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ABSTRACT
This demo showcases some of the results obtained by the GreenEyes
project, whose main objective is to enable visual analysis on
resource-constrained multimedia sensor networks. The demo fea-
tures a multi-hop visual sensor network operated by BeagleBones
Linux computers with IEEE 802.15.4 communication capabilities,
and capable of recognizing and tracking objects according to two
different visual paradigms. In the traditional compress-then-analyze
(CTA) paradigm, JPEG compressed images are transmitted through
the network from a camera node to a central controller, where
the analysis takes place. In the alternative analyze-then-compress
(ATC) paradigm, the camera node extracts and compresses local
binary visual features from the acquired images (either locally or in
a distributed fashion) and transmits them to the central controller,
where they are used to perform object recognition/tracking. We
show that, in a bandwidth constrained scenario, the latter paradigm
allows to reach better results in terms of application frame rates, still
ensuring excellent analysis performance.

Index Terms— Binary Local Visual Features, Visual Sensor
Networks, ARM, Object Recognition, Object Tracking

1. INTRODUCTION

The integration of low-power wireless networking technologies
such as IEEE 802.15.4-enabled transceivers with inexpensive cam-
era hardware, has enabled the development of the so-called visual
sensor networks (VSNs). Due to their flexibility and low-cost, VSNs
have attracted the interest of researchers worldwide in the last few
years, and are expected to play a major role in the evolution of the
Internet-of-Things (IoT) paradigm with applications such as video
surveillance, object and face recognition, object tracking and many
others. Such visual tasks are typically accomplished through the
extraction and analysis of global and local features from the pixel
domain content: thus, they can be implemented in different ways
in the VSN, depending on where in the network the task of feature
extraction is performed.

The traditional compress-then-analyze (CTA) approach relies on
a local compression (JPEG / H.264) of the acquired images or image
sequences at the camera sensor, which are then delivered through
the wireless sensor network to a central controller that extracts the
features and performs visual analysis. This operating paradigm,
sketched in Figure 1(a), is referred to as compress-then-analyze.
The bitstream flowing in the network includes the compressed and
possibly lossy pixel-domain representation of the acquired image.
As a consequence, depending on the amount of compression, the
accuracy of the final analysis task might be significantly impaired.
Moreover, several works in the past demonstrated that multi-hop im-
age transmission in VSNs results in high latency and low application
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Fig. 1. The two different approaches to perform object recognition
in visual sensor networks

frame rates, due to the struggling between bandwidth availability
and requirements [1]. Moreover, when only the result of the visual
analysis matters, transmitting image or video data retaining a pixel-
level representation is inefficient in terms of the computational and
network resources used.

For all these reasons, the GreenEyes project considers an alter-
native approach where the bitstream flowing in the visual sensor net-
work is transformed by some sort of local processing which extracts
and encodes visual features, rather than compressing and transmit-
ting a representation of the sensed images in the pixel domain. We
call this approach analyze-then-compress (ATC) (Figure 1(b)). In
this approach, image features are extracted by visual sensor nodes,
encoded, and then delivered to the final destination(s) in order to
enable higher level visual analysis tasks.

In this demo we showcase an efficient implementation of the
ATC paradigm on a real visual sensor network testbed, and we
demonstrate its benefits compared to the traditional CTA paradigm
in a bandwidth-limited scenario. We also show several key results
of the GreenEyes project such as binary features encoding and dis-
tributed features extraction among neighboring nodes. The rest of
the paper is organized as follow: scientific details are provided in
Section 2, while Section 3 describes the used hardware and the user
interface. Some conclusions are drawn in Section 4.

