
Sparsification and Optimization for Energy-Efficient
Federated Learning in Wireless Edge Networks

Lei Lei1, Yaxiong Yuan2, Yang Yang3, Yu Luo4, Lina Pu5, and Symeon Chatzinotas2

1School of Information and Communications Engineering, Xi’an Jiaotong University, China
2Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

3 Competence Center for High Performance Computing Fraunhofer ITWM, Germany
4Department of Electrical and Computer Engineering, Mississippi State University, USA

5Department of Computer Science, University of Alabama, USA

Abstract—Federated Learning (FL), as an effective decentral-
ized approach, has attracted considerable attention in privacy-
preserving applications for wireless edge networks. In practice,
edge devices are typically limited by energy, memory, and
computation capabilities. In addition, the communications be-
tween the central server and edge devices are with constrained
resources, e.g., power or bandwidth. In this paper, we propose
a joint sparsification and optimization scheme to reduce the
energy consumption in local training and data transmission.
On the one hand, we introduce sparsification, leading to a
large number of zero weights in sparse neural networks, to
alleviate devices’ computational burden and mitigate the data
volume to be uploaded. To handle the non-smoothness incurred
by sparsification, we develop an enhanced stochastic gradient
descent algorithm to improve the learning performance. On
the other hand, we optimize power, bandwidth, and learning
parameters to avoid communication congestion and enable an
energy-efficient transmission between the central server and edge
devices. By collaboratively deploying the above two components,
the numerical results show that the overall energy consumption
in FL can be significantly reduced, compared to benchmark FL
with fully-connected neural networks.

I. INTRODUCTION

Machine learning is becoming an important tool for next-
generation wireless communication networks. In practical ap-
plications, most machine learning schemes follow a centralized
training framework, where the collected local data is transmit-
ted to a central server for processing and training. However,
most of the collected data is privacy-sensitive and such data
exchange may have potential risks in data leakage. To this end,
federated learning (FL), as a distributed learning paradigm, has
attracted considerable attention in many wireless applications,
such as wireless federated edge learning systems.

FL enables edge devices to collaboratively learn a global
learning model while keeping all the training data on the
devices. The training process of FL is iterative. At each
learning cycle, each local user trains the local models based
on the collected data and the current global model. Then,
all the edge devices upload the local model to a centralized
server without the requirement for the raw data. After that, the
centralized server will broadcast an aggregated global model
to all the edge devices for the next learning cycle.

A. Related Works

In the literature, federated stochastic gradient descent
(FedSGD) and federated averaging (FedAvg) are the most
well-known FL algorithms, which minimize the local loss
functions in each device and update the learning models by
stochastic gradient descent (SGD) [1]. Compared to FedSGD,
FedAvg increases the number of local training epochs per-
formed on the edge device to reduce the frequency of com-
munication between the server and edge devices [2].

Recent works have applied FL to wireless communication
networks. In [3], the authors developed an edge learning
framework to analyze the convergence performance of the
FL algorithm while considering the features of wireless net-
works, e.g., user scheduling policy, channel fading and inter-
cell interference. In [4], a joint user selection and wireless
resource allocation problem was investigated to minimize the
loss function with limited transmit power. To minimize FL
training time in multiple-input multiple-output systems, in
Considering the scarcity of energy in the local devices of wire-
less federated edge learning networks, the authors in [5] and
[6] formulated energy minimization problems, including local
computing energy and transmission energy, via optimizing
wireless and computation resources. Furthermore, the authors
in [6] proposed an improved FL algorithm based on FedProx
to handle the non-i.i.d. data and heterogeneity of the devices.
In [7], an optimization problem was formulated to minimize to
capture the trade-off between FL convergence time and energy
consumption of UEs with heterogeneous computing and power
resources.

