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A B S T R A C T   

Background: The World Health Organization (WHO) has an ongoing project to assess potential health effects of 
exposure to radiofrequency electromagnetic fields (RF-EMF) in the general and working population. Here we 
present the protocol for a systematic review of the scientific literature on cancer hazards from exposure to RF- 
EMF in humans, commissioned by the WHO as part of that project. 
Objective: To assess the quality and strength of the evidence provided by human observational studies for a causal 
association between exposure to RF-EMF and risk of neoplastic diseases. 
Eligibility criteria: We will include cohort and case-control studies investigating neoplasia risks in relation to three 
types of exposure to RF-EMF: near-field, head-localized, exposure from wireless phone use (SR-A); far-field, 
whole body, environmental exposure from fixed-site transmitters (SR-B); near/far-field occupational exposures 
from use of handheld transceivers or RF-emitting equipment in the workplace (SR-C). While no restriction on 
tumour type will be applied, we will focus on selected neoplasms of the central nervous system (brain, meninges, 
pituitary gland, acoustic nerve) and salivary gland tumours (SR-A); brain tumours and leukaemias (SR-B, SR-C). 
Information sources: Eligible studies will be identified through Medline, Embase, and EMF-Portal. 
Risk-of-bias assessment: We will use a tailored version of the OHAT’s tool to evaluate the study’s internal validity. 
Data synthesis: We will consider separately studies on different tumours, neoplasm-specific risks from different 
exposure sources, and a given exposure-outcome pair in adults and children. When a quantitative synthesis of 
findings can be envisaged, the main aims of the meta-analysis will be to assess the strength of association and the 
shape of the exposure–response relationship; to quantify the degree of heterogeneity across studies; and explore 
the sources of inconsistency (if any). When a meta-analysis is judged inappropriate, we will perform a narrative 
synthesis, complemented by a structured tabulation of results and appropriate visual displays. 
Evidence assessment: Confidence in evidence will be assessed in line with the GRADE approach. 
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Zealand Ministry of Health; the Istituto Superiore di Sanità in its capacity as a WHO Collaborating Centre for 
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1. Introduction 

1.1. Background 

The technological applications of radiofrequency electromagnetic 
fields (RF-EMF; frequencies 100 kHz to 300 GHz) have been steadily 
increasing since the 1950s. RF-EMF are used in medicine (e.g. magnetic 
resonance imaging, diathermy, radiofrequency ablation), industry (e.g. 
heating and welding), domestic appliances (e.g. baby monitor, WiFi), 
security and navigation (e.g. radar and RFID) and especially in tele
communications (e.g. radio and TV broadcasting, mobile telephony). 
These developments mean that large parts of the global population are 
now exposed to RF-EMF and more will be exposed in the future. Concern 
has been raised regarding public health consequences from RF-EMF, and 
it is therefore crucial to perform a health risk assessment to support 
decision-makers and the general public. 

The World Health Organization (WHO) has an ongoing project to 
assess potential health effects of exposure to RF-EMF in the general and 
working population. To prioritize potential adverse health outcomes 
from exposure to these fields, WHO conducted a broad international 
survey amongst RF experts in 2018 (Verbeek et al. 2021). Six major 
topics were identified (cancer, adverse reproductive outcomes, cogni
tive impairment, symptoms, oxidative stress, and heat-related effects) 
for which WHO has commissioned systematic reviews of observational 
and experimental studies to analyse and synthesize the available evi
dence. In this paper, we present the protocol for a systematic review of 
human observational studies on exposure to radiofrequency fields and 
risk of neoplastic diseases. 

1.2. Description of the exposure 

Human exposure to RF-EMF arises from a wide range of sources that 
use RF energy. Within the range of 100 kHz to 300 GHz, specific fre
quency bands are assigned to different applications (Table 1). 

RF-emitting equipment or devices can operate either far or close to 
the body, resulting in far-field or near-field exposure conditions. RF-EMF 
can penetrate into the body and the absorption of RF energy may 
concern the whole body, or selected body parts. The level of human 
exposure to RF-EMF is affected by the strength of the incident field 
(which in turn depends on the source output power, the signal propa
gation pattern, and the distance from the source); the signal frequency 
(the higher the frequency, the lower the penetration depth), modulation 
and polarization; the exposure duration; and receiver factors such as 
body dimension, water content and dielectric characteristics of exposed 
tissues (Frei and Röösli 2014). The field strength decreases rapidly with 
distance (d) from a source, according to the inverse or the inverse square 
law (1/d or 1/d2), depending on the type of dispersion (directional or 
non-directional). In far-field conditions (occurring at a distance of about 
one wavelength from the source), compliance with safety limits is 

usually assessed through measurements of RF environmental levels, as 
electric field strength (E, in volt per meter, V/m) or, to sum up the 
strengths of RF signals at different frequencies, as incident power den
sity (S, in watt per square meter, W/m2); in near-field conditions 
coupling into the human body occurs, and the specific energy absorption 
rate (SAR, W/kg) is the most relevant dosimetric unit (Wood 2017a). It 
is not possible to measure the SAR directly. The combined assessment of 
the total absorbed RF energy from far- and near-field sources requires 
dosimetric calculations. Few attempts to develop an integrated RF 
exposure index for epidemiological research have been undertaken to 
date (Lauer et al. 2013; Liorni et al. 2020; Roser et al. 2015). Modelled 
integrated “doses” of RF-EMF, along with the relative contribution of 
distinct sources to the whole body or brain RF energy absorption, have 
been calculated in children/adolescents (Birks et al. 2021; Cabré-Riera 
et al. 2020; Roser et al. 2017), and adults (van Wel et al., 2021). These 
estimates are context-specific, depending on use habits of wireless de
vices in the study population, and mobile network features in the study 
area during the observation period (Laurier and Röösli 2020). Never
theless, the research conducted so far indicates that near-field sources 
are dominant contributors to both the brain and whole-body doses, with 
the largest contribution from mobile phone calls on GSM (2G) networks 
(Birks et al. 2021; van Wel et al., 2021). 

For studies on RF-EMF and neoplasm risk, the ideal exposure 
assessment should capture all major sources of exposure for the perti
nent part of the body, over the entire induction period and by suscep
tible time windows, taking into account time-related variations in 
source-specific exposure levels (SCENIHR 2015). 

1.3. Description of the outcome 

Neoplasia is a large family of diverse diseases with a common un
derlying pathology characterized by uncontrolled cellular growth and 
division (Dean and Moitra, 2018). Based on behaviour, primary neo
plasms can be classified in two major groups: benign (or non-malignant) 
and malignant. Compared to benign tumours, malignant neoplasms (syn. 
cancer) show a greater degree of anaplasia and have the properties of 
invasion and metastasis. The current version of the International Clas
sification of Diseases for Oncology (ICD-O, v 3.1) includes 77 major 
tumour sites and 47 major histologic types (Fritz et al. 2013). The In
ternational Classification of Childhood Cancer (ICC3) includes 12 main 
histologic groups and 47 subgroups (Steliarova-Foucher et al. 2005). 
The expanding knowledge on the molecular profile of cancer has led to 
novel classifications (Sherman et al. 2018). 

Due to this heterogeneity, aetiological research focuses on distinct 
tumour types/subtypes. 

Cancer is a major public health issue at the global level, with 24.5 
million incident cases in 2017 (Global Burden of Disease Cancer 
Collaboration et al. 2019). It is the first or second leading cause of 
premature death (at ages 30–69 years) in 134 of 183 countries (Cao et al. 
2020). Established lifestyle and environmental causes of cancer 
comprise tobacco smoke, alcohol consumption, physical inactivity, di
etary factors including consumption of red and processed meat, obesity/ 
overweight, cancer-causing infectious agents, ionizing radiation, UV 
radiation, exogenous hormones, and several occupational exposures 
(Wild et al. 2020). Up to 2019, the International Agency for Research on 
Cancer (IARC) Monograph Programme has classified 50 occupational 
agents or exposure circumstances as established (group 1) human car
cinogens (Siemiatycki and Rushton 2020); cancers of the lung and other 
respiratory sites, followed by the skin, account for the largest proportion 
of neoplasms causally associated with these agents (Loomis et al., 2018; 
World Cancer Report, 2020). 

1.4. Rationale for a systematic review 

RF radiation is part of the non-ionizing region of the electromagnetic 
spectrum, which means that there is not sufficient energy in a single 

Table 1 
Radiofrequency spectrum allocation (ITU 2020) and main applications.  

Frequency band Main applications 

100–3000 kHz Amplitude modulated (AM) radio broadcast, radionavigation, 
160 m amateur radio, induction heaters, electrosurgical units 

3–30 MHz International broadcast, amateur and citizens band (CB) radio, 
dielectric heaters, shortwave diathermy 

30–300 MHz Frequency modulated (FM) radio broadcast, VHF television 
broadcast, mobile and handheld transmitters, cordless phones 

300–3000 MHz UHF television broadcast, G1-G5 mobile (cellular) phones and 
base stations, Digital Enhanced Cordless Telephones (DECT), 
Terrestrial Trunked Radio (TETRA), walkie-talkie, microwave 
ovens, microwave diathermy, air traffic radars, WiFi 

3–30 GHz Microwave relays, satellite uplinks, aircraft on-board radar, 
police radar, 5G mobile telephony, WiFi 

30–300 GHz Radio-astronomy, space-research, satellite, radionavigation  
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quantum of RF energy to ionize an atom or a molecule (Barnes et al. 
2019). There is currently no established mechanism underpinning the 
potential carcinogenicity of RF-EMF at exposure levels below interna
tional standards (ICNIRP 2020a; IEEE, 2019). The capacity of RF radi
ation to induce genetic damage or other cancer-related effects (Smith 
and Guyton 2020) has been assessed in several hundred experimental 
studies. The results of these studies are inconsistent (Miyakoshi 2019; 
Wood 2017b), with no dose–response and inverse correlations between 
effect size and study quality detected in two meta-analyses (Vijayalaxmi, 
2019; Wood et al. 2021). 

Independently of the pathogenesis, if exposure to RF-EMF increased 
the risk of cancer, then this would have serious public health conse
quences and require population-level preventive strategies, including a 
revision of the threshold-based limitation principle currently applied to 
non-ionizing radiation in the radiofrequency range (ICNIRP 2020b). 

