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ABSTRACT
Supervised machine learning (ML) and unsupervised ML have been performed on descriptors generated from nonadiabatic (NA) molecular
dynamics (MD) trajectories representing non-radiative charge recombination in CsPbI3, a promising solar cell and optoelectronic material.
Descriptors generated from every third atom of the iodine sublattice alone are sufficient for a satisfactory prediction of the bandgap and NA
coupling for the use in the NA-MD simulation of nonradiative charge recombination, which has a strong influence on material performance.
Surprisingly, descriptors based on the cesium sublattice perform better than those of the lead sublattice, even though Cs does not contribute to
the relevant wavefunctions, while Pb forms the conduction band and contributes to the valence band. Simplification of the ML models of the
NA-MD Hamiltonian achieved by the present analysis helps to overcome the high computational cost of NA-MD through ML and increase
the applicability of NA-MD simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0078473

I. INTRODUCTION
The field of chemistry was transformed dramatically with the

introduction of computational tools and methods. Chemists now
have access to a wide array of approaches to predict nearly every
observable property for molecules and materials.1–6 However, even
with the powerful computing resources we have today, the immense
computational cost of these tools renders it impractical to apply
rigorous quantum-chemical treatment for large systems, limiting the
quality of predictions for such systems.7–10

The recent integration of machine learning (ML) into quan-
tum and theoretical chemistry aims to circumvent the high

computational load.11–13 ML seeks to uncover non-trivial patterns
and trends from large datasets for the prediction of some proper-
ties in the dataset. One of the first applications of ML in quantum
chemistry was the use of a neural network to learn the relation-
ship between the atomic positions and the potential energy surface.14

Since then, fueled by the recent explosion of data generated by
molecular simulations, there have been significant developments in
ML techniques or algorithms in atomistic simulations.15–19

Lately, it has been shown that ML can be applied to nonadia-
batic (NA) molecular dynamics (MD) simulations.20–31 NA-MD is
a powerful tool for the study of excited-state dynamics, involving
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quantum transitions between states, in a wide range of chemical
systems.32–37 NA-MD simulations have been used to character-
ize the ultrafast response of molecules to external electromagnetic
fields and to rationalize the results of time-resolved spectroscopic
experiments.38–43 The reliability of the NA-MD simulations depends
heavily on the accuracy of the geometry-dependent forces and ener-
gies and the NA coupling (NAC) between the ground and excited
states. Traditionally, these values are obtained via ab initio calcu-
lations performed with system geometries along MD trajectories.
However, these calculations tend to be extremely computationally
intensive, limiting the application of NA-MD for large systems and
long timescales. To address this drawback, ML has been applied
to predict the energies and NAC between ground and excited
states, significantly reducing the computational load for NA-MD
simulations.44–51 Aside from the prediction of physical observables,
such as bandgap, ML has also been applied on the trajectories of
NA-MD simulations to discover structural factors that influence the
physical properties of materials.21,52–54 One such technique is the
use of mutual information (MI), which acts as a measure of the
mutual dependence between two variables. The advantage of MI is
that it is supported by an information theoretic background, insen-
sitive to the size of the dataset, and its results are relatively easy to
interpret.55,56

We focus on CsPbI3, which is a well-studied representative of
metal halide perovskites (MHPs). Due to their relatively low cost
and unique optoelectronic properties, MHPs have led to signifi-
cant developments in photovoltaics and have shown great promise
as candidates for light emitting diodes and other applications.57–67

There exists a strong demand for the development of methods to
perform low-cost NA-MD on MHP for the streamlining of the MHP
design process, integrating theoretical approaches to predict the
important physical properties of potential candidates,68–71 including
bandgap, electron-vibrational coupling, and charge carrier lifetimes.
The geometric structure and projected density of states (PDOS) of
CsPbI3 can be seen in Fig. 1. The energy gap between the valence
band maximum (VBM) and the conduction band maximum (CBM)
is 1.67 eV. The VBM is primarily supported by Pb and I atoms, while
the CBM is supported by Pb atoms.

