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Online Algorithms with Advice for the 𝒌-search Problem
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Quezon City, NCR 1101 Philippines 

2Department of Information Systems and Computer Science,  
Ateneo de Manila University, Quezon City, NCR 1108 Philippines

In the online search problem, a seller seeks to find the maximum price from a sequence of 
prices 𝒑1, 𝒑2 ,..., 𝒑𝒏 that is revealed in a piece-wise manner. The bound for all prices is well 
known in advance with 𝒎 � 𝒑𝒊 � 𝑴. In the online 𝒌-search problem, the seller seeks to find 
the 𝒌 maximum out of the 𝒏 prices. In this paper, we present a tight bound of loglog22(�(���)) on the 
advice complexity of optimal online algorithms for online 𝒌-search. We also provide online 
algorithms with advice that use less than the required number of bits and compute the 
performance guarantee. Although it is natural to expect improvement due to the additional 
power of advice, we are interested to identify the relationship of additional information with 
respect to the improvement. We show that with 1 bit of advice, we can already surpass the 
quality of the best possible deterministic algorithm for online 2-search. We also provide a 
set of online algorithms, ALG𝒊, that utilizes loglog22(�(�𝑖𝑖 )) advice bits with a competitive ratio of  

𝑖𝑀+�⁻� ⁺ ¹ (𝑘 − 𝑖)⁽�⁻�⁾𝑚)
𝑘𝑀

.  We show that increasing the amount of advice improves the solution 
quality of the algorithm. Moreover, we compare the power of advice and randomization. 
We show that for some identified minimum number of advice bits, the lower bound on 
the competitive ratio of online algorithms with advice is better than any deterministic and 
randomized algorithm for online 𝒌-search.

Keywords: advice complexity, competitive analysis, online algorithms, online search

*Corresponding author: jbclemente@up.edu.ph

INTRODUCTION
Online problems are computational problems with 
incomplete information about the input. In this scenario, 
the input is given piece-wise and upon receiving the 
input, an algorithm must provide a piece of the solution. 
Algorithms solving these types of problems are called 
online algorithms. The lack of information about the input 
instance makes it difficult for any algorithm to achieve 
optimality, even for problems in P in the offline setting. 
The term “offline” is used when the whole input sequence 
is known in advance. Examples of well-known online 

problems are the secretary problem (Gardner 1995), ski-
rental problem (Karlin et al. 1994), and time series search 
problem (El-Yaniv et al. 2001).

Competitive analysis was introduced by Sleator and Tarjan 
(1985) to analyze the solution quality of online algorithms. 
The measure used in the analysis is called the competitive 
ratio, which can be obtained by comparing the profit of the 
online algorithm to one of an optimal offline solution. Note 
that it is generally not possible for an online algorithm to 
compute the optimal offline solution in advance, because 
parts of the output have to be specified before the whole 
input is known. It is merely taken into account to analyze 
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the profit that can hypothetically be obtained if the whole 
input is known in advance. The competitive ratio of an 
online algorithm is formally defined as follows.

Definition 1 (competitive ratio): Let 𝛱 be an online 
maximization problem, let ALG be an online algorithm 
for 𝛱, and let c ≥ 1. ALG has a competitive ratio of c or 
𝑐-competitive if, for every instance I of 𝛱, we have:

𝑐 · 𝑝𝑟𝑜𝑓𝑖�(𝐴𝐿𝐺(𝐼)) ≤ 𝑝𝑟𝑜𝑓𝑖� (𝑂𝑃𝑇(𝐼))

where 𝑝𝑟𝑜𝑓𝑖�(𝐴𝐿𝐺) is the profit of ALG on input 𝐼, 
𝑝𝑟𝑜𝑓𝑖� (𝑂𝑃𝑇(𝐼)) denotes the optimal offline profit, and 
𝑂𝑃𝑇 is an optimal offline algorithm for 𝛱.

A complementary tool in analyzing online algorithms 
is the advice complexity. Dobrev et al. (2008) initially 
introduced the idea and this was later on revised by 
Böckenhauer et al. (2009), Hromkovič et al. (2010), 
and Emek et al. (2011) to analyze online problems. The 
concept is analogous to a randomized computation, where 
an algorithm has access to a tape. Instead of accessing 
random bits, online computation with advice reads 
information from a trusted source through an advice tape. 
We can think of the advice as additional information that 
can help the online algorithm in making “good" decisions. 
The advice is measured using the number of bits required 
to encode such information and is allowed to be any 
function of the entire input.

This advice complexity of an algorithm is used to measure 
the least amount of information necessary to be optimal 
or to achieve a certain competitive ratio. The advice 
complexity of an online problem is defined as follows.

