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NBP 2.0: Updated Next Bar Predictor, 
an Improved Algorithmic Music Generator
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Deep neural network advancements have enabled machines to produce melodies emulating 
human-composed music. However, the implementation of such machines is costly in terms 
of resources. In this paper, we present NBP 2.0, a refinement of the previous model next bar 
predictor (NBP) with two notable improvements: first, transforming each training instance to 
anchor all the notes to its musical scale, and second, changing the model architecture itself. NBP 
2.0 maintained its straightforward and lightweight implementation, which is an advantage over 
the baseline models. Improvements were assessed using quantitative and qualitative metrics 
and, based on the results, the improvements from these changes made are notable. 
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INTRODUCTION
Music generation has been an active domain in machine 
learning, spawning a variety of algorithms used. 
The approaches in algorithmic music generation 
generally differ in the objective of the composition, the 
architecture used, and the strategies employed. Even the 
representations of the inputs and outputs differ. These 
approaches are considered guidelines for classifying and 
identifying existing music generation algorithms (Briot 
2021; Nierhaus 2009). 

Three factors must be considered to create a music 
generation system capable of mimicking human-composed 
melodies. First, one must determine whether the data 
representation of the dataset is signal-based or symbolic. 
Signal-based instances are thought to be closer to the 
natural form, which is represented through waveforms 
and spectra. A few studies have used .wav (McAllister 

and Gambäck 2022), .mp3 (Goren et al. 2022), and AIFF 
– which are the common formats under this category. 
However, signal-based representation is often not used 
in studies because each instance may contain 16,000 
samples per second, making the training difficult (Lee 
et al. 2017). In contrast, symbolic-based representation 
contains semantic meaning and is commonly used by 
researchers. This type of representation includes the use 
of MIDI (Hung et al. 2021; Walter et al. 2021; Ren et al. 
2020), piano rolls (Minu et al. 2022; Hoshi et al. 2022), 
lead sheets (Czyż and Kędziora 2021; Choi et al. 2021; 
Pachet et al. 2013), and text files (Yang 2021; Sabitha et 
al. 2021). 

Second, it is necessary to consider how data is transformed. 
Since most studies use symbolic-based data, pitches are 
encoded using a variety of techniques, such as tokens 
corresponding to the 88 keys on a piano (Majidi and Toroghi 
2022), MIDI note numbers (Choi et al. 2021; Guo et al. 
2021; Walter et al. 2021), matrices equivalent to the 128 
MIDI note numbers (Yang et al. 2017), among others. 
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Although these representations may be augmented with 
transposition, the transformations are not transposition 
invariant.

Last, the impact of the machine learning model and the 
specific architecture on the algorithmic music generator 
must be considered. Over the years, neural networks 
such as multilayer perceptron (Kurniawati et al. 2020), 
recurrent neural networks (Keerti et al. 2022; Czyż 
and Kędziora 2021; Jiang et al. 2019; Yu et al. 2021), 
variational autoencoders (Grekow and Dimitrova-Grekow 
2021; Chen et al. 2020; Pati et al. 2019), restricted 
Boltzmann machine (Lyu et al. 2015), reinforcement 
learning (Liu et al. 2021; Jiang et al. 2020; Jaques et al. 
2017), and generative adversarial network (GAN) (Huang 
et al. 2022; Kumar et al. 2019) have been explored. 
Similarly, a variety of compound architectures such as 
conditional GAN (Yang et al. 2017), a combination of 
the recurrent neural network and GANs (Li et al. 2021; 
Yu et al. 2021), and hybrid generative models (Dong et 
al. 2018; Yamshchikov and Tikhonov 2020) were used. 

GAN models have proven to be useful in visual computing 
(Gonog and Zhou 2019; Wang 2017); however, very 
lately, they have also been used in generating melodies. 
Although significant difficulties in training GAN – 
which include mode collapse, non-convergence, and 
hyper-parameterization – were encountered, they may 
be overcome with stability solutions (Saxena and Cao 
2021). Training time could also be a challenge because 
basically two models, the generator and the discriminator, 
are being trained. 