In most of the previous works, e.g., [3]–[7], the adopted
learning models are typically fully-connected deep neural
networks (DNNs). Such heavyweight learning models might
not be the best choice for local training in edge devices.
This is because a massive number of weight parameters
need to be uploaded/downloaded repeatedly, and thus could
result in heavy overhead, slow convergence, and high energy
consumption. Besides, the widely-adopted FL algorithms [1],
[2] may not guarantee the performance in non-smooth cases,
e.g., adding L1-norm regularization for DNN sparsification.978-1-6654-3540-6/22 © 2022 IEEE

B. Contributions

Beyond the state-of-the-art, we are motivated to develop a
lightweight learning model to relieve the computation burden
and develop a suited algorithm for local training. In this work,
we propose a joint sparsification and optimization scheme for
wireless federated edge learning. The main contributions are
summarized as follows:

• Instead of adopting widely-used DNNs, we introduce
sparse neural networks (SNN) to simplify the computa-
tional operations in local training and reduce the volume
of transmitted data in communications.

• We formulate an energy minimization problem via opti-
mizing wireless resources and learning parameters. Dif-
ferent from the energy models adopted in previous works,
we jointly minimize computing energy, uploading energy,
and broadcasting energy. All three types of energy con-
sumption are non-trivial for wireless edge networks.

• We design a joint energy-saving scheme that integrates
model sparsification in local training and resource opti-
mization in communications, such that the energy con-
servation can benefit from multiple aspects.

• Numerical results verify that the joint sparsification and
optimization scheme reduces more than 30% energy
consumption compared to benchmark FL schemes, where
resource optimization brings 16.43% performance gain
on energy saving, and sparsification contributes to 15%
performance improvement.

The remainder of this paper is organized as follows. In
Section II, we provide the preliminary of FL framework and
energy models. Section III introduces the learning model
sparsification, the formulated energy minimization problem,
and the proposed joint scheme. Numerical results are presented
and analyzed in Section IV. Finally, we draw the conclusions
in Section V.

II. FL FRAMEWORK AND ENERGY MODELS

A. FL Framework

FL is designed to allow multiple devices to cooperatively
execute a learning task by only uploading the local learning
model to a central server that can be co-located with base
stations or access points. The edge devices with certain com-
puting capabilities train local models based on the collected
data. The objective of FL is given by:

min
w∈W

F (w) =

K∑
k=1

Dk

D
Fk(w), (1)

where w is the parameter vector of the learning model, W
is the space of the parameters, K is the number of the edge
devices participating in the training, Dk is the size of the
training data at edge device k, and D is the total size of the
training data. The local objective function Fk(w) consists of

a loss function fk(w) and a regularization item rk(w), which
can be expressed as:

Fk(w) =
1

Dk

Dk∑
l=1

Lk,l(w)︸ ︷︷ ︸
,fk(w)

+rk(w), (2)

where Lk,l(w) describes the prediction error of the l-th single
sample at edge device k, which can be represented by mean
square error (MSE) or cross entropy. The regularization item
rk(w) is a penalty to prevent overfitting or confining the
weight values.

The process of the FL is conducted in an iterative manner
as the following steps [1], [2]:

• Step 1: The centralized server randomly selects edge de-
vices to participate in the training process and broadcasts
a global FL model.

• Step 2: Each selected edge device downloads the global
FL model for training a local FL model. The well-trained
local models will be uploaded to the centralized server.

• Step 3: The centralized server aggregates the local infor-
mation to update the global learning model.

• Step 4: Repeating steps 1-3 (i.e., a learning cycle) until
the termination condition is met.

