
Genome analysis

GenoMetric Query Language: a novel approach

to large-scale genomic data management

Marco Masseroli1,*, Pietro Pinoli1, Francesco Venco1,

Abdulrahman Kaitoua1, Vahid Jalili1, Fernando Palluzzi1,

Heiko Muller2 and Stefano Ceri1

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan and 2Center for

Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on October 20, 2014; revised on January 4, 2015; accepted on January 21, 2015

Abstract

Motivation: Improvement of sequencing technologies and data processing pipelines is rapidly

providing sequencing data, with associated high-level features, of many individual genomes in

multiple biological and clinical conditions. They allow for data-driven genomic, transcriptomic and

epigenomic characterizations, but require state-of-the-art ‘big data’ computing strategies, with

abstraction levels beyond available tool capabilities.

Results: We propose a high-level, declarative GenoMetric Query Language (GMQL) and a toolkit

for its use. GMQL operates downstream of raw data preprocessing pipelines and supports queries

over thousands of heterogeneous datasets and samples; as such it is key to genomic ‘big data’

analysis. GMQL leverages a simple data model that provides both abstractions of genomic region

data and associated experimental, biological and clinical metadata and interoperability between

many data formats. Based on Hadoop framework and Apache Pig platform, GMQL ensures high

scalability, expressivity, flexibility and simplicity of use, as demonstrated by several biological

query examples on ENCODE and TCGA datasets.

Availability and implementation: The GMQL toolkit is freely available for non-commercial use at

http://www.bioinformatics.deib.polimi.it/GMQL/.

Contact: marco.masseroli@polimi.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next generation sequencing (NGS) allows high-throughput genome

sequencing (DNA-seq), transcriptome profiling (RNA-seq),

DNA–protein interaction assessment (ChIP-seq) and epigenome

characterization (ChIP-seq, BS-seq, DNase-seq). Continuous im-

provements of NGS technologies in quality, cost of results (http://

www.genome.gov/sequencingcosts/) and sequencing time are lead-

ing shortly to the possibility of sequencing an entire human genome

in few minutes for a cost of <$1000 (Hayden, 2014; Sheridan,

2014). Sequencing of genomes in several different biological and

clinical conditions for their genomic, transcriptomic and epigenomic

characterization is becoming widespread.

Very large-scale sequencing projects are emerging. The 1000

Genomes Project aims at establishing an extensive catalogue of

human genomic variation (1000 Genomes Project Consortium et al.,

2010); it recently released a list of more than 79 million variant

sites, using data from 2535 individuals from 26 different popula-

tions (http://www.1000genomes.org/announcements/initial-phase-3-

variant-list-and-phased-genotypes-2014-06-24/). The Cancer Genome

Atlas (TCGA) project is a full-scale effort to systematically explore the

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1

Bioinformatics, 2015, 1–8

doi: 10.1093/bioinformatics/btv048

Advance Access Publication Date: 3 February 2015

Original Paper

 Bioinformatics Advance Access published March 8, 2015
 by guest on A

pril 10, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55151612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bioinformatics.deib.polimi.it/GMQL/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv048/-/DC1
-
http://www.genome.gov/sequencingcosts/
http://www.genome.gov/sequencingcosts/
less than
,
,
http://www.1000genomes.org/announcements/initial-phase-3-variant-list-and-phased-genotypes-2014-06-24/
http://www.1000genomes.org/announcements/initial-phase-3-variant-list-and-phased-genotypes-2014-06-24/
http://www.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/

entire spectrum of genomic changes involved in human cancer (Cancer

Genome Atlas Research Network et al., 2013). Through its data portal

(https://tcga-data.nci.nih.gov/tcga/), it offers access to clinical informa-

tion as well as genomic characterization of the tumor genomes of more

than 11 000 cases regarding about 30 different cancer types. The

Encyclopedia of DNA elements (ENCODE) project (ENCODE Project

Consortium, 2012) provides public access to more than 4000 experi-

mental datasets, including the just released data from its Phase 3: more

than 760 experiments of mainly ChIP-seq and RNA-seq assays in

human and mouse (https://www.encodedcc.org/).

Thanks to such high availability of several different types of

NGS data from numerous individual genomes, it is now possible to

look at multiple instances of many different genomic features simul-

taneously, so as to characterize their functional role and elucidate

genetic and epigenetic phenomena. This requires a new generation

of informatics systems and languages for querying heterogeneous

datasets; it also requires the state-of-the-art parallel computing strat-

egies for distributing the computation upon clouds of computing

elements, to achieve scalability and performance.

Although most of current bioinformatics analysis tools do not

support parallelization, lately cloud computing and high-performance

parallel systems, mainly based on Hadoop (Shvachko et al., 2010)

and MapReduce (Dean and Ghemawat, 2010) frameworks, which

are typically used in other areas, have also been adopted in bioinfor-

matics (O’Driscoll et al., 2013; Taylor, 2010; Zou et al., 2014). A

few specific parallel tools have been implemented (McKenna et al.,

2010; Nordberg et al., 2013; Schumacher et al., 2014; Weiwiorka

et al., 2014). In particular, BioPig (Nordberg et al., 2013) and SeqPig

(Schumacher et al., 2014) have been proposed for the efficient pro-

cessing of bioinformatics programs using Pig Latin (Olston et al.,

2008), a high-level language for batch data processing. Recently, also

SparkSeq (Weiwiorka et al., 2014) has been proposed as general

purpose tool for processing of DNA and RNA sequencing data using

the Apache Spark (Zaharia et al., 2012) engine.

