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Abstract
Yunnan Province, southwest China, has a monsoonal climate suitable for a mix of fire-driven
savannas and fire-averse forests as alternate stable states, and has vast areas with savanna
physiognomy. Presently, savannas are only formally recognised in the dry valleys of the region, and
a no-fire policy has been enforced nationwide since the 1980s. Misidentification of savannas as
forests may have contributed to their low protection level and fire-suppression may be contributing
to vegetation change towards forest states through woody encroachment. Here, we present an
analysis of vegetation and land-use change in Yunnan for years 1986, 1996, 2006, and 2016 by
classifying Landsat imagery using a hybrid of unsupervised and supervised classification. We
assessed how much savanna area had changed over the 3 decades (area loss, fragmentation), and of
this how much was due to direct human intervention versus vegetation transition. We also assessed
how climate (mean annual temperature, aridity), landscape accessibility (slope, distance to roads),
and fire had altered transition rates. Our classification yielded accuracy values of 77.89%, 82.16%,
94.93%, and 86.84% for our four maps, respectively. In 1986, savannas had the greatest area of any
vegetation type in Yunnan at 40.30%, whereas forest cover was 30.78%. Savanna coverage declined
across the decades mainly due to a drop in open parkland savannas, while forest cover remained
stable. Savannas experienced greater fragmentation than forests. Savannas suffered direct loss of
coverage to human uses and to woody encroachment. Savannas in more humid environments
switched to denser vegetation at a higher rate. Fire slowed the rate of conversion away from
savanna states and promoted conversion towards them. We identified remaining savannas in
Yunnan that can be considered when drafting future protected areas. Our results can inform more
inclusive policy-making that considers Yunnan’s forests and savannas as distinct vegetation types
with different management needs.

© 2021 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

Savannas are ecosystems characterized by a ground
layer dominated by grasses and an open canopy
of trees that allows direct sun to penetrate to
the understory (Scholes and Archer 1997). Com-
petition between trees and grasses asymmetrically
favours trees, therefore, savannas are dependent on
disturbance to remove tree biomass and open up
canopies, either by fire (Higgins et al 2000), herb-
ivory (Sankaran et al 2013), or drought (Fensham
et al 2009). In Asia, savannas are extensively found
across the drier parts of the monsoonal belt of its
tropical and subtropical regions (Ratnam et al 2016).
Fossil and molecular evidence indicate that savan-
nas and their associated species have been widely
present in the region since at least the early Pleis-
tocene (Shen et al 2009, Edwards et al 2010, Zhang
et al 2011, Ratnam et al 2016, Chu et al 2021). Addi-
tional pieces of evidence include stochastic gradient
boosting models that predict the existence of savan-
nas in Asia using savanna climate envelopes from
other continents (Ratnam et al 2016) and dynamic
global vegetation models that simulated vegetation
patterns using current climate (Kumar et al 2020,
Scheiter et al 2020); the presence of high endemism
and richness of C4 grass species, which typify savan-
nas (Ratnam et al 2016, Welker et al 2020, Chu et al
2021); and several in situ studies that have charac-
terized the physiognomy, diversity, and fire-adapted
traits of these communities in South and Southeast
Asia (Khaing et al 2019, Nguyen et al 2019, Ratnam
et al 2019).

Our research focuses on the parkland (PRK) and
woodland (WDL) savannas of Yunnan Province in
southwest China (figure 1), an elevated region with
a strongly monsoonal and relatively dry climate (Shi
et al 2017, Shi and Chen 2018) suitable for sustaining
savannas and forests as alternative stable states (Bond
et al 2005). In China, open-canopied PRK savan-
nas were, until quite recently, only formally recog-
nised in the dry valleys that incise Yunnan, and these
have been subject to intense investigation (Jin andOu
2000, Zhu et al 2020). The vegetation outside the dry
valleys of Yunnan was previously classified as ‘forest’
with small patches of treeless grasslands recognised at
higher elevations (Hou 2001). Their classification fol-
lowed the Food and Agricultural Organization of the
United Nations (FAO) definition of forests, in which
vegetation with >10% tree cover is considered forest
(Bastin et al 2017), but it is now well understood that
the tree cover at which savanna switches to forest is
between 60% and 80% (Hirota et al 2011, Staver et al
2011, Griffith et al 2017, Khaing et al 2019). A new
vegetation map of China concluded that much larger
swathes of Yunnan are comprised of vegetation with a
grass-dominated ground layer (Su et al 2020). North-
ern Yunnan is presently dominated by pine and oak
WDL savannas with denser canopies and a ground

layer dominated by C4 grasses, a vegetation widely
distributed across higher elevation tropical Asia (Jin
2002, Ratnam et al 2016). Diversity in the valleys
of Yunnan is well-researched with over 2000 plant
species recorded (Jin 2002) among which there are
at least 188 grass species, of which >80% are C4

(Osborne et al 2014) dependent on open habitats, and
79 species belong to the Andropogoneae clade, which
dominate fire-prone savannas worldwide (Ripley et al
2015). We are unaware of any published community
studies of the savanna vegetation on the tablelands
intervening the valleys. Nevertheless, there is strong
evidence that C4 savannas have been widely present
in Yunnan since at least the early Pleistocene, placing
their existence prior to any possible impact by homin-
ins. The antiquity of the valley savannas is supported
by fossil evidence indicating substantial C4 presence
and a switch from forest to grassy biomes at about
3.4–2Ma (Biasatti et al 2012, Yao et al 2012). A phylo-
geographic study of two commonC4 Andropogoneae
grasses in Yunnan has demonstrated that savannas
have been present extensively across Yunnan in the
valleys and across the intervening tablelands since
the early Pleistocene, but possibly as early as the late
Miocene (Chu et al 2021). At present, land conser-
vation in Yunnan protects the Hengduan Mountains
Biodiversity Hotspot in the northwest and different
forest types found throughout the province (Zhao
et al 2019a). Only one nature reserve has been spe-
cifically gazetted to protect the dry valley PRK savan-
nas of Yuanjiang, and some montane grasslands are
protected in the Hengduan Mountains and in lime-
stone karsts in eastern Yunnan. The vast landscapes
of WDL savannas are not viewed as conservation pri-
orities, and as a result, their rates of loss under human
impacts have not been evaluated.