In an FL framework, problem (1) is decomposed into K
independent problems that are solved locally at each edge
device. Thus, each device trains the local learning model by
minimizing the local loss function:

min
w∈W

: Fk(w). (3)

The local problems can be solved by stochastic gradient
descent (SGD) algorithm, which updates the local parameters
iteratively and consumes local iterations. We denote i as the
index of global iterations (or learning cycles), and j as the
index of local iterations. At each local iteration, taken the
received global model wi as the initial point, the update rule
is written by:

wi,j+1
k = wi,jk − εloc∇Fk(wi,jk). (4)

where εloc is the local update step and wi,jk is the local FL
model for user k at the j-th local iteration and the i-th global
iteration. We assume that the SGD terminates at the maximum
number of local iterations, denoted by Jk. The server updates
the global model by:

wi+1 = wi + ε

(
K∑
k=1

wik − wi
)
, (5)

where ε is the learning rate and wik = wi,Jkk . For SGD
algorithm, the gap between the optimum and the intermediate
result at local iteration j is expressed as:

Γ(j, d) = α

(
1√
jd

+
1

j

)
, (6)

where d is the size of training data and α is a positive

constant. We remark that a small gap Γ(j, d) means high local
learning accuracy. Since the local model needs to be uploaded
to the server for global aggregation, the local accuracy directly
affects the global accuracy of FL. To avoid the performance
degradation caused by the accumulation error of local com-
puting, the gap Γ(j, d) should be less than a threshold γth.

B. Energy Models

1) Communication Energy: At each global iteration (or
learning cycle), the channel gain for edge device k is hk, ∀k ∈
{1, ...,K}. Under the assumption of the block fading channel,
the channel states keep constant within a learning cycle.
Considering the wireless edge scenarios, the server for edge
learning could be with limited energy. The energy consumed
on both edge devices’ upload and server’s broadcast needs to
be conserved. To facilitate the data aggregation in the server,
the learning models for all the edge devices are identical. We
denote Ak as (in bits) the upload data volume of edge device
k and A0 (in bits) as the broadcast data volume of the server.

In the upload phase, the transmission time of edge device
k within a learning cycle is:

Tuk =
Ak
Rk

=
Ak

Bk log(1 + pkhk

σ2)
, (7)

where Rk, Bk, pk are the uplink transmission rate, the uplink
bandwidth, and the transmit power of edge device k, respec-
tively, and σ2 is the noise power. The total energy consumption
Eu for all the edge devices can be expressed as:

Eu =

K∑
k=1

pkT
u
k . (8)

In the broadcast phase, since the devices’ transmission rates
are different, the server broadcasts the global FL model until
the last edge device receives the data. Thus, the broadcast time
T d0 can be calculated by:

T d0 = max
k

{
T dk
}

= max
k

{
A0

B0 log(1 + p0hk

σ2)

}
, (9)

where T dk is the transmission time consumed from server to
edge device k, and B0 is the bandwidth of server. We denote
p0 as the transmit power of the server, the broadcast energy
Ed is given by:

Ed = p0T
d
0 . (10)

2) Computation Energy: The CPU power dissipation in-
cludes static and dynamic power, where static power that
arises from bias and leakage currents can be dramatically
reduced by careful hardware design and dominant CPU power
consumption is therefore dynamic power. According to [8], the
dynamic power of a CPU P ck for edge device k depends on
the CPU’s supply voltage Vk and CPU computation capacity
fk (the number of CPU cycles/second), i.e., P ck ∝ V 2

k fk.
In addition, another relation in CPU operation is that fk
is positively proportional to Vk, i.e., Vk ∝ fk. Thus, the
computation power for edge device k can be written as

P ck = κf3k , where κ is the effective switched capacitance
depending on the chip architecture. We denote, for edge device
k, Jk is the maximum number of local iterations, Ck is the
number of CPU cycles required for processing a single sample
data, and Dk is the number of collected training samples. The
processing time needed can be expressed as:

T ck =
CkJkDk

fk
, (11)

and the total computation energy for local data processing
within a learning cycle is given by:

Ec =

K∑
k

P ckT
c
k =

K∑
k

κJkCkDkf
2
k =

K∑
k=1

MkDk. (12)

where Mk = κIkCkf
2
k . The computation energy at the server

can be ignored as the aggregation operation is simple, i.e.,
averaging [5].

