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• The effect of COVID-19 lockdown on air
pollution exposure in Europe was esti-
mated.

• Bayesian space-time models were fitted
adjusting for seasonality and con-
founders.

• Actual lockdown effect cannot be esti-
mated without considering contextual
factors.

• Lockdown-related reduction of NO2 and
PM2.5 was 30% and 26%, respectively.

• Targeted governmental policies can
considerably reduce air pollution in
short time.
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The lockdown and relatedmeasures implemented bymany European countries to stop the spread of the SARS-CoV-
2 virus (COVID-19) pandemic have altered the economic activities and road transport in many cities. To rigorously
evaluate how these measures have affected air quality in Europe, we developed Bayesian spatio-temporal (BST)
models that assess changes in the surface nitrogen dioxide (NO2) and fine particulate matter (PM2.5) concentration
across the continent. We fitted BST models to measurements of the two pollutants in 2020 using a lockdown indi-
cator covariate, while accounting for the spatial and temporal correlation present in the data. Since other factors,
such as weather conditions, local combustion sources and/or land surface characteristics may contribute to the var-
iation of pollutant concentrations, we proposed two model formulations that allowed the differentiation between
the variations in pollutant concentrations due to seasonality from the variations associated to the lockdownpolicies.
The first model compares the changes in 2020, with the ones during the same period in the previous five years, by
introducing an offset term, which controls for the long-term average concentrations of each pollutant during
2014–2019. The second approach models only the 2020 data, but adjusts for confounding factors. The results indi-
cated that the latter canbetter capture the lockdowneffect. Themeasures taken to tackle the virus in Europe reduced
the average surface concentrations of NO2 and PM2.5 by 29.5% (95% Bayesian credible interval: 28.1%, 30.9%) and
25.9% (23.6%, 28.1%), respectively. To our knowledge, this research is the first to account for the spatio-temporal cor-
relation present in themonitoring data during the pandemic and to assess how it affects estimation of the lockdown
effect while accounting for confounding. The proposed methodology improves our understanding of the effect of
COVID-19 lockdown policies on the air pollution burden across the continent.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The unique situation created by the SARS-CoV-2 virus pandemic
(COVID-19) has led to a sudden decrease in economic activities
(OECD, 2020). The governments' restrictions aimed to tackle the spread
of the virus, such as the stay-at-home policies and closed international
borders, significantly reduced the traffic volume (Apple, 2020;
Brunekreef et al., 2021). Emerging evidence suggests that these changes
resulted in noticeable reductions of pollutant concentrations in ambient
air (Shakil et al., 2020). Particularly, the concentration of nitrogen diox-
ide (NO2) has dropped in many cities around the world (Ogen, 2020;
Zhang et al., 2020), while changes in fine particulate matter (PM2.5)
have been more limited and less consistent (Dantas et al., 2020;
Menut et al., 2020; Putaud et al., 2020; Sharma et al., 2020).

Ground-level NO2 and PM2.5 concentrations continue to represent a
serious public health concern in Europe. In recent years, about 16 mil-
lion Europeans were exposed to NO2 levels above those proposed by
the WHO air quality guidelines (Beloconi and Vounatsou, 2020), while
around 350 million people across the continent were exposed to ele-
vated PM2.5 levels (Beloconi et al., 2018). Exposure to air pollution con-
tributes to the development of diabetes, high blood pressure, heart and
lung diseases (Cohen et al., 2017), decreases immunity (Mostafavi et al.,
2019) and induces inflammation (Chen and Schwartz, 2008). Recent
COVID-19 studies suggest that individuals with such underlying co-
morbidities may be more susceptible to the impact of the coronavirus
infection and at higher risk of mortality from COVID-19 (Wang et al.,
2020; Yang et al., 2020). Therefore, estimates of the changes in air qual-
ity caused by the measures implemented to tackle the spread of the
virus are very necessary. Theywould help quantifying a potential reduc-
tion inmorbidity associatedwith air pollution exposure during the lock-
down and to improve our understanding of the impact of related
policies on air pollution burden.

Although a large number of literature reports changes in air pollu-
tion levels that occurred during and after the COVID-19 lockdownmea-
sures, very few efforts have rigorously modelled the effect of the
lockdown while accounting for confounding factors, e.g. variation due
to natural weather conditions or other spatio-temporal characteristics,
such as seasonality. A representative sample of the literature is provided
in Table A1 (in the appendix). Themajority of the articles have used ex-
plorative analyses, such as graphical comparisons between average pol-
lutant concentration levels during the lockdown periods in 2020 and
similar periods in previous years, or between pre- and post- “interven-
tion” periods (e.g. Abdullah et al., 2020; Dantas et al., 2020). The data
sources used to illustrate the differences in the pollutant concentrations
were mostly based on ground-level air quality measurements from
monitoring stations, satellite-derived tropospheric measurements, air
pollutant simulations obtained from chemical transport models
(CTMs), or combination of these sources (e.g. Barré et al., 2020;
Goldberg et al., 2020). Several works have used pairwise t-test to evalu-
ate the statistical significance of these differences (e.g. Dobson and
Semple, 2020; Giani et al., 2020; Putaud et al., 2020).

Sincemany parameters, including local combustion sources, land sur-
face characteristics, atmospheric and weather conditions influence NO2

and PM2.5 formation and dispersion (Chudnovsky et al., 2014; Bechle
et al., 2015; Stafoggia et al., 2017; Young et al., 2016; Larkin et al., 2017;
He andHuang, 2018), it is essential to buildmodels that are able to distin-
guish the changes caused by these effects from the ones induced by the
lockdown measures. Several studies have noted that incomplete correc-
tion for meteorological conditions could lead to biased results (Menut
et al., 2020; Xiang et al., 2020). The CTMs can address this problem by
performing specific sensitivity tests on the input parameters and by sim-
ulating pollutant concentrations using different emission scenarios, such
as “business as usual” versus “COVID-19”-specific emissions reflecting
lockdown restrictive measures (Barré et al., 2020; Huang et al., 2020;
Menut et al., 2020; Putaud et al., 2020). However, CTM simulations are
computationally demanding and time consuming.
2