Numerous assessments of landscape change using
remotely sensed imagery have demonstrated rapid
rates of human-driven vegetation loss in Yunnan (Xu
et al 2007, Liu et al 2014b, Ning et al 2018, Zhang
et al 2019a, 2019b), but these studies have not spe-
cifically assessed the spatiotemporal dynamics of PRK
and WDL savanna coverage at the provincial scale.
In addition, several national environmental policies
have been put in place in China aiming for landscape
protection, but with possible negative consequences
for remaining intact savannas in Yunnan. Firstly, a
national-level fire suppression policy has been effect-
ively enforced since the late 1980s (Yi et al 2017),
thereby limiting the occurrence of fires that are crucial
for suppressing woody vegetation and maintaining
savannas as open ecosystems in more humid envir-
onments (Bond 2019, Fogarty et al 2020). Second,
a national-level ecological restoration project intro-
duced during the 1990s called ‘Grain To Green Pro-
gram’ (GTGP) halted the decrease of forests, which
may have inadvertently led to significant afforestation
of grassland areas in the southwest (Liu et al 2014b).
In addition to direct land-use changes and landscape
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Figure 1.Map of Yunnan Province in southwest China with its autonomous prefectures. Colours indicate altitude; areas shaded
brown are at lower elevation, while those shaded green are on higher elevation.

policies, increased atmospheric CO2 may have been
fertilizing the trees in Yunnan, in turn increasing their
growth rates and causing increased woody encroach-
ment (Buitenwerf et al 2012). Tree growth is sup-
pressed by increased aridity and can be enhanced by
increased temperature when water is not a limiting
factor (Williams et al 2010, Panthi et al 2020), so it
is probable that the changes in density in intact veget-
ation are happening faster in wetter and or warmer
parts of Yunnan.

We analysed vegetation and land-use change
in Yunnan for the period 1986–2016 (30 years of
change) using Landsat imagery, which is the period
over which the fire suppression policy and GTGP
became effective (late 1980s and 1990s, respectively).
Our specific objectives were to understand: (a) how
much of the savanna vegetation had been lost and
fragmented relative to the other major vegetation
type in Yunnan, namely forest, (b) where savanna
changes happened spatially across Yunnan and how
much remained intact, and (c) which environmental
drivers, either natural or anthropogenic, were associ-
ated to the changes in savanna across Yunnan.

2. Methods

To address the above objectives, we had five goals
in our analysis: first was to assess the full extent of
savanna physiognomy in Yunnan in 1986. Secondwas

to quantify the rates of attrition and fragmentation
of savannas versus forests in the province. Third, we
sought to determine whether the savanna vegetation
had undergone woody encroachment by explicitly
defining two savanna vegetation classes that differ in
woody plant canopy cover (PRKs and WDLs), and
then measure the rates of change in these classes as
well as forests (higher woody canopy cover). Fourth,
we tested whether climate variables, fire, and land-
scape accessibility were correlated with changes in
savanna canopy cover and transitions to other veget-
ation (forest) and land cover types. Fifth, aware of the
low level of conservation of savannas in Yunnan, we
identified savannas that have remained mostly intact
over the last 3 decades as potential sites for future pro-
tected areas.

2.1. Generating land cover maps and detecting
inter-decadal changes
Land cover maps of Yunnan were generated for years
1986, 1996, 2006, and 2016, encompassing 3 dec-
ades of change. Since we wanted to classify Landsat
imagery as early as 1986, when no adequate refer-
ence data to train a supervised classifier was avail-
able, we used a hybrid of unsupervised and supervised
techniques combined with knowledge-based inter-
pretation (figure 2; see description of Yunnan and
detailed methods in supplementary (available online
at stacks.iop.org/ERL/17/014003/mmedia)).

3
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Figure 2. Overall workflow of the land cover classification and change analysis.

We first defined nine land cover classes in the
province using a combination of field observa-
tions, expert knowledge coupled with visual inspec-
tion of high-resolution imagery from Google Earth
(www.google.com/earth/desktop, accessed on 5 July
2019) (Olofsson et al 2014), and existing land cover
maps (Liu et al 2003, 2010, 2014b, Xu et al 2005,
Diallo et al 2009, Zhao et al 2012, Lu et al 2015,
Ning et al 2018, Zhang et al 2019a, Su et al 2020).
We defined nine land cover classes, comprised of
non-vegetated classes, namely water bodies (WATs),
snowed regions (SNO), and built-up and bare rock

areas (BURs); non-natural vegetation areas, namely
croplands (CROs), tree plantations (TRPs), and bare
ground (BAG); and natural vegetation areas, which
are forests (FOR), which have closed tree canopies,
and two savanna classes, which have open canopies:
grassy, sparse-canopied PRKs and denser-canopied
WDLs. See supplementary tables 1 and 2 for their full
descriptions.

