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Abstract. This paper proposes two interesting applications of the approach to uncertainty evaluation and 
representation in terms of Random-Fuzzy Variables. One covers the expression of the calibration uncertainty 
of gauge blocks, and one considers unknown temperature variations, with respect to temperature at calibration 
time, in expressing a voltmeter uncertainty. Both considered examples show that the proposed approach is 
more effective than the traditional GUM approach. 

 

1 Introduction 

The evaluation and expression of measurement 
uncertainty is still an hot and debated topic, despite the 
uncertainty concept, as defined by the Guide to the 
Expression of Uncertainty in Measurement (GUM) [1, 2], 
has been universally accepted by the metrologists. The 
focus of the discussion is on the validity of the 
mathematical framework, probability, into which the 
evaluation of measurement uncertainty has been confined. 

There are several cases, in the everyday measurement 
practice, in which the validity of a purely probabilistic 
approach can be doubted, for instance every time a 
systematic effect has to be considered, whose value is 
unknown, but the interval into which it is supposed to lie. 
Let’s consider the acceleration of gravity, g, in a given 
location. Due to unknown measurement errors, we cannot 
know its true value, though we can assume an interval into 
which the local g is supposed to reasonably lie. On the 
other hand, when using the measured g value, we cannot 
consider it as a random variable in the estimated interval, 
because g, in the considered location, does not vary, and, 
hence, it represents an unknown and uncompensated 
systematic effect. 

In order to represent such effects and their combination 
with other random and non-random effects in a more 
correct and effective way, a new mathematical framework 
has been proposed in the recent years [3–6], based on the 
theories of evidence and possibility, that generalize 
probability and allow also non-random effects to be 
handled.While the theoretical framework has been well  
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developed [6], few practical applications have been 
considered, up to now. This paper, after having briefly 
recalled the very fundamentals of uncertainty expression 
in terms of possibility distributions, is aimed at showing 
the effectiveness of this new approach in two simple, 
though significant cases, where unknown and 
uncompensated systematic effects may cause the GUM 
approach to provide incorrect results. The first one 
considers the expression of calibration uncertainty for 
gauge blocks, whilst the second one considers unknown 
temperature variations, with respect to temperature at 
calibration time, in expressing a voltmeter uncertainty. 
2 Overview of the RFV approach 

The employed mathematical framework, based on the 
possibility theory, considers possibility distributions, 
instead of probability distributions, to represent the 
distribution of values that can be reasonably attributed to 
the measurand. Without entering too many mathematical 
details, for which the reader is addressed to [6, 7], a 
possibility distribution (PD) is defined as a function r over 
a support X 

 r : X → [0,1], (1) 

such that: 

 sup(r(x)) = 1. (2) 

X 
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The cuts Iα of a PD, called α-cuts and defined as:

 Iα = {x|r(x) ≥ α}, (3)

can be considered as a generalization of the probabilistic 
concept of confidence intervals and a credibility that an 
element x belongs to them can be associated to each 
interval, in the range [0,1] [6, 8]. In particular, the 
credibility value is given, for each α-cut at level α, by 1 − 
α [7]. Therefore, expressing a measurement result in terms 
of a PD yields a family of confidence intervals at various 
confidence levels. Since the final aim of uncertainty 
evaluation is “to provide

an interval about the result of a measurement within which 

the values that could reasonably be attributed to the 

measurand may be expected to lie with a high level of 

confidence” [1], expressing a measurement result in terms 
of a 
PD is in complete agreement with the requirements of the 
GUM. 

It has been proved [6] that a PD can effectively 
represent the effect of any kind of contributions to 
uncertainty. However, different effects (random and non-
random) give different contributions to uncertainty and 
combine in different ways. Therefore, we may expect that 
a single PD is not enough to represent all effects and their 
combinations, and that an aggregation of at least two PDs 
is required. 

Random Fuzzy Variables (RFVs) have been defined to 
this purpose [7]. An RFV is defined by two possibility 
distributions: the internal one rint(x) considers all non-
random contributions to uncertainty, whilst the external 

one rext(x) considers also the random contributions. The 
external PD is obtained by combining the internal PD 
rint(x) with the random PD rran(x), which considers only the 
random contributions to uncertainty [7]. 