Conditioning or conditional architecture is another type 
of generative model that uses extra information to modify 
the training in such a way that this extra information, or 
so-called “conditioners,” may influence the generation 
process (Guo et al. 2021; Roberts et al. 2018; Yang 2017; 
Genchel et al. 2019). These conditioners could either 
be a separate input integrated in-between the model’s 
layers, or they may be embedded in the input before it is 
used by the model. Chord progression (Choi et al. 2021; 
Yang et al. 2017; Roberts et al. 2018), musical genre 
or style (Colombo et al. 2017; Mao et al. 2018; Liang 
2016), bass line or beat structure (Makris et al. 2017) are 
examples of conditioners. Conditioning could either be 
local or global depending on whether the conditioning 
is shared in all or on specific timesteps only (Guo et 
al. 2021). Choi et al. (2021) claimed that conditioning 
had an impact on the generated melodies in their study 
where chord progressions were utilized as conditioners, 
which is evident in the harmony criteria on the subjective 
evaluation. In contrast, Genchel et al. (2019) found that 
chord conditioning on folk tunes was unnecessary since 
notes might remain on the scale even without conditioning.

With the numerous implementations, the same objective 
is aimed, and that is to algorithmically generate music 
that can mimic human composition. 

In this paper, we present NBP 2.0, an updated version 
of NBP 1.0 (Dungan and Fernandez 2020) with two 
significant contributions. First, we modified the data 
transformation by "clipping" all pitches to the scale 
– that is, representing each pitch relative to the data 
instance's musical scale. Given that data transformation 
is a contributing factor in generative systems, this 
technique in data transformation could be an option for 
further improving the composed melodies. Aside from 
allowing machine models to learn the melodic contour 
(and, thus, being transposition invariant), it also includes 
scale information for the data instance. Second, NBP 2.0 
includes a simple and lightweight generative model that 
predicts pitch and duration based on the previous bar's 
information. It is an upgraded version of NBP 1.0, which 
already yielded good results according to objective and 
subjective evaluations. 

BACKGROUND OF THE STUDY

MidiNet (Yang et al. 2017)
Data representation. One instance of the dataset contains 
exactly eight bars and in each bar, the smallest allowable 
note is the 16th note. As rest notes are not represented 
in this model, previous (non-rest) notes were precisely 
prolonged to deal with the rest notes. Tracks are 
normalized into two octaves and are transposed to one or 
more keys to augment the data. Notes are quantized to the 
16th note and represented using a binary � x 𝑤 matrix, 
where � specifies the number of possible pitches and 𝑤 
denotes timesteps. Figure 1 depicts a visual representation 
of the binary matrix, with pixels representing entries of 
ones. Even though this format encompasses all octaves, 
it is not transposition invariant.

Architecture. The MidiNet, as shown in Figure 2, 
features a GAN-based architecture that is specifically 
built on DCGAN (Radford et al. 2015). The generator 
uses four layers of transposed convolution, with 1D and 
2D conditioners added to each layer. The 1-D conditioner 
is a binary vector of size 13 representing the previous 
bar's chord, and the 2D conditioner is a 128 x 16 matrix 
representing the previous bar. The discriminator is a 
convolutional neural network with two convolutional 
layers joined to a fully connected layer. The 2D and 
1D conditioners are added between the discriminator's 
convolutional layers. The generator was trained twice to 
reduce the possibility of the discriminator outperforming 
the generator. Human evaluators assessed the MidiNet 
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output in terms of how pleasing, interesting, and realistic 
the generated sounds are. In some criteria, MidiNet 
outperformed Melody RNN from Google.

NBP 1.0 (Dungan and Fernandez 2020)
Data representation. Pitch and duration are represented 
independently by a 16-element vector corresponding to 
one bar. The pitch is represented as a relative number, 
with the first pitch set to zero and the subsequent values 
equal to the difference between the current and previous 
note numbers. The duration is represented using binary 
values: 1 indicates that the pitch is played and 0 indicates 

that the pitch is sustained. In contrast to MidiNet, the data 
representation in NBP 1.0 is transposition invariant and 
can distinguish between sustained and hammered notes 
(Dungan and Fernandez 2020).

