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A B S T R A C T   

Background: Poor housing conditions, such as poor building materials and weak structures as well as high levels 
of indoor air pollution, are important risk factors for a broad range of diseases, including acute respiratory in
fections (ARI). In mining areas, research on the determinants of respiratory health predominantly focuses on 
exposures to outdoor air pollutants deriving from mining operations. However, mining projects also influence the 
socioeconomic status of households, which, in turn, affect housing quality and individual behaviors and, thus, 
housing quality and levels of indoor air pollution. In this study, we aimed to determine how proximity to an 
industrial mining project impacts housing quality, sources of indoor air pollution, and prevalence of ARI. 
Methods: We merged data from 131 Demographic and Health Surveys (DHS) with georeferenced data on mining 
projects in sub-Saharan Africa (SSA) to determine associations between housing quality, indoor air pollution 
sources, and child respiratory health. Spatial differences in selected indicators were explored using descriptive 
cross-sectional analyses. Furthermore, we applied a quasi-experimental difference-in-differences (DiD) approach 
using generalized linear mixed-effects models to compare temporal changes in household and child health in
dicators at different operational phases of mining projects and as a function of distance to mines. 
Results: For cross-sectional analyses, data of 183,466 households and 141,384 children from 27 countries in SSA 
were used, while 41,648 households and 34,406 children from 23 SSA countries were included in the DiD an
alyses. The increase in the share of houses being built from finished building materials after mine opening was 
more than 4-fold higher (odds ratio (OR): 4.32, 95% confidence interval (CI): 2.98–6.24) in close proximity to 
mining sites (i.e., ≤ 10 km) compared to areas further away (i.e., 10–50 km). However, these benefits were not 
equally distributed across socioeconomic strata, with considerably weaker effects observed among poorer 
households. Increases in indoor tobacco smoking rates in close proximity to operating mines were twice as high 
as in comparison areas (OR: 2.06, 95% CI: 1.15–3.68). The cross-sectional analyses revealed that traditional 
cooking fuels (e.g., charcoal, dung, and wood) were less frequently used (OR: 0.27, 95% CI: 0.23–0.31) in areas 
located in close proximity to mines than in comparison areas. Overall, no statistically significant association 
between mining operations and the prevalence of symptoms related to ARI in children under the age of 5 years 
was observed (OR: 0.78, 95% CI: 0.29–2.07). 
Conclusions: Mines impact known risk factors for ARI through diverse pathways. The absence of significant 
changes in ARI symptoms among children is likely the result of counteracting effects between improvements in 
housing infrastructure and increased exposures to air pollutants from outdoor sources and tobacco smoking. For 
mining projects to unfold their full potential for community development, we recommend that impact assess
ments move beyond the mere appraisal of mining-related pollution emissions and try to include a more 
comprehensive set of pathways through which mines can affect ARI in exposed communities.   

Abbreviations: ARI, acute respiratory infection; CI, confidence interval; DHS, Demographic and Health Survey; DiD, difference-in-differences; HH, household; IRR, 
incidence rate ratio; OR, odds ratio; PCA, principal component analysis; SSA, sub-Saharan Africa. 
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1. Introduction 

Housing conditions that promote health and wellbeing need to pro
vide shelter, protect from environmental pollution, encompass access to 
essential services (e.g., clean water, improved sanitation, and elec
tricity), and support healthy life-styles (e.g., access to green spaces and 
public transport options) (WHO, 2018). Poor housing conditions have 
been shown to hamper child development and are important risk factors 
for a broad range of communicable and non-communicable diseases, 
such as diarrhea, malaria, respiratory diseases, and cardiovascular dis
eases (Tusting et al., 2015, 2020; WHO, 2018). 

A key aspect in the housing environment is indoor air quality (WHO, 
2018). Most household air pollutants originate from indoor waste 
burning, cooking, and heating with traditional fuels (e.g., charcoal, 
dung, and wood) (Shupler et al., 2020; Tielsch et al., 2009; Zhou et al., 
2014). In addition, indoor tobacco smoking can further deteriorate the 
quality of indoor air (Tielsch et al., 2009). Exposure to in-house air 
pollutants is attributable to a considerable burden of disease (Gordon 
et al., 2014). Indeed, globally, indoor air pollution from solid cooking 
fuels accounts for more than 2.5 million deaths every year (Gakidou 
et al., 2017). It is estimated that more than 600,000 deaths worldwide 
were caused by exposure to second-hand tobacco smoke (Öberg et al., 
2011). 

Around a quarter of the deaths due to indoor air pollution stem from 
acute respiratory infections (ARI), such as pneumonia and bronchitis 
(Gakidou et al., 2017). Children are particularly at risk for ARI from 
indoor air pollution, firstly due to their higher sensibility to exposures to 
air pollutants and secondly because they spend a large part of their time 
in and around the household, and are thus exposed to air pollutants from 
cooking facilities (Landrigan et al., 2017; Wright et al., 2020). 
Furthermore, inadequate housing conditions, such as overcrowded set
tlements, contribute to the high burden of ARI in low- and middle- 
income countries (Kristensen and Olsen, 2006; Nkosi et al., 2019). 