Fig. 1 shows an example of RFV and its PDs. 

Figure 1. PDs composing an RFV (blue and cyan lines).

Since the two PDs rint(x) and rran(x) represent different 
effects that combine in different ways, the mathematics 
used to combine RFVs must consider the different 
characteristics of these two PDs. This mathematics 
exploits the definition of joint PDs, given in [9] for the 
internal PDs and in [10] for the random PDs, and the 
application of the Zadeh’s extension principle [11], as also 
shown in [12, 13], to which the reader is addressed for 
further details. 

3 Uncertainty evaluation for gauge blocks 

As a first example, let us consider one of the examples 
proposed by the Collège Français de Métrologie (CFM), 
and in particular the 27th example on the calibration of 
gauge blocks [14]. In this example, different uncertainty 
sources are considered, as listed in Table 1. 

According to the CFM example, all effects are 
considered as random ones, and a specific probability 
density function (PDF) is assumed for each of them, 
together with their standard deviation, as listed in Table 1. 
Following the approach of the GUM [1], being those 
effects not correlated, a combined standard uncertainty uc

= 32nm is obtained [14], thus leading to a combined 
expanded uncertainty Uc = 64nm, under the assumption of 
a normal 

# Source PDF u(·)

1 repeatability N 16 nm

2 accuracy correction N 4 nm

3 quantization error T 4.08 nm

4 comparator geometry U 5.77 nm

5 length of the reference block N 11 nm

6 reference drift between calibrations N 6.66 nm

7 temperature deviation between blocks U 17 nm

8 difference in the temperature 
coefficients

N 7 nm

9 contact deformation on the reference N 10 nm

10 contact deformation on the DUC N 10 nm

Table 1. Contributions to calibration uncertainty. N: normal 
PDF. T: triangular PDF. U: uniform PDF.

PDF of the final result and a coverage factor k = 2, 
corresponding to an interval with 95% confidence level. 

However, some of these effects, namely those in rows 
2, 4, 5, 9 and 10 in Table 1, show a systematic behavior, 
since they originate in the imperfections of the 
measurement process at calibration time. As a matter of 
fact, the length of the gauge blocks, their geometry, the 
deformation on the contact point and the accuracy of the 
sensors, at calibration time, are not random quantities. We 
simply cannot know their exact values, that are assumed 
to take single values inside given intervals. When the 
calibrated block gauge is used in a measurement process, 
this lack of knowledge cannot be considered as a random 
effect affecting the measurement result, since the length of
the gauge blocks, their geometry, the deformation on the 
contact point and the accuracy of the sensors do not vary 
during the measurement procedure. Therefore, this lack of 
knowledge represents a systematic effect. Hence, just 
adding their assumed variances to obtain the combined 
uncertainty, as stated by the GUM, makes little sense. 

The representation of the calibration result in terms of 
an RFV, briefly recalled in the previous section, appears 
to be much more effective, since it allows one to consider 
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the systematic effects in the internal PD, separated from 
the random ones. Therefore, starting from the available 
information listed in Table 1, considering the contribution 
coming from row 4 as total ignorance on the related error, 
and according to the procedure shown in [15], the RFV 
shown in Fig. 2 is obtained, where the contributions in 
rows 2, 4, 5, 9 and 10 have been used to build the internal 
PD, and the other ones have been used to build the random 
PD. 

It can be noted that the α-cut at α = 0.32, corresponding 
to the interval with 68% confidence level, has an halfwidth 
of 0.06μm and the α-cut at α = 0.05, corresponding to the 
interval with 95% confidence level, has an halfwidth of 
0.11μm. In GUM terms, this value corresponds to the 
combined expanded uncertainty, associated to the 
confidence interval with 95% confidence level. Therefore, 
it is possible to compare this value with the combined 
expanded uncertainty Uc evaluated by the CFM. It follows 
that the RFV approach provides a larger value, as

 −200 −100 0 100 200
Deviation from block nominal length [nm]

Figure 2. RFV representing the calibration result of a 50 mm 
gauge block in terms of deviation from the nominal value. The 
two intervals are those at 68% (upper interval) and 95% (lower 
interval) confidence level.

expected, since it takes into account the systematic 
behavior of some considered effects. 