In the timeline of the FL process, firstly, the edge devices
that have received the broadcast data can perform local cal-
culations immediately. We consider a half-duplex mode. The
server cannot receive and transmit data simultaneously. Before
uploading the local FL model to the server, the edge devices
need to confirm the server has completed the broadcast task,
e.g., receive a control signal allowing to upload. The edge de-
vices that finish the local calculations faster may need to wait
for the other devices. Therefore, the time when edge device k
starts uploading local learning model is max{T dk + T ck , T

d
0 },

where T dk , T d0 and T ck can be obtained from (9) and (11).
When all the edge devices complete their upload tasks, we
can calculate the total time of a learning cycle by:

Ttot = max
k
{Tuk + max{T dk + T ck , T

d
0 }} (13)

III. SPARSIFICATION AND OPTIMIZATION FOR
ENERGY-EFFICIENT FL

We propose a joint scheme to minimize consumed energy
in FL via: 1) applying a sparse learning model to reduce
the transmission data and the computation operations; and 2)
determining the energy-efficient wireless resource allocation
and learning configurations by optimization.

A. Sparsification for Learning Models

From (9) and (10), the communication energy can be
reduced when Ak decreases. In addition, based on (12), the
computation energy increases with Ck. This motivates us to
implement a learning model with fewer weight vectors and
computation operations. In practice, the learning models with
fewer weights or simpler constructions are sufficient to extract
the data features with acceptable learning accuracy [9]. Sparse
NN (SNN) is one of the methods for simplification. It removes
the majority of weights (force them to 0) such that only a
percentage of the possible connections exist between layers.

To realize SNN, we set regularization items after the loss
function such as L1-norm in (14) or L2-norm in (15).

min
w∈Rn

Fk(w) =fk(w) + µ‖w‖, (14)

min
w∈Rn

Fk(w) =fk(w) +
µ

2
‖w‖2, (15)

where µ is the regularization rate selected from [0,1]. To obtain
a model with optimal performance, the regularization rate µ
should be properly tuned and cannot be excessively large.

In order to quantitatively analyze the energy-saving gain
brought by the sparse models, we calculate Ak and Ck for
DNN and SNN. For edge device k, we define Θk as the
average unit bits corresponding to the numeric data type of
the weights and Ψk as the total number of the weights of
the learning model. Thus, Ak, as the total data volume, is
calculated by:

Ak = Θk ·Ψk. (16)

We consider DNN and SNN have the same structure with L
layers and xl neurons at the l-th layer, so that Ψk is the same
for the three models, expressed as

∑L
l=1 xl−1xl + xl. The

numeric type of the parameter in DNN is floating-point with
Θk = 32 (bits). For SNN, we assume ρ1k(%) of the weights
are zero and the others are floating-point numbers. Therefore,
the average unit bits for SNN are Θk = 32(1− ρ1k).

To calculate the CPU cycles per sample Ck, we first intro-
duce Φk as the required number of floating-point operations
(FLOPs) to process a single training sample, where an addi-
tion, multiplication, or division is defined as a FLOP. For DNN
and SNN, they both need 2Ψk addition and multiplication
operations [10]. The number of CPU cycles needed for each
operation is fixed, denoted by ek, which depends on the
performance of the edge device. The number of CPU cycles
required for a single training sample Ck is expressed as:

Ck = Φk · ek. (17)

B. Resource Optimization in FL

Based on the energy models and the sparse learning models,
we further reduce the total energy by formulating an optimiza-
tion problem. The edge devices, such as smartphones or small-
sized sensors, have low transmit power and limited ability to
adjust the uplink power. Thus, to minimize the uplink energy,
we optimize bandwidth Bk and with a fixed transmit power
pk. For the downlink transmission, all the edge devices receive
the broadcasted data via the shared spectrum. To improve the
data rate, we set B0 as the maximum available bandwidth of
the server. The downlink energy can be optimized by adjusting
transmit power p0. In addition, we minimize the computation
energy by selecting a proper training data size Dk. The
minimization problem for a learning cycle is formulated as:

P0 : min
p0,Bk,Dk

Eu + Ed + Ec (18a)

s.t. Ttot ≤ Tth, (18b)