In this article, we propose GenoMetric Query Language

(GMQL), with the associated data model and data management sys-

tem, to query and compare multiple and heterogeneous genomic

datasets for biomedical knowledge discovery. GMQL uses the

Genomic Data Model (GDM) based on the notion of genomic re-

gion, which may span several bases. Each region can be compared

with millions of other regions, typically using metric properties (this

justifies the language name); in addition, GDM also covers meta-

data of arbitrary structure. GMQL is a high-level, declarative lan-

guage that allows expressing queries easily over genomic regions

and their metadata, in a way similar to what can be done with the

well-known Relational Algebra and Structured Query Language

(SQL) over a relational database; thus, it does not require software

programmer expertise. From a system perspective, GMQL is part of

GenData 2020 (http://www.bioinformatics.deib.polimi.it/gendata/),

a system, which supports a data warehouse layer for storing data

files in their original formats, providing suitable privacy levels, and

a data selection layer, enabling abstractions from file formats and

parallelization.

The work in Kozanitis et al. (2014) is the closest to ours, as it re-

ports a Genome Query Language (GQL) for NGS data using an SQL

extension. Our approach exhibits two main differences with respect to

GQL and to all mentioned previous works. First and foremost, they

start from the reads of NGS machines, i.e. raw data, and thus they

must address a number of problems for identifying regions of interest

on the genome, which in the current practice are normally solved by ad

hoc specific tools (e.g. mutation and peak callers); conversely, GMQL

starts from processed datasets. Processing raw data from within an

integrated system is potentially very powerful, as no information is left

outside of the query system; but there is as well a risk of replicating ef-

forts and of giving up the efficiency of specialized data analysis tools

that are widely accepted by the scientific community.

A second major difference with previous works is that none of

them integrate metadata within their computation; conversely,

GMQL supports metadata management. Thus, it can use metadata

for sample selection and matching, and query results carry along

metadata that can be inspected after query execution. Many widely

available experimental data (e.g. in ENCODE and TCGA) provide

processed datasets and metadata; thus, GMQL can directly be used

on them. In addition, each research laboratory produces data in many

processed formats; through GMQL they can be compared with both

locally produced and publicly available data. In a mid-term perspec-

tive, GMQL will be the appropriate tool for querying millions of

processed genomic datasets and samples that will become available.

2 Results

2.1 Genomic data model
GDM describes genomic samples by means of two fundamental ab-

stractions, one for genomic regions and one for their metadata. The

former one characterizes the sample regions with their coordinates,

relative to a reference genome, and a free number of structured,

high-level properties [e.g. variation from a reference sequence, level

of expression or protein binding enrichment (‘peak’) characteristics

such as peak statistical or geometric properties]. The latter one

defines the metadata of a sample (e.g. experimental conditions, bio-

logical specimen features, cell line or the patient phenotypes when

data have clinical nature).

The key aspect of the model is the notion of genomic region; a

genomic region ri is a well-defined portion of a genome, qualified by

a quadruple of values called region coordinates:

ri ¼< chr; left; right; strand >;

where chr is the genome chromosome name, left and right are the

two ends of the region along the chromosome coordinates, strand

represents the DNA strand (i.e. the direction of DNA reading),

encoded as either þ or �, and can be missing (encoded as *).

According to the UCSC notation (http://genome.ucsc.edu/FAQ/

FAQtracks.html#tracks1), we use the 0-based, half-open inter-base

coordinates, i.e. the considered genomic sequence is [left, right).

Thus, a region ri corresponds to all the nucleotides whose position is

between its left and right ends; however, in general, we do not in-

clude nucleotide sequences within region data, but rather we store

high-level properties of the region (e.g. for ChIP-seq peak samples,

the peak’s p-value and q-value).

Metadata describe the experimental, biological and clinical

properties associated with each genomic data sample; due to the

great heterogeneity of information that can be associated with a

data sample, in the GDM they are represented as arbitrary attribute-

value pairs. We expect metadata to include at least the experiment

type or the sequencing and analysis method used for the data

production, the experimental condition (e.g. antibody target), the

sequenced organism and tissue or cell line; in case of clinical study,

individual’s descriptions including phenotypes.

Formally, in the GDM a sample s is defined as a triple:

s ¼< id; < ri; vi >f g; mj

� �
>;

where id is the sample identifier (of type long); each pair < ri, vi >

represents a region, with coordinates ri (the four fixed attributes chr,

2 M.Masseroli et al.

 by guest on A
pril 10, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

https://tcga-data.nci.nih.gov/tcga/
,
https://www.encodedcc.org/
high
 paper
-
http://www.bioinformatics.deib.polimi.it/gendata/
-
(
,
``
''
)
,
ri = < chr, left, right, strand >
-
http://genome.ucsc.edu/FAQ/
http://bioinformatics.oxfordjournals.org/

left, right and strand of type string, integer, integer and string,

respectively) and values vi (which are typed attributes; we assume

attribute names of a sample to be different and their types to be of

any elementary type, i.e. Boolean, integer, long, float or string); mj

are attribute-value pairs, with values of type string. Thus, each sam-

ple s has specific attributes describing its region properties and an

associated set of attribute-value pairs referred to as the metadata of

s. The region data schema of s is the set of all attribute names used

for region coordinates and values, and the region data type of s is

the record of all the elementary types of the corresponding attri-

butes. The use of a type system to express region data allows for

controlled arbitrary operations upon type-compatible values.