RF-EMF was classified by IARC as possibly carcinogenic to humans 
(group 2B), based on limited evidence in humans, limited evidence in 
experimental animals, and weak support from mechanistic studies 
(IARC 2013). The evaluation was driven by two large case-control 
studies showing positive associations between glioma and acoustic 
neuroma and wireless phone use (Baan et al. 2011). The IARC panel also 
examined studies of brain tumours, leukaemia/lymphoma, or other 
malignancies in relation to occupational or environmental RF exposure, 
and judged this evidence inadequate to formulate conclusions (IARC 
2013). 

The IARC Monograph on RF-EMF covers the literature issued by mid- 
2011. New relevant studies have been made available since then. 
Several expert panels performed updated reviews of this body of evi
dence (AGNIR 2012; ANSES, 2013; 2016; ARPANSA, 2014, CCARS, 
2017; Demers et al. 2014; FDA 2020; HCN 2016; ICHENF, 2018; SCE
NIHR 2015; SSM 2013; 2014; 2015; 2016; 2018; 2019; 2020). Eleven 
meta-analyses addressing mobile phone use and head tumour risks were 
published since 2012 (Bortkiewicz et al. 2017; Choi et al. 2020; de 
Siqueira et al. 2017; Gong et al. 2014; Hardell et al. 2013; Lagorio and 
Röösli 2014; Prasad et al. 2017; Repacholi et al. 2012; Röösli et al. 2019; 
Wang and Guo 2016; Yang et al. 2017), often arriving at conflicting 
conclusions (Ioannidis 2018). 

None of these evidence syntheses complies in full with the recom
mendations for the conduct of systematic reviews in toxicology and 
environmental health research (COSTER) (Whaley et al. 2020), and only 
one protocol (Mao et al. 2013) of a meta-analysis later published in 
Chinese (Gong et al. 2014) was preregistered in PROSPERO. 

The need for a structured updated appraisal of this body of evidence 
is widely recognised. Non-ionising radiation (radiofrequency) is among 
the agents recommended with high priority for re-evaluation by the 
Advisory Group for the IARC Monographs during 2020–2024 (Marques 
et al. 2019). Two registered systematic reviews of epidemiological 
studies on RF-EMF and cancer are underway, focusing on exposures 
experienced by the general population (Farhat et al. 2020) and workers 
(Modenese et al. 2020). As systematic reviews cannot remedy limita
tions of the original studies, those (and our) syntheses are unlike to 
produce conclusive evidence. Nonetheless, all will advance knowledge 
on the topic to the extent they will transparently document the choices 
made at the critical stages of study selection, risk-of-bias assessment, 
data synthesis, and confidence in evidence rating. 

2. Objectives 

The overall aim of the planned systematic review is to assess the 
quality and strength of the evidence provided by human observational 
studies for a causal association between exposure to RF-EMF and risk of 
neoplastic diseases. The specific objectives are: (i) identify the relevant 
epidemiological literature; (ii) assess risk-of-bias for individual studies; 
(iii) synthesize the evidence on the exposure-outcome relationship (in 
terms of magnitude of effects and shape of exposure–response gradi
ents), and evaluate heterogeneity in results across studies; (iv) rate 

confidence in the body of evidence. 
No epidemiological study to date has investigated risk of neoplastic 

diseases in relation to individual exposure to RF-EMF from all exposure 
sources and settings (AGNIR 2012; ARPANSA, 2014; IARC 2013). 

Therefore, we will separately review three bodies of evidence, 
addressing neoplasia risk in the general population in relation to RF 
exposure from near-field (SR-A) or far-field (SR-B) sources, and in 
working age individuals in relation to occupational RF exposures (SR-C). 
The scientific questions expressed as PECO statements (Morgan et al. 
2018) are reported in Table 2. 

3. Methods 

We will follow the WHO approach to guideline development (WHO, 
2014a), complemented by recent guidance in systematic reviews of 
observational studies of aetiology and environmental hazards (Dekkers 
et al. 2019; NTP-OHAT, 2019). COSTER was referred to in planning the 
systematic review (Whaley et al. 2020). The review team includes 
members trained in systematic review methodology; competence in RF- 
EMF exposure assessment; expertise in epidemiological, statistical and 
meta-analytical methods; as well as long-term experience in conducting 
epidemiological studies of carcinogenic hazards from RF-exposure 
sources relevant to the general population and to workers. The litera
ture search strategies were refined by an expert in information science 
(JE, see Acknowledgments). The protocol has been registered in 

Table 2 
PECO statements.  

SR-A. Systematic review of studies on RF-EMF exposure from wireless phone use 

Population Members of the general population, without restriction on sex, age, or 
other individual characteristics. 

Exposure Definition: Near-field RF exposure from personal use of mobile or 
cordless phones, occurring prior to outcome, and based on indirect 
measures (subscriber status, self-reported history of mobile phone or 
cordless phone use), traffic data, or modelling. 
Classification: Ever exposed; time since first exposure; cumulative 
exposure level. 

Comparator Never or non-regular users of wireless phones. 
Outcomes Critical: Glioma/brain cancer in adults; paediatric brain tumours; 

meningioma; acoustic neuroma; pituitary gland tumours; salivary 
gland tumours. 
Important: Any other neoplasm.  

SR-B. Systematic review of studies on environmental exposures to RF-EMF 

Population Members of the general population, without restriction on sex, age, or 
other individual characteristics. 

Exposure Definition: Far-field RF exposure from radio-television transmitters, 
base stations or any other fixed-site transmitter, occurring prior to 
outcome, and based on measurements, modelling, or geocoded 
distance to the sources (the latter limited to broadcast transmitters). 
Classification: Ever exposed; duration of exposure or time since first 
exposure; average or cumulative exposure level. 

Comparator No or low-level exposure from environmental sources of RF-EMF. 
Outcomes Critical: Childhood leukaemia, paediatric brain tumours, glioma/ 

brain cancer in adults, and leukaemia in adults. 
Important: Any other neoplasm.  

SR-C. Systematic review of studies on occupational exposures to RF-EMF 

Population Occupationally active individuals, with no further restriction on sex, 
age, or other individual characteristics. 

Exposure Definition: Near- or far-field RF exposure from professional use of 
hand-held transceivers or RF-emitting equipment in the workplaces, 
occurring prior to outcome, and based on measurements, estimates of 
exposure level from job- or source-exposure matrices (JEM, SEM), or 
indirect measures such job title or task (option limited to studies 
explicitly aimed at assessing the effect of exposure to well- 
characterized sources and types of RF-EMF). 
Classification: Ever exposed; exposure frequency; exposure duration or 
time since first exposure; average or cumulative exposure level. 

Comparator No or low-level occupational exposure to RF-EMF. 
Outcomes Critical: Glioma/brain cancer, leukaemia. 

Important: Any other neoplasm.  
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PROSPERO (CRD42021236798). Findings from the systematic review 
will be reported in accordance with the updated PRISMA guidelines for 
reporting systematic reviews (Page et al. 2021b), and this protocol 
conforms to the PRISMA-P guidelines for systematic review protocols 
(Shamseer et al. 2015). The L3-PRISMA Report for systematic review 
protocols submitted to Environment International is enclosed (Annex 1). 
In case any amendments to this protocol are made during the review 
process, changes and related reasons will be reported in the final article. 

3.1. Eligibility criteria 

3.1.1. Types of populations 
The SR-A and SR-B will focus on members of the general populations, 

and SR-C on occupationally active individuals. We will not apply re
strictions on sex, age, or other individual characteristics. 

3.1.2. Types of exposures 
Given the lack of a known biological mechanism for a potential 

carcinogenic effect of RF-EMF, it is unknown which aspect of the 
exposure may be biologically relevant. Therefore, the choice of the 
exposure metrics of priority interest is informed by contextual evidence 
relevant for the types of RF exposure considered in each component of 
the systematic review, summarized below. 

3.1.2.1. Wireless phones. Mobile phones are the most common type of 
wireless phones and their use is now universal, with 8.3 billion sub
scriptions in 2019 (ITU 2019). 

So called bag-phones and car-phones were introduced at the begin
ning of the 1980s, but RF exposure to the head from these devices was 
very low, and it is considered irrelevant to the aim of SR-A. 

Handheld mobile phones (analog, 450 MHz or 800/900 MHz) have 
first been available in 1984 in the Unites States, and since 1987 in the 
Nordic countries. Subsequent generations of digital mobile phones were 
introduced approximately every tenth year: 2G (GSM 900/1800 MHz) in 
early 1990s, 3G (UMTS, 1900  MHz) in early 2000s, 4G (LTE, 800/2600 
MHz) in early 2010s. 

Mobile phone-related exposure to RF-EMF above 6 GHz will occur at 
full deployment of 5G networks. Given the short time period since the 
introduction of this technology, we do not expect to identify studies 
addressing the association between 5G mobile phone use and neoplasia 
risk. However, epidemiological studies of radar workers exposed to RF- 
EMF > 6 GHz have been conducted (Karipidis et al. 2021) and will be 
considered for inclusion in SR-C (see § 3.1.2.3). 

The exposure of interest for tumours in the head region consists of RF 
energy emitted by handheld mobile phones during voice calls, with the 
device in contact with the head. Communication and data transfer from/ 
to devices is established and regulated by base stations. The periodic 
signals for location update and possible traffic occurring when the de
vice is in stand-by mode (Hansson Mild et al. 2012; Urbinello and Röösli 
2013) are not relevant for exposure to the head because the phone would 
usually not be held next to it (AGNIR 2012). 