Architecture. The NBP 1.0 (Dungan and Fernandez 2020), 
whose overall flow is depicted in Figure 3, is a simpler 
type of generative model that produce melodies iteratively 
based on the preceding bar. It is trained using a set with 
many instances of two adjacent bars – the first bar acts as 
input and the second bar as the target output. In generating 
the output melody, a seed bar or the first bar in a song 

Figure 1. Example of a MidiNet dataset instance representation.

Figure 2. MidiNet architecture (Yang et al. 2017).
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from the held-out validation set is utilized as the primary 
input when creating a new melody. The second bar is then 
generated by the trained model. The second bar will then 
serve as input to create the third bar. This iteration process 
is repeated until the desired number of bars is reached.

METHODOLOGY
The stages and the procedure in the creation of the NBP 2.0 
are as follows: acquisition of melody, data transformation, 
model training, and evaluation. The output of NBP 2.0 
was compared with the baseline models (NBP 1.0 and 
MidiNet) using objective and subjective metrics. 

Acquisition of Melody and Chord Progression Dataset
The dataset, which contains 500 pop songs, was acquired 
from Theorytab1. The same dataset was used to train the 
two baseline models. Each song is made up of eight bars, 
and each bar has exactly one chord. As an example, a song 
excerpt from the official Game of Thrones soundtrack is 
presented in Figure 4. It consists of eight bars in sheet 
format, with the first bar highlighted. The first bar is made 

up of the following beats: two successive eighth notes 
(half beat), a quarter note (1 beat), two more eighth notes 
(half beat), and finally a quarter note (1 beat). For simpler 
and uniform implementation, we removed from the initial 
dataset all songs that contain 32nd notes in order to ensure 
that the smallest note is the 16th note. This way, we can use 
the same set of data previously used in our baseline studies. 
Excluding songs with 32nd notes, the dataset was reduced 
to only 460 songs, of which 410 were used for training 
purposes and 50 were held out for the generation phase. 
To handle the rest notes, each was eliminated by simply 
prolonging the previous note. This was also the procedure 
followed by the baseline studies when dealing with rest 
notes. It was also imposed in all instances of the dataset to 
have 1 chord per bar. As presented in Figure 5, the chord 
for the first bar and until the eighth bar is C# major.

Data Representation
The data flow of NBP 2.0 is essentially the same as 
with NBP 1.0, which uses the previous bar as input and 
generates the next bar as output. In the new version, 
each instance of the dataset is represented to include 
information about the scale. Here is an example of the 
transformation: If a bar's pitch values are A4, A4, E5, C5, 
and C5 and it is played in the C5 Major scale, we assign 
C to zero, and each of the other notes a value based on 
their relative position (i.e. the number of half steps below 
or above). We utilize Figure 6 to show the pitch's relative 
location. Starting with the first note, we count the number 
of semitones from A4–C5. From B, A#, and A, that would 
be three half-steps downward, so our relative value is 3. 

The numerical value along with the pitch represents the 
specific octave. An octave is a distance between one note 
(like C) and the next note bearing the same name (the next 
C that is either higher or lower). In our example, our note 

Figure 3. NBP 1.0 (Dungan and Fernandez 2020).

Figure 4. The first eight bars of the official soundtrack of Game of 
Thrones, as represented in lead sheets.

Figure 5. Corresponding chord sequence of the official soundtrack of Game of Thrones, as represented in lead sheets.

https://www.hooktheory.com/theorytab
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is A4, and the base is C5. It means that we moved down 
an octave; and so, the sign is negative. Any pitch that uses 
C5 as its basis must employ this translation. As a result, 
the note sequence A4, A4, E5, C5, and C5 would be 
transformed as –3, –3, 4, 0, 0. This representation retains 
the property of being transposition invariant.