In GDM, a dataset is a collection of samples with the same region

data schema and type, which contain region values compliant with

the data schema and a sample identifier that is unique within each

dataset; thus, datasets are homogeneous collections of samples, which

are typically produced within the same project (either at a genome re-

search center, or within an international consortium) using the same

technology and tools. Datasets are represented using two normalized

data structures, one for region data and one for metadata; an example

representing a dataset of ChIP-seq experiments is shown in Tables 1

and 2. Note that the sample id attribute (first column in each data

structure) provides a many-to-many connection between regions

(Table 1) and metadata (Table 2) of a sample (e.g. in Tables 1 and 2,

sample 1 has four regions and six metadata attributes, whereas sample

2 has three regions and five metadata attributes). Through the use of a

data type system to express region data and of arbitrary attribute-

value pairs for metadata, GDM provides interoperability across data-

sets produced by different experimental techniques.

2.2 GenoMetric Query Language
GMQL is a high-level language inspired by classic traditions of data-

base management (Edward T. Codd’s relational algebra dating

1971), which aims at substantially changing the level of interaction

between biologists and NGS data. It extends conventional algebraic

operations with bioinformatics domain-specific operations specific-

ally designed for genomics; thus, it supports knowledge discovery

across thousands or even millions of samples, both for what

concerns regions that satisfy biological conditions and their relation-

ship to experimental, biological or clinical metadata.

The name ‘GenoMetric Query Language’ stems from the lan-

guage’s ability to deal with genomic distances, which are measured as

nucleotide bases between genomic regions (aligned to the same refer-

ence) and computed using arithmetic operations between region co-

ordinates. GMQL is inspired by the Pig Latin language (Olston et al.,

2008), which combines high-level declarative style in the spirit of

SQL with the low-level procedural form of MapReduce (Dean and

Ghemawat, 2010); yet, it is much simpler and demands much less in-

formatics expertise.

A GMQL query (or program) is expressed as a sequence of

GMQL operations with the following structure:

< variable >¼ operator < parameters >ð Þ < variables >;

where each variable stands for a GDM dataset. Operators apply to

one or more operand variables and construct one result variable;

parameters are specific for each operator. Parameters of several op-

erators include predicates, used to select and join samples; predicates

are built by arbitrary Boolean expressions of simple predicates, as it

is customary in relational algebra. Predicates on region data must

use attributes in the region’s data schema; predicates on metadata

may use arbitrary attributes. Thus, when a predicate on region data

uses an illegal attribute, the query is also illegal; when a predicate on

metadata uses an attribute not present in the metadata, the predicate

is unknown. GMQL operators form a closed algebra; hence,

operator results are expressed as new datasets derived from their

operands and from the operator specifications.

The language supports a very rich set of predicates describing

distal conditions, i.e. distal properties of regions (e.g. being among

the regions at minimal distance above a given threshold from given

genes). Furthermore, the management of stranded regions (i.e. re-

gions with an orientation) is facilitated by predicates that deal with

such orientation (e.g. to locate the region’s starts and stops accord-

ing to the strand, or the upstream or downstream directions with re-

spect to the region’s ends). GMQL includes operators on metadata

(SELECT, AGGREGATE, ORDER) and regions (PROJECT,

COVER, SUMMIT), as well as operators on multiple datasets

(UNION, DIFFERENCE, JOIN, MAP); the full description and

language specification of GMQL is provided at the GMQL web site

http://www.bioinformatics.deib.polimi.it/GMQL/. A typical GMQL

query starts with a SELECT operation, which creates a dataset with

only the data samples that it filters out from an input dataset by

using a predicate upon their metadata attributes (the input dataset

can be any available data collection in a standard data format, such

as BED, bedGraph, broadPeak, narrowPeak, VCF, GTF). Then, the

query proceeds by processing the selected samples in batch with

operations applied on their region data and/or metadata. Finally, it

ends with a MATERIALIZE operation, which stores a dataset by

saving the region data of each of its samples in an individual text file

in standard GTF format and the related metadata in an associated

tab delimited text file.

We note a fundamental difference between GMQL and other

available systems, namely the ability to express operations over

datasets with thousands of samples in a compact way, by using few

Table 1. Excerpt of region data of a dataset with two ChIP-seq

samples

id chr left right strand p-value

1 2 2476 3178 * 0.00000000200

1 2 15 235 15 564 * 0.00000000052

1 5 8790 11 965 * 0.00000000009

1 5 75 980 76 342 * 0.00000000037

2 16 862 923 * 0.00000000018

2 16 1276 1409 * 0.00000000006

2 20 3852 4164 * 0.00000000031

Corresponding sample metadata are in Table 2.

Table 2. Excerpt of metadata of a dataset with two ChIP-seq

samples

id attribute value

1 antibody_target CTCF

1 cell HeLa-S3

1 cell_karyotype cancer

1 cell_organism human

1 dataType ChipSeq

1 view Peaks

2 antibody_target JUN

2 cell H1-hESC

2 cell_organism human

2 dataType ChipSeq

2 view Peaks

Corresponding sample region data are in Table 1.