2. TECHNICAL DESCRIPTION

The use of the ATC approach constitutes a novel paradigm shift
in the field of VSNs. With the proposed demonstrator, we aim at
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showing that ATC is indeed a viable option to enable higher frame
rates compared to CTA in the case of a bandwidth limited scenario.
We demonstrate several novel solutions proposed by the GreenEyes
project:

1. Energy-efficient features extraction: While for CTA the com-
putational effort is limited to the compression (e.g., JPEG) of the
acquired images, the complexity of the feature extraction algo-
rithms at the base of ATC may be critical. In the last few years,
efficient algorithms for extracting compact binary features have
been proposed [2, 3], in order to decrease the overall computa-
tional complexity. In this demo we leverage a recent work of ours
aimed at optimizing the Binary Robust Invariant Scalable Key-
points (BRISK) features extraction algorithm for ARM-based
platform. The BRISKOLA (BRISK Optimized for Low-Power
ARM Architecture)[4] features extraction algorithm, which uses
the ARM specific SIMD instruction set, named NEON and al-
lows to obtain average speed-ups of 1.5 with respect to the
original BRISK implementation. This makes it possible to ex-
tract approximately 50 BRISK descriptors from VGA (640×480
pixels) images in less then 50ms on a 720MHz ARM CPU.

2. Lossless coding for binary features: Furthermore, we also
showcase a lossless entropy-coding scheme for compressing the
extracted BRISK features [5], which achieves a coding gain
around 20% for 64-bits descriptors. As a consequence, 50
BRISK descriptors will generate a bitstream constituted of ap-
prox. 2.5 kbits. For comparison, a poor JPEG compression
(quality factor Q=20) of a VGA image results in about 10 kbits
of data.

3. Lossy keypoints location coding: Location information of key-
points can be used to check geometric consistency of the descrip-
tors and improve the retrieval performance in terms of accuracy.
Since keypoints tend to cluster around particular structures of the
image, it is possible to exploit this fact using a spatial grid based
quantization and arithmetic coding technique as proposed by the
MPEG compressed descriptor visual search (CDVS) framework.

4. Distributed features extraction: The camera node may also
leverage the presence of several neighboring nodes to distribute
the task of feature extraction, in order to reduce the overall pro-
cessing time through offloading. In this demo we also showcase
for the first time a practical way to achieve minimum processing
time for features extraction in a distributed fashion, giving birth
to a distributed-analyze-then-compress (DATC) paradigm. In the
proposed solution the camera node uses prediction to optimally
allocate slices of the image to cooperating nodes for feature ex-
traction [6]. Each cooperator performs the features extraction al-
gorithm in parallel, thus minimizing the overall processing time.
The implemented solution is also able to automatically tune the
number of cooperators to use and the dimension of each slice
based on real-time network conditions and based on the image
content.

3. IMPLEMENTATION

With reference to Figure 2, the demonstration is built on the follow-
ing equipment:
• Visual sensor node: a battery-operated 720MHz ARM Beagle-

Bone Linux computer which is geared with a Logitech USB cam-
era to capture still images; the visual sensor node is also attached
to a IEEE 802.15.4-compliant sensor node (TelosB platform or
similar) to remotely transfer the visual content through low-power
wireless links.
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Fig. 2. Visual sensor node operational modes. Switching between
CTA, ATC or DATC is remotely controlled by the user. The com-
pressed multimedia data from the ATC/DATC or CTA paradigm is
sent to a central controller where it is decoded and used to perform
object recognition/tracking.

• Cooperator nodes: several battery-operated BeagleBone Linux
computers similar to the visual sensor node but without sight ca-
pabilities. This type of nodes is used to implement the DATC
paradigm.

• Network infrastructure: a network of battery-operated IEEE
802.15.4-compliant TelosB sensor nodes which is used to route
the visual information to a central controller.

• Central controller: a laptop with IEEE 802.15.4 communication
capabilities to receive the multimedia content transferred by the
visual sensor node and to perform visual analysis.