MkDk ≤ ECmax,∀k, (18c)

Γ(Jk, Dk) ≤ γth, ∀k, (18d)∑K

k=1
Rk ≤ Rcap, (18e)∑K

k=1
bk ≤ Btot, (18f)

p0 < Pmax. (18g)

The objective function (18a) in P0 includes three com-
ponents, i.e., local computing energy, uploading energy, and
broadcasting energy. In constraint (18b), the time consumption
at each learning cycle Ttot should be less than Tth. The
computation energy for each device should be less than a limit
value ECmax, as expressed in (18c), due to the limited battery
storage. Towards minimizing the local computing energy, the
optimizer tends to reduce Dk from (12). However, a smaller
Dk leads to a large gap Γ(Jk, Dk) and the learning accuracy
deteriorates. To guarantee the learning accuracy of FL, the
constraint (18d) confines that the local computing gap should
be under the threshold γth. The constraints (18e) represent
the total uplink rate should not excess the uplink capacity
Rcap. The constraints (18f) and (18g) are the limitations of
the spectrum and power, respectively.

As the original problem P0 contains the maximum oper-
ators, we reformulate P0 to an equivalent problem P1 with
auxiliary variables zk and T d0 .

P1 : min
p0,Bk,Dk,

zk,Td
0

K∑
k=1

Wpk

Bk log(1 + pkhk

σ2)
+ p0T

d
0 +

K∑
k=1

MkDk

s.t.
W

B0 log(1 + p0hk

σ2)
≤ T d0 , ∀k, (19a)

W

B0 log(1 + p0hk

σ2)
+
Mk

fk
≤ zk, ∀k, (19b)

zk +
Wk

Bk log(1 + pkhk

σ2)
≤ Tth, ∀k, (19c)

MkDk ≤ ECmax,∀k, (19d)

α

(
1√
JkDk

+
1

Jk

)
≤ γth, ∀k, (19e)

TD0 ≤ zk, ∀k, (19f)
(18e), (18f), (18g).

P1 is a non-convex problem because of the bilinear item
p0T

d
0 . To solve the problem, the bilinear term can be relaxed

and bounded by McCormick envelopes [11]. We remark that
P1 is solved offline at the beginning of each learning cycle
for the optimal network and learning configuration.

C. The Proposed Joint Scheme

The joint energy-saving scheme is summarized in Alg. 1
including global and local iterations. In a global iteration (lines
5-19, also defined as a learning cycle), the server randomly
selects K edge devices in line 6. In line 7, the optimization
problem P1 is solved to determine the wireless resource
allocation, i.e., the server’s transmit power, uplink bandwidth,
and the size of training data. With the optimized solutions of

P1, the server allocates resources and broadcasts the global
learning model in line 8. Each edge device then trains a local
model. After receiving the local models, the server can update
the global model in lines 17-18.

Algorithm 1 Joint sparsification and optimziation scheme

Input:
1: Initial global FL model: w0;
2: Maximum number of global iteration: I;
3: Number of local iterations for each edge device: Jk;
4: Learning rate: ε.
5: for i = 0 : I do
6: Server selects K devices randomly.
7: Server determines the optimal resource allocation and

learning parameter by solving P1.
8: Server sends wi to all chosen devices.
9: for k = 1 : K (do in parallel) do

10: for j = 0 : Jk do
11: Edge device selects minibatch of collected data.
12: Edge device calculates momentum by (21).
13: Edge device solves sub-problem (22).
14: Edge device updates wi,jk by (23).
15: end for
16: end for
17: All the devices send wik back to the server.
18: Server updates wi by (5).
19: end for
Output: Well-trained local model w∗k.