GMQL: a novel approach to large-scale genomic data management 3

 by guest on A
pril 10, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

,
4
6
3
5
``
GenoMetric Query Language
''
http://www.bioinformatics.deib.polimi.it/GMQL/
http://bioinformatics.oxfordjournals.org/

lines of abstract, high-level code (which implicitly express iteration

over samples). This is very different from the current practice of

embedding data management operations within the code of

programming language scripts (e.g. Python, JavaScript or Java).

3 Examples

We demonstrate the power and flexibility of GMQL by presenting

some typical queries that show GMQL at work in a rich set of biolo-

gical use case examples. GMQL shows its assets in particular when it

is applied on numerous samples containing many regions and of mul-

tiple data types, in order to identify their genomic regions that satisfy

given distance constraints. At http://www.bioinformatics.deib.polimi.

it/GMQL/ we provide an easy to install toolkit for stand-alone use of

GMQL, together with the below GMQL example queries and small-

scale datasets just for example testing. Note that GMQL performs

worse than some other available systems on a small number of small-

scale datasets, but these other systems are not cloud-based; hence,

they are not adequate for efficient big data processing and, in some

cases, they are inherently limited in their data management capacity,

as they only work as RAM memory resident processes.

3.1 Example 1: find ChIP-seq peaks in promoter regions
“In each enriched region (often called ‘peak’) sample from

ENCODE human ChIP-seq experiments, find how many peaks

co-occur in each promoter region”.

HM_TF¼ SELECT(dataType ¼¼ ‘ChipSeq’ AND

view ¼¼ ‘Peaks’) HG19_PEAK;

TSS¼ SELECT(ann_type ¼¼ ‘TSS’ AND

provider¼¼ ‘UCSC’) HG19_ANN;

PROM¼PROJECT(score >¼ 1000; start¼ start - 2000,

stop¼ stopþ1000) TSS;

PROM_HM_TF¼MAP(COUNT) PROM HM_TF;

MATERIALIZE PROM_HM_TF;

This GMQL query starts by selecting all the ChIP-seq peak samples

from the dataset HG19_PEAK, which can represent, e.g., all the

ENCODE peak samples called from human NGS experiments

aligned to the human reference genome assembly 19 (https://

genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.

html). From an annotation base for the same human genome assem-

bly (represented by the dataset HG19_ANN), it also selects the tran-

scription start sites (TSS), provided by the UCSC database (https://

genome.ucsc.edu/cgi-bin/hgTables) from SwitchGear Genomics

(http://switchgeargenomics.com/) and defines the promoter regions

as the ones extending from 2000 bases upstream a TSS to 1000

bases downstream of the same TSS (using only TSS with high confi-

dence score based on existing experimental evidence). Finally, it

maps the peaks of each sample to the promoter regions and, for

each promoter, counts how many of such peaks co-localize with the

promoter, saving the obtained results.

Although very simple, this example shows the power of the Map

operation, which easily relates experimental data to known annota-

tions. Note that a Select-Project-Map sequence of GMQL oper-

ations is comparable with the basic Select-From-Where sequence of

SQL statements. When applied to the entire ENCODE data collec-

tion, at the time of writing this GMQL query selects 2423 samples

including a total of 83 899 526 peaks, which are mapped to 131 780

promoters, saving as result 29 GB of data files in standard GTF for-

mat. Executed in a Hadhoop framework on a single server equipped

with a Dual Intel Xeon ES-2650 processor, 64 GB of RAM and 16

TB of disks (RAID 5, 5 disks), it required 18 min and 33 s.

3.2 Example 2: find distal bindings in transcription

regulatory regions
“Find all enriched regions (peaks) in CTCF transcription factor (TF)

ChIP-seq samples from different human cell lines which are the

nearest regions farther than 100 kb from a transcription start site

(TSS). For the same cell lines, find also all peaks for the H3K4me1

histone modifications (HM) which are also the nearest regions far-

ther than 100 kb from a TSS. Then, out of the TF and HM peaks

found in the same cell line, return all TF peaks that overlap with

both HM peaks and known enhancer (EN) regions”.

TF¼ SELECT(dataType ¼¼ ‘ChipSeq’ AND view ¼¼ ‘Peaks’

AND antibody_target ¼¼ ‘CTCF’) HG19_PEAK;

HM¼ SELECT(dataType ¼¼ ‘ChipSeq’ AND view ¼¼ ‘Peaks’

AND antibody_target ¼¼ ‘H3K4me1’) HG19_PEAK;

TSS¼ SELECT(ann_type ¼¼ ‘TSS’ AND

provider ¼¼ ‘UCSC’) HG19_ANN;

EN¼ SELECT(ann_type ¼¼ ‘enhancer’ AND

provider ¼¼ ‘UCSC’) HG19_ANN;

TF1¼ JOIN(first(1) after distance 100 000, right_distinct)

TSS TF;

HM1¼ JOIN(first(1) after distance 100 000, right_distinct)

TSS HM;

HM2¼ JOIN(distance < 0, int) EN HM1;

TF_res¼ JOIN(left->cell ¼¼ right->cell, distance < 0,

right_distinct) HM2 TF1;

MATERIALIZE TF_res;

This second example, whose context is illustrated in Figure 1, shows

that GMQL is a powerful expressive language to answer frontier

epigenomics questions.