Particularly in sub-Saharan Africa (SSA), predominantly solid fuels 
are used for food preparation and the associated health burden from ARI 
remains high (Chafe et al., 2014; Zulu and Richardson, 2013). As a re
gion characterized by high urbanization rates and relatively small in
creases in income levels, the provision of adequate housing remains a 
challenge (World Bank Group, 2015). Wealth gains through economic 
development, such as the establishment of large resource extraction 
projects in the mining, oil, and gas sector, hold promise to boost local 
economies, and hence, improve housing conditions in underserved areas 
(Cawood et al., 2006; von der Goltz and Barnwal, 2019). On the other 
hand, the prospect of livelihood opportunities in mining areas can 
trigger rapid in-migration, which can lead to the formation of informal 
settlements and slums (Jackson, 2018; Marais et al., 2018, 2020). These 
settlements are usually characterized by makeshift low quality housing 
infrastructures, reduced service availability, and overcrowding (Con
treras et al., 2019; Pelders and Nelson, 2018). Alongside exposures to air 
pollutants from the mines, poor housing conditions can negatively affect 
respiratory health of people living in mining communities (Hendryx and 
Luo, 2014; Nkosi et al., 2015). 

Research on the impacts of mines on housing conditions and asso
ciated health outcomes in children has mainly focused on case studies or 
on particular population groups, such as mine workers or slum dwellers 
(Marais et al., 2020; Pelders and Nelson, 2018). Furthermore, studies on 
air pollution exposures and associated health outcomes in mining areas 
predominantly look at direct exposure pathways to air pollutant emis
sions from mining operations, without consideration of impacts on other 
potential exposure pathways in the community, such as indoor air pol
lutants (Boyles et al., 2017; Herrera et al., 2016). Similarly, in impact 
assessments, an approach to anticipate and manage potential impacts of 
projects as part of the licensing process (Harris-Roxas et al., 2012), the 
assessment of risk factors for respiratory diseases has a strong focus on 
the direct impacts of air pollutants from the mines (Dietler et al., 2020c; 
Riley et al., 2020). In contrast, housing conditions and associated health 

outcomes have received less attention in impact assessment practice 
(Dietler et al., 2020c; Pham et al., 2018; Riley et al., 2020). A deeper 
understanding of such indirect impacts on housing in mining areas could 
provide valuable insights for guiding impact assessments practice of 
mining projects. 

The purpose of this study was to identify associations between mines 
and housing conditions in mining communities of SSA, and to determine 
whether these affect respiratory health of children. To do so, we used a 
large pseudo-panel of georeferenced health data across SSA to compare 
healthy housing indicators cross-sectionally at different distances from 
mines, and also longitudinally over time within areas where data prior 
and after the opening of mines were available. 

2. Material and methods 

2.1. Data and study design 

Data from all 131 Demographic and Health Surveys (DHS) conducted 
in SSA that were readily available in March 2020 were combined with a 
comprehensive dataset on mining projects (Standard & Poor’s Global, 
2020; USAID, 2020). The DHS data feature a large set of household and 
child indicators. From the mining dataset, the location of major mines in 
SSA and their operational activities since the early 1980s were 
extracted. 

The opening year, and for some mines also the closure year, were 
determined using either the information on annual extraction and pro
duction volumes or the reported opening and closure year in the dataset. 
As opening year, the first year with reported extraction was set, unless 
an earlier opening year was specifically indicated. Similarly, as closure 
year, the last year with reported operation or the reported closure year 
was taken, whichever was later. If no information on closure of a mine 
was available and the project status was labelled as “active”, operation 
until the end of the study period (i.e., 2019) was assumed. The mines 
were considered as “active” during all years between opening (i.e., the 
first year commodities were extracted) and closure (i.e., the last year 
with reported extraction). Before mine opening and after mine closure, 
the mines were classified as “pre-operational” or “closed”, respectively. 

For each level of analysis (household- and child-level), two types of 
datasets were constructed, as shown in Fig. 1. Firstly, a cross-sectional 
dataset comprising of all data within a distance of 100 km from min
ing projects that were active at the time of the survey was created. This 
dataset was used to derive descriptive statistics and explore associations 
between the Euclidian distance to the mine and the different household 
indicatory and symptoms of ARI in children under the age of 5 years. 
Secondly, a pseudo-panel dataset was created. Only data within a 50 km 
radius from isolated mines (i.e., mines that were at least 100 km away 
from other mines) were included, regardless of the activity status of the 
mines at the time of the survey. The resulting dataset comprised data 
collected at different operational phases of the mines, allowing for 
longitudinal analyses of changes over time. 

From all datasets, data from households that were located within the 
boundaries of large cities (i.e., ≥ 100,000 inhabitants) were excluded. 
The size of the city boundaries were determined by a visual appraisal of 
satellite images of a random set of differently sized cities listed in a 
dataset from Natural Earth (Natural Earth, 2020). The resulting buffer 
sizes around the city centers were 5 km for cities with a population size 
of 0.1–0.5 million, 7.5 km for 0.5–1 million, 15 km for 1–5 million, and 
40 km for > 5 million. Merging of the datasets and exclusion of data 
within cities were done using ArcGIS Pro version 2.2.4 (Environmental 
Systems Research Institute; Redlands, CA, USA) and StataSE version 16 
(StataCorp LLP; College Station, TX, USA). 