Several statistical models and machine learning algorithms were
used to build a relationship between the pollutant concentrations at
the monitoring stations and historical meteorological conditions, in-
cluding multiple linear regression (Venter et al., 2020), gradient
boosting (Barré et al., 2020) and random forest (Dobson and Semple,
2020; Shi et al., 2021). The resulting models were used to predict the
weather-normalized pollutant concentrations during the lockdown
and to compare these estimates to the observed data. Giani et al.
(2020) used a geostatistical model, incorporating CTM simulations as
covariate, to predict and compare gridded PM2.5 concentration in
2016–2019 and during the COVID-19 outbreak in 2020. A different
way to model the effect of lockdown within a statistical formulation,
which can fully quantify the uncertainty in the estimated effect, is by in-
troducing the lockdown period as a covariate in the model. In Liu et al.
(2020), two different government's responses to COVID-19 pandemic
were assessed by using a fixed-effects model that predicts NO2 tropo-
spheric vertical column density (TVCD) before and after the 2020
Lunar New Year (LNY) in China, while controlling for the previous
years' (2015–2019) NO2 TVCD. This allowed distinguishing between
the reductions typically observed during LNY and the ones caused by
the lockdown measures. However, the model did not consider spatio-
temporal correlations in the data and, therefore, the estimates of the
statistical significance of the effects of covariatesmight be biased. In ad-
dition, the results represent changes in troposphericNO2 concentration,
a proxy thatmay not fully reflect the variations in the air pollution levels
close to the surface.

Here, we developed Bayesian spatio-temporal (BST) regression
models that assess changes in the surface NO2 and PM2.5 concentration
across Europe during the first 20 weeks in 2020, while taking into ac-
count the spatio-temporal correlation present in the monitoring data.
In particular, we propose two different modelling formulations that as-
sess the effect of the lockdownmeasures on the variation in theweekly-
averaged NO2 and PM2.5 concentrations. The first approach compares
changes in pollutant concentrations in 2020 with the ones that hap-
pened during the same period in the previous five years, by introducing
an offset term, which controls for the long-term average concentrations
of each pollutant during 2014–2019. Themodel assumes that themete-
orological and other factors in 2020 were the same as in the previous
years and therefore the changes observed in 2020, are strictly due to
the lockdown. The second approach models only the 2020 data, but it
takes into account confounding factors that may influence the spatio-
temporal distribution of each pollutant and therefore separates the ef-
fect of lockdown from the effects of confounders. Our modelling en-
deavours improve the estimation of the actual effect of lockdown on
the air pollution burden across the European continent.

2. Materials and methods

2.1. Study area and data

The raw NO2 and PM2.5 measurements were obtained from the Air
Quality e-Reporting database (Air Quality e-Reporting, 2020) main-
tained through the European environment information and observation
network (Eionet). For the years 2019 and 2020, the up-to-date (E2a) air
pollution monitoring data was used, whereas for 2014–2018, the more
detailed historic dataflow (E1a) was considered. The E2a data are up-
dated daily and are available on hourly basis for most of European
Union (EU) member states and European Environment Agency's
(EEA's) cooperating countries. The E1a data are reported every
September and cover the year before the delivery. The measurements
as well as the meta-information on the monitoring stations involved
were accessed from the EEA's air quality portal (https://discomap.eea.
europa.eu/map/fme/AirQualityExport.htm). All the analyses were
based on weekly averaged 24 h concentrations during the first
20 weeks of each year (e.g. for 2020 this period corresponds to 01/01/
2020–15/05/2020). The stations with valid measurements for at least

https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm
https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm
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19 out of 20 weeks were used in all further analyses. For storing raster
data, statistical inference and mapping purposes all data was converted
to the Lambert Azimuthal Equal Area (ETRS89-LAEA5210) projection.
Fig. 1 illustrates the locations of the (a) NO2 and (b) PM2.5 monitoring
sites used in this work.

Most of the data-driven air-quality modelling efforts incorporate air
pollution proxies from satellite-based observations and/or chemical
transport model simulations in the analyses (Benas et al., 2013;
Beloconi et al., 2016; Brauer et al., 2016; Liu et al., 2020). These proxies
reflect contributions from all sources, including e.g. emissions from in-
dustry, roads, airports or harbours, as well as atmospheric and weather
conditions (Novotny et al., 2011). Since we were interested in evaluat-
ing the impact of climatic and environmental factors on air pollutants
separately and in quantifyinghow they influence the effect of lockdown,
the satellite-based observations and CTM simulation data were not in-
cluded in the current analyses. Instead, the parameters that directly
contribute to NO2 and PM2.5 formation and dispersion (and therefore
drive their spatio-temporal variation), were used as separate covariates
in the models following our previous works (Beloconi et al., 2018;
Beloconi and Vounatsou, 2020) and based on the literature review and
data availability at continental scale.

The land-use/cover data were extracted from the pan-European
component of the Copernicus land monitoring service (CLMS, 2020).
In particular, the CORINE land cover (CLC) dataset for the year 2012
was used (Corine Land Cover, 2012). To better understand the urban
surface characteristics surrounding each monitoring station, a squared
buffer zone of 1 km2 spatial resolution was created and the dominant
CLC category within each buffer zone was computed and assigned to
the respective site. The 45 land classes available in CLCwere aggregated
to form the following 4 main categories: (i) continuous urban fabric -
road and rail networks and associated land - port areas (LC1); (ii) dis-
continuous urban fabric - industrial or commercial units - mine, dump
and construction sites - artificial, non-agricultural vegetated areas
(LC2); (iii) agricultural areas - wetlands - water bodies (LC3); and (iv)
forest and semi natural areas (LC4). Additionally, the high resolution
layers of tree cover density (TCD, 2015), imperviousness density (IMP,
2015) and European settlement map (ESM, 2016) were accessed from
the same source (CLMS, 2020). The digital elevation model (Digital
Fig. 1. Study area and monitoring network. The location of the 2672 NO2
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ElevationModel Over Europe (EU-DEM), 2017) product was downloaded
from the EEA website.