The GMQL query selects TF and HM enriched region samples

from HG19_PEAK [a collection of experimental data files of signal

enrichment called regions from NGS human samples aligned to the

human genome assembly 19, e.g. provided by ENCODE (https://

genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.

html)]. It also selects TSS and EN known human annotation regions

from HG19_ANN [e.g. provided by the UCSC database (https://

genome.ucsc.edu/cgi-bin/hgTables) from SwitchGear Genomics

(http://switchgeargenomics.com/) and Vista Enhancer (http://enhan

cer.lbl.gov/), respectively]. Then, for each sample, it computes in

TF1 the TF regions that are at minimal distance from a TSS, pro-

vided that such distance is greater than 100 000 bases, and in HM1

the HM regions that are also at minimal distance from a TSS, with

the same constraint. Note that, in addition to the distal condition,

the Join parameter also indicates that the result must include only

the right sample matching regions, for TF1 and HM1 respectively.

Fig. 1. Representation of the histone modification (HM) and transcription fac-

tor (TF) binding site enriched regions (‘peaks’), known reference DNA regions

and their distance relationships involved in Example 2

4 M.Masseroli et al.

 by guest on A
pril 10, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

,
http://www.bioinformatics.deib.polimi.it/GMQL/
http://www.bioinformatics.deib.polimi.it/GMQL/
for example
,
https://genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.html
https://genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.html
https://genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.html
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables
http://switchgeargenomics.com/
,
,
,
,
utes
econds
(
https://genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.html
https://genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.html
https://genome.ucsc.edu/ENCODE/dataMatrix/encodeChipMatrixHuman.html
)
(
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables
http://switchgeargenomics.com/
http://enhancer.lbl.gov/
http://enhancer.lbl.gov/
)
http://bioinformatics.oxfordjournals.org/

Next, in HM2 the query computes those HM1 regions that intersect

with enhancer regions in EN, by taking the intersection of resulting

regions. Finally, in TF_res, which is then saved as a result, for each

cell line, it computes the TF regions in TF1 that intersect with

regions in HM2, also this time taking only the right sample match-

ing regions. At the time of writing, all enriched region samples from

ENCODE human ChIP-seq amount to 2423 samples from 120 cell

lines, which become 987 samples after merging sample replicates.

When applied to such merged replicate samples, initially this

example query selects 90 CTCF and 21 different H3K4me1

samples from 93 cell lines, including a total of 3 317 361 peaks;

finally, as the result it finds 42 CTCF peaks in 11 samples from

11 cell lines.

The Map operation (in Examples 1, 3 and 4) as well as the Join

operation with distance and first after distance functions (in

Example 2) highlight the power of GMQL in performing genometric

evaluations in batch on multiple samples at a time; they are nor-

mally performed by executing data manipulation scripts, developed

by individual researchers in different programming languages. Some

tools provide libraries for supporting genometric queries (Neph

et al., 2012; Ovaska et al., 2013; Quinlan and Hall, 2010), but they

are not intended for large-scale querying.

3.3 Example 3: associating transcriptomics and

epigenomics
“In RNA-seq experiments of human cancer cell line HeLa-S3, find

the average expression of each exon. Then, in ChIP-seq experiments

of the same cell line, find the average signal of H3K4me3 histone

modifications within each exon”.

Exon¼ SELECT(ann_type ¼¼ ‘exons’ AND

provider ¼¼ ‘RefSeq’) HG19_ANN;

HM ¼ SELECT(dataType ¼¼ ‘ChipSeq’ AND view ¼¼ ‘Peaks’

AND cell ¼¼ ‘HeLa-S3’ AND antibody_target ¼¼ ‘H3K4me3’)

HG19_PEAK;

RNA¼ SELECT(dataType ¼¼ ‘RnaSeq’ AND

view ¼¼ ‘ExonsDeNovo’ AND cell ¼¼ ‘HeLa-S3’) HG19_RNA;

RNA2¼PROJECT(iIDR < 0.05;

signal AS RPKM1 / 2þRPKM2 / 2) RNA;

Exp¼UNION RNA2 HM;

Genome_space¼MAP(signal_avg AS AVG(signal)) Exon Exp;

MATERIALIZE Genome_space;

This third example shows that datasets produced by different ex-

periment types, such as RNA-seq and ChIP-seq, can be used in the

same GMQL query, thanks to the interoperability provided by

GDM; the UNION operator takes care of automatically unifying

their different region data schemas. For each RNA-seq sample, the

signal in exons with reproducible expression [i.e. with

Irreproducibility Discovery Rate (IDR) <0.05] is averaged (in the

new attribute signal) over two replicates (ENCODE provides RNA-

seq data files with expression data quantified for two replicates sep-

arately as RPKM, i.e. reads per kilobase of exon per million reads

mapped). Then, the Map operation averages, within each exon, the

signal in each RNA-seq or ChIP-seq sample and constructs a query

result, called Genome Space, which is the ideal starting point for

subsequent data analysis steps; they are not covered by GMQL, but

can be performed using classical tools, which are immediately ap-

plicable to GMQL output. For instance, these analyses may include

building lists of top k genes with most similar expression to that of a

given gene, or identifying groups of genes and their associated

histone modifications and transcription factors with similar signal

patterns, e.g. by using bi-clustering.

3.4 Example 4: find somatic mutations in exons
“Consider mutation data samples of human breast cancer cases. For

each sample, quantify the mutations in each exon and select the

exons with at least one mutation. Return the list of samples ordered

by the number of such exons ”.