2.2. Variables 

2.2.1. Exposure variable 
In the cross-sectional dataset, the Euclidian distance between the 
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DHS cluster and the closest active mine was the main exposure variable. 
The distance was categorized into 7 groups: ≤ 5 km, 5–10 km, 10–20 
km, 20–30 km, 30–40 km, 40–50 km, and 50–100 km. The last group 
was used as reference in the analysis. In the longitudinal difference-in- 
differences (DiD) analysis, an interaction term between distance to 
and operational status of the mine at the time of the survey was created 
to assess the effect of a mine opening and closure at various distances 
from the mine. The distance variable was dichotomized, using ≤ 10 km 
as “close proximity” and 10–50 km as “comparison” area. The opera
tional status was coded as pre-operational, active, and closed. The 
exposure definition was a combination of the distance (“close prox
imity” vs. “comparison”) and activity status of the mine (“pre-opera
tional” vs. “active” vs. “closed”), captured by a multiplicative 
interaction term “close proximity * operational” and “close proximity * 
closed”, respectively. 

2.2.2. Outcome variables 
Household size 
DHS data include information on the number of people residing in 

the household and the number of rooms used for sleeping. For our 
analysis, the number of de jure household members was used, indicating 
the number of people usually sleeping within the household. Households 
indicating zero de jure household members were excluded from analyses. 

Housing infrastructures 
The main construction materials used for flooring, walls, and roofing 

were categorized as finished or un-finished. Finished materials include, 
for example, cement, carpet, or parquet for floors; cement, bricks, or 
covered adobe for walls; and iron sheets, cement, or tiles for roofs. 
Households were considered as “built from finished materials” if at least 
two of the three structures were classified as finished (Tusting et al., 
2019). 

Indoor air pollution sources 
Two indicators were used as a proxy for air pollution from indoor 

sources. Firstly, cooking fuels were categorized into clean and tradi
tional sources. Clean sources include natural gas, biogas, electricity, and 

liquefied petroleum gas. All other sources were considered, including 
coal, wood, and other solid fuels, as traditional fuels. Households using 
unknown fuels or that did not prepare food in the house were excluded. 
Information on cooking fuels was only available since the beginning of 
DHS phase 4 in 1997. 

As a second indicator, the prevalence of tobacco smoking indoors 
was used. All households that were characterized by at least one member 
smoking inside at least once a month, were considered polluted by to
bacco smoke. The collection of smoking-related information only began 
in DHS phase 6 around 2008. 

Acute respiratory infection 
The definition of symptoms of ARI in children below the age of 5 

years has changed over the course of the DHS program. Until the end of 
DHS phase 4 (around 2000) symptoms of ARI were defined as having 
cough accompanied by rapid breathing. In DHS carried out later on, 
information on whether symptoms were chest-related was also gathered 
and included in the definition. To allow comparison over time, the 
former definition was used. 

2.2.3. Covariates 
For each level of analysis, different variables were adjusted for. At 

the household-level, an indicator for household wealth was created. 
Since the wealth index included in the DHS data was built on some of the 
variables that were used as separate indicators in the analyses of this 
study, specific indexes that excluded these variables were created. 
Separately for each survey, a principal component analysis (PCA) was 
conducted to construct the index using information on water and sani
tation infrastructures, access to electricity, ownership of a radio, tele
vision, telephone, fridge, bicycle, motorcycle, car, or bank account, and 
educational attainment of the household head. The first component of 
the PCA was used to create wealth quintiles (Filmer and Pritchett, 2001). 
Furthermore, the survey year and population density at the household 
location were included. At the child-level, the age and sex of the child (as 
categorical variables) were additionally included as covariates. 

2.3. Statistical analysis 

2.3.1. Cross-sectional analyses 
The cross-sectional data were mainly used to explore the associations 

between the distance to mining sites and the different outcomes. For 
quantifying these associations, generalized linear mixed-effects models 
were employed. For the models with binary outcome variables (housing 
infrastructures, indoor air pollution sources, and ARI symptoms), lo
gistic regression models, while for numeric outcomes (household size), 
negative binomial regression models were fitted. The models using 
household characteristics (e.g., housing infrastructures and indoor 
smoking) as outcome variables included population density, survey 
year, and household wealth as fixed effects. The models with symptoms 
of ARI as outcome were additionally adjusted for child age and sex. In all 
models, random intercept terms for the survey and region were included 
to account for clustering in the DHS data. The random intercept terms, 
child age and sex were included in the adjustment sets a priori. For 
population density and survey year terms, likelihood ratio tests were 
performed to assess their effect on model fit using cooking fuels as 
outcome (population density: Х2(1) = 10,621, p < 0.001; survey year: 
Х2(1) = 805.36, p < 0.001). 

To compare impacts across socioeconomic groups, subgroup ana
lyses were done for poorer households (lower two wealth quintiles) and 
wealthier households (upper two wealth quintiles). Because the moti
vation of the stratified analysis was to compare impacts among 
wealthier and poorer households, data from the middle wealth quintile 
as intermediary group were not further analyzed. 