We apply MI to study a variety of ML models of the
NA-MD Hamiltonian with the goals of understanding the relation-
ships between system geometries and the Hamiltonian and using
this understanding to construct minimal ML models capable of

achieving accurate NA-MD simulation results. We investigate the
extent in which the sublattices of the individual elements in CsPbI3
encapsulate the quantum mechanics of the charge carriers. We
quantify the accuracy of the prediction of the bandgap and the
scalar NAC by a kernel ridge regressor (KRR) model based on the
geometric properties of the sublattice. Then, using different sets of
descriptors, we perform NA-MD simulations based on the KRR
models of the NA-MD Hamiltonian and compare the results with
the simulations based on the ab initio density functional theory
(DFT) Hamiltonian. We demonstrate a significant reduction of the
dimensionality of the standard ML model used in the development
of ML force-fields. In particular, descriptors generated from the
iodine sublattice of CsPbI3 are sufficient to predict the bandgap and
the scalar NAC and to obtain an accurate charge carrier lifetime. Sur-
prisingly, KRR models based on the cesium sublattice perform better
than those of the lead sublattice, even though Cs does not contribute
to the relevant wavefunctions, while Pb determines the CBM and
contributes to the VBM, Fig. 1. These findings highlight the complex
interplay of different structural components in MHPs.

II. METHODS
The ab initio nonadiabatic (NA) molecular dynamics (MD)

simulation of the pristine CsPbI3 system was performed using the
Pyxaid software.1,72 The tetragonal lattice was represented by a
√

2 ×
√

2 × 2 unit cell with the lattice constants of 9.02× 9.02× 12.76
Å3. The nonradiative charge recombination process was simulated
using the decoherence-induced surface hopping (DISH) approach
under the classical path approximation (CPA) to reduce the com-
putational load of the calculations.73 A hybrid quantum–classical
approach is used, whereby the slower and heavier ion cores are
handled classically, while the electrons are treated quantum mechan-
ically using real-time time-dependent density functional theory
(TF-DFT). The decoherence time was approximated using the pure-
dephasing time, calculated via the second order cumulant approxi-
mation of the optical response theory.74,75 As the decoherence time
is significantly shorter than the charge carrier lifetime, the effects
of decoherence are significant and should be accurately represented.
Hence, the DISH approach was used for the NA-MD simulation, as
it can accurately represent decoherence effects.

The geometric structure of CsPbI3 was obtained via ab initio
calculations using the Vienna Ab Initio Simulation Package (VASP)

FIG. 1. (Left) Geometric structure of pris-
tine CsPbI3. (Right) Projected density of
states (DOS) for pristine CsPbI3, with the
VBM energy set to zero.
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and the Perdew–Burke–Ernzerhof (PBE) functional.76–78 The struc-
ture shown in Fig. 1 was first optimized, then heated up, and equi-
librated at room temperature. Subsequently, a 7 ps trajectory was
generated using a time step of 1 fs in the microcanonical ensemble.
Under this approach, we can precompute a trajectory and then
obtain the NAC along the precomputed trajectory. The bandgap
and NA coupling (NAC) values were also obtained using VASP
and the PBE exchange–correlational functional. The CA (Concen-
tric Approximation)-NAC package was employed to compute the
scalar NAC values from the overlap between two wavefunctions at
adjacent timesteps using the expression as follows:79,80

dji = −ih̵⟨φj(r, R(t))∣∇R∣φi(r, R(t))⟩
dR
dt

= −ih̵
⟨φj(r, R(t))∣∇RH(R(t))∣φi(r, R(t))⟩

Ei − Ej

dR
dt

= −ih̵⟨φj(r, R(t))∣
∂

∂t
∣φi(r, R(t))⟩

≈ −
ih̵

2Δt
{⟨φj(r, R(t))∣φi(r, R(t + Δt))⟩

− ⟨φj(r, R(t + Δt))∣φi(r, R(t))⟩}. (1)

