimated the worldwide disease burden at
nearly 228 million cases and 405,000 deaths (WHO, 2019). In
order to control and eliminate malaria globally, various projects or
programmes have been proposed, such as the Global Malaria
Programme (Whittaker et al., 2014), the Asia Malaria Elimination
Network (Gosling et al., 2012), and the Strategy for Malaria
Elimination in the Greater Mekong Sub-region (Cui et al., 2012)
and others. Ten years ago, the National Malaria Elimination
Action Plan (NMEAP) was launched by the Ministry of Health
(MoH) in the People’s Republic of China (MoH, 2010). Thanks to
effective strategies implemented by the Chinese Government, the
malaria incidence rate has decreased significantly since then.
NMEAP included disease management and vector control, which
have been confirmed to be powerful and co-effectiveness mea-
sures (Yin et al., 2014; Zhou et al., 2015b; Hu et al., 2016).

Most malaria cases are reported from south-western China,
especially along the China-Myanmar border in Yunnan Province
(Wang et al., 2014; Shi et al., 2015; Xu et al., 2016). Indeed, from
2013 to 2017, up to 90% of all indigenous malaria cases in China
originated in these areas (Zhou et al., 2011; Li et al., 2016; Feng
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et al., 2018; Zhang et al., 2018). For examples, 3078 malaria cases
were reported across the country in 2014, 2% of which were
indigenous and had occurred in the China-Myanmar border areas
(Li et al., 2016). Thus, malaria transmission here remains a big
challenge for NMEAP, which aims to free the country of malaria
by 2020.

Active surveillance is an effective approach in the malaria
elimination phase (Zhang et al., 2017; Zhou et al., 2015b).
However, implementation of this kind of surveillance in the
endemic areas is a crucial matter, especially in the areas character-
ized by complicated environmental settings. The geographic vari-
ations of malaria transmission in China-Myanmar border areas
have shown an underlying spatial pattern of malaria incidence pro-
viding a reference to design local surveillance strategies (Shi et al.,
2015). Along with this point, it is necessary to explore the spatial
patterns of malaria transmission so as to provide evidence-based
data that can improve the sensitivity of the surveillance-response
system in the elimination phase. Since 2004, the Infectious
Diseases Information Reporting Management System (IDIRMS),
established by the Chinese Center for Disease Control and
Prevention (China CDC), different infectious diseases have been
closely examined and scrutinized in the county health care institu-
tions and then rapidly reported to IDIRMS. This well-run data col-
lection provides a good opportunity to analyze the dynamic pat-
terns of malaria transmission, e.g., by mathematic modelling,
which has provided a way to quickly estimate or predict transmis-
sion risks of infectious diseases.

Ever since the availability of large datasets including times
series on disease transmission, the auto-regressive integrated mov-
ing average (ARIMA) approach has been widely used to forecast
the transmission pattens of vector-borne diseases (Wangdi et al.,
2010; Anwar et al., 2016). These studies mainly focused on single
time series (Wangdi et al., 2010) rather than multiple ones from
different sites. However, studies in this field have started to apply
techniques, so far mainly used in artificial intelligence and game
theory, for analytical investigations of multivariate time-series in
fields, such as parasitology, ecology, economics and genetics
(Valle and Clark, 2013; Bartocci and Lió, 2016; Wang, He et al.,
2016; Tolimieri et al., 2017). The state-space is central in this kind
of modelling. It represents all possible configurations of a system,
where the coordinates are state variables that together describes the
state of the system completely, which means that each point in the
state-space corresponds to a different state of the system. As this

kind of modelling uses abundant time series to balance limited data
support, this strategy is suitable for dealing with small areas and
populations. The multivariate auto-regressive state-space
(MARSS) technique, originally proposed by Hinrichsen (2009)
and further developed by Ward et al. (2010) and Holmes et al.
(2012), provide a useful mathematical approach to work on multi-
ple time series. Since this approach has also been applied to predict
malaria transmission (Valle and Clark, 2013), we felt that it would
be possible to attempt using MARSS for tracing malaria transmis-
sion in southern China. Baoshan, Yunnan Province, is located in
south-western China near the China-Myanmar border. Due to the
nature of the geological environment and mosquito species as well
as frequent mobility of migrated population along the border,
malaria is still a serious problem in this region. It has consistently
shown the highest number of malaria cases due to Plasmodium
vivax in the whole country during 2007-2013 (Xu et al., 2016). In
this study, we attempted to develop a model providing a reference
for decision-making with regard to surveillance policy aimed at
eliminating malaria in China-Myanmar border areas by addressing
two questions: i) is active surveillance of malaria in the Baoshan
region consistent with the strategies applied in the geographical
administrative regions and the disease foci?; and ii) do the
Baoshan counties represent different spatial transmission patterns
than seen elsewhere?