4 Uncertainty evaluation for a voltmeter 

This second measurement example consists in the 
calibration of a Fluke 8845A digital multimeter (device 
under calibration, DUC), in the DC voltage measurement, 
by comparison with a Fluke 8508A reference multimeter 
(standard). To do that, a relationship has to be established 
between the values measured by the standard and the 
corresponding indications of the DUC. 

Moreover, considering the uncertainty contributions 
affecting the standard and the calibration process, an 
accuracy estimate needs to be associated with the DUC. 
This can be done by following three different approaches: 
the GUM approach reported in [1], the Monte Carlo (MC) 
simulations, as suggested in [2], or the RFV approach. The 
main goal of this example is to show that, following the 

1 For the sake of simplicity, the calibration procedure is here 
performed for a single voltage value. Of course, the procedure may be 

RFV approach, a more informative accuracy estimate is 
obtained. Moreover, the RFV approach allows a more 
effective accuracy estimate than the GUM and MC 
approaches when the voltmeter is operated, after 
calibration, under unknown temperature conditions, that 
are likely to be different than the temperature at calibration 
time. 

The employed calibration procedure is the following: 
the same voltage 1 is simultaneously measured by the 
standard, with a fixed operating temperature ϑS = 23◦

C, and 
the DUC, for different operating temperatures in the range 
8◦

C ≤ ϑ ≤ 38◦
C. The obtained expected value of the voltage 

is, according to the standard, ¯vS = 9.999942V, while 
multiple expected values ¯vDUC (ϑ) are obtained according 
to the indications of the DUC, as shown in Table 2.

Starting from ¯vS and ¯vDUC (ϑ), a correction value δ¯
(ϑ) can be obtained, as:

 δ¯ (ϑ) = v¯S − v¯DUC (ϑ) (4)

Table 2. v¯DUC(ϑ) and σvDUC(ϑ) for different ϑ values.

 ϑ [◦
C] v¯DUC(ϑ) [V] σvDUC(ϑ) [μV]

 8 9.99991 9
 18 9.99990 8 

 28 9.99989 8 
 38 9.99988 7 

The evaluation of (4) completes the calibration procedure. 
Then, when the calibrated multimeter is employed to 
measure a voltage vm, the correction δ¯ (ϑ) can be applied 
according to:

 v = vm + δ¯ (ϑ) (5)

Of course, due to the uncertainty affecting ¯vS and 
v¯DUC (ϑ), also the correction δ¯ (ϑ) is affected by 
uncertainty. Evaluating this last uncertainty contribution 
corresponds to estimate the residual uncertainty 
contributions associated with the calibrated voltmeter, i.e. 
its accuracy. In fact, according to (5), for a specific 
measured value vm and a specific operating temperature ϑ,
the uncertainty affecting the corrected value v is equal to 
the uncertainty affecting δ¯ (ϑ).

The uncertainty contributions involved in the 
calibration process are a type B contribution provided by 
the manufacturer of the standard (∆vS = 34μV), a type A 
contribution due to the experimental variability of vS (σvS = 
4μV) and a type A contribution due to the experimental 
variability of ¯vDUC (ϑ), as shown in Table 2. Moreover, 
when the operating temperature of the calibrated voltmeter 

repeated for several voltage values covering the whole input range of the 
DUC. 

0

0.2

0.4

0.6

0.8

1

17  International Congress of Metrologyth

02005-p.3



is considered unknown, a type B contribution is added to 
the final accuracy estimate of the voltmeter. 

4.1 GUM approach 

According to the GUM approach [1], the combined 
uncertainty uδ(ϑ) can be found by combining the standard 
uncertainties of vS and vDUC through (4), starting from some 
assumptions about their probability density functions 
(PDFs). In particular, the standard uncertainty of vS is 
obtained assuming a uniform PDF of width 2∆vS and a 
normal PDF with standard deviation σvS , while the 
standard uncertainty of vDUC is obtained assuming a 
normal
PDF with standard deviation σvDUC(ϑ). Then, according to 
(5), for a given measured value vm and a specific operating
temperature ϑ, the uncertainty uv is equal to uδ(ϑ).