Mobile phones, when held to the ear, are typical sources of near-field 
exposure to RF-EMF, highly localized to the tissues nearest the trans
ceiver, with a marked attenuation through the head (Cardis et al. 2008; 
Dimbylow and Mann 1994; Dimbylow and Mann 1999). The local 
(brain) SAR during each call depends on several parameters, including 
features of the phone, factors affecting the device transmission power, 
user’s physical characteristics, and usage modalities (how the phone is 
held towards the ear; use of hands-free devices). Most of these param
eters cannot be measured over the long exposure time window of in
terest for epidemiological studies investigating the effect of mobile 
phone use on neoplasia risks; thus, it is not possible to arrive at an es
timate of the exposure in terms of SAR. Actually, all studies relevant for 
the current systematic review have used indirect measures of exposure, 
based on self-reported histories of mobile phone use or on mobile phone 

subscriber lists (Deltour and Schüz 2014). Estimates of absorbed RF 
energy were used in two studies (Cardis et al., 2011a; Takebayashi et al., 
2008); the modelled brain absorption was based on various input vari
ables, but the self-reported call time was the dominating parameter, 
while other factors gave a very small contribution to variation in esti
mated values (Cardis et al., 2011b). 

This systematic review will summarize the evidence for the exposure 
variables most commonly used in the scientific literature: ever use of 
mobile phones, time since start of mobile phone use, cumulative hours of 
mobile phone use, and cumulative number of calls. Each of these 
exposure indicators has advantages and disadvantages, and will com
plement each other in the overall assessment of an effect. 

The variable “time since start of mobile phone use” (also called “time 
since first use”) is a crude measure, but it takes into consideration the 
tumour latency (which may vary between tumour types), and allows an 
appropriate assessment of the external validity when comparing results 
of the analytical studies with incidence time-trend studies of the inves
tigated tumours (see § 3.1.5.3). 

In addition, measurement errors accumulate. Therefore, time since 
start use (based on date of first use, a single event occurring once) is 
likely to be affected by information bias to a lesser extent than cumu
lative exposure indices usually derived from multiple time-varying self- 
reported variables. There was little evidence of differential recall errors 
in validation studies of date of start/time since start use reported by 
cases and controls (Aydin et al., 2011a,b; Pettersson et al., 2015). 

The variables “cumulative hours of mobile phone use”, and “cumu
lative number of calls” provide better estimates of the total amount of 
mobile phone use, but are more greatly affected by recall bias (Aydin 
et al. 2011b; Vrijheid et al. 2009a) because past intensity of use is more 
difficult to recall than current use, especially as mobile phone habits 
have changed considerably over time. 

The adequacy of amount of mobile phone use as an indicator of 
exposure to RF energy emitted by the device has decreased over time, 
due to several factors. In early 2000s, call time and measured output 
power of the phone were fairly well correlated (Berg et al. 2005). This 
occurred because GSM (2G) phones operated at the maximum power for 
about 40% of call time, likely due to sub-optimal efficiency of the mobile 
networks (Vrijheid et al. 2009b). The adaptive power control in response 
to the network quality has notably improved in 3G and 4G systems, the 
density of base stations has increased, and the average output power per 
call has decreased. Based on data reviewed in (Joshi et al. 2020), the 
average output power per call of mobile phones in 2G networks is 
around 50 times higher than with 3G/4G technologies (50% vs 1% of 
maximum power). A similar ratio between the contributions of 2G and 
3G phone calls to the total whole brain dose (50% vs 0.8%) was obtained 
in a multi-country European study, combining source-specific SAR es
timates (Liorni et al. 2020) with population data on usage patterns (time 
and emitted output power) per source (van Wel et al., 2021). Using 
country-specific estimates of comparative output power levels (Persson 
et al. 2012), a higher relative weight (150:1) was assigned to the pro
spectively recorded fractions of total call time on 2G vs 3G networks in a 
recent analysis of data from the Swedish and Finn COSMOS cohorts 
(Auvinen et al. 2019). Drawing upon the above estimates, a user of a 3G/ 
4G phone would have to achieve a call time 50 to 150 times as long as a 
2G phone user to get the same accumulated energy deposition. However, 
old and new networks coexist for some time, new generation devices can 
usually connect to previous generation base stations, and stopping use of 
mobile phone is uncommon. Without recorded data on actual network 
used during phone calls, it is impossible to develop cumulative exposure 
indices properly accounting for system-specific exposure levels. Multiple 
counting of individual data is an issue in subgroup analyses based on 
device features (make and model). Analyses by cumulative amount of 
use stratified by recency of start use may be informative in cohort studies 
with prospective exposure assessment but not in case-control studies, 
where the greater proneness to information bias would hamper the 
interpretation of results. 
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The preferred side of the head for mobile phone use is an important 
exposure determinant but, when assessed retrospectively through self- 
report, is affected by substantial misclassification. 

Consistent support to this claim comes from several validation 
studies that used software applications to record the side of mobile 
phone use (Goedhart et al. 2018; Goedhart et al. 2015; Inyang et al. 
2010; Kiyohara et al. 2018; Kiyohara et al. 2016). In a sample of over 
200 volunteers from 12 countries, the agreement between self-reported 
and recorded laterality was very poor (concordance = 59% for declared 
mainly right-side users, and 43% among left-side users), and there was 
evidence of systematic errors, with a laterality agreement odds ratio of 
0.48 for users in the > 80th percentile of recorded amount of use 
compared to users < 20th percentile (Goedhart et al. 2018). A progres
sive deterioration of the agreement between self-reported and recorded 
laterality over time (weighted k = 0.667 at the first interview, 0.527 
after 10–12 months, and 0.437 after 48–55 months) was detected in a 
similar validation study from Japan (Kiyohara et al. 2018). 

Self-reported laterality is also considerably affected by recall bias, as 
indicated by concurrent observations of increased risk for ipsilateral 
mobile phone use and protective effect for contralateral use (Schüz, 
2009). Due to such a poor validity, self-reported laterality of mobile 
phone use is not included among the exposure metrics and contrasts 
examined in SR-A (Table 2). 

Cordless phones are another source of near-field exposure to RF- 
EMF. The most common technology is Digital Enhanced Cordless 
Communication (DECT), which uses time sharing and pulse modulated 
signals. DECT phones have a peak power of 250 mW, operate with 400 
μs bursts every 10 ms (4% duty factor), and have an average output 
power of 10 mW (SCENIHR 2015). It is worth noting that the trans
mission power of cordless phones is 1–2 orders of magnitude lower than 
that of 1G-2G mobile phones (Lauer et al. 2013). RF-exposure from 
cordless phones can only be assessed based on indirect measures 
(prevalence, amount and duration of use), and there are no objective 
sources of data against which self-reported information can be 
validated. 

3.1.2.2. Environmental sources. In SR-B, we will include studies 
addressing neoplasm risks in relation to RF exposure from radio and 
television masts, base stations or any other fixed-site transmitter. In 
principle, the average or cumulative whole body SAR is the exposure 
measure of interest. As the SAR cannot be directly measured, epidemi
ological studies have usually relied on measured or modelled levels of 
electric fields, magnetic fields or power density at the subjects’ residence 
(less often also at schools), or on crude exposure proxies such as distance 
to the exposure source. 

For a given transmitter, the electric field decreases in the beam with 
1/distance from the source. Provided that the distance is objectively 
recorded (e.g., derived from geocodes), distance from the source may be 
informative for antennas with a roughly isotropic transmission pattern. 
This is usually the case for large broadcast transmitters, although special 
care must be taken when different transmitters are included in the same 
study (Schmiedel et al. 2009). On the contrary, distance from a base 
station is a poor indicator of exposure to RF-EMF indoors, due to the 
complex propagation characteristics of emissions from base station an
tennas, including shielding effects and multiple reflections from house 
walls and other buildings (Frei et al. 2010). 

We will restrict eligibility for inclusion to studies based on objective 
exposure indicators, such as measurements, modelling, or geocoded 
distance to a broadcast transmitter (but not to a mobile phone base 
station). Studies based on self-estimated distance to an antenna will not 
be included, as self-reported distance to transmitters is strongly affected 
by risk perception (Martens et al. 2017) and cannot be considered a 
reliable exposure indicator. 

The preferred exposure index will be the E field strength in V/m, 
which is the unit used by the International Commission on Non-Ionizing 

Radiation Protection to express reference values (ICNIRP 2020a). Other 
exposure units such as the magnetic field strength in ampere per metre 
(H, A/m) or the incident power density (S, in W/m2) can be easily 
converted to V/m applying the plane-wave model (S = EH = E2/377 =
377H2), which is valid for far field exposure situations. 

We will focus on differences in exposure level (using categorical or 
continuous exposure data), and according to exposure duration. 

3.1.2.3. Occupational exposures. Previous reviews of epidemiological 
studies of cancer risk in relation to occupational RF exposure have 
considered the evidence uninformative due to inconsistent results across 
studies affected by severe limitations in exposure assessment, and un
controlled confounding (AGNIR 2012; Feychting et al. 2005; IARC 2013; 
Swerdlow 1999). Most studies conducted so far used job-titles as expo
sure surrogates. Therefore, bias in study identification due to selective 
mention of RF exposures for occupations found at increased cancer risk, 
was an additional concern in these reviews. 

Some studies improved on exposure characterization by using expert 
assessment and job- or source-exposure matrices (JEM, SEM). Existing 
JEMs of occupational RF exposure (Karipidis et al. 2008; Kauppinen 
et al. 1998; Migault et al. 2019; Siemiatycki and Lavoué 2018), provide 
exposure estimates often based on a small number of measurements per 
source and/or job, and may not be informative about the probability of 
exposure per occupation, the typical exposure of workers in specific 
jobs, and the variability of exposure levels by task, working practices, 
and over time. These drawbacks also apply to the most recent RF-JEM 
(Migault et al. 2019), comprising 282 occupational titles, and built by 
combining source-based measurements from the literature (Vila et al. 
2016) with occupational data collected in the INTEROCC case-control 
study (≈ 9,300 participants from seven countries). 

Actually, wide variations in exposure levels across and within jobs 
entailing use, operation or maintenance of RF-emitting equipment and 
devices, were observed in a large survey (≈ 4,300 measurements from ≈
900 RF sources in over 200 workplaces) carried out in Israel in 
1995–2005 (Hareuveny et al. 2015). 

A consequential option would be to restrict inclusion in the current 
review to occupational studies with measurement-based assessment of 
exposure to RF-EMF at the individual level. This would drastically 
reduce the size of the available dataset. It might also result in excluding 
potentially informative longitudinal studies of occupational groups with 
high probability and/or intensity of RF-exposure, and limited co- 
exposures to established carcinogens. To identify occupations meeting 
these requirements, we selected the activities with a yearly cumulative 
exposure ≥ 250 W/m2 hour from the Israeli measurement survey 
(Hareuveny et al. 2015), and the job titles with an exposure probability 
> 20% from the INTEROCC JEM (Migault et al. 2019). 