From the trajectory obtained, 4% of the dataset, representing 280
datapoints equally spaced along the trajectory, was selected as the
training set, while the remainder was designated as the test set. Inter-
polating NAC along the precomputed trajectory has been shown to
be efficient in reducing the number of required NACs by more than
one order of magnitude.44 As NAC exhibits more complex depen-
dence on nuclear geometry than energy, interpolating NAC along a
precomputed trajectory is much easier than developing NAC models
that work for all relevant geometries, similar to the machine learning
force field (ML-FF) models. Currently, we are pursuing a strategy
by developing ML-FFs and then performing NA-MD calculations
under the CPA by sampling a small fraction of energy gaps and
NAC and interpolating the remaining values. Such an approach has
uncovered important rare events that change NA-MD.81

Additionally, the autocorrelation functions (ACFs) of the
energy gap and NAC were computed, and the results are presented
in Fig. 2. The ACFs show that the bandgap and NAC ACFs decay
to 0 within 200–300 fs and then oscillate over a range of frequen-
cies, indicating that the bandgap and NAC values do not exhibit

strong correlations over long timescales and in particular over the
7 ps trajectory.

In contrast to the input to the Schrödinger equation, nuclear
charges and atomic positions are not good inputs for ML as they lack
certain desirable properties, such as roto-translational invariance.
Forcefully implementing roto-translational invariance for atomic
positions will lead to a significant increase in required training data,
resulting in lengthy training.16 Hence, the geometric information
of the sublattices obtained from the trajectory were first converted
into descriptors before they were used as inputs for the ML model.
As there are three times as many iodine atoms as cesium and lead
atoms, only every third iodine atom was chosen systematically, taken
to be to the right of every lead atom in the simulation cell, to
define the iodine sublattice. This allowed us to treat all three ele-
mental sublattices on equal footing. Additionally, we also compared
the performance of these descriptors against that of the descriptors
obtained from the full iodine sublattice, containing all 12 iodine
atoms. To conserve the total size of the dataset, the model trained
on the descriptors obtained from the full iodine sublattice used
1/3 of the original training set, comprising 93 datapoints equally
spaced along the trajectory. The descriptors were extracted from the
dataset via the use of a symmetry function adapted from the work of
Smith, Isayev, and Roitberg,82 whereby an adapted version of Behler
and Parrinello’s symmetry function was used to include radial and
angular information.14 The symmetry function used is as follows:

Gmod
i = 21−ζ

∑
atoms
j,k≠i (1 + cos(θijk − θs))

ζ

× e
[−η( Rij+Rik

2 −Rs)
2
]
fC(Rij)fC(Rik). (2)

Given atoms i, j, and k, θijk represents the angle centered on atom
i, while Rij and Rik refer to the distance between atoms i and j and
atoms i and k, respectively. This symmetry function probes both the
local radial information of atom i via the Gaussian terms and the
local angular environment via the cosine terms. The parameters θs
and Rs tune the centers, while the parameters ζ and η tune the widths
of the angular and Gaussian terms, respectively. In this work, ζ and
η were defined as 1 and 0.15, respectively, in order to maintain the
angular and radial features at similar magnitudes for an appropriate
representation of both features in the dataset. The Rs and θs values

FIG. 2. (Left) Correlation matrix for the descriptors of the cesium, lead, and iodine (four atoms) sublattices. (Right) Autocorrelation functions for the bandgap and NAC.
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TABLE I. Illustration of the angles and distances for the computation of θs [Eq. (1)]. The Rs and θs values were set to the
average minimum distance and maximum angle between the atoms in the particular sublattice.

Cesium sublattice Lead sublattice Iodine sublattice

were set to the minimum distance and maximum angle between
the atoms in the sublattice averaged over the entire duration of the
NA-MD simulation. Illustrations of the angles and distances used
for the calculation of θs and Rs are shown in Table I.

fC(R) represents a piecewise cutoff function to approximate the
local chemical environment of the atom and is defined as follows:

fC(R) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0.5 × cos(
πRij

RC
) + 0.5 for Rij ≤ RC,

0.0 for Rij > RC.
(3)

The radial cutoff RC determines the size of the local chemical envi-
ronment of the atom. It was set to 9.1 Å, corresponding to the
distance between the center of the rectangular simulation cell and
its vertex (Fig. 1).