Definition 2 (advice complexity): Let 𝑥₁, ... , 𝑥� be the 
input for an online problem 𝛱. An online algorithm with 
advice, ALG, for 𝛱 computes the output sequence 𝑦₁, ... , 
𝑦�, where 𝑦𝑖 is allowed to depend on 𝑥₁, ... , 𝑥𝑖 as well as 
on an advice string 𝜙. The advice, 𝜙, is written in binary 
on an infinite tape and is allowed to depend on the request 
sequence 𝑥₁, ... , 𝑥�. The advice complexity of ALG is 
the largest number of advice bits it reads from 𝜙 over all 
inputs of length at most 𝑛.

An upper bound on the advice complexity of a given 
online problem is identified by constructing an online 
algorithm that reads a certain length of advice with a 
provable competitive ratio. On the other hand, a lower 
bound is derived by getting the least number of advice 
bits that are necessary to compute an answer sequence of 
the desired quality.

We use the concept of partition trees from Steffen (2014) 
to provide the minimum amount of advice that is needed. 
The general idea is to describe a set of input instances for 
a problem where it is difficult for any online algorithm to 

distinguish one from the other. Thus, an online algorithm 
must require a minimum amount of advice bits to specify 
which of the instances is the case.

Computation with advice has already been applied 
to several online problems in the literature, including 
paging (Böckenhauer et al. 2009; Dobrev et al. 2008), 
the 𝑘-server problem (Böckenhauer et al. 2009; Emek 
et al. 2011; Gupta et al. 2013; Renault and Rosén 2011), 
metrical task systems (Emek et al. 2011), and the online 
knapsack problem (Böckenhauer et al. 2014b). Some 
hardness results on the advice complexity can be achieved 
by a special kind of reduction (Böckenhauer et al. 
2014a; Boyar et al. 2017; Emek et al. 2011). Moreover, 
advice complexity has a close and non-trivial relation 
to randomization (Böckenhauer et al. 2009; Komm and 
Královič 2011; Mikkelsen 2015; Steffen 2014).

Online 𝑘-search is a straightforward generalization of the 
online search problem previously described in the study 
of Clemente et al. (2016). Online search seeks to find 
the maximum price 𝑝𝑖, from a sequence of 𝑛 prices that 
is revealed piece-wise. The generalization seeks to find 
𝑘 maximum out of 𝑛 prices.

To give us intuition about online 𝑘-search, consider a 
scenario in which a seller would like to maximize his 
profit by selling 𝑘 ≥ 1 units of an asset. Every day, the 
market provides a price 𝑝𝑖 and the seller must decide 
whether or not to sell one unit of the asset for the price. 
The overall profit of the seller is computed as the sum of 
individual selling prices of the 𝑘 units. A constraint is that 
the seller must complete all the transactions in a limited 
amount of time, say 𝑛 days. This implies that if the seller 
has 𝑗 remaining unsold assets and there are only 𝑗 days 
of trading days left, the seller must sell one unit on each 
of the remaining trading days regardless of the price. We 
may refer to 𝑛 as the duration of the trading period. To 
help with the decision-making, the seller is aware of the 
minimum and maximum price offering of the asset, i.e. 
𝑚 ≤ 𝑝𝑖 ≤ 𝑀. Formally, the online 𝑘-search is defined as 
follows.

Definition 3 [online 𝒌-search (Lorenz et al. 2009)]: Let 
� = (𝑝1, 𝑝2, ... , 𝑝𝑛), with 0 < 𝑚 ≤ 𝑝𝑖 ≤ 𝑀 for all 1 ≤ 𝑖 ≤ 𝑛, 
be a sequence of prices that arrives in an online fashion. 
Here, 𝑀 and 𝑚 are upper and lower bounds on the prices, 
respectively. For each day 𝑖, price 𝑝𝑖 is revealed, and the 
online player has to choose whether to sell on the same day 
or to wait for a new price on a subsequent day. Given � and 
a positive integer 𝑘 < 𝑛, the player must decide to sell on 
𝑘 days of the whole duration. If the player still has 𝑗 units 
of assets remaining immediately after day 𝑛 − 𝑗, he must 
sell on the last 𝑗 days of the trading period. The player’s 
goal is to maximize the sum of the prices, i.e. its profit.
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Here, the seller must decide immediately given a limited 
portion of the input, i.e. with the knowledge of the current 
price offering and all the previous prices provided by 
the market, the seller must decide under the uncertainty 
of the future prices. The decisions made by the seller 
are irrevocable, i.e. once he decides to sell, a deal is 
immediately done, and the seller can no longer undo any 
previous transaction. The assumptions in our previous 
of the advice complexity of online search in the study 
of Clemente et al. (2016) carry over to online 𝑘-search 
in the study. We assume that the price offer between a 
defined range �m,M� is known to the online seller before 
the start of the computation, and the trading duration, 
denoted by 𝑛, may or not be known to the online seller. 
In this study, we are interested in providing and analyzing 
online algorithms that may be used by the seller for 
decision-making. We also may refer to these algorithms 
as strategies of the seller.