The resulting occupation-source matches (Table 3) are tentative and 
possibly inaccurate. 

In fact, INTEROCC participants reported work with/nearby 1.3 RF- 
sources on average (Vila et al. 2018). An example is police officers 
who may be exposed to RF-EMF from hand-held transceivers, vehicle- 
mounted and stationary communication systems, and short range 
radar. Several occupational titles classified in the highest decile of RF 
exposure level of the JEM were not easily traceable to a particular source 
of exposure (e.g., Production and operations department managers in 
personal care, cleaning and related services; Estate agents; Travel 
agency and related clerks). Workers engaged in operation and mainte
nance of high power radio-TV antennas (ISCO-88 codes 3521, 7422) are 
not reported by (Migault et al. 2019), likely due to the rarity of these 
occupations among study participants. 

We also developed additional literature search strategies to identify 
epidemiological studies of cancer in relation to several occupations lis
ted in Table 3 (those with exposure probability > 20%, plus workers 
involved in operation and maintenance of broadcasting antennas), 
without mentioning radiofrequency fields or microwaves (see Annex 2, 
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§ 4–5). The large majority of 76 potentially relevant papers identified, 
concerned firefighters (n. 44) and police officers (n. 12). 

We concluded that, for most occupations in Table 3, studies relying 
on job titles as the only exposure surrogate would be uninformative to 
the aim of current review, due to either a low exposure probability (e.g., 
occupations possibly entailing exposure from industrial heating equip
ment or broadcast transmitters, and physiotherapists); a low level of 
over-background exposure to RF-EMF (ships’ deck officers & pilots and 
air traffic controllers); or common and relevant co-exposure to known 
and suspect carcinogens, in spite of a high probability and intensity of 
RF exposure. The latter category includes firefighters, exposed to several 
carcinogens in combustion products and to diesel engine exhausts 
(Casjens et al. 2020; Jalilian et al. 2019). Studies of police officers 
without a detailed assessment of exposures to RF-EMF and potential 
confounders would also be problematic, because of co-exposures to 
traffic-related air pollutants, UV radiation and shift work (Wirth et al. 
2013). 

In summary, we will include studies investigating neoplasia risk in 
relation to exposure to RF-EMF from professional use of hand-held 
transceivers, or from RF-emitting equipment in the workplace, with 
exposure assessment based on measurements or estimates of exposure 
level derived from JEM or SEM. We will also consider eligible for in
clusion studies with indirect measures of exposure (job title or task), 
provided that the assessment of the effect of RF-EMF exposure was a 
predefined research objective, the exposure is well characterized in 
terms of source and type (equipment/device, frequency band, power), 
and the requirements concerning the exposure contrasts (§ 3.1.3) are 
met. 

We will exclude studies based on self-reported exposure only (i.e., 
without information on job, task and/or exposure source). We will also 
exclude studies addressing occupations where exposures to electric and 
magnetic fields between 0 Hz and 10 MHz are dominant compared to the 
co-occurring exposure to RF-EMF (e.g., MRI machine operators, arc- 
welders, or electricity production and distribution workers), or with 
dominant exposures to established carcinogens (e.g., firefighters). 

The priority exposure classifications will be ever vs never exposed, 
exposure frequency, exposure duration or time since first exposure, 
average or cumulative exposure level. 

3.1.3. Types of comparators 
To be eligible for inclusion, studies must allow comparing the 

occurrence of the outcome between exposed and unexposed subjects, or 
between at least two groups with different exposure frequency, 

intensity, duration, time since first exposure, average or cumulative 
exposure level. 

3.1.4. Types of outcomes 

3.1.4.1. Critical and important outcomes. According to COSTER recom
mendation 1.3.4, the eligibility criteria for outcomes should clearly 
“define as relevant to review objectives the primary and secondary 
outcomes of interest (including defining which are apical and which are 
intermediate), what will be acceptable outcome measures (e.g. diag
nostic criteria, scales) and the timing of the outcome measurement.” 
(Whaley et al. 2020). 

Distinguishing outcomes of primary and secondary relevance to the 
objectives of this systematic review is challenging. Any neoplasm is in 
principle important in the assessment of carcinogenic hazards. However, 
the multiplicity and diversity of tumour types precludes the possibility 
of setting exhaustive eligibility criteria at the required level of detail, 
and hinders the identification of the critical confounders for all 
exposure-outcome pairs of potential interest. Moreover, large numbers 
of outcomes can make reviews unfocussed, unmanageable for the user, 
and prone to selective outcome reporting bias. On these grounds, the 
Cochrane collaboration maintains that the predefined critical outcomes 
should be as few as possible; additional important outcomes may be 
specified, but up to seven outcomes will form the basis of the GRADE 
assessment [MECIR standards C14 (Higgins et al. 2020)]. 

While no eligibility restriction on tumour type will be applied, we 
will focus on six neoplasms: brain tumours (including gliomas and other 
histotypes); meningioma; acoustic neuroma; pituitary tumours; salivary 
gland tumours; and leukaemias (including several subtypes). In the lack 
of guiding biological hypotheses, the choice of these “critical” outcomes 
relied on contextual evidence: type of exposure (near-field, far-field), 
knowledge about exogenous risk factors for specific neoplasms 
(favouring tumours with poorly understood aetiology), and available 
study data (prioritizing tumours most commonly investigated in relation 
to RF-EMF, based on previous reviews). 

Table 4 reports the standard nomenclature and codes of these tu
mours according to the ICD-10 and ICD-O-3 classifications (Fritz et al., 
2013; WHO, 2016). These details are given for illustrative purposes, 
reminding that clinical and aetiological disease definitions often diverge 
(Olsen 2012). 

3.1.4.2. Diagnostic methods and measures of occurrence. Eligibility for 

Table 3 
Variability and cumulative level of exposure to RF-EMF in working activities with/nearby specific sources from the Israeli measurement survey (Hareuveny et al. 
2015), and probability of exposure to RF-EMF per occupation from the INTEROCC JEM (Migault et al. 2019) tentatively matched to an exposure source assumed 
dominant.  

ISRAELI MEASUREMENT SURVEY INTEROCC JEM 

Exposure source (job/task) Exposure variability Cumulative exposure Occupation (ISCO-88) Exposure probability  

N◦
S N◦

M GSD   E+ % 

Walkie-talkie and other hand-held transmitters 
(drivers, security guards, 
police officers, others) 

6 34  20.0 4460 5163-Prison guards 13  61.9 
5162-Police officers 66  46.8 
5169-Protective service workers 55  33.9 
5161-Firefighters 8  30.8 

Dielectric heating-plastic (plastic welders) 55 143  31.6 2180 8232-Plastic products machine operators 3  3.2 
Induction heating-metals (various applications) 23 63  6.3 1400 7213-Sheet metal workers 8  3.8 
Heating, thawing, drying (many industries) 9 49  6.3 620 8266-Shoemaking & related machine operators 3  5.0 
Diathermy (physiotherapists) 16 43  31.6 500 3226-Physiotherapists & associate professionals 16  20.5 
High power transmitters (operation & maintenance) 62 197  31.6 250 3521-Broadcasting & audiovisual technicians –  – 

7422-ICT installers & servicers –  – 
Marine radar (on board personnel) 7 35  6.3 13 3142-Ships’ deck officers & pilots 13  65.0 
Ground airborne radar (operators) 39 25  3.2 4 3144-Air traffic controllers 8  44.4 

N◦
S = number of distinct RF-emitting equipment/devices; N◦

M = number of measurements of the electrical (E) field level at the worker location (at the head for walkie- 
talkie) in typical working conditions; GSD = geometric standard deviation of the average incident power density (S, W/m2) per source; Cumulative exposure (W/m2 

h/year) = average level of exposure per hour (S, W/m2) times the hours worked in a year (derived from publically available data and workplace interviews); Eþ =

numbers of subjects in the index occupation who reported exposure to one or more sources of RF-EMF. 
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inclusion in the critical outcome subset is restricted to studies including 
newly diagnosed (incident) cases of the diseases of interest, either 
histology-confirmed or based on unequivocal diagnostic imaging (the 
latter criterion only applies to CNS tumours), ascertained through can
cer registries, hospitals, or other sources with adequate coverage of the 
study base during the observation period. We will exclude studies based 
on self-reported outcomes, as well as on hospital admissions only (due to 
uncertainties about the date of diagnosis). Information from death cer
tificates only is considered the least valid basis of diagnosis for neo
plasms (Jensen et al. 1991). Studies based on cancer-related causes of 
death are eligible for inclusion in the “important” outcome subset, 
conditionally on the study design (see § 3.1.5 and § 3.1.6). 

3.1.5. Types of studies 

3.1.5.1. Inclusion criteria. Eligibility for inclusion is restricted to aetio
logical studies of cohort and case-control design, comprising all typol
ogies considered by (Gail et al. 2019). We will assess compliance with 
the eligibility criteria based on standard definitions (Elwood 2017; Porta 
2016), rather than on the terminology used by the publication authors. If 
the measures of effect are based on cancer mortality, eligibility for in
clusion is further restricted to cohort and cohort-nested case-control 
studies; population-based case-control studies with deceased cases and 
controls will not be included, because this study design renders the 
identification of the study base difficult when not impossible. 

3.1.5.2. Exclusion criteria. Case reports and case series are ineligible for 

inclusion due the lack of a control group. We will also exclude 
comparative studies such as ecological studies (geographical correlation 
and time-trend analyses), cross-sectional studies, and case-case analyses 
of case-control studies, because these study designs do not allow 
calculating the intended measures of effect (see § 3.1.6). For example, 
case-only studies are ineligible for inclusion because in this study design 
there are no study subjects (exposed or unexposed) who have not 
experienced the outcome, and the resulting measure of effect is not an 
estimate of the disease incidence rate ratio in the source population. 