The visual sensor node The camera (visual) sensor node is able
to to operate following the CTA, ATC and the DATC paradigms. For
CTA, the visual sensor node implements the standard JPEG com-
pression algorithm and transmits the compressed pixel-domain data.
In the ATC case, the BRISKOLA features extraction algorithm is
used to extract binary local visual features. Moreover, the sensor
node offers the possibility to encode the extracted features following
the approach mentioned in Section 2. In the DATC case, the camera
node splits the acquired image into N vertical slices, where N is the
number of cooperators used. Each slice is then transmitted and as-
signed for processing (keypoint detection and descriptor extraction)
to a cooperating node, where features extraction is performed. Fi-
nally, features are transmitted back to the camera node. Note that N
may be smaller than the total number of neighboring nodes present
in the network, as the DATC controller will automatically select the
optimal number of cooperators based on the actual network condi-
tions.

The central controller The data received at the central controller
(either in CTA or ATC/DATC mode) is decoded and used to perform
two different visual analysis tasks: object recognition and track-
ing. The central controller implements a graphical user interface
which provides a highly interactive remote controller of the visual
sensor node. The user can switch on the fly between the operating
paradigms (CTA, ATC or DATC) and for each paradigm different
parameters may be changed. As far as the CTA case is concerned,
when an image is received by the controller, it is displayed along
with the positions of the detected keypoints (Figure 3(a)). The user
can select the JPEG quality factor in order to control the size of the
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Fig. 3. Graphical user interface of the demonstration. (a) CTA
paradigm: a JPEG compressed image is transmitted to the controller
for recognition. (b) ATC paradigm: only a set of local visual features
are remotely transmitted, ensuring recognition at higher frame rates.

bitstream generated by the camera node. As for the ATC case, the
keypoints associated to the received features are displayed (Figure
3(b)). The user can select different detection thresholds and the max-
imum number of features to be transmitted. Moreover, the user in-
terface provides a switch for enabling/disabling entropy-coding of
features descriptors. In case DATC is activated, the user can select
manually how many cooperators to use for offloading the features
extraction task, or trigger an automatic selection of the best number
of cooperators to use.

The received features, in the ATC case, or the features extracted
from the received JPEG image, in the CTA case, are matched against
a database of labeled features, so that object recognition can be per-
formed. In particular, the demo experiment will showcase a clas-
sical object recognition task, with the central controller being able
to recognize the type of object which is seen by the visual sensor
node. The result of the recognition is displayed on the user inter-
face. In addition, either in CTA or ATC mode, a recognized object
can be tracked along time using a tracking-by-detection algorithm,
in which the target object is detected frame by frame, i.e. the object
location is estimated in every frame independently. This type of ap-
proach is suitable for the VSN scenario where only a small amount
of descriptors are transmitted, objects may be occluded or disappear
from the camera view and thus only a part of the target object is
characterized. In this case, the user interface will display a bounding
box that defines the object size and position even if no pixel based
representation is transmitted (ATC mode).

Moreover, the demonstrator estimates and displays the current
frame rate, i.e., the maximum number of images which can be pro-
cessed per unit time, under the different paradigms. As an additional
feature, when the ATC paradigm is active, the graphical user inter-
face offers the possibility of reconstructing an approximation of the
image captured by the camera node starting from the knowledge of
the visual features. In particular, we followed the approach presented
in [7]: in a first stage the received features are matched against the
features of the database; the image is then reconstructed as a com-
position of the image patches, extracted from the database, which
exhibit the highest matching scores.

Application scenario The demonstration scenario is composed of
a LEGO model of a city containing several different objects. The
camera node is mounted on a toy car which is able to move freely
inside the city, in order to recognize and track the different objects.

4. CONCLUSIONS AND FUTURE DEVELOPMENTS

The proposed demo showcases that, in the context of VSNs char-
acterized by a limited transmission bandwidth, the ATC paradigm
outperforms the traditional CTA paradigm in terms of the achieved
frame rate, for the same performance in terms of visual analysis
tasks. Moreover, leveraging the presence of neighboring nodes for
distributing the task of features extraction may lead to notable per-
formance improvements. Future work will focus on aspects related
to multiple cameras in the VSN, such as inter-view features encod-
ing. We also plan to extend the comparison between CTA and ATC
to the case where temporal correlation between acquired images is
exploited.

Video demo A detailed video describing the demonstrator is avail-
able at www.greeneyesproject.eu
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