RELATED WORK
This work is a continuation of our previous result (Clemente 
et al. 2016), where we study the advice complexity of the 
basic case of online 𝑘-search for 𝑘 = 1. In our previous 
result, we provided matching upper and lower bounds of 
advice needed for optimality and 𝑐-competitiveness of any 
online algorithm for online search. Moreover, we have 
shown that advice is more powerful than randomization 
for online search, in the sense that for some constant 
amount of advice, we can already have an improvement 
over the best-randomized algorithm for online search, and 
as we approach  𝑂(log2𝑛) bits of advice, we can have a 
competitive ratio that approaches 1.

Before presenting our online algorithms with advice for 
online 𝑘-search, we first briefly mention some preliminary 
work on the competitiveness of online 𝑘-search. El-Yaniv 
et al. (2001) presented a strategy called the reservation 
price policy. In this strategy, a seller decides to accept 
a certain price 𝑝𝑖 if it is greater than or equal to some 
precomputed reservation price 𝑟, where 𝑚 ≤ 𝑟 ≤  𝑀. Let 
us denote by 𝐴𝐿𝐺�𝑟� the online algorithm that follows 
this policy.

The existing optimal deterministic strategy for online 
𝑘-search of Lorenz et al. (2009) is the generalization of 
the reservation price policy strategy from (El-Yaniv et al. 
2001). Here we extend the notation of 𝐴𝐿𝐺�𝑟� to denote 
the algorithm that uses a sequence of reservation prices. 
Let 𝐴𝐿𝐺�(𝑟1, 𝑟2, ... , 𝑟𝑘  )� denote the online algorithm from 
the study of Lorenz et al. (2009), where 𝑟1, ... , 𝑟𝑘 are the 
reservation prices such that 𝑟𝑖 < 𝑟� if 𝑖 < 𝑗 . In the online 
algorithm, the value of each 𝑟𝑖 is precomputed based on 
the known parameters 𝑚 and 𝑀 before the start of the 

computation. The algorithm uses the reservation prices 
sequentially. It accepts the first price  𝑝𝑖 ≥ 𝑟1, then another  
𝑝� ≥ 𝑟2, and so on. If the player still has 𝑙 units to sell with 
only 𝑙 trading days left, the algorithm is required to sell on 
the remaining 𝑙 trading days. The optimal deterministic 
strategy for online 𝑘-search computes for each reservation 
price using:

(1)

where 𝑐 is the competitive ratio of 𝐴𝐿𝐺�(𝑟1, 𝑟2, ... , 𝑟𝑘  )�. 
The equation is derived from the following worst-case 
scenarios:

 

 

 

Lorenz et al. (2009) presented 𝑘 + 1 possible cases, where 
each is characterized by the worst possible input ��:

Here, a fixed 0 < � < 1 prevents the deterministic strategy 
from obtaining the 𝑘 maximum prices, which is almost  
𝑘 · 𝑟𝑖+1, and the strategy is instead forced to take the last 
𝑘 − 𝑖 minimum prices.

The competitive ratio 𝑐 from Equation 1 has two possible 
approximations depending on the values of the input 
parameters 𝑀

𝑚  and 𝑘. For input instances with large 
fluctuation ratio 𝑀𝑚, the competitive ratio is approximately 

. On the other hand, for large 𝑐, the competitive 

ratio of  where 𝑊 is 𝑊-function that is the 
inverse of 𝑓(𝑤) = 𝑤 exp(𝑤). It is well-known that for 
suffiently large 𝑥, the function 𝑊( 𝑥) behaves like 𝑙𝑛( 𝑥).
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OPTIMAL ALGORITHMS WITH 
ADVICE FOR ONLINE 𝑘-SEARCH
In this section, we discuss the amount of advice needed 
by online algorithms to solve online 𝑘-search optimally.

Note that before the start of the trading period, the oracle, 
which provides the advice, and the online player have 
already engaged in an agreement as to how to interpret 
an encoded information � on the advice tape. The whole 
content of the tape can be accessed only once during the 
start of the trading period. The answer sequence of the 
online player is expected to agree with the advice given 
by the oracle. The descriptions of the online algorithms 
with the advice presented in this study focus on the content 
of the advice tape � and how the online player can use 
the advice to provide answers to the input sequence that 
is iteratively revealed.

For  𝑘 = 1, we have an optimal online algorithm with 
advice that specifies the optimal trading days using 
𝑂(log2𝑛) bits of advice. If  𝑘 = 1, a corresponding lower 
bound result from the study of Clemente et al. (2016) 
provides a tight bound for online 𝑘-search. We present 
the previous result in the following lemma.

Lemma 1 (Clemente et al. 2016): At least log2𝑛 bits of 
advice are necessary to obtain an optimal solution for 
the online search. This holds even if 𝑛 is known to the 
algorithm.

Theorem 1: At least log2𝑛 bits of advice are necessary to 
obtain an optimal solution for online 𝑘-search, where 
1 ≤ 𝑘 ≤ 𝑛. This holds even if 𝑛 is known to the algorithm.