Mut¼ SELECT(dataType ¼¼ ‘DNASeq’ AND

tumor_tissue_site ¼¼ ‘Breast’) HG19_MUT;

Exon¼ SELECT(ann_type ¼¼ ‘exons’ AND

provider ¼¼ ‘RefSeq’) HG19_ANN;

Exon1¼MAP(mut_count AS COUNT) Exon Mut;

Exon2¼PROJECT(mut_count >¼ 1) Exon1;

Exon3¼AGGREGATE(exon_count AS COUNT) Exon2;

Exon_res¼ORDER(DESC exon_count) Exon3;

MATERIALIZE Exon_res;

This fourth example shows that GMQL is very effective at counting,

in batch on multiple samples, mutations that are mapped upon

known regions (in this case exons) and extracting those regions hav-

ing more mutations than a given threshold, ordering samples ac-

cording to their number of regions extracted. Known human

protein-coding and non-protein-coding exon regions are selected

from HG19_ANN; such regions are provided by the UCSC database

(https://genome.ucsc.edu/cgi-bin/hgTables), after retrieving them

from the NCBI RNA reference sequences collection (RefSeq). Count

of data sample items is performed by the Map and Aggregate oper-

ations. The Map counts mutations in each sample within each exon

while mapping the mutations to the exon regions; after removal of

the exons in each sample that do not contain mutations, the

Aggregate counts how many exons remain in each sample and stores

the result in the sample metadata as a new attribute–value pair.

Note that, also in this example, the query is applied in batch on mul-

tiple data samples, i.e. all those samples selected from the

HG19_MUT collection, which can be very many (in the case of the

publicly available TCGA data, at the time of writing the available

breast cancer patient samples were 963 for a total of 87 131 muta-

tions). By applying this GMQL query to the curated somatic muta-

tion data publicly available in TCGA from breast cancer patients

and considering all 482 313 exon regions of 46 949 human protein-

coding and non-protein-coding genes provided by RefSeq, at the

time of writing it extracted 963 breast cancer patient samples with

mutations involving 54 688 distinct exons of 41 364 genes.

4 Discussion

Our system supports efficient high-level query processing of thou-

sands of experimental data samples, produced with a variety of

experimental methods and encoded in a variety of data formats, to-

gether with their biological and clinical metadata descriptions as

well as multiple annotation data. Focused on assisting knowledge

extraction, it is meant to operate on higher level data obtained after

raw data preprocessing and feature calling, rather than on raw data

directly. This offers the advantage of not interfering with the variety

of data preprocessing tools and pipelines that are already in place in

the different research centers, as well as of directly benefitting of

their output, thanks to the interoperability and data integration sup-

port ensured by the data model and the standard data formats used.

Thus, it also allows leveraging the high-level data, including variant

calling, gene expression and region enrichment (i.e. peak) calling

GMQL: a novel approach to large-scale genomic data management 5

 by guest on A
pril 10, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

,
(
)
https://genome.ucsc.edu/cgi-bin/hgTables
-
http://bioinformatics.oxfordjournals.org/

data, which are increasingly available within public large data col-

lections (e.g. 1000 Genomes Project, TCGA and ENCODE); public

data can be used not only by themselves, but also together with in

house produced experimental data, for integrated evaluations and

comparisons with increased support.

The rich variety of provided biological use case examples, which

are based on public datasets from relevant data collections such as

ENCODE and TCGA, proves the declarative expressivity, power,

flexibility and ease of use of GMQL, as well as its effectiveness in

support of answering typical relevant biological questions on mas-

sive data. Although several tools for genomic data processing have

been proposed, none of them encompasses all the GMQL features

and none can perform all those evaluations, at least not with the

simplicity and power of GMQL.

As clarified in ‘Methods’ section, another important aspect of

GMQL is that the language design was also inspired by dominant

cloud computing paradigms, such as the Apache Pig platform and

Lucene indexing, which are supported in Hadoop and by a variety

of next-generation cloud-based systems. GMQL queries are trans-

lated into such paradigms and then executed. Thus, the evolution of

GMQL (in terms of performance, portability, scalability) is very

well-supported by the key actors of cloud computing.

BEDTools (Quinlan and Hall, 2010) and BEDOPS (Neph et al.,

2012) easily and efficiently process region data, but of individual

samples (at most two at a time, for their comparison), requiring ver-

bose scripts for multiple sample processing, with lower perform-

ance. Furthermore, they cannot manage sample metadata and do

not have an internal standard for data format; this may lead differ-

ent scripts to generate different output formats, with the need for ex-

ternal languages (e.g. AWK or SED) to manipulate their outputs,

which increases the verbosity of their scripts (see Supplementary ma-

terial for thorough comparison).

GROK (Ovaska et al., 2013) supports abstractions, but of

lower-level than GMQL, and some low-level operations which are

not directly supported by GMQL (e.g. region flipping); in contrast,

GMQL supports high-level declarative operations, such as Join and

Map. Furthermore, GROK does not support sample metadata and

big data processing, being unsuitable for parallelization.

GQL (Kozanitis et al., 2014) offers a declarative query language

for genomics, but limited to variant calling, starting from DNA-seq

aligned data. As well as all the other tools, it cannot deal with meta-

data describing experimental, biological or clinical characteristics of

the data samples; however, it is amenable to parallelization, as any

SQL-like language.