The pairwise MI, I(X, Y), between two features was calculated
by estimating entropy from k-nearest neighbor distances. First, the
supports of X and Y are partitioned into bins of finite size based on
the Chebyshev distance. Then, taking R to be the Chebyshev distance
between a point, zi, and its kth neighbor, we obtain the total number
of points, nx and ny, whose distance from zi is strictly less than R
in the X and Y subspaces, respectively. The mutual information can
then be estimated via the following formula:

I(X, Y) = ⟨ψ(k) − ψ(nx + 1) + ψ(ny + 1)⟩ + ψ(N). (4)

Here, ψ(x) represents the digamma function of both variables, while
N represents the total number of datapoints. In this study, k was set
to 3, as it has been demonstrated to be the optimal parameter for
halide perovskites.55,56,83

Ridge regression is a regression method that tackles the issue
of overfitting by including an additional variable for regularization,
∥w∣∣2, representing the square of the coefficients of the model. This
term adds a penalty to complex models with high regression coef-
ficients, thus encouraging simpler models with small coefficients.
Using the ordinary least squares cost function as an example, the
total cost function is as follows:

C =
1
2∑i(yi − wTxi)

2
+

1
2
λ∣∣w∣∣2, (5)

where λ represents the regularization factor and yi and xi represent
the target variable and the predictor variable of the ith data point.
Kernel ridge regression extends ridge regression to a nonlinear case

by learning from a non-linear feature space induced by the kernel
and the data. In this way, the predictor variables are replaced by
their corresponding feature vectors: xi → Φi = Φ(xi), induced by a
kernel, whereby k(xi, xj) = Φ(xi)

TΦ(xj). Using the kernel trick, it is
possible to work with the inner product of the feature vectors rather
than the vectors themselves, allowing for significant computational
savings during training and prediction, as the dimensionality of the
feature vectors can be extremely high.

Kernel trick,

(P−1
+ BTR−1B)−1BTR−1

= PBT
(BPBT

+ R)−1. (6)

Prediction of x,

w = (λId +ΦΦ
T
)
−1Φy = Φ(ΦTΦ + λIn)

−1y, (7)

y = wTΦ = y(ΦTΦ + λIn)
−1ΦTΦ(x) = y(K + λIn)

−1κ(x), (8)

where K(bxi, bxj) = Φ(xi)
TΦ(xj) and κ(x) = K(xi, xj).

The Laplacian kernel was employed, K(x, y) = e−γ∣∣x−y∣∣1 ,
whereby x and y represent two separate input vectors and ∣∣x − y∣∣1
represents the Manhattan distance between them.

The feature generation of descriptors, the calculation of MI, and
the training and evaluation of the model were performed with the
Scikit-learn package using Python.84 All the models used KRR based
on the Laplacian kernel with the L2 penalty set to 0.0001.

III. RESULTS AND DISCUSSION
Table II shows the mean MI for the descriptors of each ele-

mental sublattice with the bandgap and NAC. It is expected that the
MI value with the NAC is smaller than that with the bandgap since
the calculation for the bandgap involves nuclear positions, which
are represented by the descriptors, while the NAC also depends
explicitly on nuclear velocity [Eq. (1)], which is not captured by the
descriptors. In addition, the NAC is a more complex function of
nuclear geometry than the bandgap, and therefore, it may be more
challenging for the simple descriptors to predict the NAC than the
bandgap. It is natural that the descriptors for the iodine sublattice
have a higher MI than those of cesium since the VBM is partially
supported by iodine atoms, while cesium contributes to neither the
VBM nor the CBM, as seen in the PDOS plot in Fig. 1. However, it is
surprising that the MI for lead is the lowest, considering that both the

J. Chem. Phys. 156, 054110 (2022); doi: 10.1063/5.0078473 156, 054110-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE II. Mean mutual information (MI) values [Eq. (4)] and adjusted R2 score for the descriptors [Eq. (2)] for each elemental
sublattice in CsPbI3.