Proof: The proof directly follows from Lemma 1. Q.E.D

In the following theorem, we present a tight bound in the 
advice complexity of online 𝑘-search. The proof consists 
of a matching upper and lower bound. In the upper bound 
result, we present an optimal online algorithm. In the 
lower bound result, we used the concept of partition trees 
to show the minimum amount of advice needed by any 
online algorithm to be optimal for online 𝑘-search.

Theorem 2: Every optimal online algorithm with advice 
for online 𝑘-search needs at least log2(��) bits of advice 
and this bound is tight.

Proof: To prove that the bound is tight, we need to show 
that the upper bound and the lower bound hold. The proof 
follows from the proofs of Lemmas 2 and 3 for the upper 
bound and lower bound results, respectively.

Lemma 2: There exists an optimal online algorithm for 
online 𝑘-search that uses log2(��) bits of advice.

Proof: First, we prove the upper bound. We show that 

there exists an optimal online algorithm with advice for the 
online 𝑘-search problem that uses log2(��) bits of advice.

We can represent the answer sequence of an online 
algorithm for online 𝑘-search as a sequence of the seller’s 
decision. Let 𝑜 ∈ �0,1�� be the binary representation 
of the answer sequence, where 𝑜�𝑖� = 1 or 𝑜�𝑖� = 0 
corresponds to the 𝑖th day as a trading day or a non-trading 
day, respectively. A feasible answer sequence contains 𝑘 
trading and 𝑛 − 𝑘  non-trading days. Given the parameters 
𝑛 and 𝑘 for online 𝑘-search, one can enumerate the set 
containing all unique possible optimal solutions for any 
instance. One simple enumeration is by visiting all 2𝑛 
possible binary representations of the answer sequence 
and eliminating all non-feasible solutions. The number 
of such unique optimal solutions is (��). 		
	

An optimal online algorithm with advice for online 
𝑘-search reads the advice tape containing the encoding that 
specifies the index of the feasible solution in the above 
enumeration. The oracle can encode such information 
using log2(��) bits. 

Q.E.D.

Lemma 3: Every optimal online algorithm with advice 
for online 𝑘-search needs at least log2(��) bits of advice.

Proof: Here, we need to show that there exists a set  𝒮�,� 
of the input sequence to an online algorithm such that no 
online algorithm with advice will solve all instances in  
𝒮�,� optimally without needing log2(��) bits of advice, for 
any 𝑛 and 0 < 𝑘 < 𝑛.

Let 𝒮�,� = ��1, �2, ... , � (��)� be a set of instances for online 
𝑘-search. Let the corresponding set of the optimal solution 
for 𝒮�,� be 𝑂�,� = �𝑜1, 𝑜2, ... , 𝑜(��)�. Each input instance  �� 
is a sequence of 𝑛 prices, i.e. �� = 𝑝𝑖,1, 𝑝𝑖,2, ... , 𝑝𝑖,𝑛 where 𝑚 
≤ 𝑝𝑖,𝑗 ≤ 𝑀 for every 1 ≤ 𝑗 ≤ 𝑛. The corresponding optimal 
solution 𝑜� is a binary sequence of length 𝑛. The output 
sequence encodes the optimal seller’s decision, i.e. 1 if it 
is a selling day and 0, otherwise.

Here, we show how to construct the set 𝒮�,� for any 
feasible input parameters 𝑛 and 𝑘.

1. Given parameters 𝑛 and 𝑘, generate an ordered 
binary tree 𝑇�,� using the following recursive 
definition:

𝑇𝑛,𝑘 = 𝑚𝑒𝑟𝑔𝑒 (𝑇𝑛−1,𝑘−1, 𝑇𝑛−1,𝑘 )

The merge operation creates a tree by adding a root 
node and using 𝑇𝑛−1,𝑘−1 and 𝑇𝑛−1,𝑘 as the left and right 
subtrees, respectively.
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Figure 1. 𝑇�,� .

The intention here is to let the left subtree correspond 
to the case that the seller decides to sell on the first 
day, and thus needs to later decide on which of the 
remaining 𝑛 − 1 days to sell the remaining 𝑘 − 1 assets. 
On the other hand, the right subtree corresponds to 
the case where the seller does not sell on the first day.

The base cases for the recursive definition are 𝑇2, 0, 𝑇2, 

1 and 𝑇2, 2, as shown in the following figure:

Figure 2. Three possible trees for n = 2, i.e. k = 0, 1, 2. The trees 
are T2,0, T2,1, and T2,2. For illustration purposes, internal 
nodes are represented by circle nodes, and leaves are 
represented by rectangle nodes.

In 𝑇�,�, the total number of internal nodes is 𝑁�,�, 
which is computed by the following recursive 
definition:

𝑁𝑛,𝑘 = 𝑁𝑛−1, 𝑘− 1 + 𝑁𝑛−1, 𝑘 + 1

with base cases, 𝑁𝑛,0 = 𝑁𝑛,𝑛 = 𝑛 and 𝑁𝑛,1 = 𝑛 +  1.

