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Abstract

With the availability of user oriented software tools, dedicated architectures, such as the parallel computing platform
and programming model CUDA (Compute Unified Device Architecture) released by NVIDIA, one of the main produc-
ers of graphics cards, and of improved, highly performing GPU (Graphics Processing Unit) boards, GPGPU (General
Purpose programming on GPU) is attracting increasing interest in the engineering community, for the development of
analysis tools suitable to be used in validation/verification and virtual reality applications. For their inherent explicit
and decoupled structure, explicit dynamics finite element formulations appear to be particularly attractive for imple-
mentations on hybrid CPU/GPU or pure GPU architectures. The issue of an optimized, double-precision finite element
GPU implementation of an explicit dynamics finite element solver for elastic shell problems in small strains and large
displacements and rotations, using unstructured meshes, is here addressed. The conceptual difference between a GPU
implementation directly adapted from a standard CPU approach and a new optimized formulation, specifically conceived
for GPUs, is discussed and comparatively assessed. It is shown that a speedup factor of about 5 can be achieved by
an optimized algorithm reformulation and careful memory management. A speedup of more than 40 is achieved with
respect of state-of-the art commercial codes running on CPU, obtaining real-time simulations in some cases, on com-
modity hardware. When a last generation GPU board is used, it is shown that a problem with more than 16 millions
degrees of freedom can be solved in just few hours of computing time, opening the way to virtualization approaches for
real large scale engineering problems.
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1. Introduction

In many fields of engineering there is a growing interest for
the finite element simulation of large scale problems, in-
volving a great number of unknowns (millions in general),
as a replacement for expensive physical testing or proto-
typing. Even though high-end modern personal comput-
ers have multi-core architectures equipped with powerful
CPUs, they remain still unable to perform these type of
simulations so that the use of supercomputers or clusters
is in general necessary.
Graphics Processing Units (GPUs) were originally designed
for graphics applications, in particular for video games.
The programmable rendering pipeline allowed the highly
parallelized execution of small portions of code, but re-
mained relatively difficult to exploit for general purpose
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computations. Recently, thanks to the development of
dedicated hardware with unified architectures and the in-
troduction of specialized programming languages, such as
CUDA (Compute Unified Device Architecture), designed
by NVIDIA, one of the main producers of graphics cards,
or OpenCL, maintained by the Khronos Group and adopted
by the major GPU and CPU manufacturers, General Pur-
pose programming on GPUs (GPGPU) has become an in-
creasingly valid computing resource in engineering simu-
lations. Built with thousands of cores, GPUs can dras-
tically increase the computing capacity of the computa-
tional nodes at a relatively low cost, even on commodity
hardware, opening new scenarios for the development of
innovative numerical simulation approaches. In view of
this evolution, since several years GPUs have started to
be extensively used to speedup calculations in many engi-
neering applications.
A recent review of applications in FEM (Finite Element
Method)-based structural mechanics can be found in [1],
but GPUs are being used also in a variety of other con-
texts. In [2], the authors apply high-order Discontinuos
Galerkin (DG) method to the solution of Maxwell’s equa-
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tions. In DG methods most operators are defined locally
at element level. This, combined with the high arithmetic
workload and small memory footprint typical of high-order
approximations, results in a very favorable environment
for GPU implementations. Lattice-Boltzmann methods
are also very suited to fine parallelizations and very high
speedups can be reached in GPU implementations: see for
example [3, 4]. There are also excellent results in molecu-
lar dynamics simulations [5], in contact detection for DEM
(Discret Element Method) simulations [6] and in boundary
element applications [7].
As examples of recent contributions in the FEM context,
one can cite the work in [8], concerning the implementation
of a domain-decomposition method. With the increasing
power of GPUs for general purpose programming, multi-
node, multi-core clusters with one (or more) GPU per node
have seen a rapid diffusion. The approach presented in [8]
shows a hybrid (i.e. based on combined use of CPU and
GPU) implementation of the FETI method for implicit fi-
nite element structural mechanics problems. The proposed
dynamic load balancing algorithm allows for the efficient
use of both CPUs and GPUs, minimizing the idle time and
exploiting the capabilities of the heterogeneous hardware.
An explicit nonlinear finite element solver (which uses lin-
ear hexahedra and tetrahedra) for surgical simulations is
presented in [9], showing a speedup of more than 20 times
compared with a CPU implementation. Always consid-
ering surgical applications, [10] proposes GPU-based im-
plementation of the FEM using implicit time integration
for dynamic nonlinear deformation analysis. In [11], an
explicit dynamics formulation for the simulation of sheet
forming problems, based on the use of shell elements of the
Belytschko-Tsay type, is discussed. In [12], a new method
for the assembling of the stiffness matrix in case of isoge-
ometric analysis is proposed. Hybrid implementations of
multiscale finite element approaches, whereby constitutive
material computations at Gauss point level are carried out
on the GPU, are discussed in [13] and [14]
In most of the above-mentioned applications, results are
limited to single-precision arithmetic (e.g. [2, 9, 14, 10]).
It is important to recall, as suggested in [8], that, con-
cerning NVIDIA GPUs, in all the implementations before
CUDA compute capability 1.3, only single-precision float-
ing point operations are supported directly by the hard-
ware. Furthermore, double-precision variables consume
twice as much of the limited amount of GPU registers and
block shared memory, and in view of the possible decay of
performances implied by the use of device global memory,
this has often been considered as a strong indication to-
wards the use of single-precision arithmetic. In addition,
the use of single-precision has been a source of misinter-
pretations in speedup comparisons between CPU and GPU
implementations of the same algorithms. GPUs have al-
ways been very optimized for high-density single-precision
floating point computations (being primarily designed for
graphics acceleration); therefore, they can carry out a very
large number of Floating Point Operations per Second