Elemental sublattice
MI with
bandgap

Bandgap model
R2 score

MI with
NAC

NAC model
R2 score

Cesium 1.38 0.86 1.35 0.88
Lead 1.04 0.47 1.03 0.47
Iodine (4 atoms) 1.66 0.99 1.60 0.96
Iodine (12 atoms;
1/3 of training data) 1.58 0.82 1.54 0.88

VBM and the CBM are supported by lead. One would expect a priori
that lead descriptors should have the highest MI with the bandgap
and the NAC. The above facts might be rationalized by the impor-
tance of the iodine octahedral structure in determining the values for
the bandgap and the NAC, as indicated in the previous analyses21,52

based on the traditional bond angles and lengths rather than the cur-
rent ML descriptors. It is likely that the cesium sublattice can provide
information regarding octahedral tilt because cesium atoms inter-
act with iodines from different octahedra, while leads are nearest
neighbors to iodines from the same octahedron, and therefore, the
descriptors associated with leads cannot characterize the octahedral
tilts. The iodine sublattice can provide information regarding the
iodine octahedral structure as well.

The environment of a particular atom can have a strong influ-
ence on the properties of the atom. In particular, such a situation
arises in liquids in which the properties of the ion depend sig-
nificantly on the surrounding solvent. Interestingly, the properties
of polarons in MHPs can be compared to solvated charges in
liquids,85,86 in particular since MHPs are softer than traditional inor-
ganic semiconductors, undergo large scale anharmonic motions,87,88

and can contain components with asymmetric charge distribution,
such as CH3NH3

+, which can rotate and “solvate” the charges. In
order to establish the extent of correlation between the different

elemental sublattices, we computed correlation coefficients between
the descriptors for cesium, lead, and iodine (four atoms). The results
are presented in Fig. 2. The correlation coefficients, r, between two
variables x and y, are calculated using the formula as follows:

r = ∑(xi − x)(yi − y)
√
∑(xi − x)2∑(yi − y)2

, (9)

where xi and yi represent the value of the x and y variables of the ith
data point, while x and y represent the means of the x and y variables,
respectively. It should be noted that the symmetries of the perfect
tetragonal perovskite lattice are perturbed by thermal fluctuations.
Due to the relatively short length of the trajectory, the symmetries
are not fully recovered by the ensemble averaging, and the data
shown in the correlation coefficient matrix should be interpreted
in a semi-quantitative way. The data demonstrate that the atoms of
a particular type exhibit notable correlation (4 × 4 blocks around
the diagonal). However, the atoms of different types show little
correlation, indicating that the sublattices are quite independent.

Figures 3 and 4 show the results of the prediction of both
bandgap and NAC based on the individual element sublattice
descriptors. As expected, the performance of the models follows the
same ranking as that for MI, but it is interesting to note that the

FIG. 3. Individual element sublattice pre-
diction vs ab initio values for bandgap
and NAC. (a)–(d) refer to models trained
on cesium, lead, and iodine sublattice
descriptors, respectively, for the predic-
tion of bandgap. (f)–(i) refer to mod-
els trained on cesium, lead, and iodine
sublattice descriptors for the prediction
of NAC. (e) and ( j) refer to models
trained on the descriptors of all three
sublattices to predict bandgap and NAC,
respectively.
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FIG. 4. Individual element sublattice pre-
diction errors plotted against the ref-
erence error, which is the error made
by the model trained on the descriptors
of all three elements. (a)–(d) refer to
models trained on descriptors obtained
from cesium, lead, and iodine sublat-
tices, respectively, for the prediction of
bandgap. (e)–(h) refer to models trained
on descriptors obtained from cesium,
lead, and iodine sublattices, respectively,
for the prediction of NAC.

iodine sublattice alone can provide a satisfactory fit for both bandgap
and NAC despite only partially supporting the VBM and having
no contributions to the CBM even though both VBM and CBM
properties are essential for the calculation of the bandgap and the
NAC. Meanwhile, the lead sublattice, despite supporting both the
VBM and the CBM, provides the worst fit for both the bandgap
and the NAC. The performance of the model based on the iodine
sublattice alone is very similar to that of the model based on the com-
bined descriptors from all three sublattices. Additionally, Table II
also presents the adjusted R2 score for the respective models. The
adjusted R2 score was chosen as the metric to account for the differ-
ent numbers of predictors in the models. The correlation coefficients
confirm the conclusion obtained based on the mutual information.
Iodines and cesiums provide significantly better predictions of the
bandgap and nonadiabatic coupling than Pb atoms. Furthermore,

