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Abstract The main aim of this work is numerical

solution of the nonlinear vibrations of micro-res-

onators exhibiting bounded and Gaussian uncertainty

in their parameters. The mechanical response in

deterministic situation is described by the Duffing

equation, whose numerical solution is obtained with

the Runge–Kutta–Fehlenberg algorithm, while

probabilistic analysis is carried out using the gener-

alized stochastic perturbation technique enriched with

automatic optimization of the approximating polyno-

mial. Basic solution to this nonlinear vibration in the

deterministic context is obtained with the use of the

computer algebra system MAPLE, where all addition-

al probabilistic procedures are also implemented. We

compare each time expectations, coefficients of

variation, skewness and kurtosis for the structural

response to show probabilistic sensitivity of the

MEMS accelerometer with respect to its design

parameter expectation and coefficient of variation.

An additional comparison of the proposed technique

with the traditional Monte-Carlo sampling for the first

four probabilistic moments is also provided.

Keywords MEMS � Microsystems � Nonlinear

vibration � Duffing equation � Microresonators �
Stochastic perturbation technique � Symbolic

computing

1 Introduction

Micro-electro-mechanical systems (MEMS) [5] are

crucial nowadays for micro-gyroscopes and ac-

celerometers [22], mobile communication [21], build-

ing and designing of new computers [25], precise

detection of the vibrations and fatigue [8] (structural

inspection and monitoring), also in superconductors

[24] as well as in various optics practical problems

solutions, like image stabilization in digital photogra-

phy [15]. A special role in this area belongs to

vibrating micro-beams that are subjected to the

coupled micro-electro-mechanical fluctuating field,

so that a precise mathematical model for their electro-

mechanical behavior is crucial for complete under-

standing and optimal design of such devices. Usually,

a single I-beam is modeled mathematically (nu-

merically) using the vibrating single degree of free-

dom system, governed by the Duffing equation [12,

14], where non-linear effects have multi-field charac-

ter (especially damping) [9, 13]. Solutions for the
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Duffing equation exist for some specific combinations

of the parameters and forcing functions. A variety of

computational experiments with symbolic computing

programs show that this is a very challenging task,

even in the deterministic context, while only few

reliable analytical solutions are available [7]. We use

for this purpose the Runge–Kutta–Fehlenberg algo-

rithm implemented also in the library of differential

equations in the program MAPLE.

The problem complicates significantly once some

uncertainty is taken into account in the mathematical

model, where especially geometrical imperfections of

the devices, material parameters variations [1] (con-

nected also with coupled field phenomena), tem-

perature variations as well as shock, impact and

fatigue [3, 8] may have a decisive role for their

reliability and durability [2, 6]. The problems of

structural dynamics under stochastic excitation [12,

17] and/or the vibrations with some design parameters

treated as random variables have been solved many

times before by a variety of methods including a

number of theoretical derivations [19], Karhunen–

Loeve expansions [4], fuzzy sets theory [16] and also

lower order perturbation method. There are also

several computational strategies available in this area

[18] like widely known Monte-Carlo simulation

technique (in crude, stratified, Metropolis or some

twister versions) as well as the worst scenario

strategy, polynomial chaos driven Stochastic Finite

Elements [1] or the recently developed Approximated

Deformation Principal Modes (APDM) approach

[20]. It is known however that the simulation strategy

is extremely time consuming and has some minor

points considering statistical estimation procedures,

while the remaining techniques do not allow for

higher probabilistic moments and coefficients deter-

mination. That is why we propose to make use of a

new technique that overcomes these problems, called

the generalized stochastic perturbation technique [10].