(FLOPS), if compared to CPUs. However, in most engi-
neering applications double-precision arithmetic is manda-
tory. Therefore, a certain performance drop when using
double-precision instead of single-precision in GPUs has to
be accepted as unavoidable (even though on newer GPUs
this gap is being reduced, on older ones double-precision
could only be emulated and thus performances were very
poor).
As pointed out in [1], most structural FEM applications
using GPUs are based on implicit algorithms, where GPUs
are mainly used for the solution of linear systems of equa-
tions. Emphasis is therefore placed on optimizations of the
linear solver on GPU. This is the case, for instance, of most
general purpose commercial FEM software products (see
e.g. [15]). In [1], an accurate comparison of different im-
plicit FEM-based GPU solvers is presented. All the steps
of the solution scheme are discussed (pre-processing, so-
lution and post-processing) and the relative speedups are
shown. Only implicit schemes are considered as system
solving strategy, with performance comparison of various
linear system solvers (both direct and iterative). Other
extensive studies on the performances of different linear
solvers have been carried out for example in [16, 17, 18, 19].
On the other hand, only few GPU implementations of
FEM in explicit dynamics are available in the literature.
Examples can be found in [9, 11].
In this work, we present a double-precision, explicit dy-
namics non-linear finite element shell solver on unstruc-
tured grids, designed specifically to carry out the whole
computation on a GPU. An innovative algorithm imple-
mentation of the central difference scheme is proposed in
order to fully exploit the computational power of GPUs.
Thanks to the original and highly optimized algorithm for-
mulation and careful memory management, the GPU-only
implementation is able to reach very high performances
with limited memory consumption, even on single-GPU
configurations on commodity hardware. For some prob-
lems, simulation can also be run at real-time speed.
This paper is structured as follows: in section 2 the fi-
nite element structural solver is introduced, with a brief
description of the mathematical model and time integra-
tion scheme; the GPU implementation, together with the
adopted strategies and performance improvements, is de-
scribed in section 3; numerical results for three test cases
are reported in section 4, the third case consisting of a
performance analysis on larger meshes; finally, in section
5 limitations of the presented work are discussed, high-
lighting possible future improvements.

2. Shell structural solver

The main objective of this work is to develop a highly effi-
cient explicit finite element structural solver for the simu-
lation of the dynamical behavior of thin-walled structures.
The nonlinear structural problem is discretized by means
of MITC4 shell elements [20, 21], where the typical con-
straints of Reissner-Mindlin shell kinematics are enforced.
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More specifically, MITC4 elements have 4 nodes and 5 De-
grees Of Freedom (DOFs) per node, specifically the three
displacements and the two rotations around the axes tan-
gent to the element middle plane. The drilling rotation is
neglected. In order to avoid shear locking phenomena,
a mixed interpolation of the shear stress component is
used [22]. The adopted formulation lies within the con-
text of isotropic elasticity, with large displacements and
small strains.