Materials and methods

Study area
Malaria transmission was studied in Baoshan, one of the pre-

fectures in Yunnan Province bordering Myanmar, which has an
area of 19,637 km2 and a population of 2.5 million based on the
2010 census. It has a tropical climate with abundant precipitation,
averaging 700-1200 mm per year and a seasonal temperature fluc-
tuation with peaks in May-August. There are five administrative
counties under Baoshan, namely Changning, Longling, Longyang,
Shidian and Tengchong (Figure 1). Malaria cases appear all year
around in Baoshan Prefecture accounting for the majority of malar-
ia cases in Yunnan Province and China as a whole before 2010,
especially in Tengchong County near the China-Myanmar border
with high numbers of annual malaria cases, the highest in China.

                   Article

Figure 1. Map of malaria transmission in five counties in Baoshan Prefecture, Yunnan Province, China near Myanmar border.
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Data collection
Information on indigenous P. vivax cases in the study area were

provided by IDIRMS of China CDC. We aggregated indigenous P.
vivax incidence data from January 2007 to December 2009 by
patient residential addresses, which were distributed over all five
counties of Baoshan Prefecture. To fit the MARSS model, we used
time series data transformed into the monthly distribution of P.
vivax cases.

State-space model
The utilized the MARSS model as specified by Holmes et al.

(2012), by which the total variance in the observation of time
series is defined by partition into observation variance and process
variance. In our study, the latter is the temporal variance of the
malaria declining rate, while former includes sampling error and
measurement error from data inaccurcies. The MARSS framework
is given by two equations:

Xt = BtXt–1 + ut + wt , wt ~ N[0, Qt]                                           (1)

Yt = ZtXt + at + vt , vt ~ N[0, Rt]                                           (2)

We used n to denote the number of discrete survey counties,
and m to represent the number of unknown hidden states (foci clus-
ters). For the hidden states in Eq (1), Xt is a matrix that denotes the
vector of length m representing the true observation indigenous
cases in year t; Bt a m×m matrix that allows the density depen-
dence; ut a m×1 vector of hidden states of the declining rates; and
wt a vector of length m representing the process errors in year t. We
assumed that the process errors can be correlated and specified
from a multivariate normal distribution with a zero mean of a m×m
matrix Qt. In Eq (2), Yt is the n element vector of observed malaria
cases at time t, Zt a n×m matrix that defines n observations related
to the m hidden states. In general, the n sites could be any samples
from the m hidden sates. The n×1 vector  specifies the bias
between those sites. The observation errors at time t are denoted by
vt, the same approach to address process error in Eq (1), which is
an n vector of serially uncorrelated disturbances with zero mean of
an n×n matrix Rt. When using our data of all malaria cases from
the five counties (the observed time series), we wanted to fit a
model with one hidden state. All observed time series were sam-
pled from this unique focus cluster. There was one process error
variance with different observation variance. The observed malaria
cases were independent of each other. Mathematically the fitted
MARSS model is described by the following matrices:

In this formula, the vt comes from a multivariate normal distri-
bution (MVN) with variance-covariance matrix.