The local iteration (lines 10-15) refers to the local training
process performed at edge devices. We aim at solving the local
loss function (3). To address the non-smoothness in SNN-
based FL, e.g., L1-norm regularization µ‖w‖, we extend the
previous proposed ProxSGD in [12] to the FL framework.
The former is designed for centralized learning with non-
smooth loss functions. Firstly, in line 11, a minibatch Mi,j

is randomly selected from the training data to estimate the
gradient of fk(w), i.e.,

∇̄fk(wi,j) =
1

|Mi,j |
∑

l∈Mi,j

∇Lk,l(wi,j). (20)

To keep the gradient updated in the right direction and accel-
erate the converge speed, in line 12, we introduce momentum
vi,jk , which is formed in a recursive manner:

vi,jk = (1− %j)vi,j−1k + %j∇̄fk(wi,j), (21)

where %j ∈ (0, 1] is the step size for the momentum. In line
13, we solve an approximation sub-problem and obtain an
intermediate solution ŵi,j :

ŵi,jk = argmin
w∈Rn

(w− wi,j)Tvi,jk +
τ

2
‖w− wi,j‖2

+ rk(w). (22)

The objective in (22) is a convex approximation of Fk(w)
around the point wi,j by incorporating first-order Taylor ex-

pansion, quadratic regularization and non-smooth term. Com-
pared to the conventional SGD, the update rule in (22) can
resolve the issues of weights’ constraints and non-smooth
(non-differentiable) objectives. The difference between ŵi,j

and wi,j specifies the update direction which is used to refine
the parameters:

wi,j+1
k = wi,jk + εloc(ŵi,jk − wi,jk). (23)

When the local training terminates at the Jk-th iteration, each
edge device uploads the local learning model to the server.
The server collects all the information and updates the global
model by (5). The algorithm terminates when reaching the
maximal number of global iterations I .

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
sparsification-and-optimization scheme. We compare the per-
formance of DNN and SNN, in terms of the distribution of
weight values and the total energy consumption. The adopted
parameters in simulations are summarized in Table I.

Table I: Parameter settings

Data set MNIST
Total number of devices 1000

Number of selected 10devices per learning cycle K
Transmit power on edge device pk 0.5 Watt

Bandwidth of server B0 3 MHz
SINR 15-23 dB

Input size 28× 28 images
Number training data samples 69035

Loss function cross entropy
learning rate ε 0.001

Number of global iterations I 500
Batch size 50

Number of local iterations Jk 50
Penalty parameter µ 0.0025 and 0.001

Computation capacity fk 6.725 GHz
FLOPs per CPU cycle ek 4

Effective switched capacitance κ 10−28

A. Performance on Energy Conservation

To demonstrate the impact of different learning models on
energy consumption, we evaluate the cumulative distribution
function (CDF) of weight values and show the total energy
consumption of DNN and SNN in Fig. 1 and 2, respec-
tively. From Fig. 1, in DNN, around 80% weights are evenly
distributed in the interval [-0.2, 0.2], and few weights are
with ‖w‖ < 0.01. Thus, all the weights in DNN should be
uploaded or broadcasted as floating-point values. For SNN,
when µ=0.001, around 55% of the weights are exactly equal
to 0, such that only 45% of the weight needs to participate in
the communication. When µ drops to 0.00025, the impact of
regularization reduces with 35% zero-valued weights.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
weight value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

FL with DNN
FL with SNN μ=0.001
FL with SNN μ=0.00025

Fig. 1. Distribution of weights of different neural networks.

80 90 100 110 120 130 140 150 160
Average SINR

2000

2200

2400

2600

2800

To
ta
l E

ne
rg
y

DNN w.o. OPT
SNN w.o. OPT (μ=0.001)
SNN w.o. OPT (μ=0.00025)
DNN w. OPT
SNN w. OPT (μ=0.001)
SNN w. OPT (μ=0.00025)

Fig. 2. Total energy vs. SINR.