In representing duration, we use the symbol 1 when 
the pitch is played and 0 when the pitch is sustained. 
We assign a value to each time step, and because the 
smallest allowable note duration is the sixteenth note, 
then the duration representation is made up of 16 values. 
If the pitch and duration in our example are A4, A4, E5, 
C5, C5, and quarter, quarter, eighth, quarter, and eighth 
notes, we can describe the pitch and duration using a 
16-element vector, as illustrated in Figure 7. If we are only 
referring to the pitch vector, it gives the impression that 
A4 is sustained. With the help of the duration vector, the 
model has the information that the said pitch was, indeed, 
hammered twice. Note that the current representation 
does not allow for rests to be handled. The duration 
representation may, in a further study, be enhanced to 
include –1 to indicate that a note is at rest. However, this 
option was excluded in the experiments to fairly compare 
the output of the NBP models against the MidiNet, which 
does not have rest notes.

Model Training and Generation of Melody
The NBP 2.0 is still a two-step process, where one trained 
model determines the pitch sequence, while another 
model determines the duration sequence of the next bar. A 
major change in the architecture was done to the previous 
model’s input, as well as to the order of prediction. In 
the new version, the duration was first predicted using 
the pitch and the duration of the previous bar. This is to 
reflect the idea that a pitch sequence can affect the duration 
sequence (for example, if the note pitches low, then note 
duration tends to be long). To accomplish this, the value 
of the pitch vector is simply concatenated to the value of 
the duration vector. The new dimension of the input in 

predicting the next bar’s duration, therefore, is a vector 
of size 32 consisting of the 16-element vector pitch (Pprev) 
and the 16-element vector duration (Dprev), both from the 
previous bar. This is used as input to the duration predictor 
in Figure 8. The output of the classification model is a 
16-element vector (Dnext) consisting of either 1 or 0 values, 
representing the duration vector of the next bar. Since 
only binary numbers were used to represent the duration, 
a classification model was used for the generator. 

To predict the pitch of the next bar, a regression model 
was used. The detailed presentation of the model can be 
gleaned from Figure 9. The predicted duration (Dnext) is 
concatenated to the previous 32-element vector, yielding 
a vector of size 48. The output of the regression model 
is a 16-element vector (Pnext) with values that represent 
the pitch sequence of the next bar. Since the output may 
be real numbers, values are rounded off. We opted for a 
regression model instead of a multi-class model because 
first, the output is not restricted to a particular number 
of octaves, which gives the model liberty to jump from 

Figure 6. C Major scale formula as the basis in the relative position

Figure 7. Input representation for pitch and duration. 

Figure 8. Detailed version of the duration predictor of NBP 2.0.
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one octave to another, and second, the encoding of the 
16-element pitch vector output is more lightweight with 
the use of an integer instead of a one-hot encoding of the 
multiple classes for each element of the vector. 

In the training phase, the pitch and duration predictor 
may be trained simultaneously since the requisite 
information are in the training dataset already. However, 
in the generation of new melodies, the duration, and 
pitch prediction was done in sequence because of the 
dependencies described earlier. In the production of 
a melody, a first bar acting as seed bar was randomly 
selected from the held-out set, and this bar was used as an 
initial previous bar to generate the second bar. The cycle 
in the generation was done seven times, making a song 

composed of seven bars. It is noteworthy to mention that 
the seed bar was discarded and was not included in the 
generated melody that was evaluated later. 

For easier reference, Table 1 shows a comparison of NBP 
2.0 against NBP 1.0 with respect to data encoding, the 
input dimension, the models used, as well as the output 
dimensions. 

Model Specification
The duration predictor used a classification model, 
particularly a deep neural network. The input layer has 
32 nodes and is followed by two hidden layers with 
16 and 8 nodes respectively. An output layer with 16 
notes completes the neural network architecture. L2 
regularization was used in the first hidden layer, relu 
activation function for the hidden layers, and softmax 
activation function on the output layer. During training, 
batch sizes of 32, 64, and 128 were experimented on, but 
the final model used a batch size of 128 because it yielded 
the best results. The pitch predictor, on the other hand, 
is a decision tree regression model. For hyperparameter 

Figure 9. Detailed version of the pitch predictor of NBP 2.0.
*Legend: 
[Ppev] previous pitch
[Dprev] previous duration
[Pnext] next pitch
[Dnext] next duration

Figure 10. Training loss for the duration predictor. 

Table 1. Comparison of NBP 1.0 and NBP 2.0.

