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ABSTRACT

Local visual features are commonly adopted to accomplish analysis
tasks such as object recognition/tracking and image retrieval. Re-
cently, several visual features extraction algorithms tailored to low-
power architectures have been proposed, in order to enable image
analysis on energy-constrained devices such as smart-phones or Vi-
sual Sensor Networks (VSN). In this work, we dissect and analyze
BRISK, a state-of-the-art low-power visual feature extractor, in or-
der to evaluate the impact of its individual building blocks on the
overall energy consumption. For each building block, we propose a
solution to limit the energy consumption without affecting the over-
all analysis performance. The resulting BRISKOLA (BRISK Opti-
mized for Low-power ARM architectures) feature extractor exhibits
energy savings up to 30% with respect to the original implementa-
tion.

Index Terms— Local Visual Features, BRISK, Visual Sensor
Networks, ARM

1. INTRODUCTION

In the last few years, we have assisted to an enormous prolifera-
tion of battery-operated intelligent devices capable of sensing and
analyzing visual data from the environment. Besides smart-phones,
many other examples can be mentioned, such as unmanned aerial
vehicles and visual sensor networks. The latters are expected to play
a major role in the Internet-of-Things paradigm, by supporting ap-
plications such as ambient assisted living, environmental monitoring
and many other scenarios were image/video analysis are commonly
employed. The majority of these visual analysis tasks is carried out
by extracting a set of visual features from the pixel-domain content
by means of specialized computer vision algorithms. Such visual
features are then further processed in order to obtain a semantic rep-
resentation of the original visual content, e.g., by recognizing the
objects present in the scene or through the detection of a particular
event occurring in the scene.

Energy efficiency is a major issue in this kind of applications.
Indeed, especially when the application scenario requires to sense,
process and transmit visual data, a careful selection of the underlying
hardware and software tools is of paramount importance for meeting
specified lifetime requirements. In the field of visual features extrac-
tion, many works in the past tried to alleviate the energy burden of
the SIFT algorithm [1], widely accepted as a gold standard. Alterna-
tive algorithms such as SURF [2] heavily reduce the complexity of
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SIFT, with little impact on the discriminative power of the extracted
features. Recently, very low complexity algorithms were presented
for detecting features in an image (FAST [4], AGAST [5]) and for
obtaining a fast, binary representation of such features (BRIEF [6],
ORB [3], BRISK [7], FREAK [8]). The interested reader may re-
fer to [9] and [10] for detailed evaluations and comparisons of the
existing visual features algorithms, both in terms of their complex-
ity as well as their accuracy and efficiency. In this paper, we focus
on BRISK, which shows a performance approaching that of SIFT
at a fraction of its computing cost. Our aim is to understand the
complexity of each BRISK building block and propose modifica-
tions to further limit the energy expenditure, in the specific case
in which the the target hardware platform is based on ARM ar-
chitecture, as it is the case of many today’s smart-phones and vi-
sual sensor network platforms. The result of our optimizations is
named BRISKOLA (BRISK Optimized for Low-power ARM archi-
tectures), an improved version of BRISK which is made publicly
available for download1. This paper is organized as follows: in Sec-
tion 2 we review the main building blocks of the BRISK algorithm,
analyzing experimentally their impact on the total energy expendi-
ture. In Section 3 we propose, for each building block, an energy-
aware optimization and show the obtained energy savings. In Sec-
tion 4 the original implementation and the proposed optimization are
compared in a rate-energy framework and finally, in Section 5, we
conclude the paper and spot future research directions.

2. DISSECTING BRISK

The Binary Robust Invariant Scalable Keypoints (BRISK) algorithm
was proposed by Leutenegger et al. in 2011 as an alternative for
high-efficient local visual features extraction. Like its well-known
predecessor (e.g., SIFT, SURF), the algorithm follows a two-steps
process: in the detection step, a scale-invariant detector identifies
salient points (keypoints) across both the spatial and scale dimen-
sions. Then, for each detected keypoint, the BRISK descriptor pro-
duces a fixed-length binary representation by concatenating the re-
sults of pairwise brightness comparisons obtained using a specific
sampling pattern. In the following we analyze in details these two
building blocks, focusing on the energy-critical aspects which are
the subjects of our optimizations.

2.1. BRISK detector

The BRISK detector is a scale-invariant version of the FAST [4] key-
point detection. FAST is based on the Accelerated Segment Test
(AST), which classifies a candidate point p (with intensity Ip) as a
keypoint if n contiguous pixels in the Bresenham circle of radius 3

1http:\\www.greeneyesproject.eu
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Fig. 1. (a) CPU processing time and (b) percentage of CPU usage of
the individual BRISK building blocks on a SVGA image (1024x768
pixels)

around p are all brighter than Ip + t, or all darker than Ip − t, with
t a predefined threshold. Thus, the highest the threshold, the lowest
the number of keypoints which are detected and vice-versa. Each
keypoint is finally given a score s, defined as the largest threshold
for which p is classified as a keypoint.