It is based on general order Taylor expansion of all

random input parameters and output state functions,

several solutions to the initial deterministic problem

with varying value of the given uncertainty source

(like for polynomial chaos technique) and numerical

recovery of the response function relating output-to-

input parameters being some higher order polynomial

of the random input. The well known formulation is

enriched in this paper with a determination of an

optimal polynomial degree that minimizes both the

RMS error and correlation coefficient inherent in the

least squares approximation; finally, we computation-

ally determine up to the first four probabilistic

moments and coefficients of the desired structural

response. This strategy is tested on two different

cases—the first one concerns damped vibrations of a

linear oscillator and it serves rather for a comparison

with the Monte-Carlo simulation scheme, the second

one concerns a case study devoted to the forced

vibration of a micro-beam exhibiting stochastic

damping. An application of this strategy to coupled

field Finite Element Method analysis has been

provided before in [11]. It should be mentioned that

an application of the perturbation technique itself in

the deterministic context is well known from the

solution of various problems in dynamics. The

method proposed here contains very similar appara-

tus, where the perturbations are considered with

respect to the expected value of the structural response

unlike in deterministic situation, where they were

analyzed in addition to the equilibrium state.

We present in this paper numerical analysis of the

Duffing equation with random parameter showing a

form convenient to the perturbation-based symbolic

analysis together with the perturbation-based defini-

tions of basic probabilistic characteristics computed.

We apply this approach to L-shaped micro-resonator

discussed in [22] with random damping to investigate

its first four probabilistic characteristics of the

displacements and velocities. We define the damping

coefficient as the Gaussian random variable, however

our analysis is valid for the truncated Gaussian

variable (with negligible error), symmetric distribu-

tions (non-Gaussian distributions need more than the

first two probabilistic moments but expansion remains

the same) and even non-symmetric variables (like

lognormal, where full expansions are necessary).

Computational determination of the first four

probabilistic moments is preferred as we can verify

the output uncertainty level versus the input one as

well as check if the output distribution may be treated

as Gaussian also, which significantly simplifies

further analysis. An original aspect of this work is in

the application of the higher order stochastic pertur-

bation technique that allows for determination of up to

the fourth order probabilistic characteristics of the

dynamic response (especially higher order statistics

like skewness and kurtosis). The Response Function

Method is statistically optimized in the sense that the
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order of approximating polynomial minimizes stan-

dard error and at the same time maximizes the

correlation of this response to the given set of discrete

solutions of the original Duffing equation. A compar-

ison of such a methodology against the Monte-Carlo

simulation gives unique opportunity to initially con-

firm an applicability of such a higher order optimized

stochastic perturbation technique in highly nonlinear

transient problems.

2 Governing equations

We consider forced nonlinear vibrations of a single

d.o.f. mechanical system governed by the Duffing

equation in the following form [12]:

m€xðtÞ þ c _xðtÞ þ k1xðtÞ þ k2x
2ðtÞ þ k3x

3ðtÞ
¼ F sin xtð Þ: ð1Þ

In Eq. (1) x is the displacement, the upper dots are

equivalent to time derivative(s), m denotes the mass of

the vibrating structure, c stands for the damping

coefficient, k1, k2 and k3 are first, second, and third

order stiffness coefficients related to various physical

fields and sources, F and x are the amplitude and

frequency of the forcing signal. It is well-known that

the general solution to this differential equation

depends strongly upon a combination of its coefficients

and may return essentially different phase portraits. As

we are interested in a computational recovery of the

semi-analytical dynamic response function in-between

the triplets €xðtÞ; _xðtÞ; xðtÞ and the structural design

parameters like m, c, k1, k2 and k3, we solve this

equation iteratively for various combinations of these

parameters, indexing this equation with i = 1,…, N:

m ið Þ€x ið ÞðtÞ þ c ið Þ _x ið ÞðtÞ þ k1 ið Þx ið ÞðtÞ
þ k2 ið Þx

2
ið ÞðtÞ þ k3 ið Þx

3
ið ÞðtÞ ¼ F sin xtð Þ:

ð2Þ

We use traditional definitions to compute basic

probabilistic moments and characteristics for the

structural response at s 2 [0, ?) and for a given input

random parameter b with its probability density pb(y);

these are [10, 23]:

expected values

E x b; sð Þ½ � ¼
Zþ1

�1

x b; sð Þ pb yð Þ dy; ð3Þ

rth central probabilistic moments

lr x b; sð Þð Þ ¼
Zþ1

�1

x b; sð Þ � E x b; sð Þ½ �ð Þrpb yð Þ dy:

ð4Þ

Additionally, we introduce the coefficients of

variation, a, skewness b and kurtosis j as

a x b; sð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var x b; sð Þð Þ
E x b; sð Þ½ �ð Þ2

s
;

b x b; sð Þð Þ ¼ l3 x b; sð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var x b; sð Þð Þ

p� �3
;

j x b; sð Þð Þ ¼ l4 x b; sð Þð Þ
Var x b; sð Þð Þð Þ2

� 3:

ð5Þ

The corresponding definitions and formulas are

applicable to the first four probabilistic moments of

€xðtÞ; _xðtÞ. We use the generalized stochastic pertur-

bation technique [10] based on the nth order

probabilistic expansion of all variables and time

response via Taylor series about their mean values,

so that the time response of the system at the specific

time ~s 2 0;1½ Þ is expanded for instance as (with

traditionally adopted e = 1)

x b; ~sð Þ ¼ x0 b0; ~s
� �

þ
Xn
j¼1

e j

j!
Db jD

j
b x ~sð Þð Þ; ð6Þ

where D
j
b x ~sð Þð Þ serves for partial derivative of the

dynamic response x ~sð Þ of the jth order with respect to

the random parameter b (to shorten significantly all the

perturbation-based formulas). It is important to notice

that partial derivatives of the structural dynamic

response with respect to the given input random

parameter are calculated at its mean value in the

traditional deterministic manner. Since an analytical

interrelation of this dynamic response with respect to

the chosen input random parameter is usually implicit,

we apply the Weighted Least Squares Method

(WLSM) [10] here, to approximate this function

numerically [11]. Inserting this expansion into the

definitions (3–4) brings for the Gaussian distributions

the following results for the expectations and vari-

ances of the same function:
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E x b;sð Þ½ � ¼
Zþ1

�1

x b;sð Þ pb yð Þ dy¼ x0 b0;s
� �

þ e2

2
D2

b x sð Þð Þl2 bð Þ

þ e4

4!
D4

b x sð Þð Þl4 bð Þþ e6

6!
D6

b x sð Þð Þl6 bð Þ

þ e8

8!
D8

b x sð Þð Þl8 bð Þþ e10

10!
D10

b x sð Þð Þl10 bð Þ :

ð7Þ

Consecutively, we apply the definition of the

variance

Var x b; sð Þð Þ ¼ l2 x b; sð Þð Þ

¼
Zþ1

�1

x b; sð Þ � E x b; sð Þ½ �ð Þ2
pb yð Þdy

ð8Þ

to derive its perturbation-based formula including

higher order derivatives of the response function.

Simplifying the notation Db
n : Db

n(x(b; s)) and in-

serting e=1 returns:

Var x b; sð Þð Þ ¼ l2 bð Þ Dbð Þ2þl4 bð Þ 1

4
D2

b

� �2þ 1

3
D3

bD
1
b

� �

þ l6 bð Þ 1

36
D3

b

� �2þ 1

24
D4

bD
2
b þ

1

60
D5

bD
1
b

� �

þ l8 bð Þ 1

576
D4

b

� �2þ 1

360
D5

bD
3
b

�

þ 1

2520
D7

bD
1
b þ

1

720
D6

bD
2
b

�

þ l10 bð Þ 1

14400
D5

b

� �2þ 1

40320
D8

bD
2
b

�

þ 1

8640
D6

bD
4
b þ

1

15120
D7

bD
3
b þ

1

181440
D9

bD
1
b

�
:

ð9Þ

Determination of higher central probabilistic mo-

ments and related coefficients proceeds in a similar

way and can be implemented in symbolic computing

software using ‘‘taylorization’’ procedure inherent for

numerous computer algebra systems [10] including

MAPLE. One may obtain for the third and fourth

central probabilistic moments:

l3 x b; sð Þð Þ ¼
Zþ1

�1

x b; sð Þ � E x b; sð Þ½ �ð Þ3
pb yð Þdy

¼ 3

2
l4 bð Þ Dbð Þ2

D2
b

þ l6 bð Þ 1

8
Dbð Þ3þ 1

2
DbD

2
bD

3
b þ

1

8
Dbð Þ2

D4
b

� �

þ l8 bð Þ 1

24
DbD

3
bD

4
b þ

1

40
DbD

2
bD

5
b

�

þ 1

240
Dbð Þ2

D6
b þ

1

32
D2

b

� �2
D4

b þ
1

24
D3

b

� �2
D2

b

�

þ l10 bð Þ 1

480
DbD

4
bD

5
b þ

1

1680
DbD

2
bD

7
b

�

þ 1

720
DbD

3
bD

6
b

�

þ l10 bð Þ 1

240
D2

bD
3
bD

5
b þ

1

13440
Dbð Þ2

D8
b

�

þ 1

960
D2

b

� �2
D6

b þ
1

384
D4

b

� �2
D2

b þ
1

288
D3

b

� �2
D4

b

�

ð10Þ

and

l4 x b; sð Þð Þ ¼
Zþ1

�1

x b; sð Þ � E x b; sð Þ½ �ð Þ4
pb yð Þdy

¼ l4 bð Þ Dbð Þ4þl6 bð Þ 3

2
Dbð Þ2

D2
b

� �2þ 2

3
Dbð Þ3

D3
b

� �

þ l8 bð Þ 1

16
D2

b

� �4þ 1

30
Dbð Þ3

D5
b þ

1

6
Dbð Þ2

D3
b

� �2
�

þ 1

4
Dbð Þ2

D2
bD

4
b þ

1

2
Db D2

b

� �2
D3

b

�

þ l10 bð Þ 1

1260
Dbð Þ3

D7
b þ

1

96
Dbð Þ2

D4
b

� �2
�

þ 1

54
Db D3

b

� �3þ 1

48
D4

b D2
b

� �3þ 1

24
D2

b

� �2
D3

b

� �2
�

þ l10 bð Þ 1

12
DbD

2
bD

3
bD

4
b þ

1

60
Dbð Þ2

D3
bD

5
b

�

þ 1

120
Dbð Þ2

D2
bD

6
b þ

1

40
Db D2

b

� �2
D5

b

�

ð11Þ

This technique may also serve for the non-Gaussian

responses and then one needs to complete these
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expansions with the odd order terms, which extends

almost twice the formulas inserted above. Finally, it is

necessary to point out that the polynomial response

functions are determined separately in each discrete

time instant, so that their coefficients are time

dependent, while further numerical analysis may

include the case, where the degree of approximating

random polynomial also vary in time. Therefore, the

overall computer effort and time consumption in the

stochastic approach proposed is mainly affected by the

time increment chosen in the Runge–Kutta–Fehlen-

berg solution to the nonlinear vibrations.

3 Computational analysis

3.1 Perturbation method validation test

The linear oscillator initially subjected to the pertur-

bation-based randomization procedure is proposed as

m
d2x1 tð Þ
dt2

þ c
dx1 tð Þ
dt

þ kx1 tð Þ ¼ Q sin tð Þ ð12Þ

where m = 0.3965, k = 0.761 and Q = 2.52E-9.