Image composites used in the classification were
generated for each mapping year from Google Earth
Engine (GEE; http://earthengine.google.com) using
a median ee.Reducer function that composited tier
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1 calibrated top-of-atmosphere reflectance images
obtained by Landsat-5 Thematic Mapper and the
Landsat-8 Operational Land Imager available in the
GEE image collection (Loveland and Dwyer 2012).
The composites were comprised of seven spectral
bands (BLUE, GREEN, RED, NIR, SWIR1, SWIR2,
TIR) and were resampled from the original 30 m
spatial resolution to 100 m using nearest neighbour
method. Five spectral indices, which include normal-
ized difference vegetation index (NDVI), enhanced
vegetation index, soil-adjusted total vegetation index,
normalized difference tillage index, and land surface
water index, were also calculated for each study year
and used to improve classifications (see supplement-
ary S1.3). Each image stack per mapping year con-
tained 12 image layers, consisting of the seven spectral
bands and five indices.

To delimit the classification algorithms only to
vegetation classes, we masked the non-vegetated
classes (WAT, SNO, BUR) from the image stacks.
These classes were separated using their NDVI
(Running et al 1995) and thermal band (Price 1981)
values determined using a decision tree algorithm
(De Alban et al 2018; see supplementary S1.4.1). To
aid in our delineation of regions-of-interest (ROI)
polygons, we first ran unsupervised classification on
the masked image stacks to generate a computer-
automated classified image with 100 clusters in
GRASS GIS (GRASS Development Team 2020). We
then assigned each cluster to the remaining vegetated
land cover classes (both natural and non-natural)
through visual interpretation conducted by cross-
checking the pixels of each cluster with true-colour
(RED-GREEN-BLUE) and false-colour (NIR-RED-
BLUE) image composites, as well as high-resolution
imagery from Google Earth (available for 2006 and
2016) (Olofsson et al 2014).

The resulting maps from the unsupervised classi-
fication were then used to delineate ROIs for super-
vised classification. We performed stratified random
sampling over the pixels from the unsupervised map
to generate 500 points used as guides in drawing the
ROIs. Each ROI (at least 1 km2) was drawn around
the points, with their extents delineated based on
the potential homogeneity of the target land cover
class. When delineating ROI polygons for 1986 and
1996, we utilised additional mask layers generated
from 2016 image statistics to assist in locating TRP
and WDL classes due to challenges in discerning
them during visual interpretation of the older Land-
sat image composites and lack of high-resolution
imagery for those years (see supplementary S1.4.4).
ROIs were then divided for training (70%) and test-
ing (30%).

For supervised classification, we used random
forest (RF) (Gislason et al 2006, Rodriguez-Galiano

et al 2012) (see supplementary S1.4.5 for RF para-
meterisation settings). We performed pixel-based
accuracy assessment on the RF products by gener-
ating confusion matrices for each year, and com-
puted the overall accuracy, user’s and producer’s
accuracies, for each land cover class. We computed
error-adjusted area estimations and the confidence
intervals for each land cover class to quantify estim-
ation uncertainties (Olofsson et al 2013). Vegetation
maps from RF and the non-vegetation maps masked
out earlier were combined, and isolated pixels were
smoothed out using a Majority Filter tool to produce
final maps. The raster operations, supervised classi-
fication, and accuracy assessments were performed
in R (R Core Team 2021), while smoothing was per-
formed in ArcMap (ESRI 2011).

To detect inter-decadal land cover change dynam-
ics, we utilised the final maps to produce cross-
tabulation matrices that summarised the land cover
changes from 1986 to 2016 using the Semi-Automatic
Classification Plugin in Quantum GIS (Congedo
2014). We used the older map as the ‘reference map’
and more recent map as the ‘classification map’ (i.e.
to detect change between 2006 and 2016, we used the
2006 map as ‘reference’ and the 2016 map as ‘classi-
fication’). To visualize the land cover changes, we cre-
ated Sankey diagrams using the networkD3 package
(Allaire et al 2017) in R.

2.2. Assessing the fragmentation and legal
protection levels of savannas and forests
We calculated fragmentation statistics for natural
vegetation classes PRK savanna, WDL savanna, and
forest (FOR) for each mapping year. These included
number of fragments, size of fragments (mean patch
area, largest patch index), geometric complexity
(mean patch shape ratio), physical connectedness
(patch cohesion index), and edge density. These were
calculated using the landscapemetrics package in R
(Hesselbarth et al 2019).

We also determined the level of protection that
each land cover types received in 2016 by calcu-
lating their areal extents within Yunnan protec-
ted areas provided by CAS-RESDC (www.resdc.cn/
data.aspx?DATAID=272, accessed on 16 May 2021).
We also located persistent savanna areas by identify-
ing unchanged pixels of PRK and WDL since 1986,
and subsequently derived the number of decades a
pixel had remained as PRK or WDL.

2.3. Determining drivers of change in savanna
coverage
We conducted logistic regression analyses to assess
whether retention or conversion of savannas to other
land cover types were due to selected environmental
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parameters, including climate (mean annual tem-
perature (MAT), aridity), topography (slope), pres-
ence of fire (hereafter referred to only as ‘fire’), and
accessibility (distance from the nearest road (hereon
referred to only as ‘distance’)). MAT and aridity both
impact plant growth rates (Williams et al 2010, Panthi
et al 2020), and hence rates of vegetation change.
Fire reduces tree biomass, which helps to maintain
open ecosystems such as savannas (Higgins et al
2000, Lehmann et al 2009). Slope and distance both
constrain human accessibility and thus direct human
impacts (Liu et al 2014a, Alphan 2017).