Some other tools for parallel processing of genomic data have been

developed [e.g. GATK (McKenna et al., 2010), SAMtools (Li et al.,

2009), BioPig (Nordberg et al., 2013)], but all of them deal with raw

or aligned data; thus, they focus on data preprocessing or feature call-

ing, without taking advantage of the quickly increasing amount of

processed data which are available for knowledge discovery. BioPig

provides a set of Pig Latin extensions for specific processing of data

files produced by NGS machines. In BioPig, a software developer can

write user defined functions (UDFs) in Java programming language,

but then s/he has to manage the Pig Latin scripts manually.

We stress that GMQL is designed for cloud computing process-

ing of big data in the Hadoop framework. This makes it suitable

also for remotely running in the cloud, using web services and ap-

propriate software frameworks like Galaxy, which allows for the

pipelining/integration of multiple analysis tools (Giardine et al.,

2005; Goecks et al., 2010); this avoids the need for extensive infra-

structure on the user’s part and allows taking advantage of the gen-

omic data already available in the cloud, e.g. the 1000 Genomes

Project data available on Amazon Elastic Compute Cloud (http://

aws.amazon.com/datasets/4383).

GMQL can be used also with small data and on non-parallel

computing frameworks; in these cases other available tools may

show much shorter running times. When used with small data on

parallel systems, slower performance is due to the latency of

Hadoop’s initialization, which is not a problem with big datasets

since the time for data processing far exceeds the cost for the start-

up latency. Recently, the Hadoop community has started to address

this issue and to reduce Hadoop’s start-up latency with certain com-

mercial or in memory cluster computing implementations of

MapReduce, such as Apache Spark (Zaharia et al., 2012).

Although inspired by and focused on NGS technology, GMQL

can process any genomic region based data in standard data format

(e.g. from high-throughput array-based technology such as copy

number, SNP, gene, exon, miRNA or protein arrays). Furthermore,

GMQL ensures interoperability with both upstream data processing

and downstream data analysis tools, by both dealing with data in a

variety of standard tab delimited text formats and saving extracted

results within tab delimited text files in standard GTF data format;

in so doing, GMQL results can then be further processed with usual

tools, or visualized in a common genome browser (e.g. the UCSC

Genome Browser, Integrated Genome Browser or Integrative

Genomics Viewer) for further investigation.

In conclusion, GMQL leverages the many increasingly available

and valuable high-level genomic data and their associated biological

and clinical metadata for comprehensive and comparative querying

for biomedical knowledge discovery, beyond the functionalities

offered by existing tools. The provided GMQL toolkit well

addresses all the three main challenges in data-intensive genomic

analysis: (i) declarativeness: it provides abstractions which allow

focusing on the meaning of queries to answer biological questions,

rather than on its formulation; (ii) portability: it is portable to vari-

ous IT infrastructures; (iii) scalability: it scales with data size, pro-

viding best performances with large data. The choice of a

declarative syntax separated from, but automatically mapped to, the

implementation allows for optimizations in the implementation that

are transparent to the naive user, enabling researchers to effectively

use big genomic data to answer key biological questions.

5 Methods

5.1 Metadata indexing
In order to support efficient search and selection over many data

samples based on their possibly very numerous metadata, we use

Apache Lucene (http://lucene.apache.org/core/), a free/open source

information retrieval software library. With Lucene we create and

manage indexes over sample metadata and search them to filter the

data samples required to answer a query; thus, only data files rele-

vant for the query are loaded in the system and involved in query

processing. The created indexing allows any arbitrary Boolean ex-

pression over metadata values to be expressed in a query.

5.2 GMQL to Pig Latin translator
Rather than creating a specific execution engine for our GMQL, we

developed a GMQL translator to Pig Latin (Olston et al., 2008), a

high-level data-flow language for batch processing of large datasets.

This enables us to leverage two of the main features of Pig Latin:

automatic execution optimization and extensibility. The former one

allows focusing on semantics rather than efficiency of Pig Latin

scripts, and the latter one enables the seamless integration of

6 M.Masseroli et al.

 by guest on A
pril 10, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

,
the
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv048/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv048/-/DC1
,
(
)
UDFs (
)
http://aws.amazon.com/datasets/4383
http://aws.amazon.com/datasets/4383
,
1
2
3
http://lucene.apache.org/core/
http://bioinformatics.oxfordjournals.org/

functions in Java programming language for special-purpose pro-

cessing; we took advantage of this feature by creating specific

genometric Join, Map and Cover functions.

We implemented the GMQL translator in Racket (Flatt, 2012), a

general-purpose functional programming language in the Lisp/

Scheme family that serves as a platform for language creation, design

and implementation. The syntax-directed translator has two compo-

nents, the lexer and the parser. The former one scans the GMQL

query and generates a list of tokens classified as keywords, variable

identifiers, numbers, etc; the latter one identifies sub-sequences

of the tokens that correspond to grammar rules. Once a rule is

matched, a procedure emits the equivalent Pig Latin code. In addition,

given that GMQL computes variables with an associated schema, a

state describing such schemas is kept up-to-date during the

translation.

Datasets of data samples that are referred to in GMQL queries

are mapped to suitable Pig Latin variables, where, at execution time,

they are loaded using the internal format illustrated in Tables 1 and

2, which allows efficient management and processing in Pig Latin;

each dataset that corresponds to a variable is internally mapped into

two bags, one for the dataset sample metadata and one for the sam-

ple region data. The translation deals with each bag separately;

while their correspondence is maintained by the suitable use of sam-

ple identifiers. Figure 2 shows the translation of the first GMQL

JOIN in the Example 2:

TF1¼ JOINðfirst 1ð Þ after distance 100000; right distinctÞTSS TF;

The function GenometricPig.Join computes the join between regions

in the TSS and TF input datasets by capitalizing on the fact that

matching regions are at a bound distance, which can be inferred

from the query parameters; then, it creates tuples that satisfy the

join predicate and loads them in the region and metadata bags of the

TF1 output dataset, where they share the same identifier. Note that

a single GMQL operation is translated into many statements of

several lines of Pig Latin code; this clearly illustrates the higher level,

neatness and ease of GMQL with respect to Pig Latin.