2.1. Time integration

Let us consider the semi-discretized equation of motion
(for the variational formulation in explicit dynamics lead-
ing to the discretized form, see e.g. [23], chapt. 6):

MÜ + CU̇ + FI (U) = FE , (2.1)

where U, U̇ and Ü are vectors containing nodal displace-
ments, velocities and accelerations respectively, FI rep-
resents the internal equivalent elastic forces and FE the
external loads. M is the lumped mass matrix and C is the
damping matrix. The explicit half-station central differ-
ence approach [24, 23] is employed to integrate the system
of non-linear second order differential equations in (2.1).
The damping matrix is assumed to be diagonal and pro-
portional to the mass matrix, i.e. C = αM with α ≥ 0.
Together with mass lumping, this choice allows to trans-
form the problem into an uncoupled system of algebraic
equations in which each solution component may be com-
puted independently, without assembling any global ma-
trix. Therefore, it is possible to rewrite (2.1) in terms of
the individual i-th DOF:

miai + civi + fI,i = fE,i (2.2)

where ai, vi and ui represent the acceleration, velocity and
displacement of the i-th DOF respectively. Let us consider
a discrete number of time stations tn ∈ [0, T ], T being the

total analysis duration. Let tn+
1
2 = 1

2 (tn+1+tn) define the
half-stations between two subsequent time stations. Time
steps and half-station time steps are defined as

∆tn+
1
2 = tn+1 − tn; ∆tn = tn+

1
2 − tn− 1

2 (2.3)

The following sequence of operations describes the appli-
cation of the standard central difference time integration
algorithm (see [23] for further details):

1. Initialization: set u0i , v
0
i equal to assigned initial con-

ditions, and compute a0i from the initial values of the
external forces.

2. Time update:

tn+1 = tn + ∆tn+
1
2 , tn+

1
2 =

1

2
(tn+1 + tn). (2.4)

3. First half-step: update values of free DOFs:

v
n+ 1

2
i = vni + (tn+

1
2 − tn) ani , (2.5)

un+1
i = uni + ∆tn+

1
2 vn+

1
2 . (2.6)

and of constrained DOFs. This calculation is carried
out independently for each DOF.

4. Loop over all elements:

• Compute element nodal contributions to inter-
nal and external forces: fn+1

I,i , fn+1
E,i .

• Transform nodal contributions from element lo-
cal basis to global basis.

5. Second half-step: accelerations and velocities are up-
dated using the new internal and external forces:

an+1
i =

fn+1
E,i − f

n+1
I,i − ci v

n+ 1
2

i

mi + (tn+1 − tn+ 1
2 )ci

, (2.7)

vn+1
i = v

n+ 1
2

i + (tn+1 − tn+ 1
2 ) an+1

i . (2.8)

The computation of internal and external forces (step 4) is
the most expensive step. While steps 3 and 5 are executed
independently on each DOF, step 4 involves a loop over
the elements and stress and strain tensor calculations re-
quire a considerable computational effort. Moreover, after
the internal forces are evaluated, they need to be accu-
mulated in per-DOF arrays, since each node receives force
contributions from all the elements that share it.
The main disadvantage of explicit time integration schemes
consists of their conditional stability. A simple criterion to
determine a stable time step for simulation on an assigned
mesh is given by ([23]):

∆t = γ∆tcrit; ∆tcrit =
2

ωmax
≤ min

e

le√
E

ρ(1−ν2)

, (2.9)

where ωmax is the highest frequency of the assembled lin-
earized system, le is element e characteristic length, ρ the
density, E the Young modulus, ν the Poisson ratio and γ
is a reduction factor accounting for the problem nonlinear-
ity. This limitation usually leads to very small time steps,
which makes the method particularly suited to high strain
rate dynamics problems. Nevertheless, explicit schemes
are often conveniently used also in relatively slow dynami-
cal applications as long as the problem is highly nonlinear,
since they do not require iterations to reach convergence
within a time step.