The normalized difference vegetation index (NDVI, 2020) generated
from the MODIS Aqua and Terra platforms, the night time lights (NTL,
2013) product from the National Oceanic and Atmospheric Administra-
tion (NOAA), as well as the climatic data from the National Centers for
Environmental Prediction (NCEP) Climate Forecast System (CFSv2)
(Saha et al., 2011) were pre-processed in Google Earth Engine (GEE)
API (Google Earth Engine Team, 2015). The road density (RD) raster
was computed using the OpenStreetMap project's collection (extracted
in February 2016) of road shapefiles covering the continent. Particu-
larly, the major roads comprising the motorway, trunk, primary and
secondary road categories, as well as the links between them were
taken into consideration. The same dataset was used to compute the
distance to roads (DISR) covariate applying simple GIS (Geographic In-
formation System) techniques. Since only the major roads were used in
the computations, we do not expect significant changes in these esti-
mates compared to 2020. Distance to sea (DISS) was calculated using
the Europe coastline shapefile (Europe Coastline Shapefile, 2015)
downloaded from the EEA website. The dust covariate (DUST) was de-
rived from the ensemble of pan-European chemical transport models
(Inness et al., 2019) of the Copernicus atmosphere monitoring service
(CAMS, 2020a). Table 1 summarizes the covariates used in the models.
A B-spline curve with 7 degrees of freedom was fitted to the pollutant
data and the above time-varying parameters to graphically compare
the temporal trends.

The week that the governments of each European country intro-
duced the first major policy to tackle the spread of the virus was ob-
tained from the ACAPS COVID-19 government measures dataset
(https://www.acaps.org/covid19-government-measures-dataset). For
most of the countries, the “Border closure” measure belonging to the
“Movement restrictions” category was used to define the lockdown.
The earliest date of this measure was considered and a value of 1 was
assigned to the country-specific weekly lockdown variable for that
and subsequent weeks; the value of 0 was allocated otherwise. For
UK, Malta and the Netherlands the date of this particular measure was
not available, therefore we used the dates of the “Surveillance and
monitoring”, “International flight suspension” and “Social distancing”
(a) and 947 PM2.5 (b) monitoring stations in 2020 used in this work.

https://www.acaps.org/covid19-government-measures-dataset


Table 1
Data sources and spatio-temporal resolution of the covariates used in our models.

Product Temporal resolution Spatial resolution Source

Corine Land Cover (LC) Year 2012 100 m × 100 m CLMS
Tree Cover Density (TCD) Year 2015 20 m × 20 m CLMS
Imperviousness (IMP) Year 2015 20 m × 20 m CLMS
European Settlement Map (ESM) Year 2016 100 m × 100 m CLMS
Digital Elevation Model (DEM) Year 2000 30 m × 30 m EEA
Night Time Lights (NTL) Year 2013 1 km × 1 km NOAA
Road Density (RD) February 2016 1 km × 1 km OpenStreet Maps
Distance to Roads (DISR) February 2016 Vector OpenStreet Maps
Distance to Sea (DISS) Year 2015 Vector EEA
Normalized Difference Vegetation Index (NDVI) 2 acquisitions per day 1 km × 1 km MODIS Aqua and Terra
Precipitation (PREC) Every 6 h 0.2° × 0.2° NCEP/CFSv2
Specific Humidity (SHUM) Every 6 h 0.2° × 0.2° NCEP/CFSv2
Wind Speed (WINDSP) Every 6 h 0.2° × 0.2° NCEP/CFSv2
Dust (DUST) Hourly 0.1° × 0.1° CAMS - Ensemble
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measures, respectively to define the week of the lockdown. We note
that no country has lifted the lockdown before the enddate of the inves-
tigated period, i.e. the 15th of April.

2.2. Bayesian spatio-temporal modelling

To analyse the effects of the lockdown policies, we developed Bayes-
ian spatio-temporal regressionmodels that take into account the spatial
and temporal correlation present in the data. The spatial correlationwas
modelled by location-specific random effects through a Gaussian pro-
cess which captures the spatial correlation via the covariance matrix
as a function of distance between locations. For the temporal compo-
nent, an autoregressive (AR) structure was assumed.

Let y(sj, t) denote the realization of a spatio-temporal process Y(⋅, ⋅)
that represents the log-observedweekly averagedNO2 or PM2.5 concen-
tration in 2020 duringweek t=1,…, 20 at station j=1,…, Nt ∈ D ⊆ℝ2

(location sj).We assume the following twomodel formulations (M1 and
M2) for each pollutant:

y sj , t
� � ¼ y2014−2019 sj , t

� �þ β M1ð Þ
0 þ X sj , t

� �
β M1ð Þ
L þ ξ M1ð Þ sj , t

� �þ ε M1ð Þ sj , t
� �

ð1Þ

and

y sj , t
� � ¼ β M2ð Þ

0 þ X sj , t
� �

β M2ð Þ
L þ z sj , t

� �β M2ð Þ þ ξ M2ð Þ sj , t
� �þ ε M2ð Þ sj , t

� � ð2Þ

where the superscripts (M1) and (M2) distinguish between the two
models, y2014−2019 sj , t

� �
, i.e. y2014−2019 sj , t

� � ¼ 1
6∑

2019
year¼2014yyear sj , t

� �
is

an offset term representing the log-observed average pollutant concen-
tration during 2014–2019 for site sj and week t, β0 is the intercept, βL is
the coefficient associated with the lockdown X(sj, t), z(sj, t) = (z1(sj,
t),…,zp(sj, t))T is the vector of additional p covariates for site sj andweek
t, β= (β1,…,βp)T is the vector of the corresponding coefficients, ξ(sj, t)
represents the realization of the spatio-temporal process and ε(sj, t) is
themeasurement error, that is considered both temporally and spatially
uncorrelated.

The first formulation (Eq. (1)) compares the changes in pollutant
concentrations in 2020 with the ones that happened during the same
period in previous years: the offset term y2014−2019 introduced in the
model controls for the long term average concentration during
2014–2019. In order to obtain more stable results, only the monitoring
stations forwhich at least 3 years (out of these six preceding 2020) have
non-missing weekly measurements were kept. The second formulation
(Eq. (2)) models only the 2020 data but takes into account confounding
factors influencing the spatio-temporal distribution of each pollutant:
the vector z(sj, t) represents the covariates shown in Table 1, extracted
at the locations of themonitoring stations. All the continuous covariates
were standardized by subtracting the mean and dividing by the stan-
dard deviation (calculated using the 20-week measurements from all
4

the monitoring stations). In both modelling frameworks, the lockdown
effect is introduced in the model as a location-specific binary variable X
(sj,t) indicating the pre- and post- “intervention” periods.