Model estimation and selection
Our goal was to find all possible foci clusters in the dataset, then

evaluate the best fitted model. Assuming that the observation errors

are independent within all the sites, we fitted a series of models for
all of sites in Baoshan, for each model the process error and reduc-
tion rates were set differently within each cluster. Our model selec-
tion was based on the value of Akaike’s information criterion (AIC)
as given by (Koc and Bozdogan, 2015). It offers an estimation of the
relative information lost when a given model is used, and when the
dataset is small, only a small sample modification can be supported
(Holmes et al., 2012). We used the corrected AIC (AICc) that is
adjusted to small datasets. The maximum likelihood parameter is
used to provide fully parametric bootstraps, when the outputs of
parameters are sampled from a numerically estimated Hessian
matrix (Holmes et al., 2012). In our study, we evaluated the model
with the Shapiro-Wilk test (Royston, 1982) to identify the standard-
ized residuals, checking the autocorrelations for the structure left in
the residuals, which computes an estimate of the auto-correlation
function (ACF) of the multivariate time series (Aryee et al., 2018).
Due to the complexity of the multivariate models and the small sam-
ple sizes of the malaria cases, we used a 90% confidence interval to
evaluate the MARSS simulated values in each cluster for estimation
of the total trends and true patterns of malaria. Bootstrapping can be
used to construct frequency condence intervals of the parameter esti-
mates, and the MARSS model includes a semi-parametric bootstrap
algorithm (Holmes et al., 2012) that affects the model residuals, i.e.
the innovations. This approach uses the maximum-likelihood
MARSS parameters to simulate data from which bootstrap parame-
ter estimates are obtained. All test and data were analysed in R 3.3.2
software with MARSS packages (version 3.9) as used by (Holmes et
al., 2012).

Results
The total number of the indigenous P. vivax cases in the study

period from 2007 to 2009 showed nearly five times more indige-
nous cases in Tengchong than in any other county. The lowest case
number ocurred in Changning County, where there was 10 cases as
compared to none at all in 2009. The number of malaria cases in
the other three counties ranged from 0 to 32 within the three study
years (Figure 2). A decreasing trend of indigenous P. vivax cases
was observed in the Baoshan region in the period 2007-2009.
Seasonal components varied among the five counties, such as an
obvious periodicity pattern every year in Tengchong County, a
peak from April to July occurred in Longning, Longyang and
Shidian counties, while a climbing pattern with a peak from June
to August was observed each year in Changning County. From the
general survey of our research area, the map showed that more
cases appeared in Tengchong, which is situated near the China-
Myanmar border, while fewer cases happened in Changning situ-
ated further inside the Baoshan Prefecture and thus far from the
border (Figure 1). Many foci cluster combinations were possible in
our MARSS modelling. In this study, however, we only listed the
top 20 best-fitted models according to the AICc values. The best-
fitted model, which had the lowest AICc value (286.417), con-
tained three hidden states (three foci clusters) (Table 1). In the
models with the lowest AICc values, the malaria cases were all
grouped into three clusters based on the hypotheses that all coun-
ties were sampled from different populations (Table 1). Tengchong
represented cluster 1, Shidian was part of cluster 2, while the other
three counties shared cluster 3 (Table 2). According to Table 2,
each group had an unconstrained process error indicating that a
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group of counties within the same cluster had the same spatial pat-
tern and that their dynamics were homogeneous. Meanwhile, the
observation errors were found to be unequal with a diagonal
matrix. Tengchong’s observation error was lower (0.0135), while
Changning had a largeer error (0.3125) than all the other counties.
As observed, the number of indigenous cases decreased in all of
five counties, with negative reduction rates in all three clusters.

The reduction rate in cluster 3 (–0.0537) decreased faster than that
in the other two clusters suggesting the malaria infection is coming
down in those counties. We evaluated the MARSS model by exam-
ination of the residual values, and comparison of the malaria
indigenous cases between simulated and observed numbers.The
simulation for the three clusters are shown in Figure 3. Tengchong
was best-fitted to cluster 1 and cluster 2 did not extend beyond the

                   Article

Figure 2. Monthly reported local Plasmodium vivax cases from five sites of Baoshan area, Yunnan Province, China. 

Figure 3. Estimation of best-fitted model for three clusters among the five sites and their 90% confidence intervals.
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borders of Shidian, while cluster 3 covered parts of all remaining
three sites (Longling, Changning and Longyang). The fitted simu-
lation in the three foci clusters was different from each other, with
cluster 3 over-estimated in Changning which had the lowest num-
ber of indigenous cases. The 90% confidence interval in each foci
cluster contained more than 90% of the malaria observation in the
model simulations.