2.3.2. Longitudinal analyses 
The repeated cross-sectional data allowed the extraction of data 

collected around the same mine at different points in time. Following a 

Fig. 1. Flowchart showing the selection of household (HH) and child data from 
within the proximity of mines and outside city boundaries. 
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DiD approach (Bärnighausen et al., 2017), we compared how the 
changes in our outcome variables across the different mining phases 
differed between areas in close proximity to the mines (i.e., ≤ 10 km 
from the mine) and comparison areas located further away (i.e., be
tween 10 and 50 km). Hence, the main exposure variable was the 
multiplicative interaction term between distance and operational status 
of the mine. The same regression models, adjustment sets, and stratified 
analyses as for the cross-sectional analyses were performed, with the 
only difference that the regional-level random intercept term was 
replaced by mine-level random intercepts to account for the repeated 
cross-sectional structure of the data deriving from the different mining 
areas. 

For all models, households or children with missing data were 
excluded from analyses. Where applicable, estimates are reported with 
their corresponding 95% confidence intervals (CIs). All statistical ana
lyses were performed in R version 3.5.1 (R Core Team, 2018) using the 
lme4 package (Bates et al., 2015). 

3. Results 

Data from almost 1.3 million households with more than 900,000 
children under the age of 5 years were obtained for the period 
1990–2019 and were combined with information on 711 mines in 34 
SSA countries (Fig. 1). In the cross-sectional datasets, the countries 
included Angola, Burkina Faso, Burundi, Côte d’Ivoire, Democratic Re
public of the Congo, Eswatini, Ethiopia, Gambia, Ghana, Guinea, Kenya, 
Lesotho, Liberia, Madagascar, Malawi, Mali, Mozambique, Namibia, 
Niger, Namibia, Senegal, Sierra Leone, South Africa, Tanzania, Uganda, 
Zambia, and Zimbabwe. No data from close to isolated mines for the 
longitudinal datasets from Côte d’Ivoire, Eswatini, Lesotho, and Senegal 
were available. Overall, 52 of the mines were considered as isolated and 
used as the pseudo-panels in the longitudinal dataset. After selecting 

observations in close proximity to mining sites and excluding data 
collected within the boundaries of large cities, the cross-sectional 
datasets comprised of 183,466 households and 141,384 children, 
while the longitudinal datasets included 34,406 children from 41,648 
households (Fig. 1). 

The basic characteristics of the different datasets are summarized in 
Table 1. The percentage of wealthy and poor households are shown in 
Table 2. The percentage of wealthy households in close proximity to 
mining sites increased from the pre-operational to the active phase of the 
mine. It further increased after closure of mines. Among households 
located further away, this percentage remained relatively stable over 
time. The inverse pattern was seen for the percentage of poor households 
in close proximity to the mining sites. 

3.1. Housing conditions and ARI at different distances from mines 

The average household within 5 km from a mine comprised of 2.0 
rooms for sleeping and housed 4.2 people (Fig. 2). At a distance of 
50–100 km, 5.0 people slept in 2.2 rooms on average. Hence, on 
average, households close to the mines housed 2.1 people per room, 
while further away, 2.3 people shared one room for sleeping. 

Overall, household structures improved closer to the mines. In 
particular, finished building materials were more commonly used in 
close proximity to mining sites. The stratified analyses revealed that 
among the poorer households, the positive associations between the 
presence of a mine within 5 km and housing materials was not seen 
(odds ratio (OR): 1.14, 95% CI: 0.90–1.46), but slightly improved 
further away (e.g., OR at 5–10 km: 1.23, 95% CI: 1.05–1.43; Fig. A1). 
Among wealthier households, much stronger positive associations were 
seen in the area closest to the mines (OR: 2.28, 95% CI: 1.70–3.05), but 
not further away. 

Households in close proximity to mines relied much less on 

Table 1 
Summary of household and child indicators in the cross-sectional and longitudinal datasets. The datasets comprise a selection of data from 131 Demographic and 
Health Surveys (DHS) collected within 100 km from active mines (cross-sectional datasets) and 50 km from isolated mines (longitudinal datasets), respectively. The 
household dataset includes information from all households. The indicators presented for the child dataset only comprise data from households with at least one child. 
The surveys were conducted between 1990 and 2019.   

Household data Child data 

Cross-sectional dataset 
(N = 183,466) 

Longitudinal dataset 
(N = 41,648) 

Cross-sectional dataset 
(N = 141,384) 

Longitudinal dataset 
(N = 34,406) 

Distance to mine     
≤ 5 km 2812 (1.5%) n.a. 1756 (1.2%) n.a. 
5–10 km 5506 (3.0%) n.a. 3615 (2.6%) n.a. 
10–20 km 12,809 (7.0%) n.a. 8919 (6.3%) n.a. 
20–30 km 15,593 (8.5%) n.a. 12,113 (8.6%) n.a. 
30–40 km 19,541 (10.7%) n.a. 14,468 (10.2%) n.a. 
40–50 km 20,447 (11.1%) n.a. 15,513 (11.0%) n.a. 
50–100 km 106,758 (58.2%) n.a. 85,000 (60.1%) n.a. 