The spatio-temporal correlation structure is considered to be the
same for both formulations. In particular, the realization ξ(sj, t) is as-
sumed to be a spatio-temporal Gaussian field that changes in time ac-
cording to a first order autoregressive process AR(1), with temporal
correlation ρ, such as ∣ρ ∣ < 1, that is

ξ si, tð Þ ¼ ρξ si, t−1ð Þ þω si, tð Þ for t ¼ 1, . . . , 20 and ξ si, 1ð Þ ~N 0,
σ2

ω
1−ρ2

� �

ð3Þ

The ω(si, t) = (ω(s1, t),…,ω(sNt
, t))T is a spatial random effect that is

assumed to arise from a multivariate normal distributionω ~N 0Nt ,σ2
ωΣω� �

with 0Nt
a Nt × 1 zeros vector, σω

2 the spatial process
variance and Σω the Nt × Nt dense correlation matrix with elements

Σωð Þij ¼ C ‖si−sj‖
� �

. C ⋅ð Þ is the Matern function given by C dij
� � ¼

1
Γ νð Þ2ν−1 κdij

� �νKν κdij
� �

with dij the distance between stations i and j, κ

is a scaling parameter, ν is a smoothing parameter (fixed to 1 in our ap-
plication) and Kν is the modified Bessel function of second kind and
order ν. This specification implies that the range r (the distance at
which the spatial variance becomes less than 10%) is given by
r ¼

ffiffiffiffiffiffi
8ν

p
=κ .

To evaluate whether modelling the spatial and spatio-temporal cor-
relation present in the data leads to a better model fit, and therefore
more accurate estimates of the effect of the lockdown (and other covar-
iates), the aforementioned formulations were compared to the ones in
which these auto-correlations are not taken into consideration. Bayes-
ian model selection measures (Gelman et al., 2014), including the devi-
ance information criterion (DIC) (Spiegelhalter et al., 2002), the widely
applicable Bayesian information criterion (WAIC) (Watanabe, 2013)
and the logarithmic score (logscore) (Ntzoufras, 2008) were used to
compare the models. Lower values of these measures indicate a better
model fit.

The Bayesian model formulation is completed by specifying prior
distributions for the parameters and the hyperparameters. Particularly,
the log-gamma priors were chosen for the σε

−2, σω
−2 and rwas parame-

trized on the log-scale, i.e.: log(σε
−2), log(σω

−2) ~ log Ga(1,5 ⋅ 10−5) and

log(r) ~ log Ga(1,102). Normal priors N 0, 103
� �

were assigned to the

regression coefficients, a vague normal one for the intercept and a
N 0, 0:15ð Þ prior for the log-transformed autoregressive coefficient ρ,

log 1þρ
1−ρ

� �
.

Model fit was carried out using the stochastic partial differential
equations (SPDE) method and the integrated nested Laplace approxi-
mation (INLA) algorithm (Rue et al., 2009; Lindgren et al., 2011) for
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fast approximation of the marginal posterior distributions. In the SPDE/
INLA approach, the spatial process is approximated by a Gaussian Mar-
kov random field (GMRF)with zeromean and a symmetric positive def-
inite precision matrix Q (defined as the inverse of Σω ¼ σ2

ωRω). First, a
GMRF representation of the Matern field is constructed on a set of
non-intersecting triangles partitioning the domain of the study area
(Lindgren et al., 2011). Subsequently, the INLA algorithm estimates
the posterior distribution of the latent Gaussian process and
hyperparameters using the Laplace approximation (Rue et al., 2009).
More details regarding this methodology are provided elsewhere
(Blangiardo and Cameletti, 2015). All the models were fitted on an
Intel Xeon E5-2697 CPU machine (2 × 2.60 GHz, 128 GB RAM) using
the R-INLA package (Rue et al., 2013) available within the R software
(R Core Team, 2015).

Parameter estimates were summarized by their posterior medians
and the corresponding 95% Bayesian Credible Intervals (BCI). The effect
of a covariate was considered to be statistically important if its 95% BCI
did not include zero. We use the term statistically important rather than
statistically significant as the latter is not applicable to Bayesian inference.

3. Results

3.1. Data observed at the monitoring stations

Fig. 2 depicts weekly averaged concentration of NO2 and PM2.5

observed at the location of themonitoring stations across Europe during
Fig. 2.Weekly variations in the NO2 (left) and PM2.5 (right) concentration. Dots denote the we
Europe during the first 20 weeks of 2020 (blue dots) and 2014–2019 (red dots). A B-spline cur
areas represent the approximate 95% confidence intervals of each fitted spline.

5

the first 20 weeks in 2020 (blue dots). To explore whether these differ-
ences in surface concentration are typically observed during the investi-
gated period, we further depict the measurements of both pollutants
obtained in 2014–2019 (red dots) together with B-spline curves fitted
to each combination of pollutant/year(s). The shaded areas represent
the approximate 95% confidence intervals of each fitted spline.

Consistent with the 2014–2019 data, NO2 concentration increases
during the first 4 weeks in 2020 and starts decreasing after week 5.
The similarities in the PM2.5 levels between the current and the previous
years are less homogeneous. In general, the concentration of both pol-
lutants is lower in 2020 compared to the average observed in previous
years. The lockdown measures that are considered here, are mostly re-
lated to border closures (part of the “Movement restrictions” interven-
tions) and have occurred in most European countries betweenweek 10
and 13. One can see that theNO2 concentrations declinedmore abruptly
during 2020, compared to previous years, whereas the PM2.5 concentra-
tions remained rather stable (even slightly increased). Additionally,
both pollutants have shown a small rebound in mean concentrations
after week 18.

3.2. Bayesian spatio-temporal models

Bayesianmodelswere fitted to better understand the factors that are
related to changes in the concentrations of NO2 and PM2.5 in 2020
compared to previous years and to assess whether they are directly
influenced by the lockdown policies or other factors that affect the
ekly averaged concentration of NO2 and PM2.5 observed at the monitoring stations across
ve with 7 degrees of freedomwas fitted to each combination of pollutant/year(s). Shaded



Table 3
Posterior medians, 95% Bayesian credible intervals (BCI) and model fit metrics of the M1
formulation fitted to surface PM2.5 concentrations. M1ST, M1S andM10 denote the spatio-
temporal, spatial and independent model, respectively.