Discussion
This study attempted to apply a time series model to detect the

clusters of foci by using malaria surveillance data in south-western

China near the Myanmar border in order to improve the surveil-
lance sensitivity by targeted monitoring. China launched the
malaria elimination programme in 2010, and no indigenous cases
were reproted in 2017 in the whole country based on passive
surveillance (Feng et al., 2018), which is the main strategy to mon-
itor malaria in China. However, there is a need to locate high-risk
sites precisely and focus on the local level. For example, the re-
establishment of high-risk malaria transmission in south-western
China (Garros et al., 2006; Zhang et al., 2017; Yu et al., 2013; Li
et al., 2015) remains to this day due to specific, climactic factors
and proximity to endemic countries in South. Therefore, it is essen-
tial for local programme managers to make decisions and develop
policies to further improve the sensitivity of the surveillance-

                                                                                                                                Article

Table 1. The performance of 20 models ranked by Akaike’s information criterion corrected based on different hypotheses with respect
to the malaria cases.

Model             Qa          Rb           Uc            LogLikd                   AICce                         AICf                Parametersg         Mh             Hypothesisi

1                             1                1                 1                –121.8338                     286.4176                          281.6676                            19                         3                        T-S-LYC
2                             1                1                 1                –122.4028                     287.5555                          282.8055                            19                         3                        S-C-TLY
3                             1                1                 1                –122.7177                     288.1853                          283.4353                            19                         3                        T-LS-YC
4                             1                1                 1                –122.8298                     288.4095                          283.6595                            19                         3                        S-TL-YC
5                             1                1                 1                –118.3369                     292.4157                          284.6738                            24                         4                       T-L-S-YC
6                             1                1                 1                –127.4923                     287.9114                          284.9846                            15                         2                         SC-TLY
7                             1                1                 1                –127.5118                     287.9504                          285.0236                            15                         2                         T-LYSC
8                             1                1                 1                –127.5694                     288.0657                          285.1389                            15                         2                         S-TLYC
9                             1                1                 1                –123.9823                     290.7146                          285.9646                            19                         3                        T-LY-SC
10                           1                1                 1                –118.9946                     293.7311                          285.9891                            24                         4                       L-S-C-TY
11                           1                1                 1                –124.0113                     290.7725                          286.0225                            19                         3                        L-S-TYC
12                           1                1                 1                –124.1037                     290.9574                          286.2074                            19                         3                        C-TY-LS
13                           1                1                 1                –124.2693                     291.2885                          286.5385                            19                         3                        T-C-LYS
14                           1                2                 1                –128.5523                     290.0315                          287.1047                            15                         3                        S-C-TLY
15                           1                1                 1                –128.6523                     290.2313                          287.3045                            15                         2                         TY-LSC
16                           1                1                 1                –124.8893                     292.5287                          287.7787                            19                         3                        S-TY-LC
17                           2                1                 1                –129.8895                     290.3244                           287.779                             14                         2                         LS-TYC
18                           1                1                 1                –128.9868                     290.9005                          287.9737                            15                         2                         TL-YSC
19                           1                1                 1                –125.0074                     292.7648                          288.0148                            19                         3                        L-TY-SC
20                           2                1                 1                –129.2122                     291.3511                          288.4243                            15                         3                        S-TC-LY
aProcess errors with 1 for independent variances and 2 for the same variance; bobservation errors with 1 for independent variances and 2 for same variance; creduction rate with 1 for unequality among the data; dLog-
likelihood of the data conditioned on the model parameters; eCorrected Akaike information criterion; fAkaike information criterion; gNumber of parameters in the model; hHypothesis of hidden states among the five
sites; iCounties grouped by hidden states. T, Tengchong; L, Longling; Y, Longyang; S, Shidian; C, Changning.

Table 2. Estimation of cluster growth rates, observation errors and process error in the five sites for the best-fitted model.

Cluster                                        County                         Reduction rate                Observation error                             Process error

1                                                                Tengchong                                       –0.0223                                            0.0135                                                             0.2272
                                                                                                                    (–0.1783; 0.4858)                           (0.0048; 0.0910)                                            (0.0771; 0.3261)
2                                                                   Shidian                                           –0.0537                                            0.1517                                                             0.0509
                                                                                                                    (–0.0909; 0.0165)                           (0.0884; 0.2320)                                            (0.0003; 0.1010)
3                                                                  Longling                                          –0.0283                                            0.2229                                                             0.0880
                                                                                                                    (–0.0240; 0.0753)                           (0.0570,0.1298)                                            (0.0218; 0.1455)
                                                                  Longyang                                                                                                   0.2074                                                                   
                                                                                                                                                                              (0.1248; 0.3108)                                                          
                                                                 Changning                                                                                                  0.3125
                                                                                                                                                                              (0.1771; 0.4858)                                                          
Bootstrapped 90% confidence interval for the reduction rate and the multivariate auto-regressive state-space model observation and process errors.
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response systems by targeting resources to identify foci of risk
through sentinel monitoring (Hay et al., 2008). 