FIG. 5. NA-MD results based on bandgap and NAC calculated via ab initio methods
or predicted via the KRR models. The simulation calculates the population of the
ground state over 10 ns.

training on 1/3 of the training data on the descriptors obtained from
the full iodine sublattice (12 atoms) provides a viable alternative to
training based on 1/3 of iodine atoms (four atoms) and all train-
ing data. The descriptors obtained from this alternative strategy have
lower MI values (Table II), and the corresponding KRR models per-
form slightly worse for both the bandgap and the NAC. Interestingly,
this indicates that the breaking of the rotational symmetry of the lat-
tice, caused by decreasing the size of the iodine sublattice from 12
atoms to 4, can provide better results.

Afterward, we used the bandgap and NAC values obtained
from the ML models to perform NA-MD simulations. Figure 5 and
Table III show the NA-MD simulation results. It is interesting that
using descriptors from the lead sublattice leads to a slightly better
NA-MD performance for NA-MD than the cesium sublattice despite
its significantly worse performance for the prediction of bandgap
and NAC (Figs. 3 and 4). The descriptors from the iodine sublattice
and the combined descriptors still retain the top positions for both
the prediction of bandgaps and NACs and NA-MD simulations.
It is noteworthy that the performance of the NA-MD simulations
using only the iodine sublattice is rather satisfactory, providing a

TABLE III. Results of the NA-MD simulations represented via the gradient line of the
best fit of the data shown in Fig. 5. The results are ordered according to the deviation
from the ab initio line.

NA-MD data Gradient (10−1 ns)

Ab initio 1.11
Combined sublattices 1.04
Partial iodine sublattice 1.02
Full iodine sublattice 1.63
Lead sublattice 0.69
Cesium sublattice 1.79
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good agreement with the ab initio NA-MD simulations. The inclu-
sion of descriptors based on the other sublattices only provides a
marginal benefit and is unnecessary for a reliable NA-MD simu-
lation. The latter observation allows a significant reduction in the
complexity of the ML model for the NA Hamiltonian. In particu-
lar, since we use every third iodine atom of CsPbI3, and hence, every
fifth atom overall, we reduce the number of descriptors by a factor
of 5, compared to traditional models that employ descriptors arising
from all atoms. Such a reduction in the model complexity may play
particularly important roles for more complex systems involving
large numbers of atoms and in ML models based on neural net-
works, which involve highly nonlinear searches for optimal model
parameters.