Covariates M10 M1S (Space) M1ST (Space-Time)

Median (95% BCI) Median (95% BCI) Median (95% BCI)

Intercept
(β0

(M1))
−0.471 (−0.482,
−0.461)

−0.377 (−0.392,
−0.362)

−0.371 (−0.386,
−0.356)

Lockdown
(βL

(M1))
0.331 (0.315, 0.348) 0.209 (0.187, 0.230) 0.201 (0.179, 0.222)

(1) σε
2 0.26 (0.26, 0.27) 0.14 (0.14, 0.15) 0.14 (0.13, 0.14)

(2) σw
2 – 0.13 (0.12, 0.15) 0.39 (0.33, 0.48)

(3) r (km) – 819.0 (739.6, 936.8) 1039.5 (807.8,
1204.0)

(4) ρ – – 0.879 (0.860, 0.903)
(5) DIC 22,699.3 14,623.5 13,783.6
(6) WAIC 22,700.0 14,486.1 13,628.9
(7) logscore 0.749 0.480 0.451

(1) σε
2 – variance of the random error; (2) σw

2 – variance of the spatial process; (3) r –
range; (4) ρ – coefficient of AR(1).
(4) DIC – deviance information criterion; (5) WAIC –Widely applicable Bayesian informa-
tion criterion; (6) logscore – logarithmic score.
M10 – independent model;M1S – spatial model;M1ST – spatio-temporal model.
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formation, dispersion and transportation of each pollutant (such as me-
teorological conditions).

ModelM1 compares the changes in pollutant concentrations in 2020
with the ones that happened during the same period in previous years,
by introducing an offset term that controls for the long term average
concentration over the last 6 years before 2020 (Eq. (1)). Parameter es-
timates of the three formulations, i.e. (i) spatio-temporal (M1ST); (ii)
spatial (M1S); and (iii) independent correlation structure (M10) are
shown in Tables 2 and 3 forNO2 and PM2.5, respectively. For both pollut-
ants the spatio-temporal model fitted the data the best as indicated by
the lower logscore, DIC and WAIC values.

The negative intercept (β0
(M1)) estimated for each of the two pollut-

ants proposes that their concentration dropped in 2020when compared
to the previous years, a result that is consistent with the pattern of the
raw data shown in Fig. 2. Results regarding the estimated coefficient
of the lockdown covariate (βL

(M1)) differ between the two pollutants.
The coefficient of NO2 is negative, indicating that on average, during
the lockdown period, the concentration dropped by 6% more than in
the previous years.

Similarly, the positive coefficient estimated for PM2.5 indicates that
in comparison to previous years, we see a 15% increase in the concentra-
tions during the lockdown period. This result is consistent with the in-
crease in PM2.5 in 2020 noticed during the weeks 10–15 in Fig. 2,
reaching similar concentrations as in the 2014–2019 period, and not ob-
served during the same time-frame in previous years.

To evaluate whether the changes observed during lockdown are
driven by other factors, such asweather conditions, local emission/com-
bustion sources and land surface characteristics, we use the M2 model
(Eq. (2)), which analyses only the 2020 data and takes into account
proxies of the above-mentioned confounding factors.

Fig. 3 shows the variation in the climatic and environmental factors
that occurred at the location of the monitoring stations across Europe
during thefirst 20weeks in 2020. The results ofmodel fit for theM2 for-
mulations are shown in Tables 4 and 5 for NO2 and PM2.5, respectively.
Similarly to theM1 framework, the Bayesianmodel selection criteria in-
dicate that the spatio-temporal models (M2ST) perform best for both
pollutants. The DIC, WAIC and logscore metrics for M2 are not directly
comparable to those from M1, because the models were fitted on a dif-
ferent number of observations. M1 included data from monitoring sta-
tions with at least 3 years (out of the 6 preceding 2020) non-missing
Table 2
Posterior medians, 95% Bayesian credible intervals (BCI) and model fit metrics of the M1
formulation fitted to surface NO2 concentrations. M1ST, M1S and M10 denote the spatio-
temporal, spatial and independent model, respectively.

Covariates M10 M1S (Space) M1ST (Space-Time)

Median (95% BCI) Median (95% BCI) Median (95% BCI)

Intercept
(β0

(M1))
−0.285 (−0.290,
−0.280)

−0.239 (−0.250,
−0.229)

−0.233 (−0.244,
−0.223)

Lockdown
(βL

(M1))
−0.207 (−0.214,
−0.200)

−0.091 (−0.106,
−0.075)

−0.082 (−0.097,
−0.067)

(1) σε
2 0.16 (0.16, 0.17) 0.13 (0.12, 0.13) 0.12 (0.12, 0.12)

(2) σw
2 – 0.05 (0.05, 0.06) 0.39 (0.31, 0.49)

(3) r (km) – 809.5 (746.7, 881.9) 703.7 (640.8, 784.9)
(4) ρ – – 0.974 (0.967, 0.979)
(5) DIC 48,697.4 37,924.1 34,411.0
(6) WAIC 48,699.8 37,947.0 34,330.5
(7) logscore 0.515 0.402 0.363

(1) σε
2 – variance of the random error; (2) σw

2 – variance of the spatial process; (3) r –
range; (4) ρ – coefficient of AR(1).
(4) DIC – deviance information criterion; (5) WAIC –Widely applicable Bayesian informa-
tion criterion; (6) logscore – logarithmic score.

logNO2 ¼ log NO2

� �
2014−2019

−0:233−0:082⋅X sj , t
� �

results in NO2 ¼
0:73⋅ NO2

� �
2014−2019

after the lockdown (i.e. when X(sj, t) = 1) and NO2 ¼

0:79⋅ NO2

� �
2014−2019

otherwise (i.e. when X(sj, t) = 0); M10 – independent model;

M1S – spatial model; M1ST – spatio-temporal model.
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weekly measurements, while M2 formulations included data from
more monitoring sites available in 2020.

Most of the covariates included in themodels have a statistically im-
portant regression coefficient (Tables 4–5). The directions of the effects
(i.e. the positive/negative associations) are mostly consistent with our
previous works (Beloconi et al., 2018; Beloconi and Vounatsou, 2020).
Thus e.g. elevation (DEM), wind speed (WINDSP) and surface humidity
(SHUM) have an important negative effect on NO2 and PM2.5, while the
distance to the sea (DISS) and the night time lights (NTL) are positively
associated with both pollutants. In addition to our previous works, here
we found an important positive association of the dust covariate (DUST)
with each outcome.