Lately, no malaria cases have been reported from Baoshan
Prefecture (Li et al., 2015), which was confirmed in the 2017
surveillance report. However, transmission varies from place to
place and our results showed that the best-fitted model was the
three-cluster pattern in Baoshan region, which implies that the five
counties near the Myanmar border carry a high risk for continued
transmission. It is obvious from Figure 1 that Tengchong near the
border had a higher risk of malaria occurrence, something that has
already been pointed out in previous studies (Dong et al., 2000).
From the biological nature of malaria transmission, the geograph-
ical environment and climate in these areas represent intricate vari-
ables. In addition, vectors, such as Anopheles dirus and An. min-
imus do not respect political borders, which has recently been
shown many times (Wang et al., 2015b; Chen et al. 2017; Zhang et
al., 2018). Large numbers of An. minimus, An.dirus as well as
An.sinensis populations have all been found in in Tengchong
County (Dong, 2000; Wang et al., 2015b). Their habitats are asso-
ciated with rice fields and various breeding sites. If those vectors
find suitable ecological conditions during the transmission season,
there is a strong possibility of re-introduction of malaria through
imported P. vivax cases (Zhou et al., 2015a). Many reports show
the cross-border activities play a major role in malaria transmis-
sion in the study region (Stoddard et al., 2009; Xu et al., 2016;
Zhang et al., 2016; Shi et al., 2017), activities that also have varied
from place to place and time to time, such as i) trade becoming
more frequent in Tengchong County (Wang et al., 2015a; Li et al.,
2016; Xu et al., 2016); ii) increasing numbers of imported cases
enter this area continually (Yin et al., 2014); and iii) movements of
people, e.g., labourer and farmers travelling across the border in
particular months, leading to accumulated exposure opportunities
(Yin et al., 2014). Reports show that Tengchong and Longling gen-
erally harbour the highest number of malaria cases, which are
ascribed shared borders with Myanmar (Wang et al., 2016c) .
Those living in other parts of Baoshan form relatively closed eco-
nomic circumstances that result in fewer cross-border travel (Li
and Yang, 2015).

We find that our work based on MARSS modelling of time
series matrix data provides real-time transmission information
including the detection of risk spatio-temporal clusters. However,
our cluster measures are different from China’s “1-3-7” surveil-
lance-response, which report malaria cases within 1 day, conducts
a case investigation within 3 days and in-depth investigation with-
in 7 days (Zhou et al., 2015b). This approach is based on cases
reported in persons and sites, which means that if a case is identi-
fied, the “1-3-7” response is implemented limiting the number of
cases in surrounding areas. Applying the MARSS model, however,
spatiotemporal malaria clusters are instead searched at the regional
level so that actions and surveillance can be focused at cluster
regions when found. The whole region is thus considered and inter-
ventions can then be better directed, and the “1-3-7” surveillance-
response more quickly targeted based on prepared resources and
findings. 

A number of studies have attempted to use biological data to
define the structure of malaria transmission in the China-Myanmar
border area. Firstly, Anopheles can easily transfer malaria from
Myanmar to China or vise versa (Xu and Liu, 2016). The intensity
depends mainly on density of the mosquitoes population and the
local malaria prevalence, which is considered important transmis-
sion indicators in the border areas (Zhang et al., 2016). Work on

genetic diversity of the mosquito population in Yunnan Province
(Feng et al., 2017) has indicated that the vector gene flow is limit-
ed by geographical distance and geographical barriers (Liu et al.,
2016). Secondly, the mosquito insecticide resistance varies from
area to area, which contributes to diversity with repect to malaria
incidence; however this resistance does not always overlap in sites
at each sides of the border, something that may be explained by
gene diversities of malaria populations that has so far been studied
in larger areas, such as Yunnan Province as a whole (Wang et al.,
2016b). Enlarged msquito genetics should be useful as the cross-
border problems need to be solved. Further investigations of the
different patterns of malaria transmission at the county level are
thus warranted. 