3. GPU Implementation

The explicit algorithm presented in the previous section
has been developed for execution on NVIDIA GPUs using
CUDA, which was chosen among the available GPGPU
frameworks for its stability and maturity. For a descrip-
tion of CUDA and NVIDIA GPUs’ architecture see [25].
However, the majority of the concepts described in the fol-
lowing sections are general and can be exploited on other
platforms, with some minor changes. The implementa-
tion presented here is meant for GPUs with CUDA com-
pute capability 2.0, with the developed code optimized
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for that architecture: older devices are not supported and
some features of newer GPUs may not be exploited. In
addition, the solver currently runs on single-GPU ma-
chines, even though extending the current implementa-
tion to a multi-GPU environment is straightforward. A
basic graphical representation of the different elements of
the GPU architecture, together with the relevant termi-
nology used in GPU programming, is provided in figure
1. A generic CUDA application is mainly divided into two
parts: host code, running serially or in parallel on CPU,
and device code, running on one (or more) GPUs. The
host code is responsible for initializing the GPU device
and organizing memory and managing transfers. The de-
vice code usually provides a set of functions callable from
the CPU code, named kernels. A kernel is basically a
sequence of SPMD operations (Single Program Multiple
Data) executed on the GPU on an arbitrary number of par-
allel threads. The threads are organized in n-dimensional
blocks, which are then organized in a n-dimensional grid
(where n can be 1, 2 or 3). A GPU contains a certain num-
ber of Streaming Multiprocessors (SM), which execute one
or more thread block each, based on the resource avail-
able and requested per-block. Threads are then executed
by the SM in groups of 32, called warps, with virtually
zero-overhead warp scheduling, handled by the hardware
transparently to the user. Threads can be synchronized
explicitly only inside the blocks; communications between
different blocks is more complicated and costly, as it has
to be done using global memory fences and atomic oper-
ations. Therefore, the organization of the threads is an
important aspect to be kept in consideration when devel-
oping in CUDA. For a more detailed description of the
programming model, the types of memories available and
other considerations regarding CUDA, see [25].
If we consider a single-CPU host machine with a single
GPU board, we can generically subdivide a GPGPU ap-
plication in four essential macro-steps:

• initialization and organization of permanent data and
constants in the memory on the GPU board;

• transfer of input values from the host (CPU) ma-
chine to the device (GPU);

• execution of one or more GPU kernels on this data;

• transfer of output values and results from the device
to the host machine.

For simple problems, porting to GPU an existing algo-
rithm developed for a CPU can be straightforward, re-
flecting the actual CPU implementation. However, for
more complex tasks, to achieve good performances and
take full advantage of the GPU computational power, the
design of algorithms should reflect the actual structure of
the GPU. More specifically, particular care must be taken
in organizing memory and managing data transfers. GPUs
are in fact designed to be very efficient at performing
floating point arithmetic, but are not optimized to cope

with branches and execution divergences, or random de-
vice memory accesses. When writing GPU code, the dif-
ference in performance obtained accessing device memory
aligned and with specific patterns rather than with random
access is substantial. In addition, because of the limited
PCI-Express bandwidth, host-to-device and device-to-host
memory transfers can easily become the bottleneck of an
algorithm. Therefore, constant data should be kept on
GPU memory and moved from/to the device only when
necessary. In this work, we assume all data (computational
mesh and other required data) to fit within the available
GPU memory. While this can be seen as a restriction, it is
worth noticing that the actual memory consumption of the
presented implementation is very low, allowing for simula-
tion of realistic engineering problems with a large amount
of degrees of freedom even on a single GPU board.
In the next sections, two different GPU implementations of
the algorithm described in section 2.1 are presented and
critically discussed. The first one consists in a straight-
forward implementation of the CPU algorithm, slightly
adapted to take advantage of the GPU parallel character-
istics. In the second case, the algorithm is reconsidered
from scratch, to achieve an optimized GPU-only imple-
mentation.
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Figure 1: Schematic illustration of GPU architecture and program-
ming elements.
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3.1. First GPU implementation

The first GPU implementation considered is adapted di-
rectly from the serial CPU algorithm. The various steps of
the time advancing scheme described in section in 2.1 are
implemented in different kernels (figure 1): those concern-
ing the two integration half-steps (steps 3 and 5) are exe-
cuted with one (or more) DOF associated to each thread,
while in the internal and external force calculation step
(step 4) one element per thread is considered. While the
code concerning each DOF and node is executed indepen-
dently in steps 3 and 5, the assembly of elemental forces
in step 4 requires the accumulation of values in the nodes,
which is essentially a reduction process. Communication
and synchronization between threads belonging to differ-
ent blocks (and therefore using non-shared memory, see
figure 1) in GPU is a difficult task, since CUDA supports
native thread synchronization only at thread-block level.
To avoid race conditions during forces accumulation, a col-
oring technique is employed: elements are divided into
subsets such that all elements in a specific subset do not
share any node. Nodal assembly of forces can thus be
performed on one subset at a time, with different consec-
utive calls to the CUDA kernel, and threads are free to
write their results without worrying about other threads
accessing the same memory locations. This implementa-
tion already shows good performances with respect to the
serial CPU implementation; but it is not fully exploiting
the power of the GPU. The algorithm in the form pre-
sented in section 2.1 is not designed to be run on GPU
and this limits the actual achievable speedup.