The M2 framework resulted in a negative important coefficient of
the lockdown variable for both pollutants. In particular, the negative co-
efficient βL

(M2) =− 0.35 estimated for NO2, implies that the concentra-
tion of NO2 has dropped on average by 29.5% due to the lockdown (i.e.
logNO2

(L1) − log NO2
(L0) = − 0.35 during lockdown and therefore

NO2
(L1) = 0.705 ⋅ NO2

(L0)). The corresponding 95% BCI is (28.1%, 30.9%).
Similarly, the negative coefficient estimated for PM2.5 (i.e. βL

(M2) =
− 0.30) indicates that the governments' interventions resulted in a
25.9% (23.6%, 28.1%) drop in the pollutant concentration on average
across the continent (here PM2.5

(L1) = 0.741 ⋅ PM2.5
(L0)).

4. Discussion

The demand for rigorous spatio-temporal models that are able to ac-
curately assess the impact of policy interventions has rapidly grown
over the past decade. This need became more pronounced during the
last year, following the start of the COVID-19 pandemic where a large
number of interventions have been implemented by different countries.
Here we developed and evaluated different model formulations to
quantify the effect of the lockdown policy on the air quality in Europe.
To our knowledge, this research is the first to account for the spatio-
temporal correlation present in the monitoring data during the pan-
demic and to assess how it affects estimation of the lockdown effect
while accounting for confounding factors.

A critical review on the early studies assessing the nexus between
COVID-19 and the environment (Shakil et al., 2020) has shown that,
in terms of methodology, the majority of the first articles examining
the impacts of COVID-19 on air pollution have used explorative analy-
ses, such as graphical comparisons. As noted by the authors, these anal-
yses had limitations to postulate robust findings. They were rather
descriptive and therefore the inferences were limited to theoretical or
empirical explanations of the research problem. In particular, these
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Table 4
Posterior medians, 95% Bayesian credible intervals (BCI) and model fit metrics of the M2
formulation fitted to surface NO2 concentrations. M2ST, M2S and M20 denote the spatio-
temporal, spatial and independent model, respectively.

Covariates M20 M2S (Space) M2ST (Space-Time)

Median (95% BCI) Median (95% BCI) Median (95% BCI)

Intercept
(β0

(M2))
2.93 (2.91, 2.94) 2.93 (2.91, 2.90) 2.92 (2.90, 2.94)

Lockdown
(βL

(M2))
−0.51 (−0.52,
−0.50)

−0.41 (−0.43,
−0.38)

−0.35 (−0.37,
−0.33)

TCD 0.01 (0.01, 0.02) 0.01 (−0.00, 0.01) 0.01 (−0.00, 0.01)
IMP 0.11 (0.10, 0.11) 0.10 (0.09, 0.11) 0.10 (0.09, 0.11)
ESM 0.00 (0.00, 0.01) 0.01 (0.00, 0.01) 0.01 (0.01, 0.02)
DEM −0.13 (−0.14,

−0.13)
−0.11 (−0.12,
−0.11)

−0.11 (−0.11,
−0.10)

NTL 0.28 (0.28, 0.29) 0.29 (0.28, 0.30) 0.30 (0.29, 0.30)
RD 0.06 (0.05, 0.06) 0.07 (0.06, 0.07) 0.07 (0.07, 0.08)
DISS 0.13 (0.12, 0.13) 0.11 (0.11, 0.12) 0.11 (0.10, 0.11)
DISR −0.04 (−0.05,

−0.04)
−0.04 (−0.05,
−0.04)

−0.04 (−0.05,
−0.04)

NDVI 0.01 (0.00, 0.01) −0.01 (−0.01,
0.00)

0.00 (−0.01, 0.01)

PREC −0.01 (−0.02,
−0.01)

−0.02 (−0.02,
−0.01)

−0.02 (−0.02,
−0.01)

SHUM −0.19 (−0.19,
−0.18)

−0.13 (−0.14,
−0.12)

−0.11 (−0.12,
−0.10)

WINDSP −0.17 (−0.18,
−0.17)

−0.17 (−0.18,
−0.17)

−0.17 (−0.18,
−0.17)

DUST 0.03 (0.03, 0.04) 0.02 (0.01, 0.02) 0.02 (0.01, 0.02)
LC
LC2 −0.11 (−0.13,

−0.10)
−0.12 (−0.14,
−0.11)

−0.11 (−0.13,
−0.10)

LC3 −0.15 (−0.17,
−0.13)

−0.16 (−0.18,
−0.14)

−0.15 (−0.17,
−0.13)

LC4 −0.43 (−0.45,
−0.40)

−0.40 (−0.42,
−0.37)

−0.36 (−0.38,
−0.33)

(1) σε
2 0.29 (0.29, 0.29) 0.25 (0.25, 0.25) 0.22 (0.21, 0.22)

(2) σw
2 – 0.06 (0.05, 0.06) 6.54 (5.44, 8.32)

(3) r (km) – 667.6 (600.1, 753.9) 1101.6 (965.7,
1237.2)

(4) ρ – – 0.999 (0.999, 0.999)
(5) DIC 84,430.7 78,136.9 70,390.2
(6) WAIC 84,435.1 78,203.1 70,315.4
(7) logscore 0.798 0.739 0.664

(1) σε
2 – variance of the random error; (2) σw

2 – variance of the spatial process; (3) r –
range; (4) ρ – coefficient of AR(1).
(4) DIC – deviance information criterion; (5) WAIC –Widely applicable Bayesian informa-
tion criterion; (6) logscore – logarithmic score;
M20 – independent model;M2S – spatial model; M2ST – spatio-temporal model.
TCD – Tree Cover Density; IMP – Imperviousness; ESM – European Settlement Map;
DEM – Digital Elevation Model; NTL – Night Time Lights; RD – Road Density; DISS – Dis-
tance to Sea, DISR – Distance to Roads; NDVI – Normalized Difference Vegetation Index;
PREC – Precipitation; SHUM – Specific Humidity; WINDSP – Wind Speed; LC – Land
Cover classes.