2.1.1. Scale-space pyramid generation

Similarly to SIFT and SURF, scale-invariance is achieved in BRISK
by building a scale-space pyramid consisting of a pre-determined
number of octaves and intra-octaves. Each octave is formed by pro-
gressively half-sampling the original image, while the intra-octaves
are obtained by downsampling the original image by a factor of 1.5
and by successive half-samplings. The original BRISK implemen-
tation from the authors2 uses 4 octaves and shows high computation
performance due to the use of Intel SSE2 and SSE3 expressions con-
cerning the halfsampling as well as the 2/3 downsampling.

2.1.2. Keypoints detection

Once the scale-space pyramid is built, the FAST detector is applied
on each octave and intra-octave separately to identify potential re-
gions of interest. Each candidate keypoints is subjected to a non-
maxima suppression in the scale-space, by comparing its score with
the score of the 8 neighboring pixel in the same layer, and in the
layers above and below. The candidate point is marked as keypoint
if its score s is higher than the scores of all its neighbors. The key-
point score is considered as a continuous quantity in both the spatial
and scale dimensions: in order to perform non maxima suppression,
first saliency maxima are obtained with a 2D parabolic least-squares
fitting in each layer separately. Then, the obtained values are inter-
polated with a 1D parabola in the scale dimension, to obtain the final
scale estimate σ. As a final step, the location of the keypoint is ob-
tained by re-interpolating the image coordinates between the patches
in the layers next to the original scale.

2.2. BRISK descriptor

Similarly to other binary descriptors [6] [8], a BRISK descriptor is
computed for each detected keypoint by concatenating the results of
brightness comparison tests. The tests derive from a circular sam-
pling pattern centered in each keypoint location.The pattern is com-
posed by N sampling points pi ∈ R2, i = 1, . . . , N , defined by the
set:

A = {(pi,pj) ∈ R2 × R2|i < N ∧ j < N ∧ i, j ∈ N}. (1)

2http://www.asl.ethz.ch/people/lestefan/personal/BRISK

To achieve scale and rotation invariance, before computing the final
descriptor the sampling pattern is scaled according to the estimated
scale σ and rotated according to the estimated orientation of the par-
ticular keypoint, θ.

2.2.1. Orientation estimation

Let I(pi, ρi) denote a smoothed intensity value obtained by aver-
aging the pixel values at locations around pi. Although different
averaging filters can be used, the publicly available implementation
of BRISK adopts a simple box mean filter with floating point bound-
aries and side length equal to ρi, which depends on the distance from
the center of the sampling pattern. To estimate the orientation of a
patch, BRISK computes the local gradient for each one of the so-
called long-pairs, defined as

L = {(pi,pj) ∈ A|‖pj − pi‖ > δmin}, (2)

and estimate the overall pattern direction by computing the arctan-
gent of the average of the local gradients.

2.2.2. Descriptor computation

After scaling and rotating the sampling pattern, it is possible to com-
pute up to N(N − 1)/2 binary comparisons, i.e., one for each pair
in A. That is,

b =

{
1, I(pj , ρj) > I(pi, ρi)
0, otherwise (3)

BRISK uses the set of short pairs in the sampling pattern to compute
the descriptor, which are defined as:

S = {(pi,pj) ∈ A|‖pj − pi‖ < δmax}. (4)

The threshold δmax is set so that the final descriptor size is 512 bits.
Note that the descriptor dimension may be tuned by properly select-
ing how many and which pairs to compare [11].

2.3. Energy analysis

To understand the computational weight of each step in the BRISK
pipeline, we have run a series of tests on a BeagleBone embedded
computer. The BeagleBone platform features an ARM Cortex-A8
processor, with 256 MB of DDR2 RAM and is capable of running a
Linux based operating system, such as Ubuntu. Due to the possibil-
ity of stacking on top of the main board several additional interfaces
such as a camera and a wireless radio communication interface (e.g.,
WiFi, Zigbee), the Beaglebone is particularly suited as a reference
platform for Visual Sensor Networks. Moreover, it shows very low
power consumption, limited to 1.75 W at 700 MHz [12], and has
the possibility of being battery operated. The tests were executed on
images with different resolutions and varying the BRISK threshold
t, which controls the number of keypoints which are detected and
consequently the number of descriptors produced. Figure 1 shows
the computational complexity of each step of the BRISK algorithm
for a SVGA input image (1024x768 pixels) at different detection
thresholds. As one can see, at low thresholds (when the number of
detected keypoints is high), description is the most intensive phase
(constituting up to 78% of the total processing time). Conversely,
at high thresholds (when the number of detected keypoints is high),
detection is the is the most intensive step. Overall, the keypoint de-
tection step takes about one fifth of the total time to be executed. We
repeated the experiment also for different image resolutions, obtain-
ing similar results.
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Fig. 2. (a) Speedup obtained with the NEON implementation of the
scale-space pyramid generation routines (b) Total detection speedup
including the NEON optimization and the proposed non-maxima
suppression method