To assess drivers of woody encroachment, we
analysed transitions of savanna to denser vegetation
(PRK to WDL, PRK to FOR, and WDL to FOR).
To assess drivers of fragmentation from land use
conversion, we investigated transitions of PRK and
WDL to/from farmlands and non-vegetation classes.
In these analyses, we lumped together CRO, TRP, and
BAG under one ‘farmland’ class, and BUR, WAT, and
SNO under one ‘non-vegetation’ class. To quantify
land cover change, we reclassified the transitionmaps
into binary according to the transition being analysed.
Pixels that retained their classification in the next time
step were scored ‘0’, while those that transitioned to
another were scored ‘1’.

As we were interested in state changes between
two levels (i.e. 0 and 1) in each analysis, we tested pre-
dictors of land cover transitions using logistic regres-
sion in R. Environmental data of both ‘0’ and ‘1’
pixels were first extracted using the extract() func-
tion of the raster package in R. The pixels environ-
mental data served as predictors, while their land
cover transition scores represented the change vari-
able in the regression models. We used MAT, aridity,
slope, and fire in analysing PRK and/or WDL con-
version to denser-canopied WDL and FOR to test
whether these predictors were responsible for indu-
cing or preventing canopy closure.We added distance
in assessing PRK andWDL conversion to/from farm-
land to investigate whether accessibility influenced
land cover change. In testing PRK and WDL conver-
sion to/from non-vegetation, we used slope, distance,
and fire. We transformed predictors as needed to
approximate normality prior to regression. To assess
the robustness of predictor coefficients, we ran the
model for each type of transition 1000 times using
randomly subsampled equal populations of 1’s and
0’s for each run, and constructed 95% quantile inter-
vals for each coefficient; 95% quantile intervals which
did not overlap zero were considered significant.
The explanatory power for each significant predictor
was computed from the median of all the partial
R-squared values calculated using the partR2 pack-
age (Stoffel et al 2021) across all runs. We analysed
changes across 3 decades (1986–2016) and decadal
changes (1986–1996; 1996–2006; 2006–2016). Ana-
lyses were conducted at 1 km resolution to match
the native resolution of available environmental data.

Sources of environmental data are listed in supple-
mentary S2.

3. Results

3.1. Accuracy assessment
Accuracy for the supervised classification of veget-
ation land cover types were 77.89% ± 1.31%,
82.16% ± 1.19%, 94.93% ± 0.69%, and
86.84% ± 1.06% for the 1986, 1996, 2006, and 2016
maps, respectively (see supplementary table S3). For
PRK savannas, user’s accuracy values (UA) ranged
from 81.4% to 96.8%, while producer’s accuracy val-
ues (PA) were 72.8%–92.3%, with the lowest and
highest values from 1986 to 2006, respectively. For
WDL savannas, UA ranged from 69.7% to 91.8% and
PA ranged from 75.2% to 95.8%.Most of the misclas-
sified PRK pixels belonged to CRO, BAG, and WDLs,
while most of the misclassified WDLs were in PRKs
and FORs, particularly during 1986 and 1996 (see
supplementary table S4 for error matrices). Forest
had high values for both UA (93.3%–99.2%) and PA
(85.5%–97.3%).

3.2. Net changes over 3 decades, 1986–2016
In 1986, the majority of Yunnan was covered by nat-
ural vegetation (figure 3). The combined savanna
classes covered 40.30% of the landscape, with PRK
savannas at 27.09% and WDL savannas at 13.21%,
while FOR was at 30.78%. There were also substan-
tial CROs at 17.73%, while TRPs had low cover at
3.33%. BAG covered 5.38%, whereas BUR was at
1.72%. WATs and SNO regions had the lowest cov-
erage at 0.48% and 0.28%, respectively.

By 1996, savannas had a net increase of 2.26%, as
PRK cover increased by 4.29% and WDL declined by
2.03%. FOR cover increased by 1.69%.CROsdropped
by 4.85%, but BAG increased 1.67%. In 2006, savan-
nas declined slightly due to a 6.32% drop in PRK
areas despite a 5.35% increase in WDLs. Decreases
in FOR (0.92%), CRO (0.74%), and BAG (1.47%)
coverage occurred while TRPs (3.91%) and BURs
(0.27%) increased.

By 2016, PRK savanna coverage substan-
tially declined 8.56%, while WDL savanna slightly
decreased 0.78%, bringing the overall savanna decline
to 9.34%. Forest cover only had a slight decrease
of 0.16%, whereas CRO (2.11%) and plantation
(1.48%) coverage increased. The highest increases in
BAG (4.15%) and BUR (1.30%) were observed this
decade.

3.3. Losses and gains in savanna coverage
Extensive land cover changes were observed in Yun-
nan between 1986 and 2016 (figure 4; see supple-
mentary S5 for the land cover change matrices), and
a total of 316 800 km2 (74.7% of Yunnan’s total land
area) underwent change. The gross gains and losses
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Figure 3. Land cover maps of Yunnan Province, China for (a) 1986, (b) 1996, (c), 2006, and (d) 2016.

Figure 4. Sankey diagram of the land cover transitions in Yunnan Province, China from 1986 to 2016. Nodes indicate the land
cover percentage for each particular time step, while the ribbons depict the transitions between land cover types. Colours follow
that of the land cover map (figure 3). Note: PRK: parkland, WDL: woodland, FOR: forest, CRO: cropland, TRP: tree plantations,
BAG: bare ground, BUR: built-up area and bare rock, WAT: water bodies, SNO: snow.

within each land cover type indicated dynamic trans-
itions throughout the study period. The observed
decline in PRK savanna cover was largely due to
woody cover increases to WDL savanna (5.60%) and
FOR (3.66%), and direct land conversion to CRO
(2.88%), BAG (4.04%), plantations (0.98%) andBUR
(0.31%). Most PRK savanna that was persistent until
2016 was on the eastern and northwest sections of

Yunnan (figures 5(a) and 6). Gains in PRK savanna
were scattered across the upper section of province,
with a concentration of converted WDL savanna and
CRO to PRK savanna in the east (figure 5(b)).