Table 5
Posterior medians, 95% Bayesian credible intervals (BCI) and model fit metrics of the M2
formulation fitted to surface PM2.5 concentrations. M2ST, M2S andM20 denote the spatio-
temporal, spatial and independent model, respectively.

Covariates M20 M2S (Space) M2ST (Space-Time)

Median (95% BCI) Median (95% BCI) Median (95% BCI)

Intercept
(β0

(M2))
2.40 (2.38, 2.42) 2.46 (2.43, 2.48) 2.41 (2.38, 2.43)

Lockdown
(βL

(M2))
−0.21 (−0.23,
−0.19)

−0.32 (−0.35,
−0.29)

−0.30 (−0.33,
−0.27)

TCD −0.03 (−0.04,
−0.02)

−0.03 (−0.03,
−0.02)

−0.02 (−0.03,
−0.02)

IMP −0.03 (−0.04,
−0.02)

−0.03 (−0.04,
−0.02)

−0.03 (−0.04,
−0.02)

ESM 0.01 (−0.01, 0.02) 0.01 (0.00, 0.02) 0.03 (0.02, 0.04)
DEM −0.09 (−0.10,

−0.08)
−0.09 (−0.10,
−0.08)

−0.10 (−0.11,
−0.09)

NTL 0.10 (0.09, 0.12) 0.09 (0.08, 0.10) 0.10 (0.08, 0.11)
RD −0.03 (−0.04,

−0.02)
−0.03 (−0.03,
−0.02)

−0.04 (−0.05,
−0.03)

DISS 0.12 (0.11, 0.13) 0.17 (0.16, 0.18) 0.21 (0.20, 0.22)
DISR 0.05 (0.04, 0.06) 0.05 (0.04, 0.06) 0.05 (0.04, 0.06)
NDVI 0.09 (0.08, 0.10) 0.07 (0.06, 0.08) 0.06 (0.05, 0.06)
PREC −0.09 (−0.10,

−0.08)
−0.06 (−0.07,
−0.06)

−0.05 (−0.06,
−0.05)

SHUM −0.12 (−0.13,
−0.11)

−0.03 (−0.04,
−0.02)

−0.04 (−0.05,
−0.03)

WINDSP −0.18 (−0.19,
−0.17)

−0.15 (−0.16,
−0.14)

−0.14 (−0.15,
−0.13)

DUST 0.11 (0.10, 0.12) 0.08 (0.07, 0.09) 0.07 (0.06, 0.08)
LC
LC2 −0.01 (−0.03,

0.01)
0.01 (−0.01, 0.03) 0.03 (0.01, 0.05)

LC3 −0.07 (−0.10,
−0.03)

−0.07 (−0.10,
−0.03)

−0.05 (−0.09,
−0.01)

LC4 −0.20 (−0.25,
−0.16)

−0.15 (−0.20,
−0.11)

−0.08 (−0.13,
−0.04)

(1) σε
2 0.28 (0.27, 0.29) 0.20 (0.20, 0.21) 0.18 (0.18, 0.18)

(2) σw
2 – 0.11 (0.10, 0.13) 5.09 (3.56, 6.88)

(3) r (km) – 823.1 (749.1,
928.8)

1714.5 (1493.0,
2148.8)

(4) ρ – – 0.994 (0.991, 0.996)
(5) DIC 29,466.9 24,708.5 22,003.9
(6) WAIC 29,472.0 24,629.7 21,848.3
(7) logscore 0.783 0.655 0.580

(1) σε
2 – variance of the random error; (2) σw

2 – variance of the spatial process; (3) r –
range; (4) ρ – coefficient of AR(1).
(4) DIC – deviance information criterion; (5) WAIC –Widely applicable Bayesian informa-
tion criterion; (6) logscore – logarithmic score.
M20 – independent model;M2S – spatial model;M2ST – spatio-temporal model.
TCD – Tree Cover Density; IMP – Imperviousness; ESM – European Settlement Map;
DEM – Digital Elevation Model; NTL – Night Time Lights; RD – Road Density; DISS – Dis-
tance to Sea, DISR – Distance to Roads; NDVI – Normalized Difference Vegetation Index;
PREC – Precipitation; SHUM – Specific Humidity; WINDSP – Wind Speed; LC – Land
Cover classes.
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analyses could not differentiate between the changes in pollutant con-
centration that occurred due to the governmental actions from the
ones due to natural weather conditions or other spatio-temporal char-
acteristics, such as seasonality. More recent studies have noted that
the results could be biased if meteorological conditions are not taken
into account (Menut et al., 2020; Xiang et al., 2020). Modelling efforts
that separate the lockdown effect from the effects of other factors
influencing the variations in air pollution levels, can be grouped in
three main categories: (i) CTM simulations of the pollutant concentra-
tions comparing different emissions that reflect “business as usual”
with “COVID-19” scenarios (e.g. Barré et al., 2020; Huang et al., 2020;
Menut et al., 2020; Putaud et al., 2020); (ii) statistical or machine learn-
ing methods that “weather-normalize” or compare the predicted “de-
weathered” trends in air pollutants with observations during the lock-
down period (e.g. Barré et al., 2020; Dobson and Semple, 2020; Shi
et al., 2021; Venter et al., 2020); and (iii) statistical formulations that in-
troduce the lockdown period as a time-dependent covariate in the
model (e.g. Liu et al., 2020).Whereas the use of CTMs can fully quantify
8

the changes in the emissions and potential chemical processes, they are
computationally very demanding and time-consuming. The advantage
of the statistical models that include the lockdown as a covariate,
when compared to formulations that predict the “de-weathered” pol-
lutant concentrations, is that the uncertainty of the estimated effect
can be fully quantified (through confidence intervals). In fact, when
the effect is embedded in themodel, there is noneed to compare predic-
tions before and after “intervention”, using t-test or similar methods.
Furthermore, the models can separate the effect of the lockdown from
the effects of confounding factors. However, the literature applying
such formulations is rather sparse. Liu et al. (2020) recently explored
how the COVID-19 policies in China were associated with reductions
in daily tropospheric NO2 measurements by using a fixed-effects
model that incorporates a binary variable indicating the pre- and post-
intervention periods and adjusting for the average pollution levels
prior to lockdown. However, the proposed model did not account for
the spatio-temporal correlation present in the data and evaluated the
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changes in the tropospheric measurements rather than in the surface
level NO2 concentrations, which are more relevant for human health.