NBP 1.0 NBP 2.0

Pitch data 
encoding

First note of a bar 
is set to zero, and 
values thereafter is the 
relative distance (i.e., 
difference in the MIDI 
note numbers) of a 
pitch to its immediate 
predecessor pitch

All pitch values are 
anchored to the scale 
of the song, i.e., a pitch 
is represented by its 
relative distance to the 
scale note of the song.

Input For Pitch Predictor: 
Previous Pitch 
(16-element vector) 
For Pitch Predictor: 
Previous Duration 
(16-element vector)

For Pitch Predictor: 
Previous Pitch + 
Previous Duration + 
Next Bar Duration
(48-element vector)
For Duration Predictor: 
Previous Pitch + 
Previous Duration 
(32-element vector)

Models used Pitch Predictor: 
Decision tree regression 
model
Duration Predictor: 
Decision tree 
classification model

Pitch Predictor: 
Decision tree regression 
model
Duration Predictor: 
Deep neural network 
classification model

Output Pitch Predictor: Next 
Bar Pitch (16-element 
vector)
Duration Predictor: 
Next Bar Duration 
(16-element vector)
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tuning, we conducted a grid search to at least determine 
a very good set of hyperparameters for the decision tree.

Based on the results of the grid search, the maximum 
leaf node was set to 80, and the maximum depth of the 
tree is set to 3. 

Evaluation
Objective and subjective analyses were used to investigate 
the improvements on the changes made in comparison 
with the baseline models. The objective analysis includes 
the comparison of the training time, dissimilarity score, 
weighted average of the out-of-scale notes, and MG 
evaluation (Yang and Lerch 2020). In the MG evaluation, 
we compared the different models using the pitch count, 
pitch range, note count, average pitch interval, and pitch 
histogram. 

The ShapeH algorithm (Urbano et al. 2010) was utilized 
to compute the dissimilarity score. Using the ShapeH 
algorithm, a melody is compared to, and the similarity 
score computed against, each melody from the dataset. 
From the different scores, the candidate melody from 
the dataset having the highest similarity score would 
be the closest melody. Since we are interested in the 
dissimilarity score, we get the difference between the 
similarity score with 1. From the 50-generation set, we 
calculated the average dissimilarity score to gauge the 
overall performance of the different generative models. 

Out-of-scale notes are pitches that fall outside of the 
collection of pitches traditionally associated with a certain 
scale. Such are often acceptable in music composition and 
serve as (what musicians refer to as) embellishments or 
accidentals that make the composition more interesting. 
However, in the case of pop songs, accidentals are rarely 
used. To analyze the model's output on how near the 
composition is based on the genre attribute, we computed 
the (duration-) weighted average of the out-of-scale notes. 
We tallied the number of out-of-scale note values in each 
of the model's generated melodies, divided it by the total 
number of notes with the same values, and multiplied it 
by the corresponding weight. We assigned the numbers 
4, 2, 1, 0.5, and 0.25 for whole, half, quarter, eighth, and 
sixteenth notes, respectively, for the specified weight.

For the MG evaluation, pitch count and pitch range were 
selected to describe the generated pitch of the different 
models in comparison with that of the dataset, whereas 
note count and average pitch interval describe the 
produced note durations.

Subjective analysis was also conducted using human 
evaluation. The listening evaluation was conducted using 
three criteria: “how realistic,” “how interesting,” and “how 
pleasing,” which are the same criteria used in MidiNet 

and NBP 1.0. A four-point Likert scale was used to grade 
the human survey. Thirty (30) persons were requested to 
participate in a survey to see if the three models (MidiNet, 
NBP 1.0, and NBP 2.0) can produce melodies that are 
pleasing, interesting, and realistic. Eleven (11) of the 
respondents are professionals who have a strong grasp of 
music theory and can play at least one musical instrument. 
Each is either taking up or has finished a master's degree 
in music education. The other 19 individuals are casual 
listeners. Each of the evaluators listened to a total of 30 
different music files, comprising of 10 algorithmically 
generated songs from each of the three models. Further 
details about these files are discussed later. The hearing 
evaluation was conducted for four days of less than 15 
min/d to avoid weariness among the participants.