2. Given the bounds on the prices, i.e. 𝑚 and 𝑀, 
compute for 𝑝1, 𝑝2, …,  𝑝𝑁𝑛,𝑘

 using the following 
definition:

This construction will ensure that 𝑚 ≤ 𝑝𝑖 ≤ 𝑀 and 𝑝𝑖 

< 𝑝�, for any 𝑖,𝑗 ∈ �1, ... , 𝑁𝑛,𝑘 �, where 𝑖 <  𝑗.

3. Label the internal nodes of 𝑇�,� using 𝑝1, ... 𝑝𝑁𝑛,𝑘
 

in an inorder fashion. Each leaf is reachable from the 
root through a sequence of left and right traversals. 
The sequence of traversal is represented in the label of 
length 𝑛, The encoding is 1 if it is a left traversal and 0 
if it is a right traversal. Since we followed the inorder 
fashion for labeling the nodes, we are guaranteed that 
for each node 𝑝𝑖, every node in the left subtree is less 

than 𝑝𝑖 and every node in the right subtree is greater 
than 𝑝𝑖.

4. Generate the set 𝒮�,� by enumerating all possible 
paths from the root to a leaf. The sequence of prices 
is the sequence of internal node labels of 𝑇�,�. The 
optimal solution for �� is encoded in the leaf label, 
i.e. 1 if it is a selling day and 0 otherwise.

We illustrate the construction of 𝒮₃,₂ from 𝑇₃,₂ using the 
four steps as described above.

Figure 3. The ordered tree T₂,₃ (a) for creating the set of input 
instances for online k-search, where n = 3 and k = 2. The 
leaf label encodes the optimal solution for each input 
instance in 𝒮₃,₂. (b) This table consists of the list of input 
instances in 𝒮₃,₂ = � �1 ,�2 ,�3 �. Each row in the table is 
an instance and the index i represents a trading day from 1 
to n. The optimal selling days are highlighted in the table.

Note that, for any feasible value for the parameters 
𝑛, 𝑘, 𝑀, and 𝑚, we can generate a set 𝒮�,� with (��) 
unique instances. The construction of 𝑇�,� assures 
that any pair �� and �� ∈ 𝒮�,� has a maximal common 
prefix at day 𝑙, where 1 ≤ 𝑙 ≤ 𝑛 −  1, and where the 
optimal solution for day 𝑙 +  1 in �� is to sell, whereas 
the optimal solution for ��  is to wait. Thus, for any pair 
�� and ��, it is impossible for any online algorithm to 
distinguish the two instances and produce an optimal 
solution, not unless an a priori advice is given to 
distinguish all the instances of 𝒮�,�.

Since |𝒮�,�| = (��) for any given 𝑛 and 𝑘, we need at 
least log2(��) bits of advice for any online algorithm to 
solve all input instances of online 𝑘-search optimally. 

Q.E.D

In Figure 4, we illustrate how to create a set of instances 
for online 𝑘-search with 𝑛 =  4 and 𝑘 = 2. The set 𝒮₄,₂ 
consists of (⁴₂) possible input instances, where each has a 
different optimal solution. For instance, let us consider �1 
and �2, at day 2, both of them has 𝑝3. For �1 selling at price 
𝑝3 is an optimal answer, whereas it is not the case for �2.
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ONLINE ALGORITHMS WITH ADVICE: 
1 BIT OF ADVICE FOR ONLINE 
2-SEARCH
We explore the power of a single bit of advice in improving 
the competitive ratio of online algorithms for online 
𝑘-search. First, we present an online algorithm with 1 bit 
of advice for online 2-search. Then, we show that we can 
generalize the algorithm for online 𝑘-search. The optimal 
deterministic reservation policy from the study of Lorenz 
et al. (2009) provides a tight bound on the competitive 
ratio of deterministic algorithms for online 𝑘-search. 
From Theorem 1 of Lorenz et al. (2009), we have the 
following corollary.

Corollary 1: For sufficiently large 𝑀/𝑚 and with 1 bit 
of advice available, there exists a deterministic online 
algorithm with a competitive ratio that is approximately 

equal to  for online 2-search, and there exists no 
deterministic algorithm with a smaller competitive ratio.

The optimal deterministic strategy of Lorenz et al. (2009) 
uses two reservation prices 𝑟1 and 𝑟2, whose values are the 
solution of the following equation:

The deterministic approach has an exact competitive ratio 

of , where:

Suppose we extend the idea of Lorenz et al. (2009) 
to provide us with an online strategy with advice for 

online 2-search. With 1 bit of advice, we can have two 
deterministic algorithms each with a set of 2 reservation 
prices. Let the two algorithms be 𝐴𝐿𝐺�(𝑟1,1, 𝑟1,2)� and 
𝐴𝐿𝐺�(𝑟2,1, 𝑟2,2)�where𝑚 <  𝑟1,1 < 𝑟1,2  < 𝑟2,1 < 𝑟2,2  < 𝑀. 
Analogous to the deterministic approach, the set of 
reservation prices solves the following equation:

(2)

Let us present the intuition behind the set of equations 
presented. Suppose we have 𝑝𝑚𝑎𝑥 as the maximum price in 
the given input sequence �. We have two cases depending 
on the value of  𝑝𝑚𝑎𝑥. The first case is when we have 𝑝𝑚𝑎𝑥 < 
𝑟2,1. Here, we have 𝑟1,1 and 𝑟1,2 as reservation prices, since 
they are between the minimum price 𝑚 and 𝑟2,1. 