Mine near (≤ 10 km) n.a. 2857 (6.8%) n.a. 2016 (5.9%) 
Mine status     

Pre-operational n.a. 21,143 (54.9%) n.a. 18,889 (59.0%) 
Operational n.a. 8873 (23.0%) n.a. 7023 (21.9%) 
Closed n.a. 8517 (22.1%) n.a. 6086 (19.0%) 

Household members (median) 4 5 6 6 
Sleeping rooms (median) 2 2 2 2 
Finished building materials 100,603 (65.1%) 20,252 (57.8%) 71,867 (59.8%) 15,408 (54.9%) 
Use traditional cooking fuels 147,468 (85.5%) 36,047 (95.2%) 122,537 (91.7%) 30,663 (97.7%) 
Indoor smoking 19,784 (22.5%) 4635 (22.4%) 17,032 (24.8%) 3659 (21.2%) 
Wealth quintile     

Poorest 36,001 (19.6%) 8652 (20.8%) 29,420 (20.8%) 7333 (21.3%) 
Poor 41,066 (22.4%) 8330 (20.0%) 33,519 (23.7%) 7013 (20.4%) 
Middle 41,887 (22.8%) 9295 (22.3%) 34,019 (24.1%) 8023 (23.3%) 
Rich 37,349 (20.4%) 8993 (21.6%) 27,686 (19.6%) 7492 (21.8%) 
Richest 27,163 (14.8%) 6378 (15.3%) 16,740 (11.8%) 4545 (13.2%) 

Symptoms of ARI n.a. n.a. 9828 (9.3%) 3064 (12.1%) 
Age (mean) in years n.a. n.a. 1.9 1.9 
Female n.a. n.a. 69,785 (49.4%) 16,934 (49.2%) 

Denominators for the calculation of the percentages included only cases with non-missing information 
ARI = acute respiratory infection; n.a. = not applicable. 

D. Dietler et al.                                                                                                                                                                                                                                  



Environmental Impact Assessment Review 89 (2021) 106591

5

traditional cooking fuels. More specifically, 50.2% of households closest 
to the mines (i.e., ≤ 5 km) used traditional cooking fuels, compared to 
82.3% of households located furthest away (i.e., 50–100 km; Fig. 2). The 
results from the regression models showed a similar pattern. There were 
marked differences between wealthier and poorer households. The 
reduction in the use of traditional cooking fuels in close proximity to the 
mines was largely attributable to the wealthier households. Among 
them, the OR for the use of traditional cooking fuel adjusted for survey 
year, population density, country, and regional-level differences was 
0.42 (95% CI: 0.35–0.50) and 0.83 (95% CI: 0.72–0.97) within a ≤ 5 km 
and 5–10 km radius, respectively. Among the poorer households, these 
associations were not seen at ≤ 5 km distance (OR at ≤ 5 km: 1.10, 95% 
CI: 0.70–1.73) and use of traditional cooking fuels was even higher in 
poor households at 5–10 km (OR: 1.71, 95% CI: 1.27–2.29; Fig. A1). No 
clear trends in smoking rates were seen. 

No marked differences in symptoms of ARI at different distances 
from the mine were evident (Fig. 2). Still, a statistically significant 
reduction in ARI prevalence at medium distances (i.e., between 10 and 
20 km and between 30 and 40 km) compared to children below the age 
of 5 years living at a distance of 50–100 km from the closest mine was 
found (Fig. A1). Among children living in poorer households, there was 
a sharp increase in ARI symptoms in close proximity to the mines (≤ 5 
km). However, this pattern was not statistically significant. 

3.2. Changes in healthy housing indicators and ARI after mine opening 

The size of the households is largely the same among the different 
distances (Fig. 3). Larger differences were seen in the percentage of 
households being built from finished materials. While in the years before 
mine opening these shares were similar, the percentage of households 
built from finished materials continued to rise after mine opening in 
areas in close proximity (i.e., ≤ 10 km) to the mine, while it remained 
relatively stable in areas further away (i.e., 10–50 km). Indoor smoking 
prevalence decreased in comparison areas from 25.0% prior to mine 
opening to 22.8% during the operational phase. Contrarily, in impacted 
areas, indoor smoking became more frequent, rising from 21.0% to 
26.9%. For the percentage of children showing ARI symptoms in the 2 
weeks prior to the survey, no clear temporal trend was observed. Before 
mine opening, households relied almost entirely on traditional fuels for 
cooking. Fitting of the models looking at temporal trends in use of 
cooking fuels was not possible. Therefore, this outcome was excluded 
from the longitudinal analyses. 

The results from the regression analyses incorporating an interaction 
term capturing the impact of having a mine in close proximity during the 
different operational phases are depicted in Fig. 4 and listed in Table 3. 
Overall, no statistically significant impacts of the opening of a mine on 
household sizes were seen, though wealthier households in close prox
imity to the mine during the operational phase showed a slight reduction 
in the number of people per household (incidence rate ratio (IRR): 0.84, 

Table 2 
Percentage of households (N = 41,648) classified as wealthy (upper two wealth quintiles) and poor (lower two wealth quintiles) by distance to the closest mine and 
mining phase. The data stem from 131 Demographic and Health Surveys (DHS) collected within 50 km from isolated mines, respectively. The surveys were conducted 
between 1990 and 2019.  