Another uncertainty contribution should be added in 
the evaluation of uv in the case of an unknown operating 
temperature of the calibrated voltmeter in a given range. 
As an example, let us assume that during a measurement 
process after calibration the operating temperature may 
assume a constant, though unpredictable value in the range 
18◦

C ≤ ϑ ≤ 28◦
C. This means that the best estimate of the 

correction δ¯ (ϑ) to be applied in (5) is now unknown. 
Following the GUM probabilistic approach, the only way 
to include this contribution to uncertainty is to consider an 
additional random contribution in the evaluation of uv. In 
particular, the additional contribution is obtained by 
considering a uniform PDF of width:

 2∆δ 
= δ¯ (28◦

C) − δ¯ (18◦
C) (6)

The main problem with this approach is that, both for 
fixed and unknown operating temperatures, the resulting 
PDF of v is unknown and, therefore, the confidence for 
which v is supposed to lie in the interval [v − K · uv, v + K · 
uv] is unknown, where K is the coverage factor. This 
confidence may be determined by referring to the central 
limit theorem (CLT), even if few input variables have been 
combined. If an higher accuracy in the uncertainty 
evaluation is desired, Monte Carlo (MC) simulations 
should be considered, as suggested by GUM supplement 1 
[2]. In this case, the samples of v are directly obtained and 
they provide an estimate of the PDF of v. In Sec. 4.3, this 
PDF will be transformed into an equivalent PD [8] that 
will be compared with the ones obtained following the 
RFV approach. 

4.2 RFV approach 

The calibration procedure can be also modeled following 
the RFV approach. Considering the uncertainty 
contributions and associated PDFs discussed above, RFVs 
can be associated with vS and vDUC (ϑ), as shown in Fig. 3 
and 4, respectively. Since only random contributions are 
considered for vDUC (ϑ), its RFVs are composed by the sole 
random PDs rvDUC|ϑ.

Figure 3. RFV associated with vS .

vDUC −v¯S [μV] Figure 4. 

RFVs associated with vDUC (ϑ).

Due to the uncertainty presence, for each temperature 
ϑ, an RFV shall be associated with δ(ϑ) given by the 
difference between the RFVs associated with vS and

Figure 5. RFVs associated with δ(ϑ).

vDUC (ϑ). The resulting internal and external PDs rδ|ϑ 

composing these RFVs are shown in Fig. 5.
The PDs rδ|ϑ can be usefully employed to obtain, for a 

given measured voltage vm and temperature value ϑ, the 
PDs of the corrected voltage values v. In fact, according to 
(5), the PDs rv|(vm,ϑ) can be simply obtained, as:

 rv|(vm,ϑ) = rδ|ϑ (v − vm(ϑ)) (7)

As an example, the RFV of v for specific values vm = 
9.99990V and ϑ = 23◦

C is shown in Fig. 6 (red lines). This 
figure proves that, after the correction, the most possible 
value of v is, as expected, ¯vS .

vS ¯̄̄vS [[μV]
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Figure 6. RFV (red lines), PD induced by MC simulations (black 
dashed lines), and confidence intervals provided by GUM 
approach and CLT (magenta lines) associated with v for ϑ = 23◦

C.

1

 0.5

0
 8

18 23 28 38
ϑ [◦ C]

Figure 7. RFV associated with ϑ

The availability of PDs rv|(vm,ϑ) allows one to include in 
the accuracy estimate the effect of an unknown operating 
temperature in a given range. A uniform PD expressing the 
total ignorance about temperature in the range 18◦

C ≤ ϑ ≤ 
28◦

C can be associated with ϑ, as shown in Fig. 7.