3.1.5.3. Complementary evidence. In line with the triangulation 
approach (Arroyave et al. 2021; Lawlor et al. 2016; Steenland et al. 
2020), we will systematically search for and include three categories of 
complementary evidence: (a) exposure validation and other bias studies 
conducted in the framework of included studies, or directly relevant to 
the investigated exposure-outcome pairs; (b) source-specific RF dose- 
modelling; and (c) simulation studies based on incidence time trends 
of specific types of CNS tumours. 

Findings from the first study group will be considered in risk of bias 
assessment (see Annex 4, § II.4 and § II.5), and those from the second 
group at the stage of quality of evidence rating (see Annex 6, p. 7). The 
intended uses of data from the third group, in line with COSTER 
recommendation 7.8 to interpret the external validity of the overall 
body of evidence (Whaley et al. 2020), is described below. 

Monitoring of incidence rates over time allows investigating changes 
in disease patterns that affect specific birth cohorts, vary with age, or 
exhibit calendar effects (which can occur if exposures are localized in 

Table 4 
Neoplasms of primary interest: ICD-10 and ICD-O-3 codes.  

Neoplasm ICD-10* ICD-O-3 

Site Histology / behaviour 

Brain, malignant† (syn. brain cancer) C71 C71 8020/3, 8440/3, 8680/3, 8693/3, 8963/3, 9060/3, 9061/3,9064/3, 9065/3, 9070/3, 9071/3, 
9072/3, 9080/3, 9081/3, 9082/3, 9083/3, 9084/3, 9085/3, 9100/3, 9101/3, 9364/3, 9380/3, 
9381/3, 9382/3, 9390/3, 9391/3, 9392/3, 9393/3, 9400/3, 9401/3, 9410/3, 9411/3, 9420/3, 
9421/1, 9423/3, 9424/3, 9425/3, 9430/3, 9440/3, 9441/3, 9442/3, 9450/3, 9451/3, 9460/3, 
9470/3, 9471/3, 9472/3, 9473/3, 9474/3, 9480/3, 9490/3, 9500/3, 9501/3, 9502/3, 9505/3, 
9508/3, 9522/3, 9523/3 

Brain, non-malignant† (syn. brain tumours) D33.0-D33.2 8440/0, 8680/1, 8681/1, 8690/1, 8693/1, 9080/0,1, 9084/0, 9363/0, 9390/1, 9383/1, 9384/1, 
9394/1, 9412/1, 9413/0, 9444/1, 9442/1, 9490/0, 9492/0, 9493/0, 9505/1, 9506/1, 9509/1 

Brain, uncertain behaviour D43.0-D43.2 – 
Gliomas§ C71 C71 9380–9384, 9391–9460 
Astrocytomas, low-grade (I-II)   9384, 9400, 9421, 9424, 9425 
Astrocytoma, anaplastic (III)   9401 
Glioblastoma (IV)   9440, 9441 
Oligoastrocytomas (II-III)   9382 
Oligodendroglioma (II-III)   9450, 9451 
Other gliomas (I-II)   9431, 9444 
Glioma, malignant NOS   9380 
Meningioma, malignant (rare) C70 C70 9530/3, 9538/3 
Meningioma, non-malignant† D32.0 9530/0, 9530/1, 9531/0, 9532/0, 9533/0, 9534/0, 9535/0, 9537/0, 9538/1, 9539/1 
Cerebral Meninges, uncertain behaviour D42.0 – 
Acoustic neuroma 

(syn. vestibular schwannoma) 
D33.3 C72.4 9560 

Pituitary gland, malignant (rare) C75.1 C75.1 8272/3 
Pituitary gland, benign D35.2 8272/0 
Salivary glands (incl. Parotid), malignant C07-C08 C07-C08 8272/0, 8561/0 (major types) 
Salivary glands (incl. Parotid), benign D11 8272/3, 8430/3 (major types) 
Leukaemias C91-C95 C42.1 9800–9948 
Lymphoid C91  981–983 
Myeloid C92  984–993 
Other of specified cell type C93-94  994 
Unspecified cell type C95  980 

*The ICD-10 classification of neoplasms is based on site and behaviour categories: malignant (C00-C97), in situ (D00-D09), benign (D10-D36), uncertain/unknown 
behaviour (D37-D48). The ICD-10 terms D42.0, D43.0-D43.2 have no equivalent codes in ICD-O-3. 

† Paediatric brain tumours include histotypes uncommon in adults, such as germ cell tumours (8020, 8440, 9060–9061, 9064, 9065, 9070–9072, 9080–9085, 
9100–9101), pilocytic astrocytoma (9421, 9425), ependymal tumours (9383, 9391–9394), embryonal tumours (8963, 9364, 9470–9474, 9480, 9490, 9500–9502, 
9508), medulloblastoma (9470–9472, 9474), and primitive neuroectodermal tumours (9473). 

§ The main subtypes of gliomas are reported below, with the WHO grade for neoplasms of the central nervous system (Louis et al. 2007) in brackets. Grade I are the 
least aggressive and grade IV the most aggressive tumours. 

S. Lagorio et al.                                                                                                                                                                                                                                 



Environment International 157 (2021) 106828

8

time and affect large segments in the population at once), and has 
substantially contributed to current knowledge about environmental 
causes of cancer (Olsen 2012). 

Regarding the possible carcinogenicity of RF-radiation at exposure 
levels below international guidelines, analyses of cancer incidence time 
trends are considered informative owing to the steep increase in mobile 
phone use (and related changes in prevalence and level of RF exposure 
to the head) since mid-1990s, along with the limited number of known 
competing environmental risk factors for glioma and other intracranial 
tumours (Olsen 2012; Röösli et al. 2019; WHO 2010). 

The availability of high quality registry data with virtually complete 
tumour registration over long time periods, is a prerequisite for con
ducting these studies. 

Time-trend analyses of CNS tumours are prone to bias. “Apparent” 
changes in incidence rates over time (i.e., not reflecting true changes in 
incidence) may result from demographic changes, and/or changes in 
sensitivity and accessibility of imaging techniques, in histologic classi
fication, and in registration procedures (Ostrom et al., 2020). The latter 
is especially applicable to the collection of non-malignant brain tu
mours, meningioma and other benign CNS tumours (Dolecek et al. 2015; 
Withrow et al. 2021). Detection bias is an additional concern in time- 
trend analyses of acoustic neuroma incidence rates (Reznitsky et al. 
2019). On these grounds, we will only consider “simulation studies”, 
purposely planned to assess the external plausibility of findings from 
analytical studies of specific CNS tumour risks in relation to mobile 
phone use, by comparing predicted and observed time-trends of inci
dence rates. To date, studies of this type have been conducted for ma
lignant brain tumours in the whole (Chapman et al. 2016; Sato et al. 
2019); for gliomas (de Vocht 2016; 2017; 2019; Deltour et al. 2012; 
Karipidis et al. 2018; 2019; Little et al. 2012; Villeneuve et al. 2021); for 
glioma subtypes [astrocytoma (Little et al. 2012); glioblastoma multi
forme (de Vocht 2016; 2019)]; and for multiple histotypes of malignant 
and benign tumours in the temporal lobe (de Vocht 2019). We intend 
using findings from these studies to set a range of “implausible sizes” for 
the measures of effect reported by the glioma/brain cancer studies 
considered in SR-A. These “credibility benchmarks” would be defined 
for RR estimates either above or below the null, at increasing intervals of 
time since first use and at increasing amount of use, overall and within 
specific time-windows. 

We will assess comparability of findings across simulation studies in 
terms of:  

• Setting (country, population demographics, time period);  
• Risk scenarios (measures of effect; effect size; latency periods; effect 

modifiers);  
• Exposure (data used to model changes in mobile phone use in the 

target population);  
• Outcome (anatomical site, histology, grade);  
• Statistical methods;  
• Predicted events (number of cases, incidence rates, percent rate 

changes, others). 

If feasible, the results of multiple simulation studies per brain tumour 
category/type/subtype will be standardized to a common metric and 
meta-analysed. The study classification based on the external plausibility 
of the observed RR point estimate, will serve three purposes: (i) to 
validate the capacity of our customized RoB to distinguish studies at 
high and low risk of directional biases (§ 3.5.1); (ii) to assess the influ
ence of studies reporting implausible measures of effect on the main 
meta-analyses’ results (§ 3.7.2); (iii) to inform the appraisal of the evi
dence strength (§ 3.9; Annex 6, § 3). 

3.1.5.4. Years considered. No filter on publication date will be applied 
(see § 3.2 for time coverage of the search strategy). 

3.1.5.5. Publication language. We expect a large English literature base 
for the topic of the current review. We will not exclude any article based 
on language, but the search queries will include English terms only. 
When screening articles for inclusion, publications in languages other 
than the ones spoken by the reviewers (Greek, English, French, German, 
Italian, Portuguese) will be translated into English using Google Trans
late (https://translate. google.com/). All potentially relevant papers 
where we are in doubt about inclusion after automatic translation, will 
be translated to English by a human translator. 

3.1.5.6. Publication types. We will include peer-reviewed journal arti
cles reporting original data from eligible study types. We will consider 
indexing in Medline as evidence of peer-review status. We will exclude 
reviews, meta-analyses, conference papers and proceedings, editorials, 
comments and letters, with the exception of correspondence related to 
the included studies (such as letters by the authors reporting errors in 
the published analysis, providing more detailed or extended data ana
lyses, or discussing study strength and biases). 

3.1.6. Types of effect measures 
We will focus on studies reporting incidence-based estimates of the 

relative risk of disease conditional on the exposure: rate ratio (RR) or 
hazard ratio (HR) in cohort studies and odds ratios (OR) in case-control 
studies. Because of the rarity of the neoplasms of interest, the HR and the 
OR can be considered equivalent to a RR (Higgins et al., 2021a). 
Moreover, possible meta-analyses will be performed on log-transformed 
measures of effect and confidence limits (CLs). 

As anticipated, cohort (and cohort-nested case-control) studies with 
mortality-based estimates of relative risk (e.g., standardized mortality 
ratios – SMR), regardless the type of tumour investigated, will be 
included in the “important” outcome subset of the systematic review. 