Mining phase % wealthy households % poorer households 

Close (≤ 10 km) Comparison (10–50 km) Close (≤ 10 km) Comparison (10–50 km) 

Pre-operational 26.2 33.5 54.5 44.4 
Active 59.1 29.8 32.2 49.4 
Closed 71.9 39.0 10.8 39.5  

Fig. 2. Household indicators and prevalence of acute respiratory infection (ARI) symptoms in children below the age of 5 years at different distances from mines. For 
ARI symptoms, the dataset was stratified into children from poorer (lower two wealth quintiles) and wealthier (upper two wealth quintiles) households. 
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95% CI: 0.72–0.98) and rooms (IRR: 0.74, 95% CI: 0.63–0.88). 
Furthermore, building materials of houses in close proximity to mining 
sites improved upon mine opening (OR (full model): 1.98, 95% CI: 
1.35–2.90; Fig. 4). This effect persisted after mine closure (Table 3). 

Adjusting for all covariates, the share of households with indoor 
smokers doubled (OR: 2.06, 95% CI: 1.15–3.68) after mine opening 
close to the mines compared with comparison areas. Although only 
marginally significant, this effect was predominantly seen in poorer 

households. 
During the operational phase, changes in the prevalence of symp

toms of ARI did not differ between children living in close proximity and 
in comparison sites. After mine closure, however, children from 
wealthier households located in close proximity to mines showed 
increased odds of ARI symptoms, compared to the pre-operation phase. 

Fig. 3. Changes in household (HH) indicators and prevalence of acute respiratory infection (ARI) symptoms among children below the age of 5 years relative to the 
opening year of the closest mine at different distances from the mine (≤ 10 km vs. 10–50 km). The x-axis shows the difference between the survey year and the 
opening year of the mine. For housing materials, no data were available from mines more than 10 years before mine opening. 

Fig. 4. Incidence rate ratios (IRR; for count data) and odds 
ratios (OR; for binary outcomes) for the effect of the interac
tion between the factor close proximity to a mine (i.e., ≤ 10 
km compared to 10–50 km) and the mine being active 
(compared to pre-operation) on the different household in
dicators and symptoms of acute respiratory infections (ARI) in 
children under the age of 5 years using the longitudinal 
datasets. The estimates are plotted on a log-scale. 
† Survey-level and mine-level random intercepts only. 
‡ Additionally adjusted for survey year and population density 
(for household indicators); additionally adjusted for survey 
year, child age and sex (for ARI symptoms). 
∞ Additionally adjusted for household (HH) wealth quintile 
(for household indicators); additionally adjusted for house
hold wealth quintile, population density and household size 
(for ARI symptoms). 
^ Stratified analyses using only data from the two lower 
wealth quintiles (poorer households) and the two upper 
wealth quintiles (wealthier households), respectively.   
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4. Discussion 

Data from almost 1.3 million households were combined with in
formation on 711 mines to create the largest available multi-national 
dataset on household and child characteristics in mining areas in SSA. 
We found that housing conditions, including the quality of construction 
materials and access to clean cooking fuels, improved over the course of 
mining activities, while household density did not change. The positive 
effects were less pronounced in poorer households. Furthermore, the 
potential reduction in indoor air pollution from traditional cooking fuels 
was offset by a higher rate of tobacco smoking within the households 
close to mining sites. Indoor tobacco smoking rates increased more than 
2-times more after mine opening in households in close proximity to 
operational mining sites compared to households located further away. 
In our sample, these potential positive and negative impacts in indoor air 
pollution exposure in mining sites were not reflected by changes in 
symptoms of ARI in children under 5 years of age. Taken together, the 
positive impacts of mines on housing conditions are promising. How
ever, the unequal distribution of these benefits within the mining 
communities and the absence of improvements in respiratory health 
warrant further scientific inquiry. 

4.1. Improvements in housing conditions in mining areas 

The marked improvements in housing conditions, both in terms of 
building materials and access to clean cooking fuels, underline the po
tential of mining projects to promote social and economic development 
in the surrounding of mining sites (United Nations Economic Commis
sion for Africa, 2011; von der Goltz and Barnwal, 2019). Indeed, in our 
analyses, adjustment for household wealth explained a large part of the 
improvements in housing conditions. In addition, the longitudinal an
alyses revealed that the share of wealthier households in communities 
near mines is substantially larger when mines are operational. Our 
findings are in line with other studies that have shown positive effects of 
mining projects on household wealth and livelihoods (Bury, 2005; von 
der Goltz and Barnwal, 2019). For example, people living in close 
proximity to mining sites in Peru have been found to have increased 
economic resources, as well as improved access to financial services 
potentially fostering investments in housing infrastructures (Bury, 
2005). Furthermore, a recent study in SSA showed that water and 

sanitation infrastructures improve after the development of a mining 
project in close proximity of the community (Dietler et al., 2020b). 