Here,we proposed two statisticalmodelling formulations that assess
the effect of the lockdown measures and differentiate between the
changes in pollutant concentration that occurred due to the govern-
mental actions and those due to seasonality. The first approach (M1)
compares the variation in air pollution during the lockdown period in
2020, with the one during the same period in previous years. The sec-
ond approach (M2) models only the 2020 data, but it includes con-
founding factors influencing the spatio-temporal distribution of each
pollutant, such as weather conditions and land surface characteristics.
In both cases, the lockdown effect is introduced as a binary variable in-
dicating the pre- and post- “intervention” periods. The models were
fitted within the Bayesian framework and evaluated three assumptions
regarding the correlation structure of the air pollution data, i.e. indepen-
dence between observations (no correlation), spatial and spatio-
temporal correlation. Bayesian model selection criteria have shown
that, for both pollutants, the spatio-temporal formulation had the best
fit to the data. Therefore, using this model to draw inferences regarding
the effects of the lockdown on the NO2 and PM2.5 concentration is pref-
erable, since it minimizes the bias in the statistical importance of the
estimates.

Consistent to the other studies (Table A1 in the appendix), both for-
mulations we have proposed suggest a significant drop in NO2 concen-
tration following the COVID-19 lockdown, while the spike observed in
PM2.5 during the period coinciding with governments' “interventions”
may be caused by other factors, unrelated to lockdown policies. The ob-
served high variability in the climatic conditions and the environmental
factors occurring at the locations of the monitoring stations across
Europe during the first 20 weeks in 2020 (Fig. 3), suggests that the
changes observed in both pollutants during the lockdown period are
not only due to the lockdown effect. Formost of the European countries,
the lockdown occurred between weeks 10 and 13. Thus, the drop in
wind speed and the increase in dust and NDVI observed during the
same time frame could have contributed to the increase in PM2.5 con-
centration, as indicated by the corresponding regression coefficients of
M2 (i.e. important negative coefficient of wind speed and important
positive coefficients of dust and NDVI). Therefore, after adjusting for
these factors, M2 could capture a 25.9% (23.6%, 28.1%) lockdown-
related reduction in PM2.5 concentration, which could not be estimated
by M1. Similarly, the smaller drop in NO2 due to the lockdown-related
measures estimated by M1 is less reliable compared to a 29.5% (28.1%,
30.9%) decrease obtained byM2, since part of the increase inNO2 during
the lockdown is attributed to the natural weather variations.

Similar ranges in the average relative NO2 reduction were recently
estimated across the European continent using the Copernicus atmo-
sphere monitoring service (CAMS, 2020a) chemical transport model
with reference and lockdown simulation scenarios based on a newly
developed emission inventory (CAMS, 2020b). This inventory is repre-
sentative of the reductions in industry, road transport and aviation ac-
tivities for most of the European countries during the lockdown
period (Guevara et al., 2020). Estimates based on gradient boostingma-
chine learning method using satellite retrievals from the tropospheric
monitoring instrument (TROPOMI, Veefkind et al., 2012) revealed a
milder reduction (of ~ 23%) in tropospheric NO2 levels (Barré et al.,
2020). Giani et al. (2020) estimated a 20.4% reduction in PM2.5 concen-
tration between 2016–2019 and 2020 by comparing gridded PM2.5 sur-
faces in Europe obtained by ordinary kriging, incorporating theweather
research and forecasting (WRF-Chem) simulations (Powers et al., 2016)
as covariate.

Despite the fact thatwe find a similar range of reductions in two pol-
lutants (slightly higher decrease for NO2 and lower for PM2.5), the esti-
mated regression coefficients in the M2 formulation can partially
reflect the differences in their sources of emissions. In Europe, the trans-
port sector is the largest contributor to NOx emissions, especially in
urban areas, whereas PM is affected by more sources (such as desert
9

dust transport, wildfires, power plants, home heating, coal burning in
electricity production) and is subject to secondary formation in the am-
bient air (EEA, 2016). The regression coefficients (Tables 4 and 5) indi-
cate that there are both similarities and differences between NO2 and
PM2.5 associations with the meteorological, land-use/cover and other
environmental factors. Since all the covariates were standardized, the
estimates can be directly compared. Thus, elevation (DEM) or wind
speed (WINDSP) have a similar important negative association with
both pollutants (posterior median of the regression coefficients of
−0.11 vs −0.10 and of −0.17 vs −0.14, respectively). On the other
hand, the road density has a positive important association with NO2

but not with PM2.5 (posterior median of +0.07 vs −0.04), whereas
the dust covariate (DUST), which serves as a direct source of PM2.5 has
much stronger positive association with PM2.5 compared to NO2 (poste-
rior median of +0.07 vs. +0.02).

While our research improves the assessment of the effect of the
COVID-19 lockdownon the air pollution burden across the European con-
tinent, the findings are not without limitations. In particular, we did not
consider differences in the containment measures with regard to the ex-
pected impact on air quality, but rather a binary lockdown indicator
(common across all the countries). Spatially varying coefficient (SVC)
models (Gelfand et al., 2003) may capture the spatial variability of the
lockdown effect by allowing its regression coefficient to vary smoothly
over space and time. However, these models are computational very de-
manding for continental scale analyses. The feasibility of their application
and their ability to improve thefit to the data should be further evaluated.
Last but not least, statisticalmodels cannot fully allocate the estimated re-
duction to different emission sources and potential chemical processes.
Chemical transport models with up-to-date emission inventories are
most appropriate to address the above question.

5. Conclusions

Our research provides an insight into the NO2 and PM2.5 changes in
Europe in early 2020. We found that, in general, the concentrations of
both pollutants are lower in 2020 compared to the average observed
in previous years. This may reflect in part the effects of Europe's clean
air policy package, which sets out objectives for reducing the health
and environmental impacts of air pollution by 2030. Rigorousmodelling
suggests that the lockdownmeasures, implemented bymany European
countries to stop the spread of coronavirus, have highly contributed to a
decrease in both pollutants in 2020 with slightly higher reductions in
NO2 concentrations compared to PM2.5. This result demonstrates how
fast considerable reduction in air pollution can be achieved through
strict policies.
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