3.2. Enhanced GPU implementation

In the time integration scheme presented in section 2.1,
the steps of the algorithm are basically loops, operating
on different types of entities (DOFs, nodes, elements); this
structure is exploited in the first GPU implementation de-
scribed above, executing each step in separate CUDA ker-
nels. The first objective of the enhanced implementation is
to express the whole algorithm as a loop over a single type
of entity. In this way, a single CUDA kernel is sufficient
to perform all calculations concerning an entire time step,
avoiding multiple kernel calls, with the relative overhead,
and minimizing memory accesses.
Using DOFs as main entity would be convenient only in
the two integration half-steps, while the other steps would
be too difficult to be formulated on a per-DOF basis. A
better approach is obtained looping over nodes, since at
each node only the DOFs pertinent to that node are in-
tegrated at each time step. However, computation of in-
ternal and external forces, the most computationally ex-
pensive step, is hard to be performed on a per-node basis,
since it requires integration over the elements. Each node
should know which elements it belongs to, their properties
and materials, and then force contribution coming from
all those elements should be computed. This would cause
intensive memory access, with wasted time to perform the

same calculations more than once (considering also the
lack of easy synchronization and communication between
thread blocks).
All these problems can be solved by looping over the el-
ements. Every element keeps all the information about
its nodes in a local copy, not shared with other elements
(see figure 2, where global versus local node numbering is
shown). Consequently, each element performs time inte-
gration on its own nodes, and then it can proceed to forces
calculation. All steps can thus be carried out in one single,
long and articulated CUDA kernel.
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Figure 2: Example of mesh with four elements, indicated by the let-
ters A, B, C, D. Global node numbering versus local node numbering:
global node numbers are in black; each element has its own copy of
the nodes, which are locally numbered in red.

Performing element by element computations, some op-
erations need to be repeated several times: each element
keeps its own copy of the local nodes and therefore has
to build and integrate nodal quantities even if they are in
common with other elements. Nevertheless, in this way
only the force assembly step, where forces coming from
neighboring elements are gathered, requires a communi-
cation between different elements. This approach is effec-
tive only in GPU implementations, where repeating the
same calculation can be convenient if it means performing
fewer memory accesses, since GPUs are much more pow-
erful at executing floating point operations rather than
accessing memory. Moreover, the amount of memory re-
quired to implement the GPU optimized central difference
scheme is limited, thus some memory can be wasted by
duplicating necessary information, if this leads to simpli-
fications in the kernel structure or better memory access
patterns. Finally, since computation of nodal forces is the
most computationally intensive step, possible repetitions
should concern other less demanding steps.
Another advantage of the proposed element-wise algorith-
mic structure is that when an element is considered, the
only mesh connectivity information necessary to the CUDA
kernel for each one of the element local nodes concerns
the indexes of neighboring elements which share it and
the corresponding local node index inside those elements.
The algorithm is also independent of the element type: it
could be applied, for example, to triangular elements (or
other types of elements) without changing the code struc-
ture. The proposed GPU formulation can naturally cope
with unstructured meshes. This is in contrast with many
FEM solvers implemented in GPU, which usually require
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structured grids.

3.2.1. Central difference method on GPU

In the standard time stepping algorithm with central dif-
ference method, the force calculation step is the only one
that needs explicit communications: after the nodal forces
are computed for each element separately, they need to be
exchanged between neighboring elements, in order to com-
pute the right nodal force contributions. A slight modifi-
cation to the standard central difference scheme sketched
in section 2.1 is introduced to avoid communications inside
the same CUDA kernel. Following the algorithm of section
2.1 the acceleration update is conceptually considered the
last operation of the time step. In the proposed approach,
it becomes the first operation of the next time step, while
the computation of nodal forces becomes the last one; i.e.
for each element the following sequence of operations is
carried out at each time step:

ani =
fnE,i − fnI,i − ci v

n− 1
2

i

mi + ci (tn − tn− 1
2 )
, (3.1)

vni = v
n− 1

2
i + (tn − tn− 1

2 ) ani (3.2)