Total WDL savanna coverage was very dynamic.
PersistentWDL savanna was∼6% of 13.21% in 1986,
but the remainder changed substantially mostly due
to tree cover changes between PRK savanna and FOR
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Figure 5. PRK (a), (b) andWDL (c), (d) loss and gain between 1986 and 2016 in Yunnan Province, China. Colours in ‘loss’ figures
(a), (c) depict land cover classes which PRK and WDL transitioned to, while colours in ‘gain’ figures (b), (d) represent classes
from which PRK and WDL gained coverage from.

states, and also through conversion to TRPs in the
south and northeast (figure 5(c) and (d)).

3.4. Fragmentation and protected area coverage
analyses of natural vegetation cover types
Fragmentation generally increased for all natural
vegetation land cover types from 1986 to 2016, but
was more severe for savannas (table 1). The num-
ber of patches increased during this period for PRK
savannas (29.3%), WDL savannas (59.8%), and FOR
(23.9%). Fragment sizes also generally decreased,
most severely for PRK, with mean patch area decreas-
ing 52.9% (from 20.25 ha to 9.53 ha) between 1986
and 2016. Themean patch areas ofWDL (25.3%) and
FOR (17.8%) decreased less. The largest patch index
for PRK also decreased dramatically, from6.84 to 0.33
between 1986 and 2016. In contrast, the largest patch
index values of WDL (0.17 vs 0.15) and FOR (2.78

vs 2.97) had changed less during the same period.
The edge density of WDLs (21.30 vs 29.77) and FORs
(24.08 vs 25.57) increased, but decreased for PRKs
(27.16 vs 25.56). Fragment connectivity of savannas
decreased, with PRK (99.65%–96.23%) experiencing
greater loss than WDL (93.28%–91.87%), whereas it
remained stable for FOR (99.52%–99.43%). The geo-
metric complexity of the fragments, as indicated by
the mean patch shape ratio, was largely stable across
time for savannas and forests.

The protected area coverage analysis indicated
low legal protection percentages for all natural veget-
ation land cover types for 2016. Of the three, FOR had
the most legal protection, with 7.60% (10 127 km2

out of 133 160 km2 total 2016 coverage) inside pro-
tected area boundaries. The savannas had lower
protection, with PRK at 3.09% (2161/70 022 km2),
and WDL at 1.84% (1233/66 824 km2). In addition,
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Figure 6.Map of Yunnan Province, China showing savannas (PRKs and WDLs) with existing protected area boundaries (outlined
in pink) from the Resource and Environment Science and Data Center of the Chinese Academy of Sciences. Colours indicate the
age of savannas, with dark blue depicting savannas with 3 decades (1986–2016) of stability.

most of these nature reserves do not cover the per-
sistent savanna fragments (figure 6). PRK protec-
tion is only 11.96% (2161 km2 out of 18 064 km2

total nature reserve area), while WDL is at 6.82%
(1233/18 064 km2). In contrast, FOR protection is at
56.06% (10 127/18 064 km2), a clear indication that
savannas are underrepresented in most of the protec-
ted areas.

3.5. Drivers of change in savannas
The logistic regression models indicated varying sig-
nificant associations between the different environ-
mental parameters and land cover changes between
and across the 3 decades (table 2). In the PRK savanna
to WDL savanna and FOR transitions, the general
trend in between decades indicated that PRK savan-
nas located in warmer andwetter (more positive arid-
ity index) areas had a greater probability to trans-
ition to denser-canopied vegetation (WDL savanna
or FOR). Although the overall analysis suggested that
PRK in drier areas transitioned to WDL, aridity only

weakly explained the variation (lowest partial R2) in
this case. ForWDL savanna to FOR transitions, WDL
inwetter regions converted to FOR. The effect of tem-
perature differed in between decades; however, the
overall transition suggested that WDL in colder areas
became FOR.While the effect of slope varied per dec-
ade, the overall analyses suggested that PRK in gentler
slopes (negative trend) converted to WDL, and WDL
in steeper slopes (positive trend) converted to FOR.
Fire had a negative effect on transitions to denser can-
opy cover. In the majority of these transitions, MAT
was the predictor explaining the most variation.

Fire was positively related to conversion of WDL
and FOR tomore open PRK andWDL, but the rest of
the predictors had variable effects in these transitions.
The analyses suggested that WDLs in colder, wetter,
and steeper regions converted to PRKs, and that FORs
in drier and flatter places switched to PRK andWDL.
MAT had a generally positive trend across the dec-
ades, suggesting that transitions tomore open vegeta-
tion happened in warmer areas. Overall, FOR to PRK
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Table 1. Fragmentation statistics of PRK savanna, WDL savanna, and FOR cover types for each year.