The second case is when we have 𝑝𝑚𝑎𝑥 < 𝑟2,1. With this 
condition, we are guaranteed to obtain a price of at least 
𝑟2,1. Therefore, we use 𝑟2,1 and 𝑟2,2 as reservation prices 
since they both lie between 𝑟2,1 and 𝑀. The solution to 
Equation 2 would provide an optimal competitive ratio for 
the given approach. However, such a solution is difficult to 
determine. For the purpose of establishing a competitive 
ratio, one strategy is to fix 𝑟2,1 to a certain value that 
lies between the minimum price 𝑚 and the maximum 
price 𝑀. Say we have , as in the case of 
the deterministic reservation price for 1-search from 
(El-Yaniv et al. 2001), then we can compute a different 
competitive ratio for each deterministic algorithm. For 
the first algorithm, 𝐴𝐿𝐺�(𝑟1,1, 𝑟1,2)�, we have the following 
computation of the competitive ratio 𝑐1:

Figure 4. Each leaf in the tree is an instance in �� ∈ 𝒮₄,₂. The sequence of prices is obtained by enumerating the labels from a root to a leaf. 
The corresponding values (b) of each instance in 𝒮₄,₂ = ��1,�2, ... �₆ � for the whole trading day duration 1 ≤ 𝑖 ≤ 𝑛. 
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On the other hand, we have  with 
competitive ratio 𝑐2, which can be computed using the 
following relation:

Solving 𝑟2,2 in terms of 𝑚 and 𝑀, we have:

Using the computed value of 𝑟2,2, we have the following 
computation for the competitive ratio:

 

In summary, if we fix , we have a competitive 

ratio of  for the first case and we have  
for the second case. The second ratio is clearly greater than 
the first one, and so we adopt it as the competitive ratio 
for the proposed approach in order to cover all instances.

Following the above computations, we have the following 
theorem for online 2-search.

Theorem 3: There exists a -competitive online 
algorithm with 1 bit of advice for online 2-search.

Figure 5. Comparing the competitive ratio of the existing optimal 
deterministic algorithm from the study of Lorenz et al. 
(2009) and the competitive ratio of the two cases (c

1 and 
c

2
) for the online algorithm with 1 bit of advice for online 

2-search as the fluctuation ratio 𝑀𝑚 increases.

Figure 5 shows the comparison of the competitive ratio of 
the optimal deterministic without advice from the study 
of Lorenz et al. (2009) and our two competitive ratios 
𝑐1 and 𝑐2 as we increase the parameter 𝑀

𝑚. Overall, we 
take 𝑐2 as the algorithm’s competitive ratio. The optimal 
competitive ratio for the online 2-search with 1 bit of 
advice will balance the two obtained ratios for the two 
cases, and the ratio lies between 𝑐1 and 𝑐2.

ONLINE ALGORITHM WITH ADVICE 
FOR ONLINE 𝑘-SEARCH
In this section, we present a set of online algorithms with 
advice for online 𝑘-search. With less than the optimal 
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number of bits of advice, the oracle can specify a portion 
of the optimal solution prior to the computation. The 
remaining parts of the solution will be computed according 
to the optimal deterministic approach of Lorenz et al. 
(2009). Using log2(�𝑖) bits of advice, the oracle can specify 
𝑖 out of 𝑘 parts of the optimal solution to 𝐴𝐿𝐺𝑖. Note 
that the number of advice bits for 𝐴𝐿𝐺𝑖 declines as the 
parameter 𝑘 approaches 𝑛. 

Theorem 4: For any integer 0 < 𝑖 < 𝑘  , there exists an 
online algorithm 𝐴𝐿𝐺𝑖 for online 𝑘-search that uses log2(�𝑖) 
bits of advice to secure the top 𝑖 of 𝑘 optimal prices. 

For 
𝑀
𝑚 → �, the competitive ratio of this algorithm is 

approximately equal to:

Proof: Let 𝐴𝐿𝐺𝑖 be an online algorithm with advice for 
online 𝑘-search. The oracle can specify the location of 𝑖 
highest prices by specifying an element from the set of 
all possible 𝑖 combinations of 𝑛. The set of all possible 
combinations has a cardinality of (�𝑖). The oracle can 
encode such information by specifying an index of the 
element from the set using log2(�𝑖) bits. 