The damping coefficient is treated here as the Gaus-

sian random variable having the expected value equal

to E[c] = 0.00389 and coefficient of variation equal to

a(c) = 0.10 [defined in formula (5)] to provide a

comparison of the tenth order stochastic perturbation

technique proposed with the classical Monte-Carlo

scheme. An uncertainty in viscous part is considered

here according to a number of important technical

applications of such a model; not necessarily Gaussian

of course. Computer analysis is performed here

entirely in the package MAPLE with the use of 11

computing cycles about the expected value and

weighting scheme adjacent to an importance distribu-

tion [1, 6]; they are equivalent to the following series

of damping coefficients ci = 0.00394 ± n 0.00002,

where n = 1,…,4. The resulting vibrations (left

graph) and phase portrait (right graph) obtained for

the mean value of the coefficient c are given below in

Fig. 1 for the first 50 s of the forced vibrations process,

where numerical solution is found with the time step

Dt = 1 s. The fourth order approximating polynomial

for the displacements response functions has been

adopted according to the WLSM optimization proce-

dure attached to the next experiment. The overall

computational effort in the perturbation-based ex-

periment is equivalent to 80.36 MB and 7.34 s for the

entire stochastic perturbation based solution discussed

below (with ten numbers precision). The crude Monte-

Carlo simulation scheme for the contrast is based on

2 9 105 samples and costs 2093.34 s with 527.65

MBs carried out with eight numbers precision (pro-

vided according to memory limitations).

First of all we compare the expectations of

displacements computed according to the perturba-

tion method (left graph of Fig. 2) with the corre-

sponding mean values estimated via the Monte-

Carlo simulation (the right graph of Fig. 2). As one

may notice, both extreme values, their timings as

well as the patterns of both dynamic responses are

extremely similar to each other. Further modifica-

tions of the input coefficient of variation (both

increasing and decreasing) omitted here for the

Fig. 1 Linear oscillator

vibrations and their phase

portrait

Meccanica (2015) 50:1841–1853 1845

123



brevity of a presentation do not affect this similarity.

Furthermore, time variations of the coefficients of

variation, skewness and kurtosis of the displace-

ments are attached in Figs. 3, 4 and 5 determined by

using of the stochastic tenth order perturbation

scheme (left series) and, independently, via the

Monte-Carlo simulation scheme (right series). The

most apparent difference to the well documented

previous models available in linear elasticity [11] is

an enormous increase of the resulting extreme

coefficient of variation for displacements (Fig. 3)

which is close to 1.5 and this means 15 times larger

than the input value of this parameter. It is dramatic

uncertainty of these displacements in a very specific

moment of these vibrations and we notice that this

is some local extreme by only, while the rest of the

vibrations is accompanied by a(x(t)) close to 0.20

rather. The second order characteristics determined

with the use of the perturbation method and Monte-

Carlo scheme coincide perfectly with each other—

both extreme values as well as the pattern and

particular time fluctuations are the same. A com-

parison of the skewness (Fig. 4) and kurtosis

(Fig. 5) is not so perfect, because although the

patterns returned by stochastic perturbation and,

independently, simulation methods are very similar

to each other, the extreme values are different. It

looks that the stochastic perturbation technique

underestimates these extremes, but this happens

only once or twice in the given period of time; the

remaining magnitudes coincide with each other.

Analyzing this comparison one needs to recall the

fact that the Monte-Carlo simulation exhibits

statistical convergence of the probabilistic moments

and coefficients to their real values and a weaker

comparison in case of higher order statistics may

result from computational discrepancies in both

techniques at the same time.

3.2 Stochastic MEMS modeling

The vibrating system under study is shown in Fig. 6;

it is represented by a so-called L-shaped resonator

and was discussed in [22] where its response was

compared to experimental results, after obtaining an

equivalent 1 d.o.f. dynamic model. We solve here the

same boundary-initial problem in the probabilistic

context, where the mass, the first, second and third

order equivalent stiffnesses are considered here as the

input design parameters. Taking into account the

mechanical and electrical contributions km and ke, the

stiffness coefficients ki, i = 1, 2, 3 are computed as

[22]:

k1¼ km1�ke1ð Þ¼ 0:829�0:068ð ÞN=m¼0:761 N=m;

k2¼0 N=m2;

k3¼ km3L�ke3ð Þ¼ 1:45x1011�2:2x1010
� �

N=m3

¼12:3x1010N=m3:

ð13Þ

The effective mass of the micro-resonator was

calculated in [22] from its length L = 400 lm, width

t = 1.2 lm, out of the plane thickness w = 15 lm

and the silicon mass density q ¼ 2330 kg

m3. The value

m = 0.3965 9 M = 6.65 9 10-12 kg is obtained,

Fig. 2 Expected values of

the dynamic response via the

stochastic perturbation

technique (left) and the

Monte-Carlo simulation

scheme (right)
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Fig. 3 Coefficients of

variation of the dynamic

response via the stochastic

perturbation technique (left)

and the Monte-Carlo

simulation scheme (right)

Fig. 4 Skewness of the

dynamic response via the

stochastic perturbation

technique (left) and the

Monte-Carlo simulation

scheme (right)

Fig. 5 Kurtosis of the

dynamic response via the

stochastic perturbation

technique (left) and the

Monte-Carlo simulation

scheme (right)
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using the formula that gives the equivalent mass m as a

fraction of the total beam mass M = 16.78 9

10-12 kg. The damping coefficient is the random

input parameter; its mean value has been initially

evaluated from the formula c ¼ 1
Q

ffiffiffiffiffiffi
km

p
Nsec
m

� �
, where

k includes all the stiffnesses introduced in Eq. (13) and

then by selecting four possible values of the quality

factor Q = [100, 210, 1000, 10000], where the value

of 210 is the quality factor measured for the device

discussed in [22]. Therefore, the expected values of

the damping parameter c are taken as equal to

E[c] = [0.0235, 0.0112, 0.00235, 0.000235] 9 10-6

[Nsec/m] and the coefficient of variation of this

physical parameter is taken further from the interval

a(c) 2 [0.00, 0.20] [10]. The external forcing function

is assumed to have the harmonic form Fsin(xt) and we

adopt natural initial conditions as x t ¼ 0ð Þ ¼
0; dx t¼0ð Þ

dt
¼ 0. An external force due to the electro-

static actuation is considered in the following form

(see [16]):

F sin xtð Þ ¼ g va tð Þ; ð14Þ

where

g ¼ �aVp

e0wL

d2
; �a ¼ 0:523; Vp

¼ 2 � 9 ½V �; e0

¼ 8:8541878176 � 10�12 ½F=m�:

w ¼ 15lm; L ¼ 400lm; d ¼ 2:1 lm;

va tð Þ ¼ va sin xtð Þ; va ¼ 5� 10�3 � 1� 10�1 ½V �:
ð15Þ

In the above relations �a denotes the coefficient

related to the mechanical behavior of the resonator, Vp

is the bias voltage, e0 is the absolute vacuum

permittivity constant, d is the gap between the

oscillating beam and the electrode, va(t) is the

actuation voltage, usually modulated at the me-

chanical frequency of the oscillating beam x. Finally,

the external force has the following multiplier:

F = 56.7 9 10-10[N], while x is adopted as 103.

The entire computational analysis in both determinis-

tic and probabilistic context has been provided in the

computer algebra package MAPLE, v. 14. Firstly, four

Fig. 6 Micro-resonator

subjected to stochastic

excitation [16]
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different deterministic spectra obtained with the

Runge–Kutta–Fehlenberg algorithm for correspond-

ing expectations of the damping coefficient as listed

above and given in Figs. 7 and 8.