Land cover
type Year

Number
of patches

Mean patch
area (ha)

Largest patch
index (%)

Mean patch
shape ratio

Edge density
(m ha−1)

Patch
cohesion
index (%)

PRK savanna 1986 510 234 20.25 6.84 1.29 27.16 99.65
1996 411 436 29.18 9.91 1.33 30.27 99.78
2006 438 202 21.87 3.66 1.32 26.68 99.36
2016 659 646 9.53 0.33 1.28 25.56 96.23

WDL
savanna

1986 476 306 10.62 0.17 1.34 21.30 93.28
1996 479 747 8.90 0.02 1.32 19.04 89.40
2006 494 792 12.80 0.26 1.34 24.50 95.89
2016 761 255 7.93 0.15 1.33 29.77 91.87

FOR 1986 331 344 35.60 2.78 1.33 24.08 99.52
1996 303 699 40.93 4.52 1.34 23.57 99.54
2006 360 306 33.48 3.08 1.32 23.75 99.39
2016 410 501 29.26 2.97 1.29 25.57 99.43

transitions happened in colder places, while FOR to
WDL occurred in warmer spots. MAT and aridity
were the most important predictors in explaining
variation.

PRK and WDL that converted to farmlands dur-
ing 1986–2016 were generally in warmer, wetter areas
close to road networks and had no fire occurrence.
PRK that converted to farms were in flatter places,
while WDL that did were in steeper slopes. On the
reverse side, farmlands that became PRK or WDL
were in colder, steeper regions far from roads and had
experienced fire. Moreover, there is a clear trend of
wetter farmlands becomingWDL, while the trend for
PRK is unclear. In these transitions, MAT, aridity, dis-
tance, and slope explainedmost of the variation in the
data.

PRK conversion to non-vegetation areas were also
in gentler slopes and near roads. Transitions to non-
vegetation classes from 1986 to 2006 happened in
colder PRKs. However, the overall transition sug-
gested that PRK in warmer and wetter areas con-
verted to non-vegetation. The overall WDL to non-
vegetation transition had similar results, although
there were insufficient data to analyse inter-decadal
transitions for 1986–2006 due to the small percentage
of WDL areas that were converted to non-vegetation
areas. Conversely, non-vegetation areas that became
PRK and WDL were located in steeper areas and
far from roads. In addition, non-vegetation areas in
warmer areas became WDL overall. Distance and
slope explained most of the variation, whereas fire
yielded non-significant associations.

4. Discussion

4.1. Accuracy
While the overall accuracy numbers we obtained
were acceptable for our analyses and comparable
to other large-scale land cover studies (Brugge-
man et al 2016, Su et al 2020), we observed vari-
ations among decades. We attribute these to the

different locations of the training ROIs used for
each time step, despite ensuring the stability of their
spectral signatures (see boxplots in supplementary
S1.4.3). It was easier to discern between classes for
2006 and 2016, with high-resolution imagery avail-
able to guide ROI sampling, but more challenging
for 1986 and 1996. Nevertheless, the UA and PA
numbers we obtained for PRK and WDL savannas
were well within reasonable range, and thus reli-
able for analysing trends in savanna cover. Focusing
on UA/PA of target land cover classes, which were
savannas in our case, is included in the ‘good prac-
tice’ recommendations for area change and accuracy
assessment (Olofsson et al 2014). The confidence
intervals from the area-adjusted accuracy computa-
tions indicate that misclassified areas only comprise
a small percentage of the total area of the savanna
classes. These misclassified areas were between PRKs
and CRO/BAG (see confusion matrices in supple-
mentary S4), which could be due to similarity in spec-
tral signatures of these classes, as grasses are the main
vegetation in both classes. During field observations,
we noticed some farmlands occur interspersed in
between PRKs, which may have contributed to the
confusion given the 100 m resolution used in the
study. A finer-scale classification, however, would
be less useful as our aim is to depict trends in
savanna dynamics of a large area (∼400 000 km2);
the environmental data are also only available in
coarser resolution, thus, the land cover data would
always be aggregated to accommodate the drivers
of change analyses. We improved the separation of
these classes by including spectral indices in the
classification.

4.2. Dynamic land cover changes in Yunnan
exposed the loss of savanna coverage
Our spatial analyses showed that savannas weremuch
more extensive in Yunnan than previously mapped,
accounting for 40.3% of Yunnan’s land area in 1986,
and that savannas were not only limited to the hot
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Table 2. ANOVA results for generalized linear regression analyses testing whether conversion of land cover types are driven by MAT,
aridity, slope, presence of fire, or distance from roads. To achieve a normal distribution required by the model, aridity and slope were
transformed using square root, while distance from roads was log10-transformed. For each land cover transition, columns under the
time periods list each significant (P < 0.001) predictor’s coefficient sign and partial R2, while ns means not significant, and nd means no
data, thus not included in the analysis.

Overall 1986–1996 1996–2006 2006–2016

Variable Trend Partial R2 Trend Partial R2 Trend Partial R2 Trend Partial R2

PRK to WDL MAT + 0.0359 − 0.0095 + 0.0084 + 0.0536
Aridity − 0.0008 + 0.0027 + 0.0023 ns
Slope − 0.0023 + 0.0295 + 0.0006 — 0.0009
Fire − 0.0020 nd ns 0.0003 — 0.0015
n 63 722 88 722 102 396 65 082

PRK to FOR MAT + 0.0035 − 0.0286 + 0.0025 + 0.0126
Aridity + 0.0045 + 0.0044 − 0.0010 + 0.0023
Slope ns 0.0003 + 0.0090 ns ns
Fire − 0.0082 nd − 0.0012 − 0.0058
n 55 896 88 772 88 665 51 962

WDL to FOR MAT − 0.0055 + 0.0011 − 0.1748 ns
Aridity + 0.0073 + 0.0020 + 0.0128 + 0.0118
Slope + 0.0046 − 0.0034 ns + 0.0044
Fire − 0.0068 nd − 0.0004 − 0.0055
n 31 510 37 860 36 115 45 986