The incidence rate of malaria declined in Yunnan, but the rates
fell differently from place to place. Such discrepancies across clus-
ters in the study area are not surprising given the siuation near the
Myanmar border compared to areas further away from the border
(Figure 1). Although the overall annual number of indigenous
cases have decreased gradually over the last few years, a pattern
probably due to effective shared interventions implemented jointly
in both China and Mynamar (Yin et al., 2014; Zhou et al., 2015b;
Xu et al., 2017; Feng et al., 2018), we noticed differences of the
reduction rate among the three clusters. However, even if the
indigenous P. vivax cases in Tengchong tended down, there were
still numerous cases in this county (Dong et al., 2000; Shi et al.,
2015), which explains the good fitting results of the cluster simu-
lations. Different locations had a different impact on malaria con-
trol, even if the total number of imported cases did not differ (Shi
et al., 2014), which could be the cause of the difference in the
reduction rate in these sites. Overall, the three clusters showed a
high heterogeneity but shared a decreasing trend. To be successful,
active surveillance should contain foci related to all the spatial pat-
terns discovered in the Baoshan area.

The MARSS model could analyze the inside structures within
the multiple time series based on various spatio-temporal clusters.
Our modeling approach relied on the hypothesis that the reported
malaria cases were from one population structure or more than one
population. However, the situation gets progressively more com-
plicated as the number of time series increase. The number of per-
mutations and combinations of many clusters from multiple sites
rapidly becomes too big for listing in a simple table. This should
be considered when using MARSS model. To dispose of the prob-
lem of the permutations produced by the algorithm used, Ward et
al. (2010) subdivided 13 sites into several sub-populations based
on previous knowledge on the biology of different species.
Although this approach can provide an explanation for the
hypotheses, it can also miss some information. Furthermore, the
integrated nested laplace approximation (INLA) method (Costa et
al., 2011; Bivand et al., 2015), based on the spatial temporal
Bayesian model, is another way of applying effective computation
to predict the spatial dynamics of infection diseases. In our study,
the malaria data were collected from many sites and identification
of the clusters by time series data was our major purpose. So there
is a need to update this state space model about permutation and
combination algorithm to get a real understanding of the malaria
transmission patterns. On the other hand, the surveillance-response
systems used were based on the population level, which offers
baseline access data. Application of MARSS modelling on small-
area surveillance data would produce more accurate active surveil-
lance. 

The limitations of the study are reflected in the following four
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aspects. The first challenge was that the data collection represented
the county level and was based at only five restricted sites, which
increased the risk of ending up with a comparatively large propor-
tion of less precise data (Zhang et al., 2018). Second, from the sim-
ulation part, a low number of positive malaria data could result in
a poor simulations leading to the over-estimated results from some
counties. Third, the spatial distributions of infections emphasized
that the risk area does not coincide with the administrative regions.
Fourth, risk factors based on demography, environment and
socioeconomy were not considered in the modelling. 

The purpose of this study was to estimate malaria cluster struc-
tures about Baoshan area by MARSS, which produces spatial pat-
terns from time series data. This could be a direct way to obtaining
a general overview of malaria foci clusters supported by strong
surveillance-response systems, as China is now approaching the
stage of malaria elimination. Therefore, although the aforemen-
tioned four limitations exist, the MARSS model is still the best
way to identifiy the clusters in this area, which in turn leads the
delivery of health resources more efficiently (Feng et al., 2014).

Conclusions
Identification of focal clusters is important for the malaria

elimination phase and critical for estimating the precise need for
the health resources to be used for active surveillance. Applying
the MARSS state-space model to several time series data at the
county level made it possible to successfully estimate the reduction
rate and the spatial patterns of indigenous malaria cases.
Prevention of re-introduction of transmission into areas without
any reported indigenous cases, requires processing data based on
long-term monitoring by new methods. The approach investigated
has provided a new, simple and direct tool to identify disease dis-
tributions capable of also predicting hidden states within trend
parameters wich should help supporting long-term policies.
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