4.2. Potential formation of informal settlements around mining sites 

Overall, we found no evidence of overcrowding in household in 
mining areas. This finding is surprising, since many studies and inter
national guidelines describe the potential for rapid migration and 
overcrowding effects upon mine development (IFC, 2009; Jackson, 
2018; Nyame et al., 2009; Pelders and Nelson, 2018). Yet, other studies 
have found no differences in settlement growth between mining and 
non-mining areas (Dietler et al., 2020a). It is therefore possible that the 
overcrowding effect only affects very specific mining communities (e.g., 
village or town where recruitment is done by the mining project), which 
are not detected when using aggregated data. Parallel development in 
settlement structures, with formal and informal settlements being built 
up simultaneously, has been reported both in mining areas and around 
urbanizing centers in other parts of Africa (Bah et al., 2018; Gough et al., 
2019). In our sample, the poor households within a 10 km radius with 
comparably little or no improvements in housing quality and reduced 
access to clean cooking fuels may be an indication of the development of 
informal settlements close to the mining sites. No or inadequate in
frastructures in these settings can contribute to a high disease burden of 
informal settlement dwellers (Shortt and Hammett, 2013; Snyder et al., 
2013). Our findings underline the importance of an equity focus in the 
management of mining-related impacts on communities (Leuenberger 
et al., 2019). 

4.3. Changes in indoor air pollution sources in mining areas 

Indoor air pollution in mining sites may change in both directions – 
they might improve due to the reduced use of traditional cooking fuels 
or worsen because of increased tobacco smoking. Studies on these 
sources in mining settings are rare, though some studies have described 
high smoking rates in mining communities (Hendryx, 2009; Rajaee 
et al., 2015). In Zambian mining areas, increased smoking prevalence 
was seen among people with lower educational attainment, which could 
explain the increased smoking rates, particularly among the poor 
(Zyaambo et al., 2013). Furthermore, increases in disposable income 
could be a potential reason for the increased uptake of tobacco smoking 

Table 3 
Exponentiated regression coefficients of the interaction between the factor close proximity to a mine (i.e., ≤ 10 km compared to 10–50 km) and activity status (top: 
active vs. pre-operational; bottom: closed vs. pre-operational).†, ‡, ∞, ^, *, **  

Opera-tional status Outcome OR/IRR (95%CI) for interaction near*operational status 

Crude model† Adjusted model‡ Full model∞ Wealthier HH only‡^ Poorer HH only‡^ 

Active Number of HH members 0.97 (0.90–1.05) 0.98 (0.91–1.06) 0.96 (0.89–1.03) 0.84 (0.72–0.98)* 0.99 (0.89–1.10) 
Number of sleeping rooms 1.04 (0.96–1.13) 1.04 (0.95–1.14) 1.00 (0.91–1.10) 0.74 (0.63–0.88)** 1.04 (0.91–1.19) 
Finished building materials 6.61 (4.53–9.64)** 4.32 (2.98–6.24)** 1.98 (1.35–2.90)* 3.57 (1.36–9.40)* 2.19 (1.22–3.92)* 
Indoor smoking 1.76 (0.98–3.16) 1.75 (0.98–3.13) 2.06 (1.15–3.68)* 1.53 (0.55–4.29) 2.15 (0.99–4.69) 
ARI symptoms 0.78 (0.29–2.08) 0.78 (0.29–2.07) 0.78 (0.29–2.06) 0.67 (0.13–3.45) 0.58 (0.13–2.61) 

Closed Number of HH members 0.92 (0.87–0.98)* 0.94 (0.89–1.00) 0.92 (0.87–0.98)* 0.84 (0.76–0.93)* 0.87 (0.78–0.97)* 
Number of sleeping rooms 0.96 (0.90–1.03) 0.97 (0.90–1.04) 0.94 (0.87–1.01) 0.85 (0.76–0.96)* 0.96 (0.84–1.10) 
Finished building materials 7.98 (6.16–10.33)** 3.73 (2.85–4.87)** 2.19 (1.66–2.90)** 2.81 (1.67–4.72)** 2.08 (1.31–3.32)* 
Indoor smoking 0.95 (0.64–1.40) 1.05 (0.71–1.55) 1.27 (0.85–1.88) 1.04 (0.54–2.01) 1.55 (0.77–3.11) 
ARI symptoms 1.30 (0.85–1.99) 1.31 (0.86–2.00) 1.42 (0.93–2.18) 2.06 (1.04–4.06)* 0.67 (0.13–3.45) 

OR = odds ratio (for the binary outcomes building materials, smoking, and ARI symptoms); IRR = incidence rate ratio (for number of household (HH) members and 
sleeping rooms). 

† Survey-level and mine-level random intercepts only. 
‡ Additionally adjusted for survey year and population density (for household indicators); additionally adjusted for survey year, child age, and sex (for ARI 

symptoms). 
∞ Additionally adjusted for household (HH) wealth quintile (for household indicators); additionally adjusted for household wealth quintile, population density, and 

household size (for ARI symptoms). 
^ Stratified analyses using only data from the two lower wealth quintiles (poorer households) and the two upper wealth quintiles (wealthier households), 

respectively. 
* p < 0.05 
** p < 0.001 
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in mining settings (Ukuhor and Abdulwahab, 2018; Zyaambo et al., 
2013). 