As it is documented in Figs. 7 and 8 (and also

consistent with engineering intuition), the larger the

damping coefficient, the smaller the amplitude of this

vibration spectrum. The largest damping coefficient

results in almost perfectly periodic displacements with

time independent amplitude, while the hundred times

smaller (right diagram in Fig. 8) results in non-periodic

motion with an amplitude increasing moderately in

time. Let us note that this amplitude in a very short initial

time of the MEMS vibration increases almost three

times. Then, we compute the expectations, coefficients

of variations, skewness and kurtosis histories for both

micrometer displacements and velocities—they are

given in Figs. 9, 10, 11 and 12; they are all computed

consequently using the tenth order stochastic

perturbation technique described in the previous sec-

tion. They are determined after 11 various deterministic

solutions of the original Eq. (1) with damping coeffi-

cient varying uniformly within the few percents large

neighborhood of its expectation and it is repeated four

times for different input expectations of this parameter.

This method is based upon the LSM procedure imple-

mented in the system MAPLE, where the optimal degree

of the polynomial response function is chosen by a

minimization of the correlation and RMS error in this

approximation. These parameters are contrasted in

Table 1 for various orders of the least squares ap-

proximants (from the first up to the tenth) and this

comparison justifies precisely a choice of the fourth

order of the dynamic response functions relating the

displacements at the given time to the damping

coefficient c.

First of all it is seen in Fig. 9 that expected values of

the resulting excitation show different sensitivity with

Fig. 7 Displacements

[m] for c = 0.0235 9 10-6

[Nsec/m] (left) and

0.0112 9 10-6 (right)

Fig. 8 Displacements

[m] for

c = 0.00235 9 10-6 [Nsec/

m] (left) and

0.000235 9 10-6 (right)
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respect to the input coefficient of variation. This

expectation seems to be almost insensitive to the input

CoV when reaches its minimum value,

E[c] = 0.000235E-6 and then variations of the result-

ing E[x(t)] w.r.t. a(c) systematically increase together

with E[c]. Extreme value of the mean damping corre-

sponds to highly nonlinear increase of the expected value

E[x(t)] that increases almost twice when an uncertainty

in c changes from 0.0 up to its extreme for 0.20. It is

interesting that these fluctuations cannot be simply

neglected like in classical elasticity theory and elasto-

dynamics with random parameters [10] leading some-

times to an increase or a decrease of the final expectation

of x(t). It should be mentioned that the extremely large

E[c] corresponds to a situation where an absolute value

E[x(t)] decreases almost twice when a(c) changes its

value from 0 adjacent to the deterministic vibration to

0.20 that means the largest possible input deviation in

this case. Furthermore, some specific input values lead to

an increase and some others—to a decrease ofE(x(t)) for

larger random fluctuations in this parameter c; they can

increase or decrease almost twice for this specific range

of an input a(c).

Fig. 9 Expectations of the displacements [m]

Fig. 10 Coefficients of variation for the displacements

Fig. 11 Skewness of the displacements

Fig. 12 Kurtosis of the displacements
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It is noticeable and quite clear that generally the

larger the input mean value of c, the larger the output

coefficient of variation. It is additionally ten times

larger than the input one for maximum value of E[c],

while is almost equal to the input coefficient a(c) for

its minimum expectation. Further, one notices that all

the curves describing coefficient of variation of

random excitation with respect to the input CoV are

convex. We observe that this convexity is not propor-

tional to the input coefficient a(c)—the trends corre-

sponding to the intermediate values of mean damping

intersect with each other below a(c) = 0.15. It means

that larger stochastic fluctuations of this MEMS

device vibrations may be initially observed with

larger average damping until some limit value of

a(c) (smaller dispersion of uncertain damping) and

then—for the analogous device with smaller expecta-

tion of the damping coefficient (with larger dispersion

of uncertain damping); it of course may affect the

reliability index of this device. It looks that the

resulting random dispersion of the MEMS vibrator

depends upon a combination of both expectation and

coefficient of variation of the input uncertainty in

damping unlike in the linear systems with random

parameter(s) where it is driven by the input CoV by

only. Higher order statistics given in Figs. 11 and 12,

namely skewness and kurtosis, are basically different

than these corresponding to the Gaussian distribution.