After reading the advice, 𝐴𝐿𝐺𝑖 will sell on the identified 
𝑖 days and choose the remaining (𝑘 − 𝑖) prices using the 
optimal deterministic algorithm 𝐴𝐿𝐺�(𝑟1, 𝑟2, ... , 𝑟𝑘−𝑖  )�. 
Using the advice, 𝐴𝐿𝐺𝑖 is guaranteed to be optimal in the 
top 𝑖 out of the 𝑘 highest prices. Since we use 𝐴𝐿𝐺�(𝑟1, 𝑟2, 
... , 𝑟𝑘−𝑖  )� to provide the remaining parts of the solution, the 
solution quality of the partial solution is within a factor of 
the known competitive ratio of the algorithm. The profit of 
the online algorithm with advice is equivalent to the sum 
of the 𝑖 highest prices and the profit of the partial solution 
obtained by using 𝐴𝐿𝐺�(𝑟1, 𝑟2, ... , 𝑟𝑘−𝑖  )�. If 𝐴𝐿𝐺�(𝑟1, 𝑟2, ... 
, 𝑟𝑘−𝑖  )� is �-competitive, the lowest profit of the algorithm 
is 𝑝𝑟𝑜𝑓𝑖�(𝑂𝑃𝑇)/ � ≤ ( (𝑘 − 𝑖) 𝑀) /  �.

T h u s ,  t h e  c o m p e t i t i v e  r a t i o  o f  𝐴 𝐿 𝐺 𝑖  i s 
e x p r e s s e d  a s  (𝑀/𝑚)/ �𝑖𝑀 +  ⁽�⁻�⁾��� ,  w h e r e 
� = �⁻� ⁺ ¹    (𝑘 − 𝑖)⁽�⁻�⁾(𝑀/𝑚) .  By performing the 
following algebraic manipulation, we obtain the following 
competitive ratio:

To simplify the computation, let  𝑑 = (𝑘 − 𝑖):

Q.E.D

Using the expression above for the competitive ratio, we 
have (𝑘𝑀)/ �(𝑘 − 1)𝑀 + 𝑀𝑚 � for 𝐴𝐿𝐺�₋₁. If the oracle 
can specify the location of the 𝑘 − 1 highest prices, we are 
left with a portion of the optimal solution that is as good 
as the best deterministic online search, i.e. 𝑘 = 1. On the 
contrary, if the oracle can only specify the location of the 
highest price, we have a relatively poorer competitive ratio 
of 𝑘𝑀/ �𝑀 + �   (𝑘 − 1)𝑚𝑀(𝑘 − 1)� . In summary, 𝐴𝐿𝐺𝑖 
is a collection of online algorithms for online 𝑘-search 
that provides higher solution quality with higher advice 
requirements. The computed competitive ratio of 𝐴𝐿𝐺𝑖 
coincides with the optimal deterministic competitive ratio 
of Lorenz if 𝑖 is set to 0, i.e. no advice is given. Moreover, 
if all the 𝑘 highest prices are provided by the oracle 𝐴𝐿𝐺� 
is optimal with 𝑐 =  1.
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ADVICE COMPLEXITY

Upper Bound Results
The use of randomization for improving the competitive 
ratio of online algorithms has been well established in 
the literature. Online computation has an interesting 
relationship to randomized computation. We highlight one 
observation where it is possible to transform any existing 
randomized algorithm into an online algorithm by simply 
choosing the best random string as the advice. Formally, 
we have the following observation from (Komm 2012).

Observation 1 (Komm 2012): If there exists a randomized 
online algorithm RAND that is 𝑐-competitive in 
expectation and that uses 𝑏 random bits, there also exists 
a 𝑐-competitive online algorithm with advice that uses 𝑏 
bits of advice.

From the above observation, we use a randomized online 
algorithm RAND from the study of Lorenz et al. (2009) 
to provide a corresponding online algorithm with advice.

Theorem 5: There exists an online algorithm with 
advice for online 𝑘-search with a competitive ratio of  
𝑂�2ln (𝑀/𝑚)� using 𝑏 =  log2 �log𝑎 (𝑀/𝑚)� bits of 
advice.

Proof: Let RAND be a randomized online algorithm for 
online 𝑘-search. RAND implements 𝐴𝐿𝐺�𝑚𝑎��, for some 
𝑟 chosen uniformly at random from �𝑂, ... , 𝑙 − 1�. Here, 
parameter 𝑙 =  log𝑎 (𝑀/𝑚), for some 1 < 𝑎 <  𝑀/𝑚. For  
𝑀/𝑚 > 3 and 𝑎 < 3 /    2, algorithm RAND has an expected 
competitive ratio of 2ln (𝑀/𝑚), as shown in Lemma 8 
by Lorenz et al. (2009).