3. OPTIMIZING BRISK

In this section, we introduce an optimization for each building block
of the BRISK algorithm and we show the corresponding speed-ups
and energy savings obtained on a BeagleBone platform. The main
assumption is that the consumed energy is directly proportional to
the time spent during the computation. Thus, reducing the pro-
cessing time will reduce the energy consumption by the same fac-
tor, as long as the CPU frequency remains fixed during the process-
ing time3. The resulting modified algorithm is named BRISKOLA
(BRISK Optimized for Low-power ARM Architectures).

3.1. BRISKOLA Detector

3.1.1. Scale-space pyramid generation

The original implementation from the authors of BRISK uses In-
tel SSE instructions to optimize the computation of the scale-space
pyramid. On ARM architectures such optimizations cannot be used
and the routines responsible for the pyramid constructions must be
converted to standard C language4, with a clear loss in performance.
Hence, as a first optimization we completely rewrote the pyramid
generation routines in order to use ARM specific SIMD instruction
set, named NEON. NEON is included in all Cortex-A8 devices (in-
cluding the BeagleBone) and features a comprehensive instruction
set, separate register files and independent execution hardware. Fig-
ure 2(a) shows the speedup obtained by our NEON implementation
of the scale-space pyramid generation routines with respect to the
standard C one, for what concerns the keypoints detection step. As
one can see, we obtained speedups from 1.1 to 1.5 times, depending
on the test configuration. This optimization is in fact more effective
at high thresholds and for high image resolution, i.e., when the im-
pact of generating the scale-space pyramid is high with respect to the
actual keypoints detection process.

3.1.2. Keypoints detection

As explained in Section 2.1.2, for each candidate keypoint a non-
maxima suppression step is performed in a scale-space volume of
pixels. The score of the candidate keypoint is compared to the score
of its 8 neighbors in the same layer, and to the scores of the maxima
in the layers above and below. Such maxima are obtained after a 2D
parabolic interpolation in space. We observed that the interpolation

3we used the cpufreq tool on the BeagleBone to fix the CPU speed to 700
MHz

4as it is done for the BRISK version included in the latest OpenCV release
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Fig. 3. MAP comparison of the original implementation and the
proposed modification for the non-maxima suppressio step on the
ZuBuD dataset

operations are particularly intensive, and constitute up to 15% of the
total detection time. In a scenario where energy is scarce, such as
the one envisioned by VSNs, the cost of these interpolations may
be too high, especially when the position of each keypoint does not
need to be known with fine sub-pixel accuracy. In BRISKOLA, we
propose to perform non-maxima suppression in a simpler way. We
avoid the 2D interpolation in space on the layers above and below
the selected one and we compare the score of the candidate keypoint
with the value obtained by simply picking the scores at the same
location in the layers above and below. This modification clearly
impacts on the final detection results as a keypoint may now be re-
jected or accepted due to the different result of the non-maxima sup-
pression step. Moreover, it’s location may change due to the final re-
interpolation step, which now operates on different maxima values.
To quantify the impact of this change on the analysis performance,
we set up an image retrieval pipeline based on the ZuBuD building
images dataset [13] and we computed the Mean of Average Precision
over a set of image queries when using the original BRISK algorithm
or our proposed modification at different detection threshold. As one
can see from Figure 3, the proposed optimization obtains even bet-
ter performance than the original BRISK implementation. The final
speedup obtained for the detection process, including the scale-space
pyramid generation with NEON instruction and the proposed modi-
fication of the non-maxima suppression step is illustrated in Figure
2(b). As one can see, this latter optimization allows to increase the
speedups at low thresholds and low resolutions, now in the range of
1.25 - 1.3 times with respect to the original implementation.