WDL to PRK MAT − 0.0179 + 0.0375 − 0.0351 − 0.0273
Aridity + 0.0105 + 0.0066 + 0.0018 − 0.0016
Slope + 0.0005 − 0.0373 + 0.0042 + 0.0058
Fire + 0.0076 nd + 0.0050 + 0.0049
n 22 943 39 656 30 775 34 521

FOR to PRK MAT − 0.0218 + 0.0522 + 0.0046 − 0.0848
Aridity − 0.0618 − 0.0471 − 0.0420 − 0.0549
Slope − 0.0023 − 0.0158 − 0.0033 ns
Fire + 0.0161 nd + 0.0132 + 0.0143
n 96 676 115 556 112 905 108 601

FOR to WDL MAT + 0.0569 − 0.0062 + 0.0349 + 0.0283
Aridity − 0.0255 ns − 0.0016 − 0.0366
Slope − 0.0071 − 0.0118 − 0.0123 − 0.0052
Fire + 0.0044 nd + 0.0007 + 0.0033
n 106 291 113 234 121 767 117 058

PRK to farmland MAT + 0.0808 + 0.0160 + 0.0451 + 0.0997
Aridity ns + 0.0042 ns − 0.0013
Slope − 0.0053 − 0.0022 − 0.0012 − 0.0027
Fire − 0.0015 nd − 0.0007 − 0.0011
Distance − 0.0085 − 0.0132 − 0.0100 − 0.0052
n 73 249 96 005 97 053 82 671

WDL to farmland MAT + 0.1322 + 0.1235 + 0.1393 + 0.0645
Aridity + 0.0546 + 0.0382 + 0.0276 + 0.0495
Slope + 0.0092 − 0.0202 ns + 0.0118
Fire − 0.0022 nd − 0.0014 − 0.0015
Distance − 0.0039 − 0.0294 − 0.0051 − 0.0011
n 29 327 31 996 32 079 41 176

Farmland to PRK MAT − 0.0857 − 0.0257 − 0.0179 − 0.0698
Aridity ns 0.0003 + 0.0013 ns − 0.0025
Slope + 0.0143 + 0.0151 + 0.0068 + 0.0094
Fire + 0.0030 nd + 0.0012 + 0.0032
Distance + 0.0120 + 0.0317 + 0.0108 + 0.0049
n 59 914 81 375 71 212 67 998

Farmland to WDL MAT − 0.0081 − 0.0081 − 0.0321 Ns
Aridity + 0.0075 + 0.0588 + 0.0509 + 0.0060
Slope + 0.0189 + 0.0649 + 0.0282 + 0.0181
Fire + 0.0006 nd ns ns
Distance + 0.0202 + 0.0394 + 0.0349 + 0.0126
n 59 253 55 857 58 924 69 492

(Continued.)
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Table 2. (Continued.)

Overall 1986–1996 1996–2006 2006–2016

Variable Trend Partial R2 Trend Partial R2 Trend Partial R2 Trend Partial R2

PRK to non-vegetation MAT + 0.0036 − 0.1046 − 0.1467 ns
Aridity + 0.0087 ns ns ns
Slope − 0.0164 − 0.0495 − 0.0094 − 0.0066
Fire ns nd ns − 0.0028
Distance − 0.0594 − 0.0296 − 0.0577 − 0.0196
n 41 757 80 173 78 465 49 458

WDL to non-vegetation MAT + 0.0237 ns
Aridity + 0.0520 − 0.0552
Slope − 0.0126 nd nd ns
Fire ns nd nd ns
Distance − 0.0359 nd nd + 0.0114
n 14 386 26 318

Non-vegetation to PRK MAT ns − 0.0039 ns ns
Aridity ns ns ns ns
Slope + 0.0502 + 0.0396 + 0.0337 + 0.1534
Fire ns nd ns ns
Distance + 0.0039 ns ns + 0.0258
n 5249 5565 4582 5393

Non-vegetation to WDL MAT + 0.0518 − 0.0677
Aridity ns ns
Slope + 0.0907 ns nd nd
Fire ns nd nd nd
Distance ns ns nd nd
n 4565 4697

dry valleys of the province. This is direct land cover
evidence that savannas indeed exist in Yunnan, as
postulated by spatial models derived from climate
spaces of savannas from other continents (Ratnam
et al 2016) and by larger scale dynamic global vegeta-
tion model simulations of tropical east Asian vegeta-
tion (Scheiter et al 2020). The more detailed canopy-
based classification scheme we used divided the pre-
viously mapped ‘forests’ based on the FAO defini-
tion, and thus gave more resolution to the vegetation
types existing in Yunnan. PRKs occupied almost the
entire northern and eastern regions of the province,
then extended westward to Kunming Prefecture and
the Dali-Lijiang area in the northwest, and southward
to Lincang. WDLs were extensive in the northeast
along the border with Guizhou province, in theWen-
shan area on the southeast, and occurred as trans-
itions between PRKs and FORs in other parts of
Yunnan.

Savannas declined by 8% in coverage over the
30 years due to the overall decrease in PRK areas,
despite a small increase of WDLs. We observed two
notable losses in PRK cover. First was the massive
loss of PRKs converted to BAGs and CROs, which
occurred concurrently with conversions of cropland
to urban areas and plantations. This is corroborated
by local-scale studies in the Hengduan mountains
during 1990–2010 (Wang et al 2018) and 2000–2012
(Wu et al 2015), and in the Dianchi Lake water-
shed where a 62.1% decline in grassland cover dur-
ing 1974–2008was observed (Zhao et al 2012),mostly

through conversion to urban and agricultural land.
These PRK to farmland conversions occurred in
warmer, gently sloped areas accessible via road net-
works, whereas PRK to built-up area conversions took
place in plateaued areas near roads. Themost signific-
ant drivers explaining these transitions were in areas
with relatively warmer temperature and closer prox-
imity from roads.