For the generation of the melodies that underwent human 
evaluation, five seed bars were randomly selected from the 
held-out partition of the dataset. Each seed bar was then 
used to generate, for each of the three models, one 8-bar 
melody without chord progression, and another version of 
the melody – this time with chord progression included. 
Thus, there are 10 songs generated for each of the three 
models, for a total of 30 songs overall.

Since the songs generated by the three models have the 
same set of seed bars, we decided to remove the seed (first 
bar of each song) and only include in the evaluation test 
the actual seven bars produced by the respective models. 

This will ensure that the evaluators are not influenced by 
the seed, which is a human-composed bar.

RESULTS AND DISCUSSION

Training Setup of the Different Models 
The hyperparameters used by the different models are 
presented in Table 2. The hyper-parameters for MidiNet 
were based on the default values in the Github repository, 
whereas the hyperparameters for NBP 1.0 and NBP 2.0 
were based on grid search and on our own initial listening 
evaluation.

In the duration predictor, we monitored the training and 
validation loss along with hyperparameter tuning. Based 
on the experiments conducted, training loss seems to 
stabilize at epoch 1,000 and tends to overfit if training is 
prolonged. We, therefore, decided to stop the training on 
the said epoch.

Training the pitch predictor is slightly different because 
we did not fully rely on the computed root mean squared 
error value (rsme). This is because intervals in pitch are 
crucial in music composition. Music theory in one hand 
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Table 2. Comparison of the hyperparameters used in training the different models.

MidiNet NBP 1.0 NBP 2.0

Generator: Transposed CNN
Discriminator: CNN
Conditioner: CNN

Pitch Predictor: Decision Tree Regressor
Maximum leaf Nodes: 50
Maximum depth of tree: 5

Pitch Predictor: Decision Tree Regressor
Maximum leaf Nodes: 80
Maximum depth of tree: 3

Epoch: 20
Learning Rate: 0.0002
Beta 1:0.5
Optimizer: Adam
Batch size: 72

Duration Predictor: Decision Tree Classifier
Maximum leaf Nodes: 60
Maximum depth of tree: 3

Duration Predictor: Deep Neural Network
Learning rate: 0.0001
Epoch: 1000
Batch size: 128
Optimizer: Adam

Table 3. Training time is consumed by the different generative models.

Model Training time
 (in s)

MidiNet 201.00

NBP 2.0 46.353

NBP 1.0 0.0679

Table 4. Comparison of the average dissimilarity scores of the output 
of the different models.

Model Average dissimilarity score

MidiNet 0.960

NBP 1.0 0.685

NBP 2.0 0.923

Table 5. The weighted average of out-of-scale notes based on the 
generation set of the different models.

Model Average weighted out-of-scale

MidiNet 48.2%

NBP 1.0 65.9%

NBP 2.0 13.2%

considers consecutive notes having an interval of 2 sounds 
better than an interval of 1 because a leap of 1 semitone 
would sound dissonant. rsme, on the other hand, does not 
work this way: the less the gap between the predicted and 
the ground truth, the better.

In order to resolve this issue, we did not solely rely on 
the computed rsme but we periodically listened to the 
output melody of the model. Though the rsme value was 
not totally discarded, we applied a broader tolerance in 
monitoring the value to give us a hint to whether the 
generated output is worth listening to.

Training Time
The training time was recorded to assess the efficiency 
of the various models in terms of resource use. In 
recording the training time, saving of the output and other 
unnecessary displays were disabled. Table 3 compares the 
time of execution recorded during the training of the three 
models. It is natural that NBP 2.0 consumes more time 
than NBP 1.0 due to the change in architecture, as well 
as the required input for the regression and classification 
models. Nonetheless, the training time of NBP 2.0 is only 
roughly 23% of the entire training time of the MidiNet.

Dissimilarity Score
The dissimilarity score was used to objectively measure if 
the models demonstrated some creativity. Comparing the 
three models shown in Table 4, MidiNet has the highest 
dissimilarity, whereas NBP 2.0 was a close second. NBP 
2.0, if compared to NBP 1.0, has an average score that 
is about 0.230 higher (an improvement of about 35%). 