3.2. Information source and search strategy 

Eligible studies will be identified by literature searches through 
Medline and Embase. We will also consult the EMF Portal (https://www. 
emf-portal.org/en), a dedicated database of the scientific literature on 
the health effects of exposure to electromagnetic fields, with docu
mented high coverage of the topic (Drießen et al. 2017). The search 
timeframe (as in-print publication) will extend from the database 
inception dates (1946 for Medline; 1947 for Embase) to 31 December 
2020 or to the date of the actual literature searches, whichever comes 
later. To comply with the MECIR requirement and COSTER recom
mendation 2.7 to update the searches within 12 months before publi
cation of the review (Higgins et al. 2020; Whaley et al. 2020), we will re- 
run all searches shortly before the final analyses, and any further rele
vant studies identified will be retrieved for inclusion. 

The Medline and Embase queries are reported in Annex 2, § 3–4. The 
search on EMF-Portal will take advantages of the in-built facilities; to 
identify cohort, case-control and simulation studies, we will toggle 
“Epidemiological studies” (as Topic), and “Radio frequency (≥10 MHz)” 
or “Mobile communications” (as Frequency range), with “cancer” OR 
“tumour” as keywords; for exposure validation and dosimetry studies, 
we will select “Technical/dosimetric studies” and the above frequency 
ranges. As an additional source, we will use a library of over 400 “seed” 
studies (see Annex 2, § 1, Table 1), taken from the reference lists of 19 
recent comprehensive reviews (AGNIR 2012; ANSES 2013; 2016; 
ARPANSA 2014; CCARS 2017; Demers et al. 2014; FDA 2020; HCN 
2016; IARC 2013; ICHENF, 2018; SCENIHR 2015; SSM 2013; 2014; 
2015; 2016; 2018; 2019; WHO, 2014b). 

We used this library to calibrate and assess the performance of draft 
Medline queries, intentionally designed to privilege sensitivity over 
precision (0.89 vs 0.09, in the final draft; Annex 2, § 1, Table 2). 

The reference lists of included studies will be hand-searched for 
unidentified relevant publications. 
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Unpublished studies will not be sought. We will not search grey 
literature, defined as “all types of material not published commercially” 
(Alberani et al. 1990; The New York Academy of Medicine, 2016). We 
acknowledge that this might result in a “grey literature bias”, whereas 
studies yielding smaller and/or statistically nonsignificant effects might 
be less likely to be published and only available in PhD theses, confer
ence proceedings, books, personal communications, and other forms of 
grey literature (Song et al., 2010). By definition, it is doubtful that 
systematic reviews can ever get a complete or representative set of this 
literature. This is especially applicable to aetiological studies, as most 
dedicated collections focus on health interventions (UIC University Li
brary, 2021). More importantly, while the common occurrence of grey 
literature bias was fully supported by a meta-research study of over 
3,000 meta-analyses from a wide range of scientific disciplines, the 
estimated effect size was very small [− 0.092 (95% CI − 0.143, − 0.041)], 
and far below the impact of the “small study effects” [0.197 (95% CI 
0133, 0.264)], acting in the opposite direction (Fanelli et al. 2017). 

Eventually, part of the possibly relevant grey literature will be 
covered by the literature search through Embase, that includes over 3.6 
million conference abstracts (Elsevier 2020). 

3.3. Study selection 

We will use the EndNote 20 software for the assemblage of the results 
of the literature searches, duplicate removal, and data management 
during the study selection process (Bramer et al. 2017; Peters 2017). 
According to a recent comparative study of systematic review automa
tion software packages, EndNote ranked highest for usability and 
acceptability (Cleo et al. 2019). 

We will categorize the identified records by coherence with the 
subject of the systematic review and other features relevant to assess 
compliance with the predefined inclusion/exclusion criteria. This cate
gorization will occur at the title/abstract or full-text levels of the review, 
as appropriate. 

Two reviewers (DB, MSP) will independently assess the relevance of 
the identified articles, and their eligibility for inclusion in any of three 
systematic reviews (§ 3.3.1). Then, both reviewers will share their 
EndNote libraries with two other team members (KK, SL) who will revise 
and finalize the selection of studies (§ 3.3.2) for the three components of 
the systematic review. 

All four reviewers, provided with written instructions on categori
zation scheme, variable coding, and treatment of multiple publications 
per study, will participate in a pilot testing of the study selection pro
cedures undertaken on a small subset of the references retrieved. 

3.3.1. Selection of eligible articles 
At the title/abstract screening step, all records will be classified in 

four categories of relevance (0 = Irrelevant; 1 = Relevant 8 = Com
plementary evidence; 9 = Unclear relevance). Examples of records 
amenable to exclusion at this stage include instances when the title/ 
abstract/keywords fields provide clear evidence that the publication 
addresses: topics other than adverse health effects of RF fields (e.g., RF- 
ablation or telemedicine/mobile-health applications); experimental 
animal studies; epidemiological studies on cancer and exposure to 
extremely low frequency (ELF) fields, or on RF-EMF exposure and non- 
neoplastic diseases. Ineligible publication types (review/meta-analysis/ 
editorial/comment) will also be screened at this stage and classified as 
irrelevant (0) or potentially relevant (9), depending on the topic. 

Full-text articles will be retrieved for all records classified as 
certainly or possibly relevant (codes 1, 8 and 9), and examined to sub
stantiate or modify the classification by relevance. All records with 
confirmed codes 1, 8, or 9 will be first classified by publication type. 
Eligible article types (original studies and related correspondence) will 
be further categorized by study design, setting/source of exposure to RF- 
EMF (wireless phone use; environmental sources; occupational sources), 
and investigated neoplasm(s). Eligibility for inclusion will then be 

assessed based on compliance with the predefined inclusion/exclusion 
criteria (§ 3.1). At completion of this stage, all identified articles will be 
divided into four non-overlapping groups: (i) irrelevant; (ii) relevant but 
ineligible for inclusion, with reason(s) for exclusion specified (recording 
main, if more than one applies); (iii) relevant and eligible for inclusion in 
one of the three systematic reviews (or in more than one, if multiple 
types of RF-EMF exposure are investigated); (iv) relevant as comple
mentary evidence. 

The list of studies excluded at full text (group ii) will be provided in 
the completed review paper. 

3.3.2. Selection of eligible studies 
For papers addressing risk of multiple tumours and/or multiple 

exposure types, we will consider the analyses related to each specific 
exposure-neoplasm pair as separate studies. 

3.3.2.1. Multiple publications per study. Multiple publications with 
overlapping data from the same study will be identified by examining 
study acronym, author affiliations, study design, enrolment criteria, and 
enrolment dates. We will include all articles on the study providing in
formation relevant for each neoplasm and exposure contrast prioritized 
for our systematic reviews, select one to use as the primary record for 
data extraction and risk of bias assessment, and consider the others as 
secondary publications with annotation as being related to the primary 
record. We will consider as primary records the latest published follow- 
up/update for cohort and nested case-control studies, and the earliest 
paper for case-control studies. We emphasize that more than one paper 
per study can qualify for the role of primary record, depending on 
availability of information relevant for the various exposure-outcome 
pairs of interest. In the presumably rare cases where exactly the same 
set of data from an original study is reported in multiple papers 
(duplicate data), we will keep the first publication and exclude subse
quent articles. 

3.3.2.2. Pooled analyses of primary studies. Pooled analyses of individ
ual data from relevant primary studies (not to be confused with meta- 
analyses, which use published risk estimates as input data) are eligible 
for inclusion in our review. If a quantitative synthesis of results is 
feasible, we will avoid combining results from primary studies and 
pooled analyses with overlapping populations. That is, we will create 
more than one dataset per neoplasm (e.g., one including primary studies 
only and other(s) made of pooled analyses plus all other non- 
overlapping primary studies). The main neoplasm-specific meta-ana
lyses will be based on one of these datasets (see § 3.7.1), while the others 
will be used in sensitivity analyses aimed at evaluating the robustness of 
the findings to changes in the dataset composition (see § 3.7.2). 

3.3.3. Disagreement between reviewers 
Possible disagreements between reviewers involved in article and 

study selection (including decisions on between-study overlap) will be 
resolved by discussion; if no consensus can be reached, a final decision 
will be made by the two reviewers in charge of the study selection for 
each line of evidence. 

3.3.4. Reporting of information flow 
We will document the selection process in a study flow diagram 

according to the PRISMA reporting guidelines (Page et al., 2021b). 

3.4. Data extraction 

For each included study, a standard set of details will be extracted 
from the relevant publications (Table 5). The study design is reported in 
brackets when data refer to either cohort or case-control studies 
(including variants thereof); lack of specification means relevance for 
both main study designs. 
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For all prioritized exposure contrasts, we will extract from each 
neoplasm-specific study the most (appropriately) adjusted measure of 
effect and 95% confidence limits per exposure category. 

From the entire dataset of included studies, three subsets of equiv
alent size will be assigned to three reviewers (DB, KK, MSP) who will 
extract and record the relevant data. Three other reviewers (MB, MR, SL) 
will check the extracted information for completeness and accuracy as a 
quality control measure. The structure of the datasets that will be 
created is described in Annex 3. Information inferred, converted, or 
estimated during data extraction will be marked by brackets, and cor
rections made after quality control will be annotated with a rationale. 

3.4.1. Dealing with missing data 
We will request missing data considered important for the review (e. 

g., data to conduct a meta-analysis) from the corresponding author by 
email or phone, using the contact details available from the study report. 
We envisage two attempts of contact, two weeks apart. In case of no 
response within one month of the second, we will consider the attempt 
unsuccessful. 

The scientific literature relevant to the planned systematic review 
spans four decades. Recency of publication is likely to be a strong 
determinant of both the quality of reporting, and the possibility to get 
unpublished information. For early studies, we expect the chance of 
obtaining missing data to be low for substantive reasons, regardless of 
the number of contact attempts. 

3.5. Risk of bias assessment 

3.5.1. Risk of bias in studies 
To assess the study’s internal validity, or risk of bias (RoB), we will 

follow the method developed by the National Toxicology Program - 

Office of Health Assessment and Translation (NTP-OHAT, 2019). 
The OHAT approach was chosen because of its versatility. Consisting 

of a cohesive framework applicable to different evidence streams, study 
designs and topics, it allowed a harmonization of RoB assessment pro
cedures across all systematic reviews commissioned by the WHO. 