An online algorithm for online 𝑘-search simulates 
𝐴𝐿𝐺�𝑚𝑎�� given an advice  𝑟 ∈ �0, ... , 𝑙 − 1�. The 
oracle gives the best value for the parameter 𝑟 for each 
possible input sequence. Since RAND has a competitive 
ratio of 2ln (𝑀/𝑚) in expectation, the online algorithm 
has a competitive ratio of at most 2ln (𝑀/𝑚). The 
number of advice bits follows from the encoding of 
the random parameter 𝑟, which can be encoded using 
𝑏 =  log2 �log𝑎 (𝑀/𝑚)� bits of advice. 			 
						    

Q.E.D

Lower Bound Results
It was shown by Clemente et al. (2016) that there exists 
an online algorithm with advice that can outperform the 
best deterministic and the best-randomized algorithm for 
online search.

Lemma 4 (Clemente et al. 2016): Let ALG be an 
algorithm with advice for online search, which reads 𝑏 < 

log2 (𝑛) bits of advice. The competitive ratio of ALG is 
at least (𝑀/𝑚)2� + 1

1 .

We argue in this section that we can also have the same 
lower bound results for online 𝑘-search.

Theorem 6: Every online algorithm for Online 𝑘-Search 
for 0 < 𝑘 < 𝑛, which reads 𝑏 <  log2𝑛 bits of advice have 
a competitive ratio of at least (𝑀/𝑚)2� + 1

1
.

Proof: The proof follows directly from Lemma 4. 	

Q.E.D

ADVICE AND RANDOMIZATION
Since there is a close and non-trivial relationship between 
advice complexity and randomization (Barhum et al. 
2014; Komm and Královič 2011), we compare the known 
lower bound results from the study of Lorenz et al. (2009) 
in Figure 6.

Figure 6. In this graph, we compare the lower bound results for any 
deterministic 𝑙𝑜𝑔𝑒(𝑀/𝑚) randomized (𝑙𝑜𝑔𝑒(𝑀/𝑚)/ 
2 in expectation) and online algorithm with advice 
((𝑀/𝑚)2𝑏 +  1)  for online k-search.

It was shown that no deterministic and randomized 
algorithm for online 𝑘-search will have a better 
competitive ratio of ln(𝑀/𝑚) and ln (𝑀/𝑚)

2  (in 
expectation), respectively. In Figure 6, we show that for 
a number of advice bits greater than:

Philippine Journal of Science 
Vol. 151 No. 4, August 2022

Clemente et al.: Advice Complexity of the Online k-search



1330

and:

we can outperform the competitive ratio of the best 
deterministic and randomized algorithm for online 
𝑘-search, respectively. Moreover, since the lower bound 
result of advice can also be used to provide a lower bound 
for randomized algorithms (Komm and Královič 2011), 
we can also have the following corollary from Theorem 6.

Corollary 2: No randomized online algorithm using 𝑏 
random bits will have an expected competitive ratio better 
than (𝑀/𝑚)2� + 1

1 .

CONCLUSION
We showed that there exists an optimal online algorithm 
using 𝑙𝑜𝑔2(��) for online 𝑘-search in Theorem 2 and that 
this bound is tight. We show that any optimal online 
algorithm needs at least 𝑙𝑜𝑔2(��) bits of advice. The proof 
in Theorem 2 uses the concept of partition trees where 
the lower bound on the advice is computed by counting 
the total number of hard instances for online 𝑘-search. 
The lower bound results in this paper for online 𝑘-search 
agrees with our results on the advice complexity for online 
𝑘-search with 𝑘 = 1, i.e. we need at least 𝑂(log2𝑛) bits of 
advice to solve the problem optimally.

We also study the power of 1 bit of advice for improving 
the competitive ratio of the online 2-search. We presented 
an online algorithm for online 2-search and showed that 
through advice, we can outperform the lower bound of the 
deterministic algorithms in terms of the competitive ratio. 

From a competitive ratio of , we present an online 
algorithm with one bit of advice for online 2-search with a 

competitive ratio of . Moreover, we present a 
set of online algorithms ALG𝑖 for online 𝑘-search. This set 
of algorithms utilizes a parameter 𝑖, where 1 ≤ 𝑖  ≤ 𝑘. ALG𝑖 
can read log2(�𝑖) bits of advice from the oracle bearing the 
location of the 𝑖 highest prices in the input. We showed that 
ALG𝑖 has a competitive ratio that approaches 1 as 𝑖 →  𝑘 .

A randomized algorithm is used to provide an upper-bound 
result for online 𝑘-search. We show that online 𝑘-search 

needs at least the minimum advice bits for online search 
to achieve certain competitiveness. From Theorem 6, any 
online algorithm for online 𝑘-search needs at least 𝑏 bits of 
advice to achieve a competitive ratio of (𝑀/𝑚)2� + 1

1
. The 

lower bound result in Theorem 6 provides an improvement 
on the expected lower bound result of any randomized 
online algorithm for online 𝑘-search. Moreover, the lower 
bound result on advice in Theorem 6 was also used to 
provide a lower bound result for randomized algorithms 
in Corollary 2.
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