Even if the three models’ recorded dissimilarity scores 
are relatively high, indicating some good creativity, we 
cannot conclude that the high rating of dissimilarity 
could guarantee a pleasing melody, so we checked the 
performance of each model using other metrics.

Out-of-scale Notes
Inspecting further the quality of the generated melodies, 
we recorded how many from the generated set produced 
out-of-scale notes. As shown in Table 5, the NBP 2.0 
recorded the least number of out-of-scale notes among the 
three models. This model generated unique melodies, as 
evident in the dissimilarity score but still maintained to 
produce notes that are mostly inside the musical scale. In 
contrast, MidiNet tends to generate notes that are outside 
the scale. This would partly explain why it garnered 
the highest dissimilarity score, since the songs in the 
dataset have very few notes that are outside the scale. 
The dataset, which involved pop songs, only contained 
a weighted average of 2.09% out-of-scale notes, leaving 
a significant gap from any of the three models. Thus, 
further investigation on reducing the number of out-
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Table 6. Comparison of the dataset against the output of the different models using MG Evaluation.

Criteria
Dataset MidiNet NBP 1.0 NBP 2.0

Mean STD Mean STD Mean STD Mean STD

Pitch Count 6.43 1.8 8.32 1.25 4.16 3.25 7.72 1.14

Pitch range 11.4 3.85 19.04 3.73 16.3 20.4 13.9 4.53

Note count 32.8 13.49 41.5 8.06 27.18 21.68 24.58 6.67

Average pitch interval 2.77 1.86 5.39 1.36 1.03 0.89 4.42 1.61

of-scale notes was considered. Since out-of-scale notes 
are embellishments that would make the composition 
interesting, there is a risk that the output of NBP 2.0 is less 
interesting than those from the other two models, which 
can be confirmed by the human evaluation. 

MG Evaluation (Yang and Lerch 2020)
Results of the MG Evaluation is presented in Table 6, 
which includes the pitch count, pitch range, note count, 
and average pitch interval. Pitch count and pitch range 
were selected to describe the generated pitch of the 
different models in comparison with that of the dataset, 
whereas note count and average pitch interval describe 
the produced note durations. The improvement in NBP 
2.0 is evident from the results of the pitch count and pitch 
range. If we compare the scores of NBP 2.0 against the 
baselines, NBP 2.0’s scores are closer to the mean and 
standard deviation of the dataset. 

This may mean that predicting pitch after predicting 
duration indeed helped the model to predict better. 
Results on the note count and average pitch interval 
are not notable. However, the results of NBP 2.0 still 
outperformed MidiNet, along with the said criteria. The 
pitch histogram in Figure 11 further shows the mean of 
all the used notes. Visually, we can see those values of the 
dataset against the NBP 2.0 are nearly on the same level 
as compared with the other models. From the results, the 
improvement of the overall output may be attributed to the 
change in the architecture by predicting first the duration 
and increasing the input to the pitch predictor.

Human Evaluation
Novice. Combining all the produced output of the different 
models, we let the novice listeners decide which output 
they prefer on the different criteria. Listening plainly 
to the melodies, the respondents favored the output of 
the NBP 2.0 on the three criteria, as presented in Figure 
12, against the MidiNet and NBP 1.0. An additional 
listening experiment by combining the predefined chord 
progression with the produced output was conducted. It 
is worthy to mention that in training MidiNet, the chord 
was introduced as a conditioner, whereas in the different 
versions of NBP, it was not used as an additional input.

Figure 11. Pitch histogram using the 12-chromatic scale.

Figure 12. Ratings on the melody of the models, as rated by novice 
evaluators.

The evaluators showed more enjoyment when chord was 
included as compared to melodies only, as evidenced 
by the rise of all the scores shown in Figure 13. NBP 
1.0 improved as it scored slightly higher than MidiNet 
in pleasantness and realistic criteria. The NBP 2.0 still 
was judged as the best among the three models. Table 7 
shows the summary of the paired t-test p-values of the 
ratings on the different NBP models compared to the 
output of the MidiNet. On five out of the six criteria, the 
computed p-values suggested a significant difference, and 
only the interesting criteria under the case without chord 
progression displayed no statistical significance. This 
implies that, generally, novice users prefer the melodies 
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Figure 13. Ratings on the melody with the chord progression of the 
models, as rated by novice evaluators.

produced by NBP 2.0 better than those of the MidiNet.