To manage Pig Latin scripts, we use Apache Pig (http://pig.apa-

che.org/), an open source platform for analyzing large datasets, which

includes a compiler that turns Pig Latin scripts into sequences of

MapReduce programs executable on large-scale parallel implementa-

tions of the Hadoop open-source framework (http://hadoop.apache.

org/). GMQL performance on big datasets has been optimized by exe-

cuting many operations in parallel; both genomic region data and

datasets are partitioned by associating to each partition a distinct

data sample and genome chromosome (the id and chr pair), and then

computing operations in parallel upon each such partition. Recently,

Apache Pig has also added a pluggable execution engine to allow Pig

Latin scripts with small input data size running in-process on

non-MapReduce frameworks. Although this option offers low per-

formance and is not in line with the GMQL big data focus, we lever-

age it to enable local GMQL use for users who deal with a few small

data samples and do not have access to parallel computing

frameworks.

Funding

This work was part of and supported by the ‘Data-Driven Genomic

Computing [GenData 2020]’ PRIN project (2013–2015), funded by the

Italian Ministry of the University and Research (MIUR).

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium et al. (2010) A map of human

genome variation from population-scale sequencing. Nature, 467,

1061–1073.

Cancer Genome Atlas Research Network et al. (2013) The Cancer Genome

Atlas Pan-Cancer analysis project. Nat. Genet., 45, 1113–1120.

Dean,J. and Ghemawat,S. (2010) MapReduce: a flexible data processing tool.

Commun. ACM, 53, 72–77.

ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA

elements in the human genome. Nature, 489, 57–74.

Flatt,M. (2012) Creating languages in Racket. Commun. ACM, 55,

48–56.

Giardine,B. et al. (2005) Galaxy: a platform for interactive large-scale genome

analysis. Genome Res., 15, 1451–1455.

Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting ac-

cessible, reproducible, and transparent computational research in the life

sciences. Genome Biol., 11, R86

Hayden,E.C. (2014) Technology: The $1,000 genome. Nature, 507,

294–295.

Kozanitis,C. et al. (2014) Using Genome Query Language to uncover genetic

variation. Bioinformatics, 30, 1–8.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

McKenna,A. et al. (2010) The Genome Analysis Toolkit: a MapReduce frame-

work for analyzing next-generation DNA sequencing data. Genome Res.,

20, 1297–1303.

Neph,S. et al. (2012) BEDOPS: high-performance genomic feature operations.

Bioinformatics, 28, 1919–1920.

Nordberg,H. et al. (2013) BioPig: a Hadoop-based analytic toolkit for large-

scale sequence data. Bioinformatics, 29, 3014–3019.

O’Driscoll,A. et al. (2013) ‘Big data’, Hadoop and cloud computing in gen-

omics. J. Biomed. Inf., 46, 774–781.

Olston,C. et al. (2008) Pig Latin: a not-so-foreign language for data process-

ing. In: L.V.S. Lakshmanan et al. (ed) Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data. ACM, New

York, pp. 1099–1110.

Ovaska,K. et al. (2013) Genomic region operation kit for extensible processing

of deep sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform., 10,

200–206.

Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Schumacher,A. et al. (2014) SeqPig: simple and scalable scripting for large

sequencing data sets in Hadoop. Bioinformatics, 30, 119–120.

Sheridan,C. (2014) Illumina claims $1,000 genome win. Nat. Biotechnol.,

32, 115.

Shvachko,K. et al. (2010) The Hadoop distributed file system. In:

Proceedings of the 2010 IEEE 26th Symposium on Mass Storage

Systems and Technologies (MSST), IEEE Computer Society, Washington,

DC, pp. 1–10.Fig. 2. Translation of the first GMQL JOIN in Example 2 into Pig Latin

GMQL: a novel approach to large-scale genomic data management 7

 by guest on A
pril 10, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://pig.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
is
",0,0,2
(
)
",0,0,2
-
http://bioinformatics.oxfordjournals.org/

Taylor,R.C. (2010) An overview of the Hadoop/MapReduce/HBase frame-

work and its current applications in bioinformatics. BMC Bioinformatics,

11(Suppl. 12), S1.

Weiwiorka,M.S. et al. (2014) SparkSeq: fast, scalable and cloud-ready tool for

the interactive genomic data analysis with nucleotide precision.

Bioinformatics, 30, 2652–2653.

Zaharia,M. et al. (2012) Resilient distributed datasets: a fault-tolerant abstrac-

tion for in-memory cluster computing. In: Proceedings of the 9th USENIX

Symposium on Networked Systems Design and Implementation, USENIX

Association, San Jose, CA, pp. 15–28.

Zou,Q. et al. (2014) Survey of MapReduce frame operation in bioinformatics.

Brief. Bioinform., 15, 637–647.

8 M.Masseroli et al.

 by guest on A
pril 10, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

	l
	l
	btv048-TF1
	btv048-TF2
	l