Research on access to clean cooking fuels as a source of indoor air 
pollution is scarce. Contrary to our findings, access to electricity – a 
clean energy source potentially used for cooking – was found to be lower 
in close proximity to mining sites in Tanzania but not in Mali (Polat 
et al., 2014). The paucity of research warrants further investigation on 
the driving forces of these positive and negative changes in indoor air 
pollution sources in mining areas. Geospatial analyses, combining out
door air pollution measurements with information on indoor air pollu
tion sources, could help to better understand the changes of the diverse 
respiratory health risks in mining projects. 

4.4. Impacts of mining projects on respiratory health 

Respiratory health in mining areas can be impacted by a variety of 
factors, including indoor and outdoor air pollution and housing condi
tions (Gordon et al., 2014; Hendryx, 2015; Hendryx and Luo, 2014). The 
overall absence of positive or negative impacts on ARI symptoms may 
potentially be the result of the counteracting effects of reduced pollution 
from traditional cooking fuel and better construction materials on the 
one hand, and the increased pollution levels from indoor smoking and 
outdoor pollution from mining operations on the other hand (Asif et al., 
2018; Gordon et al., 2014; Herrera et al., 2016; Öberg et al., 2011; Pless- 
Mulloli et al., 2000). Indeed, when focusing on poorer households, 
where the positive impacts on ARI risk factors were less pronounced or 
absent, a slight, statistically not significant increase in ARI symptoms at 
close proximity to the mines was observed. A study on respiratory dis
eases in a mining site found that respiratory health impacts are limited 
to an area up to 1.8 km distance from the mine (Herrera et al., 2016). 
The artificially introduced spatial errors in DHS data may have reduced 
statistical power and concealed potential impacts at a smaller scale 
(Elkies et al., 2015). Furthermore, the increased reporting rates of child 
health outcomes among better educated caregivers might explain the 
increased odds of ARI in wealthier households after mine closure 
(Manesh et al., 2007). Nevertheless, our results show the significance of 
alternative air pollution pathways to be considered for the management 
of potential health impacts of mines. 

4.5. Addressing respiratory health risks in mining areas 

Impact assessments commonly serve as foundations for predicting 
and managing such different direct and indirect impacts of mines on air 
pollution and respiratory health (Harris-Roxas et al., 2012; Winkler 
et al., 2020a). In this process, impacts of mining projects on outdoor air 
pollution are commonly assessed for the identification of mitigation 
strategies to reduce air pollution emissions and the subsequent moni
toring of air quality impacts (Baumgart et al., 2018; Dietler et al., 2020c; 
Pham et al., 2018; Riley et al., 2018, 2020). However, other aspects such 
as smoking or housing infrastructures receive less attention in current 
impact assessment practice (Dietler et al., 2020c). Hence, the unequal 
distribution of benefits on housing infrastructures, the increases in 
smoking rates, and the absence of improvements in respiratory health in 
mining areas warrant a comprehensive assessment of potential impacts 
on the diverse determinants of respiratory health, with a particular focus 
on the most vulnerable population groups (Leuenberger et al., 2019; 
Quigley et al., 2006; Winkler et al., 2020b). 

4.6. Strengths and limitations 

While our study provides new insights into diverse impacts of mines 
on housing-related determinants of respiratory health using a large 
multi-national dataset, we acknowledge several limitations. Firstly, the 
data stem from cross-sectional surveys, which did not follow the same 
people over time. Using the DiD approach, we could adjust for some 
factors that changed over time, such as population density. However, the 

population composition is likely to have changed over the course of a 
mining project and populations may differ in the time they have resided 
in a mining area. Hence, it is conceivable that the changing population 
had different unmeasured characteristics that influenced our outcome 
variables. These changes may also include the composition of the 
different socioeconomic strata. Although the wealth index was created 
using the whole sample of households for the given survey, “being poor” 
could have a different meaning in operational mining areas. The poor in 
mining areas could, for example, include marginalized population 
groups living in informal settlements, comprising of migrants. Further
more, respondents with higher educational attainment tend to more 
often report child health outcomes in DHS surveys (Manesh et al., 2007). 
Hence, the potentially higher reporting rates among wealthy households 
may be an explanation of the increases in ARI after mine closure. Lastly, 
the spatial offsets introduced in the global positioning system co
ordinates in DHS may have led to non-differential exposure misclassi
fication. This random error is likely to have diverted the estimates 
towards the null (Elkies et al., 2015). 

5. Conclusion 

The findings from our continental analysis of a comprehensive multi- 
national dataset on household and child health indicators in mining 
areas revealed an overall positive impact of mines on housing condi
tions, although poorer households generally benefitted less from these 
developments. We found no evidence of overcrowding upon mine 
opening, as previously described in the literature. While the risk of in
door air pollution from traditional cooking fuels is reduced in active 
mining sites, smoking rates increased after mine opening. Hence, 
considerable environmental health risks persist in some population 
groups in mining communities, although the resulting burden of respi
ratory disease among children under the age of 5 years remained un
changed. New research on how the changes in housing quality, 
including indoor air pollution sources, are impacting respiratory health 
in mining communities is needed. Finally, these diverse underlying 
pathways of respiratory health outcomes need to be comprehensively 
assessed in impact assessments of mining projects to attain an equal 
distribution of mining-related benefits and promote public health in 
mining communities. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.eiar.2021.106591. 
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