We developed a tailored version of the RoB tool (NTP-OHAT 2015), 
focussing on the bias questions applicable to the study designs eligible 
for inclusion in our reviews. These include: confounding; selection bias; 
attrition/exclusion/missing data bias; confidence in the exposure char
acterization; confidence in the outcome assessment; selective reporting; 
and appropriateness of statistical methods. In the sections addressing 
selection and outcome-information biases, the RoB tool developed by 
the Office of the Report on Carcinogens (NTP-ORoC, 2015) was also 
referred to. 

Detailed information on the customization process, along with the 
tailored bias rating instructions and answer option forms, are provided 
in the annexed RoB protocol (Annex 4). 

We will perform the RoB assessment at the exposure-outcome level, 
as studies eligible for inclusion in the current review may report on 
different neoplasms and multiple types/sources/settings of exposure to 
RF-EMF. This is in line with the Cochrane approach (Higgins et al., 
2021b; Sterne et al. 2021), COSTER recommendation 5.2 (Whaley et al. 
2020), and other guidance on conducting systematic reviews of obser
vational studies of aetiology and risks from environmental or occupa
tional exposures (Arroyave et al. 2021; Dekkers et al. 2019; Radke et al. 
2019). 

Depending on the number of included studies, up to six team mem
bers (DB, MB, KK, ME, MR, TL) will be involved in the RoB assessment, 
and one will coordinate the process (SL). The potential for bias of each 
neoplasm-specific study and related exposure-outcome contrasts will be 
rated in duplicate by two assessors. No assessor will evaluate studies that 

Table 5 
Data extraction elements.  

Topic Items 

Article First author and publication year, full reference 

Study Study design: cohort; nested case-control study; population-based case-control study hospital-based case-control study; other design variants (specify) 
Study acronym (if any) 

Subjects Study population (description) 
Geography (country, region, state, etc.) 
Dates of study and sampling time frame (period of case ascertainment) 
Demographics (sex; age or lifestage at exposure and at outcome assessment) 
Number of subjects (target, enrolled, number per group in analysis) 
Person-years of observations, length of follow-up and follow-up rates per exposure group [cohort] 
Participation rates of cases and controls (possibly for exposed and unexposed separately, in each series) [case-control] 

Methods Inclusion/exclusion criteria and recruitment strategy 
Case ascertainment: cancer register; hospital-based; other source (specify) 
Case type: incident cases; cases alive at enrolment; deceased cases 
Reference group description [cohort] 
Control type: population based (source and sampling method); hospital based (type of diagnoses); other types (specify) [case-control] 
Proportion of proxies interviewed among cases and controls [case-control] 
Outcome type(s): one or more of the following: glioma, brain tumours (when only topography available), paediatric brain tumours (age 0–19 years), meningioma, acoustic 
neuroma, pituitary tumour, salivary gland tumours; childhood leukaemias (age 0–14 years); adult leukaemias; other type (specify) 
Outcome assessment: diagnostic methods (histology-based, %; imaging-based, %; cause of death only; not given) 
Exposure assessment timing: prospective vs retrospective (i.e., before vs after outcome occurrence, diagnosis or ascertainment) 
Exposure assessment methods (self-administered questionnaire, personal interview; computer assisted personal interview, network-operator customer lists; 
measurements, modelling, geocoded distance to a broadcast transmitter; JEM, SEM; occupational sector, job title, task) 
Exposure variables used in the analyses (e.g., ever vs never exposed; length of exposure; time since first exposure; exposure frequency; exposure level; cumulative exposure; 
others – specifying the variable unit and type: dichotomous/categorical/continuous) 
Statistical methods (specify) 

Results Mean/median exposure value within each exposure interval (for all relevant metrics) 
Number of cases and persons-years or total number of subjects per exposure level, including unexposed [cohort]; 
Number of cases and controls per exposure level, including unexposed [case-control]; 
Type of relative risk estimate (OR, HR, IRR, SMR) 
Measures of effect and confidence limits (for each prioritized exposure contrast 
Confounders or modifying factors and how they were considered in analysis (i.e., list of factors included in final model, or considered for inclusion but found to have little 
or no impact on the measures of effect and therefore not included in the final model) 

Funding Funding source  
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they co-authored. The subsets of studies assigned to each assessor pair 
will reflect the composition of the entire dataset of included studies in 
term of exposure type and study design. Rating conflicts will be resolved 
by consensus or arbitration by a third person (SL). First and modified 
ratings will be recorded securely, and we will study consistency and 
reason for variation. 

We will also undertake a small-scale validation study of our 
customized RoB tool, as applied to studies on mobile phone use and 
brain tumour risk, to assess the agreement between the study classifi
cations by potential for upward/downward bias and by plausibility of 
the measures of effect size (§ 3.1.5.3). 

All assessors will be trained in a pilot-study undertaken right after 
completion of the study selection, rather than at the protocol stage as 
suggested by COSTER recommendation 1.4.7 (Whaley et al. 2020), to be 
able to select a sample of studies representative of the review datasets. 
However, during protocol development, all assessors participated in a 
pre-pilot aimed at testing and thereby improving the comprehensibility 
and ease of application of a preliminary version of the tailored RoB tool 
(see Annex 4, § I.6 for details). 

The RoB assessment process will be managed using the Health 
Assessment Workplace Collaborative (HAWC) platform (Shapiro et al. 
2018). 

Major revisions of the RoB protocol occurring after the pilot-study or 
later during the review, will be documented with justification in the 
paper reporting on the completed review. 

3.5.2. Summary assessments of risks of bias 
We will apply the OHAT’s 3-level tiering of the quality of individual 

studies, based on summary assessments of risk of bias for the domains 
most relevant to the specific systematic review (NTP-OHAT, 2019). This 
tiering differs from scaling, and is consistent with the Cochrane’s overall 
risk-of-bias judgement (Higgins et al., 2021b; Sterne et al. 2021). We 
will focus on selection/attrition biases, and exposure/outcome infor
mation biases. Tier-1 will comprise studies with definitely or probably 
low risk of bias for all key-items and most of other items; tier-3 will 
include studies with definitely or probably high risk of bias for all key- 
items and most of other items; and studies non-compliant with the 
above criteria will be classified as tier-2. We will use this ranking to 
assess the overall potential for bias in the body of evidence at the stage of 
quality of evidence assessment (see Annex 6). 

We will also consider using the tiering results in data synthesis (see §
3.7), although the possibility to perform meaningful subgroup analyses 
by bias-tiers will depend on the variability of proneness to influential 
biases in the dataset, and on the possibility to isolate the impact of one 
bias from those of competing biases (Savitz et al. 2019). 

3.5.3. Assessment of reporting bias 
Reporting bias [or “meta-bias” (Shamseer et al. 2015)], comprises 

several kinds of distortions due to missing data in a synthesis (Page et al. 
2021a; Sedgwick 2015). We will minimize language bias by including 
studies in any language. We will address possible bias in the identifi
cation of occupational studies eligible for inclusion in SR-C by per
forming additional literature searches (see § 3.1.2.3 and Annex 2, § 
4–5). We will use both funnel plots, and the Egger’s test to examine 
funnel plot asymmetry. We note that interpretation of funnel plot and 
Egger’s test is challenging, as it is difficult to identify whether an asso
ciation between study size and reported exposure/treatment effect is 
due to true heterogeneity, biases in individual studies, selective 
reporting, publication bias, or a combination of these (Hartwig et al. 
2020; Sterne et al. 2011). Treatment of multiple publications of the same 
study is a neglected quality item of systematic reviews (Hennessy and 
Johnson 2020). Multiple publication bias occurs because of the 
increasing likelihood of a study being identified and included in a meta- 
analysis if its results are published more than once. When studies with 
shared populations are included in a meta-analysis, multiple counting of 
the same individual data will result in biased meta-risk estimates (“study 

aggregation” bias). Our predefined inclusion strategy (see § 3.3.2.1) and 
analysis plan (see § 3.7.2) are aimed at maximizing the size of the 
available dataset while avoiding multiple publication and study aggre
gation biases. 

3.6. Synthesis of results 

We will summarize the main features of all included studies in tables 
grouped and ordered by exposure type/setting/source (SR-A, SR-B, and 
SR-C), neoplasm, and study design. 

Templates of the key study characteristic tables for cohort and case- 
control studies are provided in Annex 5, Tables 1-2. The results of 
included studies will be outlined in summary of finding tables (Annex 5, 
Table 3), visual displays, and a narrative synthesis. 

The outcome, the exposure, and age at diagnosis are the most rele
vant factors affecting comparability between studies eligible for inclu
sion in our review. We will not combine studies of different tumour types 
(ICD-O-3 main site or histology groups), neoplasm-specific risks from 
different exposure types and metrics, or risk of a specific tumour in 
relation to a given exposure type/metric in adults and children/ado
lescents (0–19 years). 

For homogenous datasets (in terms of outcome, subjects’ lifestage, 
and exposure type/metric), we will not set a minimum size requirement 
for amenability to a meta-analysis. However, to address concerns about 
the large uncertainty in heterogeneity statistics from meta-analyses 
based on few studies (Fu et al. 2008; Ioannidis et al. 2007), we will 
calculate and report the confidence intervals of the I2 statistics. We will 
also preliminarily assess the heterogeneity in findings across studies (in 
terms of direction and magnitude of effects), to decide whether aver
aging individual measures of effect would produce meaningful results. 
Possible causes of inconsistency (e.g., design features and potential for 
selected types of bias) will be explored through stratified meta-analysis 
and meta-regression. In the presence of substantial unexplained het
erogeneity, reporting of overall meta-risk estimates will be considered 
inappropriate, and confidence in the body of evidence will be reduced 
(see Annex 6). 

The synthesis of findings from the study subsets not meeting the 
requirements for inclusion in a meta-analysis will be based on a struc
tured tabulation of results and visual displays, such as the effect direc
tion plot in Annex 5, Figure 1 (Anzures-Cabrera and Higgins 2010; 
McKenzie and Brennan 2021). 

We present below the analysis plan of a meta-analysis of studies 
included in SR-A. A similar approach would be followed if a quantitative 
synthesis of data from other lines of evidence (SR-B, SR-C) is considered 
feasible. 