IV. CONCLUSION
Focusing on nonradiative charge recombination in a popular

solar cell and optoelectronic material, CsPbI3, we applied unsu-
pervised and supervised ML to analyze the NA-MD Hamiltonian,
determine which geometric descriptors are most suitable for build-
ing ML models of the NA-MD Hamiltonian, reduce the complexity
of the standard ML models, and test the NA-MD performance of the
reduced models against the ab initio NA-MD results. We demon-
strated that descriptors extracted from every third atom of the iodine
sublattice are sufficient for the prediction of the bandgap and NAC
values that lead to satisfactory NA-MD results. Additionally, we have
uncovered an unusual trend for the performance of the individual
elemental sublattices in CsPbI3, with the lead sublattice perform-
ing extremely poorly, especially for the prediction of the bandgap
and NAC, despite being involved in the ab initio calculation of
these values. This has been rationalized by the significance of the
iodine octahedral structure in determining the bandgap and NAC
values. Cesium interacts with iodines from different octahedra, and
therefore cesium descriptors can reflect octahedral tilting angles. In
comparison, lead interacts with iodines from the same octahedron,
and therefore the properties of the lead sublattice do not reflect
the octahedral tilting. At the same time, the ML model based on
the lead sublattice gives better NA-MD simulation results than the
model based on the cesium sublattice even though the quality of the
NA-MD Hamiltonian shows the opposite trend. The original ML
model of the NA-MD Hamiltonian was simplified both quantita-
tively by reducing the number of descriptors five-fold and qualita-
tively by using one instead of three types of atoms. The significant
simplification of the ML model helps to overcome the high compu-
tational cost of NA-MD simulations through ML and increase the
applicability of NA-MD simulations to large complex systems and
longer time-scales.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science Founda-
tion under Grant No. CHE-1900510.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1A. V. Akimov and O. V. Prezhdo, J. Chem. Theory Comput. 10, 789 (2014).
2W. Somogyi, S. Yurchenko, and A. Yachmenev, J. Chem. Phys. 155, 214303
(2021).
3Y. She, Z. Hou, O. V. Prezhdo, and W. Li, J. Phys. Chem. Lett. 12, 10581 (2021).
4F. Tran, J. Doumont, P. Blaha, M. A. L. Marques, S. Botti, and A. P. Bartók,
J. Chem. Phys. 151, 161102 (2019).
5R. Long and N. J. English, Chem. Mater. 22, 1616 (2010).
6T. A. Barckholtz and T. A. Miller, J. Phys. Chem. A 103, 2321 (1999).
7F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, Annu. Rev. Phys. Chem.
71, 361 (2020).
8T. A. Profitt and J. K. Pearson, Phys. Chem. Chem. Phys. 21, 26175 (2019).
9V. Botu, R. Batra, J. Chapman, and R. Ramprasad, J. Phys. Chem. C 121, 511
(2017).
10J. A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.-R.
Müller, and A. Tkatchenko, Chem. Rev. 121, 9816 (2021).
11M. Ceriotti, C. Clementi, and O. Anatole von Lilienfeld, J. Chem. Phys. 154,
160401 (2021).
12E. Cuierrier, P.-O. Roy, and M. Ernzerhof, J. Chem. Phys. 155, 174121 (2021).
13C.-I. Wang, I. Joanito, C.-F. Lan, and C.-P. Hsu, J. Chem. Phys. 153, 214113
(2020).
14J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).
15M. Liu and J. R. Kitchin, J. Phys. Chem. C 124, 17811 (2020).
16L. Himanen, M. O. J. Jäger, E. V. Morooka, F. Federici Canova, Y. S. Ranawat, D.
Z. Gao, P. Rinke, and A. S. Foster, Comput. Phys. Commun. 247, 106949 (2020).
17J. R. Moreno, J. Flick, and A. Georges, Phys. Rev. Mater. 5, 083802 (2021).
18K. T. Schütt, P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, and
K.-R. Müller, J. Chem. Phys. 148, 241722 (2018).
19K. T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller, and R. J. Maurer, Nat.
Commun. 10, 5024 (2019).
20P. O. Dral, M. Barbatti, and W. Thiel, J. Phys. Chem. Lett. 9, 5660 (2018).
21S. M. Mangan, G. Zhou, W. Chu, and O. V. Prezhdo, J. Phys. Chem. Lett. 12,
8672 (2021).
22J. Westermayr and P. Marquetand, Chem. Rev. 121, 9873 (2021).
23J. Westermayr, M. Gastegger, M. F. S. J. Menger, S. Mai, L. González, and P.
Marquetand, Chem. Sci. 10, 8100 (2019).
24J. Westermayr, F. A. Faber, A. S. Christensen, O. A. von Lilienfeld, and P.
Marquetand, Mach. Learn.: Sci. Technol. 1, 025009 (2020).
25R. Ramakrishnan, M. Hartmann, E. Tapavicza, and O. A. von Lilienfeld,
J. Chem. Phys. 143, 084111 (2015).
26J.-K. Ha, K. Kim, and S. K. Min, J. Chem. Theory Comput. 17, 694 (2021).
27W.-K. Chen, W.-H. Fang, and G. Cui, Phys. Chem. Chem. Phys. 21, 22695
(2019).
28C.-K. Lee, C. Lu, Y. Yu, Q. Sun, C.-Y. Hsieh, S. Zhang, Q. Liu, and L. Shi,
J. Chem. Phys. 154, 024906 (2021).
29Z. Zhang, Y. Zhang, J. Wang, J. Xu, and R. Long, J. Phys. Chem. Lett. 12, 835
(2021).
30P. O. Dral and M. Barbatti, Nat. Rev. Chem. 5, 388 (2021).
31K. Lin, J. Peng, F. L. Gu, and Z. Lan, J. Phys. Chem. Lett. 12, 10225 (2021).
32X. Wang and R. Long, J. Phys. Chem. Lett. 12, 7553 (2021).
33L. Qiao, W.-H. Fang, R. Long, and O. V. Prezhdo, J. Am. Chem. Soc. 143, 9982
(2021).
34R. Shi, W.-H. Fang, A. S. Vasenko, R. Long, and O. V. Prezhdo, Nano Res.
(published online 2021).
35S. Mukherjee and S. A. Varganov, J. Chem. Phys. 155, 174107 (2021).
36D. Zanuttini, J. Douady, E. Jacquet, E. Giglio, and B. Gervais, J. Chem. Phys.
134, 044308 (2011).