Professionals. Professional musicians were also asked 
to evaluate the melodies generated by the models. These 
evaluators preferred the audios produced by NBP 2.0 for 
both without (see Figure 14) and with (see Figure 15) 
chord progression as compared to NBP 1.0 and MidiNet. 

Table 8 summarizes the paired t-test p-values of the ratings 
of the professional evaluators for the various models 
compared to the MidiNet. NBP 1.0, as expected, did 
not pose a viable contender because the values were not 
statistically significant even when the chord progression 
was added. The output of NBP 2.0 indicates that the expert 
evaluators' ratings are statistically significant in all the 
categories against the MidiNet.

CONCLUSION
In this paper, we presented NBP 2.0, a new variant of the 
next bar predictor (Dungan and Fernandez 2020) that is 
an algorithmic music generation model that is lightweight 
– as evidenced by the computed training time, and can 
generate pleasing, interesting, and realistic melodies. This 
improvement entails scale-based data transformation, 
wherein the pitch representation is relative to the value 
of the scale. The architecture was also improved, wherein 
the sizes of the input vectors in the duration and pitch 
predictor were adjusted to 32 and 48, respectively, from 
the original size of 16 for both. The duration predictor 
now requires the pitch and duration values of the previous 
bar, unlike in the previous version where only the duration 
of the current bar is required. Furthermore, the pitch 
predictor uses the pitch and duration of the previous bar 
concatenated with the duration of the current bar as its 
input, unlike the previous version that only required the 
pitch of the previous bar.

The evaluation metrics used in the study revealed 
general improvements on various metrics. NBP 2.0 
outperforms the prior version because of several reasons. 
It generates more unique melodies, as evidenced by a 
higher dissimilarity score. When the new architecture was 
combined with the scale-based data transformation, the 

Figure 14. Ratings on the melody of the models, as rated by 
professional evaluators.

Figure 15. Ratings on the melody with chord progression of the 
models, as rated by Professional evaluators

Table 8. Paired t-test comparing the rating of the professional evaluators with and without application of the chord 
progression for the different output of the models against those from the MidiNet. 

Models
Without Chord Progression With Chord Progression

Pleasing Interesting Realistic Pleasing Interesting Realistic

NBP 1.0 0.500 0.153 0.299 0.095 0.426 0.902

NBP 2.0 2.13E-10* 0.0009* 2.5E-05* 9.342E-09* 0.000252* 0.002*

Philippine Journal of Science 
Vol. 151 No. 5, October 2022

Dungan and Fernandez: Updated Next Bar Predictor and 
Improved Algorithmic Music Generator



1903

number of out-of-scale notes dropped significantly. The 
two groups of respondents further confirm the NBP 2.0's 
adequacy as it was rated the highest amid the baseline 
models (MidiNet and NBP 1.0). This advantage was 
further demonstrated using a paired t-test, which yielded 
statistically significant findings. Ultimately, considering 
all the advantages of the NBP 2.0 over the baseline models, 
we can say that deterministic models – specifically the 
NBP 2.0 – can be an efficient way to generate unique, 
pleasant, interesting, and human-like composed melodies.

For further research exploration, it may be worthy to 
investigate the inclusion of musical rests and shorter 
duration notes to cover a wider range of possible musical 
compositions. Additionally, a study similar to this may be 
conducted, wherein the seed bar is not discarded prior to 
evaluation so that the models’ ability to continue a human-
composed seed bar can be assessed. An ablation study may 
also consider investigating the cause of the improvement 
from NBP 1.0 to NBP 2.0. Furthermore, other techniques 
can be explored to fully automate the music generation, 
such as the automatic generation of a seed bar and chord 
progression. Finally, the proposed NBP 2.0 or further 
improved versions can be compared with other recent 
models for the algorithmic generation of music.
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