3.7. Meta-analysis of studies on wireless phone use and risk of tumours in 
the head region 

The aims of the meta-analysis will be to assess the strength of asso
ciation and the shape of the exposure–response relationship; to quantify 
the degree of heterogeneity across studies; and to explore the source of 
inconsistency, if any (Dekkers et al. 2019; Greenland and Rourke, 2012; 
Savitz and Wellenius 2016). 

3.7.1. Main analyses 
The meta-analyses will be neoplasm- and exposure-specific, per

formed separately for glioma, meningioma, acoustic neuroma, pituitary 
tumours, and salivary gland tumours, in relation to usage of each type of 
wireless phone (mobile or cordless). Should the systematic review result 
in other tumours of the head region suitable for a meta-analysis, we will 
augment the neoplasm series. 

We will use the natural logarithms of the most (appropriately) 
adjusted point estimates of relative risk (RR, HR, OR), and related 95% 
CLs, extracted from the relevant publications as input for the meta-an
alyses, focussing on the exposure metrics and contrasts below. 
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a. For the binary exposure variable “ever vs never” use, we will perform 
fixed- and random-effects overall and stratified meta-analyses, using 
the I2 statistic (Higgins et al. 2003) to assess the statistical hetero
geneity in results across studies, and between cohort and case- 
control studies.  

b. For the categorical variable “time since start of use”, the across-study 
variability in cutpoints will be dealt with by aligning (to the possible 
extent) the original categories to a “standard” classification into 
short-term (<5 years), mid-term (5–9 years), and long-term use 
(≥10 years). When needed, we will combine the original measures of 
effect for adjacent categories using the inverse variance weighting 
method (fixed effects model). We will first perform meta-analyses 
stratified on study design for each category of time since start use 
(short-term, mid-term-term, and long-term) vs no exposure. Then, we 
will carry out analyses of risk by increasing categories of time since 
start use by mixed effects meta-regression (Harbord and Higgins, 
2008). To this purpose, the three levels of this categorical variable 
will be assigned increasing numerical values (short-term = 1; 
mid-term = 2; long-term = 3), in order to approximate an analysis of 
trend by latency. The aim of the meta-regression will be to assess the 
amount of overall heterogeneity in the exposure–response function 
attributable to differences between study groups classified by design 
(cohort vs case-control), exposure assessment method, and (if 
feasible) gradient of susceptibility to upward and towards null bia
ses. In these analyses, the between-groups variance (t2) is estimated 
by the restricted maximum likelihood (REML) method, and the 
proportion of between-studies variance explained by the covariate/s 
(adjusted R2) is calculated by comparing the estimated 
between-studies variance (t2) with its value when no covariates are 
fit (t02) (Harbord and Higgins, 2008).  

c. We will perform dose–response meta-analyses of neoplasm risks per 
cumulative call time and total number of calls. We will use weighted 
mixed effects models suitable for table of correlated estimates 
(Crippa et al. 2019; Orsini 2021). A single exposure value is assigned 
to each category based on what has been reported (mean, median, 
midpoint) within each study. In case the typical exposure value 
within each exposure interval is not available from the publication, it 
will be assigned according to its distribution. We will use regression 
splines of different degrees to answer specific questions about the 
dose–response relationships (Orsini 2021; Orsini and Spiegelman 
2020). The heterogeneity of dose–response gradients across studies is 
taken into account by using random-effects for the regression co
efficients of the exposure transformations. The main target of sta
tistical inference (test of hypothesis, confidence intervals) is the 
pointwise dose–response relationship for the average study. To 
examine the magnitude of heterogeneity across studies, the best 
linear unbiased predictions (BLUP) of the random effects will be 
used. A comparison of alternative candidate dose–response models 
will be done using the Akaike Information Criteria, balancing 
goodness of fit and overall number of parameters. Stratified analyses 
according to relevant design or scientific factors (e.g., gradient of 
susceptibility to systematic and differential exposure measurement 
errors) will be done using weighted mixed effects model. 

3.7.2. Sensitivity analyses 
To assess changes over time in the summary measures of effect for 

the neoplasms most commonly investigated (glioma, meningioma, and 
acoustic neuroma) in long-term users, we will perform cumulative meta- 
analyses (Sterne 2016) on the dataset of studies ordered by accrual dates 
of cases and publication date. The results of these analyses will be re
ported in cumulative forest plots (Anzures-Cabrera and Higgins 2010), 
where each meta-RR is the pooled estimate of past studies and the more 
recent one. 

We will also assess the sensitivity of results to variations in the 
dataset composition. As previously noted (§ 3.3.2.2), we will include 
primary studies and partially or completely overlapping pooled analyses 

of the former, but we will create multiple datasets per neoplasm to avoid 
multiple counting of the same individual data. We will perform our main 
analyses on one dataset per tumour (e.g., that including the largest 
overall number of exposed cases), and sensitivity analyses on all other 
datasets. 

Additional sensitivity analyses will be carried out excluding studies:  

• classified in the tier-3 category (see § 3.5.2);  
• at high risk of upward biases (recall bias, and detection bias for 

acoustic neuroma);  
• at high risk of bias towards null (random exposure misclassification 

in the non-null scenario);  
• reporting implausible effect sizes (see § 3.1.5.3) for RR estimates 

above or below the null. 

Findings from all sensitivity analyses will be displayed in summary 
forest plots (Anzures-Cabrera and Higgins 2010). 

The analyses will be performed using the meta-analysis software 
developed in Stata (Palmer and Sterne 2016), the drmeta-Stata com
mand (Orsini 2021), and the dosresmeta-R package (Crippa and Orsini, 
2016). 

3.8. Confidence in evidence assessment 

We will assess confidence that the study findings accurately reflect 
the true exposure-effect association (conventionally referred to as cer
tainty of the evidence or quality of the body of evidence), using the 
OHAT’s approach (NTP-OHAT, 2019; Rooney et al. 2014). 

The WHO endorses the Grading of Recommendations Assessment, 
Development and Evaluation (GRADE) method to assess the quality of 
evidence in systematic reviews of the scientific literature (WHO, 2014a), 
acknowledging that its adaptation to questions regarding environmental 
exposures is under development (Morgan et al. 2019; Morgan et al. 
2016). 

The strength of GRADE rests on the use of a structured and trans
parent assessment framework, and on a standard lexicon to formulate 
conclusions and recommendations. It specifies four levels of the quality 
of a body of evidence for a given outcome: high, moderate, low and very 
low. In the current version for systematic reviews of health care in
terventions, randomized control trials (RCT) and non-randomized 
studies (NRS) are assigned initial ratings of high and low quality, 
respectively; the certainty of evidence can be lowered based on five 
domains (risk-of-bias, inconsistency, indirectness, imprecision, publi
cation bias); the evidence provided by NRS can be upgraded for large 
magnitude of effect, dose–response gradient, and opposing residual bias 
and confounding (Schünemann et al. 2021). 

The a-priori downgrading of observational studies is considered the 
most challenging feature of evidence appraisal methods adapted from 
clinical epidemiology, because the cross-sectional, case-control or 
cohort designs may be the only feasible or ethical option to provide 
evidence on environmental causes of diseases (Arroyave et al. 2021; 
Morgan et al. 2016; Steenland et al. 2020). 

This problem has been addressed in different ways by currently 
available adaptations of GRADE to studies of aetiology and risk (Héroux 
and Verbeek 2018; Johnson et al. 2016; NTP-OHAT 2019; Thayer and 
Schünemann 2016; Woodruff and Sutton 2014). 

Approaches relying on the best available or achievable evidence as a 
reference standard [e.g., (WHO 2018)] do not appear suitable to as
sessments of multiple health hazards from several types of exposure to 
RF-EMF. Changes in the rating scale across evidence lines would lead to 
differing certainty in decisions based on the questions asked (Schüne
mann et al. 2019), compromising the internal coherence of the appraisal 
and impairing risk communication. 

The confidence rating method developed by OHAT has features that 
mitigate the above concerns. It conforms to GRADE in terms of defini
tion of quality of evidence, explicit consideration of the eight GRADE 
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assessment criteria for observational studies, and terminology used to 
formulate the conclusions (Schünemann et al., 2013). Compared to the 
original GRADE system, the major change introduced by OHAT is a 
four-level initial confidence rating (high, moderate, low, and very low), 
based on the number of favourable features of the study design 
(controlled exposure, exposure prior to outcome, individual outcome 
data, presence of a comparison group), applied to every evidence stream 
(human, animal and cell studies). An additional difference is a fourth 
upgrading factor: consistency across study designs and populations for 
human studies, or across multiple species and models for animal studies. 
This allows to fully exploit findings from analyses of the sources of 
heterogeneity in results across studies, with the possibility to lessen 
confidence in the evidence in the presence of substantial unexplained 
inconsistency, and increase it for consistency not attributable to bias or 
other dissuading concerns (NTP, 2019a, NTP, 2019b). The methodo
logical congruity between two interrelated step of the systematic review 
(the assessments of RoB at the individual study level and across studies) 
was a further reason behind the choice of the OHAT’s approach to 
confidence rating. 

At the request of WHO, the OHAT’s extra updating domain will not 
be considered in our assessment. 

Details about the process and related decision rules, including a 
template of the “Evidence Profile Table”, are provided in the evidence 
assessment protocol (Annex 6). 

3.9. Strength of evidence assessment 

The current edition of the WHO handbook for guideline development 
(WHO, 2014a) does not envisage any structured framework to assess the 
strength of evidence within and across the various evidence streams 
considered in health hazard assessments. At the request of WHO, we will 
not assess the level of evidence for health effect or for no health effect 
[Step 6 of the OHAT approach (NTP-OHAT, 2019)]. 

Our overall conclusions will be primarily based on the line of evi
dence with the highest confidence when considered across the multiple 
exposure-neoplasm pairs examined in the systematic review, taking into 
account the internal coherence and the external plausibility of the 
original study findings. 

Four team members (MB, ME, MR, SL) will prepare a preliminary 
version of the confidence ratings and overall conclusions, submit it for 
revision to the other team members, and finalize the collectively agreed 
assessment. 
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