They are additionally really very sensitive with respect

to the input coefficient of variation and, surprisingly,

exhibit some extreme values for about

a(c) = 0.07570.10 having the distributions a little

bit similar to the bell shaped curve. These extremes

correspond to smaller values of expected value of

damping, while larger damping correspond to a very

stable results for all a(c) 2 [0.00, 0.20]. It means that

extreme values of the damping coefficient usually

result in the probability distribution of dynamic

excitation that looks close to the Gaussian one, while

intermediate randomness in parameter c may lead to

dramatic increase of both skewness and kurtosis. Let

us note also that there are both positive and negative

extremes of these coefficients computed for the

neighboring values of E[c].

4 Concluding remarks

1. Stochastic perturbation-based numerical solution

to the Duffing equation originating from the

Taylor expansion of the general order has been

proposed in this paper to analyze the vibrations of a

micro-resonator with random damping coefficient

adopted as Gaussian input parameter. The first four

probabilistic moments and coefficients of the

displacements and velocities have been deter-

mined numerically using the additional imple-

mentation in symbolic computing system

MAPLE. Numerical solution in the symbolic

algebra context provided with the use of the

Runge–Kutta–Fehlenberg method has been linked

with the non-weighted Least Squares Method,

where polynomial stochastic response with respect

to the randomized damping has been assumed. A

choice of the polynomial order has been made after

computation of the RMS error and the correlation

associated to the LSM itself. This two-fold

minimization enabled to detect that the output

expectations of structural displacements are ex-

tremely sensitive to the input coefficient of

variation. Additionally, the output CoV may be

Table 1 Approximation

errors in the Least Squares

Method

Order Correlation RMS error Squares sum Fitting variance

2 0.944648 6.50235E-12 4.65126E-22 4.65228E-23

3 0.999390 7.22270E-13 5.76870E-24 5.86760E-25

4 0.999571 6.09214E-13 4.11380E-24 2.90649E-24

5 -0.594698 7.08217E-10 5.51726E-18 2.45674E-19

6 -0.924625 8.02584E-9 7.08554E-16 4.98402E-16

7 0.936636 8.11866E-7 7.25038E-12 3.53456E-12

8 -0.942430 8.61679E-5 8.16740E-8 1.25495E-6

9 -0.937340 6.38454E-4 4.48386E-6 6.55977E-7
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even more than ten times larger than the input one

and depends also very much upon the input

random parameter expectation. Higher order

statistics are rather very distant from these typical

for the Gaussian distribution. Consideration of the

stochastic damping has deep practical significance

and should be extended further towards time-

dependent uncertainty, i.e. in the form of time

series with random coefficients to model the aging

process in the MEMS devices.

2. It can be mentioned further that the computational

technique proposed is similar to the polynomial

chaos approach presented in [1], but instead of

lower order polynomials for several random inputs

employs a single variable polynomial with higher

order terms [10]. Its further development towards

multiple randomness sources is a relatively easy

task. The essential difference to this method is that

we further provide partial differentiation of the

system response with respect to the random input

and modify classical definition of the probability

theory towards the Taylor expansions with random

coefficients. It should be mentioned that the

computational cost is decisively smaller than for

the remaining methods, especially taking into

account a significant time consumption in the

Monte-Carlo simulations (more than ten times as

has been demonstrated here). Our computational

strategy may straightforwardly serve for stochastic

time-dependent reliability analysis [6] if only the

allowable displacements or velocities for some

limit function could be defined for this system.

Since the method looks promising, it can be further

used to make Stochastic Finite Element Method

implementations with the existing multiphysics

commercial FEM codes. Further applications

towards stochastic modeling of the uncertainty

adhesion [2] are also possible but they need an

implementation of the entire random field ap-

proach defined for the adhesive plate and its

inclusion into the equations of the model. Stochas-

tic perturbation-based approach may be also of

paramount importance in computational modeling

of fatigue phenomena in MEMS devices [3], but it

needs some prior SFEM realization.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use,

distribution, and reproduction in any medium, provided the

original author(s) and the source are credited.
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