According to [16], a principle can be followed to include 
the information provided by rϑ in the accuracy estimate:

rv|vm = supTmin rv|(vm,ϑ),rϑ (8) ϑ

i.e. rv|vm are the marginal PDs of the joint PDs between 
rv|(vm,ϑ) and rϑ [16]. The resulting PDs rv|vm are shown in 
Fig. 8 (green lines). Of course, an unknown operating 
temperature in a given range produces an increment of the 
non-random uncertainty contributions.

Figure 8. RFV (red lines), PD induced by MC simulations (black 
dashed lines), and confidence intervals provided by GUM 
approach and CLT (magenta lines) associated with v for 18◦

C ≤ 
ϑ ≤ 28◦

C.

4.3 Comparison 

The results obtained about the possible corrected values v 
following the GUM approach and considering the CLT, 
following the MC approach, and applying the RFV 
approach, are compared in Figs. 6 and 8. In particular, for 
the MC simulations, equivalent PDs of v are obtained 
(black and blue dashed lines), while for the GUM and CLT 
approach, the 68% and 95% confidence intervals are 
shown (magenta and cyan horizontal lines). To simplify 
the comparison, the 68% and 95% confidence intervals 
obtained following the thee approaches are reported in 
Tables 3 and 4. For the RFV approach, type-2 confidence 
intervals are obtained. 

Table 3. Confidence intervals of v for ϑ = 23◦
C.

68% conf. int. [μV] 95% conf. int. [μV]

CLT [-21, 21] [-43, 43]
MC [-24, 24] [-39, 39]
RFV [[-32, -23],[23, 32]] [[-50, -32],[32, 

50]]
Table 4. Confidence intervals of v for 18◦

C ≤ ϑ ≤ 28◦
C.

68% conf. int. [μV] 95% conf. int. [μV]

CLT [-22, 22] [-44, 44]
MC [-24, 24] [-40, 40]
RFV [[-37, -28],[28, 37]] [[-55, -38],[38, 

55]]
When a known temperature ϑ = 23◦

C is considered
(Fig. 6 and Table 3), the MC and RFV approaches provide
compatible results. In fact, all the MC confidence intervals 
fall inside the RFV type-2 confidence intervals. In this 
respect, the RFV approach leads to a more informative 

result since it considers the different random and non-
random nature of the contributions to uncertainty, thus 
providing an uncertainty estimate due to the sole non-
random effects (narrowest confidence intervals) and an 
estimate due to all effects (largest confidence intervals). 
On the other hand, the GUM and CLT approach provides 
only approximate results. 

When an unknown temperature in the range 18◦
C ≤ ϑ 

≤ 28◦
C is considered (Fig. 8 and Table 4), the MC and RFV 

approaches provide different results. This is due to a 
different representation of the available knowledge about 
the unknown temperature. Following the GUM and CLT 
approach and the MC approach, the effect of an unknown 
temperature is modeled as an additive random 
contribution. However, the effect of an unknown 
temperature is not random, but systematic, since it 
produces a (unknown) deviation of the most possible value 
of the correction δ¯ (ϑ). Moreover, following these 
approaches, a specific PDF (uniform) is associated with 
temperature, even if the knowledge about the specific PDF 
is not available, as in the considered example. On the other 
hand, the systematic nature and the unknown PDF of 
temperature are correctly represented by following the 
RFV approach. According to Fig. 8 and Table 4, when the 

v ¯̄̄vS [[μV]
-80 -40 40 8008
0
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1

0
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GUM and CLT approach and the MC approach are 
erroneously applied, an underestimate of uncertainty may 
be obtained. 

5 Conclusions 
The application of the RFV approach to uncertainty 
evaluation in two practical examples has been considered 
by this paper and compared with the results provided by 
the application of the GUM and its supplement 1. 

The obtained results confirm that the RFV approach 
extends the purely probabilistic GUM approach and 
allows one to handle and combine also the contributions to 
uncertainty given by uncompensated systematic effects, 
when the only available knowledge related to these 
contributions is an interval into which they are supposed 
to lie. 

Therefore, the considered examples confirm that the 
RFV approach is a promising way to evaluate uncertainty 
in several practical applications when the systematic 
effects are not completely known and, hence, cannot be 
compensated for. 
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