In Fig. 2, we show the total energy consumption among
different FL schemes with regard to the average SINR.
Generally, the total energy consumption decreases with a
higher value of SINR. This is because, in a better channel
condition, the transmission rate is higher and the consumed
energy can be saved with less transmission time. The proposed
scheme with SNN (µ=0.001) and resource optimization saves
around 30% energy consumption compared to DNN-based
FL scheme without energy optimization. Specifically, SNN
(µ=0.001) saves 15.72% total energy compared to DNN,
the optimization part further reduces energy consumption by
16.43%. In addition, SNN with µ=0.001 consumes 6.2% less
energy than SNN with µ=0.00025, but a higher µ may result
in lower learning accuracy.

B. Performance on Learning Accuracy

Fig. 3 shows the learning accuracy of adopting different
learning models. The learning task is with the identical learn-
ing rate and training data. The accuracy performance in DNN
and SNN (µ=0.001) maintains at the same level, though DNN
slightly outperforms, 89% against 87%. Recalling Fig. 2, SNN
simplifies the local model and reduces the energy. This implies
that the adopted sparsification scheme achieves better trade-off
performance than DNN-based FL.

V. CONCLUSION

In this paper, we investigated an energy-efficient federated
scheme implemented in wireless federated edge learning net-
works to economize energy from two perspectives. Firstly, we

0 10 20 30 40 50
round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

FL with DNN
FL with SNN

Fig. 3. Accuracy of different neural networks.

formulated an optimization problem to minimize the energy
consumption, including communication and computation en-
ergy, via wireless resource management and learning param-
eter allocation. Secondly, based on the analysis of the energy
consumption of different learning models, the energy can be
further saved by selecting sparse instead of traditional DNN.
Numerical results show considerable energy-saving gains of
the sparsification and optimization scheme.

REFERENCES

[1] K. Thonglek, K. Takahashi, K. Ichikawa, H. Iida, and C. Nakasan, “Feder-
ated Learning of Neural Network Models with Heterogeneous Structures,”
in Proc. 2020 19th IEEE International Conference on Machine Learning
and Applications (ICMLA), pp. 735-740, Dec. 2020.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. International Conference on Artificial Intelligence and
Statistics (AISTATS), Apr. 2017.

[3] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE Transactions on
Communications, vol. 68, no. 1, pp. 317-333, Sept. 2019.

[4] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A Joint
Learning and Communications Framework for Federated Learning Over
Wireless Networks,” in IEEE Transactions on Wireless Communications,
vol. 20, no. 1, pp. 269-283, Jan. 2021.

[5] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
Efficient Federated Learning Over Wireless Communication Networks,”
in IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp.
1935-1949, Mar. 2021.

[6] V. D. Nguyen, S. K. Sharma, T. X. Vu, S. Chatzinotas, and B. Ottersten,
“Efficient federated learning algorithm for resource allocation in wireless
iot networks,” in IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3394-
3409, Sept. 2020.

[7] C. T. Dinh, N. H. Tran, M. N. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless networks:
Convergence analysis and resource allocation,” in IEEE/ACM Transac-
tions on Networking, vol. 29, no. 1, pp. 398-409, Nov. 2020.

[8] I. Ahmad and S. Ranka eds, “Handbook of Energy-Aware and Green
Computing, Volume 1”, CRC Press, Jan. 2012.

[9] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” MIT press,
2016.

[10] Y. Yuan, L. Lei, T. X. Vu, S. Chatzinotas, S. Sun, and B. Ottersten,
“Energy minimization in UAV-aided networks: actor-critic learning for
constrained scheduling optimization,” in IEEE Transactions on Vehicular
Technology, vol. 70, no. 5, pp. 5028-5042, May 2021.

[11] G. P. McCormick, “Computability of Global Solutions to Factorable
Nonconvex Programs: Part I Convex Underestimating Problems,” in
Mathematical Programming, vol. 10, no. 1, pp. 147-175, Dec. 1976.

[12] Y. Yang, Y. Yuan, A. Chatzimichailidis, R. J. van Sloun, L. Lei, S.
Chatzinotas, “Proxsgd: Training structured neural networks under regu-
larization and constraints,’ in Proc. International Conference on Learning
Representations (ICLR), Sept. 2019.