Second, substantial areas of PRK converted to
WDL and then to FOR, indicating woody plant
encroachment across Yunnan Province. These trans-
itions occurred throughout the study period, but
most were apparent during 2006–2016, and in more
humid environments that experienced no fire. This
was observed in a local-scale land cover assessment
of Greater Kunming, where 1200 km2 of grassland
were converted to forest and thickets from 2003 to
2010 (Lu et al 2015). These transitions may pos-
sibly be due to afforestation, fire suppression, atmo-
spheric CO2 enrichment, or a combination of all.
In our analysis, PRKs in steeper regions converted
to WDLs during 1996–2006, coinciding with pre-
vious observations that open grasslands converted
to woodlands in montane areas of southwest China
due to implementation of the GTGP during this
period (Liu et al 2014b). Fire was negatively associ-
ated with transitions to denser canopy cover veget-
ation and positively associated with transitions to
more open vegetation, suggesting fire could promote
the persistence of open PRKs in Yunnan, as in other
ecosystems (Fogarty et al 2020). Atmospheric CO2
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enrichment increases the growth efficiency of C3 trees
(Ehleringer et al 1997, Hoffmann et al 2000, Kgope
et al 2010), and is suggested to be responsible for
woody encroachment in savannas in Africa (Buiten-
werf et al 2011). Model simulations of tropical and
subtropical Asian vegetation have also suggested that
elevated CO2 is supporting woody plant biomass
increases and vegetation transitions (Scheiter et al
2020).

4.3. Fragmentation of savannas in Yunnan is
greater than for other vegetation types
Although all three natural vegetation types experi-
enced greater fragmentation over time, PRKs suffered
the worst degradation, breaking into smaller patches
with greater exposed edges and less connectivity.
WDLs suffered a massive increase in patch number
during 2006–2016, after being relatively stable from
1986 to 2006; however, their connectivity slightly
increased throughout the decades. Fragment num-
bers also increased in FORs, but the largest forest frag-
ments increased and patch cohesion barely changed
throughout the decades. The decrease in connectivity
of savanna fragments can negatively affect grassland
species, which respond sensitively to fragmentation
introduced by woody species (Fuhlendorf et al 2002,
Cunningham and Johnson 2019), and can intro-
duce disruptions in genetic flow between populations
(Honnay et al 2007, Helm et al 2009), affecting the
biodiversity supported by these habitats (Jin 2002,
Simon et al 2009, Ratnam et al 2016). To our know-
ledge, these are the first fragmentation statistics of
Yunnan’s savannas. Existing fragmentation research
in the region only focused on forests (Liang et al
2014, Liu et al 2017, 2020, Zhang et al 2019a, Zhao
et al 2019b). Our results suggest that fragmentation
of savannas is severe and requires urgent attention.

4.4. Conservation recommendations
Our analysis suggests that Yunnan’s forest cover was
largely stable, and even experienced a slight increase
over the 3 decades. Forests also possessed a higher
level of protection among the two vegetation types.
These, combined with the fact that forest fragmenta-
tion was also less compared to savannas, imply that
the implementation of the GTGP and the protec-
ted area systems in place are effectively protecting
forests, despite the low protection coverage relative
to the total forest land area. The province might also
continue to observe an uptick in stable forest cover,
as China continues its existing programs to con-
serve and expand forests (Chen et al 2019). Policies
affecting Yunnan include the sloping land conver-
sion program (SLCP) to prevent cultivation on land
with slopes steeper than 25◦ (Xu et al 2005), and the
GTGP established in 1999 to restore natural ecosys-
tems through the return of former croplands back

to forests or savannas (Chen et al 2019). A good
policy model for savannas could be the SLCP, as
our drivers analysis showed that steeper slopes did in
fact contribute positively to PRK and WDL conver-
sion from farmlands and non-vegetation areas. Well-
informed implementation of the GTGP on former
farmlands rather than PRKs would also be helpful.
A policy regarding the controlled use of fire would
also be beneficial for savanna protection, as its pres-
ence was demonstrated to be favourable for retaining
savannas. The use of fire for maintaining savannas is
well-researched in other countries and demonstrated
to be helpful for suppressing woody encroachment
(Wilgen et al 2004, Andersen et al 2005, Schmidt et al
2018).

Considering the low protection presently given to
savannas, it is vital to establish protected areas that
are savanna-inclusive. We located several areas in the
central and eastern side of the province where savan-
nas have persisted as candidates for potential pro-
tected areas (figure 6). While there are intact savan-
nas that are currently unprotected, such as in central
and southeast Yunnan, there are PRKs in the north
that would benefit from the expansion of adjacent or
nearby existing protected area boundaries.

Finally, a study that looked at how land cover
change is tied upwith ecosystem service values (ESVs)
in northeast Yunnan stated that increasing grassland
proportion with respect to forestland would increase
ESVs in certain counties (Wang et al 2018), which
underscores the contributions of savannas and forests
for human well-being and biodiversity conservation.
A Yunnan-wide assessment of ESVs is recommended,
for understanding potential synergies and trade-offs
among multiple ecosystem services in savannas and
other land cover types can help improve conservation
priorities (Eastburn et al 2017), as well as land and
fire management strategies that may encourage the
participation of communities as stewards of savannas
(Sangha et al 2021).
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