3.2. BRISKOLA Descriptor

3.2.1. Descriptor computation

For each detected keypoint, the original implementation of BRISK
produces a 512-bits descriptor by concatenating the results of the in-
tensity comparisons of the short pairs, as explained in Section 2.2.2.
However, one may want to change the length of each descriptor,
e.g, to trade-off bandwidth with accuracy [11], or to optimize the
rate-accuracy behavior of the application. In [14], we introduced
the concept of internal allocation for visual analysis tasks such as
object recognition, which states that the optimal descriptor length
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Fig. 4. (a) Speedup obtained by computing the smoothed intensity
values only on the input pairs (b) Speedup obtained including the
removal of the rotation estimation process

changes as the available bandwidth increases. In a nutshell, when
the available bandwidth is low, the optimal strategy is to perform ob-
ject recognition using few long descriptors. Conversely, as the avail-
able bandwidth increases, the optimal rate-accuracy point is reached
using many short-sized descriptors. BRISKOLA is designed to ef-
ficiently produce variable length descriptors through the following
two modifications with respect to the original BRISK implementa-
tion:

• Instead of tuning the descriptor length via a distance thresh-
old as done in BRISK, in BRISKOLA it is possible to di-
rectly specify the intensity pairs to use in order to build the
descriptor. Such pairs may be learnt according to different
methods [11].

• As explained in Section 2.2.2, the comparisons are performed
on smoothed intensity values, obtained through box filters. In
the original BRISK implementation, such filtering operations
were performed on all the points in the pattern. Conversely, in
BRISKOLA we leverage the knowledge of the input pairs to
compute the smoothed intensity values only on those points
which are effectively used in the descriptor computation. Fig-
ure 4(a) shows the speedup obtained using the proposed opti-
mization: as one can see, for short descriptors (i.e., less than
100 bits/descriptor), notable speedups may be achieved.

3.2.2. Orientation estimation

As a last thing, we analyzed the computational cost of the orienta-
tion estimation, which is needed for applications which require in-
variance to rotation. We observed that this is a highly consuming
process: Figure 4(b) the total description speedup when the orien-
tation estimation process is disabled. As one can see, it is possible
to obtain a speedup in the order of 2 to 3 times for short descriptors.
Note that for Visual Sensor Networks application, where cameras are
usually fixed (e.g., attached on walls/ceilings/light posts) rotation in-
variance is not a strict requirements and may be easily disregarded
without affecting the analysis performance.

4. RATE-ENERGY COMPARISON

In order to understand in a better way the improvement of BRISKOLA
with respect to the original implementation, we have set up an ex-
perimental testbed composed by a BeagleBone-based Visual Sensor
Network. The testbed is responsible for acquiring images, extracting
visual features and transmitting them to a central controller using a
IEEE 802.15.4 compliant radio interface. At the central controller,
these features are matched against a database of labelled features to

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Rate [kB]

En
er

gy
 [J

]

 

 
BRISK
BRISKOLA
BRISKOLA without rotation invariance

Fig. 5. Rate-energy curves for the ZuBuD dataset.

perform object recognition. The input images were taken from the
widely known ZuBud and Oxford dataset. Relying on the concept
of internal allocation, for each image query in the dataset we were
able to obtain the optimal number and length of BRISK/BRISKOLA
features to extract and transmit in order to obtain the maximum ac-
curacy in the recognition task at a determined target bitrate (see [14]
for further details). This allowed us to draw curves in the rate-energy
plane, taking into account both the cost of detecting keypoints from
the input image and the cost of building the descriptor for each
detected keypoints. Energy costs were estimated from the knowl-
edge of the time spent during each phase of the features extraction
process (as shown in Figure 1), by multiplication with the Bea-
gleBone peak power consumption of 1.75 W. Figure 5 shows the
rate-energy behavior for the ZuBuD dataset, i.e., the expected con-
sumed energy for each query at different target bitrates. As one
can see our BRISKOLA implementation outperforms the original
BRISK one, with energy savings in the order of 30%. Similarly,
we also drawn the energy-rate curve corresponding to BRISKOLA
when the rotation estimation was disabled: this time the energy
savings with respect to the original implementation are as high as
60%. We repeated the same experiment also for the Oxford5 dataset
and obtained similar results (which are omitted here for reasons of
space).

5. CONCLUSIONS

In this work we proposed the BRISKOLA visual features extrac-
tor, an optimized version of BRISK tailored to low-power ARM
architectures. The proposed optimization allows to obtain speedups
and hence energy savings in the order of 30% with respect to
the original implementation. Moreover we highligthed that ori-
entation estimation is one of the most energy-consuming task in
rotation-invariant visual features extraction. Future research direc-
tion will study efficient methods for orientation estimation. The
source code of BRISKOLA is publicly available for download at
http:\\www.greeneyesproject.eu.

5http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
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