J. Chem. Phys. 156, 054110 (2022); doi: 10.1063/5.0078473 156, 054110-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/ct400934c
https://doi.org/10.1063/5.0063256
https://doi.org/10.1021/acs.jpclett.1c03134
https://doi.org/10.1063/1.5126393
https://doi.org/10.1021/cm903688z
https://doi.org/10.1021/jp983829x
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1039/c9cp03103k
https://doi.org/10.1021/acs.jpcc.6b10908
https://doi.org/10.1021/acs.chemrev.1c00107
https://doi.org/10.1063/5.0051418
https://doi.org/10.1063/5.0062940
https://doi.org/10.1063/5.0023697
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1021/acs.jpcc.0c04225
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1103/physrevmaterials.5.083802
https://doi.org/10.1063/1.5019779
https://doi.org/10.1038/s41467-019-12875-2
https://doi.org/10.1038/s41467-019-12875-2
https://doi.org/10.1021/acs.jpclett.8b02469
https://doi.org/10.1021/acs.jpclett.1c02361
https://doi.org/10.1021/acs.chemrev.0c00749
https://doi.org/10.1039/c9sc01742a
https://doi.org/10.1088/2632-2153/ab88d0
https://doi.org/10.1063/1.4928757
https://doi.org/10.1021/acs.jctc.0c01261
https://doi.org/10.1039/c9cp04842a
https://doi.org/10.1063/5.0037863
https://doi.org/10.1021/acs.jpclett.0c03522
https://doi.org/10.1038/s41570-021-00278-1
https://doi.org/10.1021/acs.jpclett.1c02672
https://doi.org/10.1021/acs.jpclett.1c02169
https://doi.org/10.1021/jacs.1c04442
https://doi.org/10.1007/s12274-021-3840-y
https://doi.org/10.1063/5.0068040
https://doi.org/10.1063/1.3532769


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

37T. W. Kim, S. Jun, Y. Ha, R. K. Yadav, A. Kumar, C.-Y. Yoo, I. Oh, H.-K. Lim,
J. W. Shin, R. Ryoo, H. Kim, J. Kim, J.-O. Baeg, and H. Ihee, Nat. Commun. 10,
1873 (2019).
38A. D. Wright, L. R. V. Buizza, K. J. Savill, G. Longo, H. J. Snaith, M. B. Johnston,
and L. M. Herz, J. Phys. Chem. Lett. 12, 3352 (2021).
39A. Stolow, A. E. Bragg, and D. M. Neumark, Chem. Rev. 104, 1719 (2004).
40S. Banerjee, J. Kang, X. Zhang, and L.-W. Wang, J. Chem. Phys. 152, 091102
(2020).
41R. Long, O. V. Prezhdo, and W. Fang, Wiley Interdiscip. Rev.: Comput. Mol.
Sci. 7, e1305 (2017).
42W. Stier and O. V. Prezhdo, J. Phys. Chem. B 106, 8047 (2002).
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