(computed only if required for energy check),

v
n+ 1

2
i = v

n− 1
2

i + (tn+
1
2 − tn− 1

2 ) ani , (3.3)

un+1
i = uni + ∆tn+

1
2 vn+

1
2 , (3.4)

Fn+1
I = internalForces

(
Un+1

)
, (3.5)

Fn+1
E = externalForces

(
Un+1

)
. (3.6)

In this case it is obviously necessary to perform an initial-
ization step where initial forces, DOF values and half-step
velocities are computed.
With this new solution scheme (3.1 - 3.6), there are two
main advantages. Firstly, the accelerations ani are calcu-
lated only in the step where they are used and do not need
to be stored. Therefore, the only used global buffers are re-
lated to DOF values (nodal displacements and rotations),
half-step velocities and forces. Furthermore, this proce-
dure does not need synchronizations inside a time step.
In the force calculation step each element computes only
its contributions to the forces on the local nodes. Placing
this step at the end of the kernel execution, we exploit
the implicit synchronization occurring between successive
kernel calls to ensure that, at the next time step, when
the kernel is invoked again, each element can freely gather
all the previous step force contributions to its local nodes
coming from the neighboring elements, without worrying
about data integrity and race conditions. The whole time
step advancing procedure is thus contained in a single big
CUDA kernel, with a schematic flow chart sketched in fig-
ure 3. The algorithm in pseudo-code is briefly described
in algorithm 1.

 

Read necessary quantities from device 

memory and constant memory 

Gather contribution to local nodal forces 

from neighbouring elements 

Time integration step 

Calculate internal and external forces 

Thread start 

Thread end 

Write all updated values to device memory 

CUDA kernel 

Loop over elements: every element is assigned to one thread 

Figure 3: Steps of time integration kernel.

3.2.2. Memory management and performance improvement

Thanks to the structure described in the previous sec-
tions, the entire simulation data resides in GPU mem-
ory and transfers to or from host memory are not nec-
essary (they are performed only to retrieve simulation re-
sults when needed or change boundary conditions or ex-
ternal loads). However, in order to maintain good perfor-
mances, particular care must be taken in the organization
and management of the data structures in device memory,
such that non-optimal memory access patterns are mini-
mized, in view of the relatively high cost of each individual
memory access. Memory access optimization is achieved
when memory access patterns suitable for coalescence are
realized. Device memory is accessed using aligned mem-
ory transactions of 32, 64 or 128 bytes. When threads
access the global memory it results in a certain amount
of memory transactions, depending on the location and
size accessed by each thread (figure 4); therefore, optimal
throughput is achieved when memory accesses by the sin-
gle threads can be coalesced into the smallest amount of
transactions necessary to cover them. Devices supporting
compute capability 2.x and higher are also able to cache
memory transactions. Specifications about the inner han-
dling of device memory accesses, together with the optimal
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Algorithm 1 Time integration at time step n

for i = 1, . . . , NumberOfElements do
read data of element i from previous time step
for k = 1, . . . , NumberOfNeighbors[i] do

collect forces from neighbor element k, accu-
mulating them locally

end for
for j = 1, . . . , 4 do

compute acceleration ani,j using (3.1) on the
local nodes j

compute half-step velocity v
n+ 1

2
i,j through

(3.3)
compute displacement un+1

i,j using (3.4)
end for
evaluate forces, internal and external, on the ele-

ment i
write data of element i

end for

access patterns and other considerations are thoroughly
addressed in [25].
Static data that do not change during a time step can
be stored in constant memory, which ensures good access
performance. Constant memory has however limited size,
thus data concerning mesh structure have to be stored
together with nodal DOF values in the much slower de-
vice memory. To preserve efficiency, they have therefore
to be organized in optimal layouts to allow for coalesced
access. Generally, depending on the specific situation,
data of this kind can be organized in array-of-structures
(AoS) or structure-of-arrays (SoA), each with its own ad-
vantages and disadvantages, to fully exploit the memory
access coalescence and the memory cache. In some spe-
cific situations, even an hybrid approach can be effective
(structure-of-arrays-of-structures, SoAoS). Without going
into further details, in the presented implementation dif-
ferent approaches have been tested, but the best perfor-
mances have been achieved organizing data in a SoA lay-
out, which greatly helps in keeping memory read/write
operations coalesced. Therefore, full coalescence is guar-
anteed in the whole kernel for all memory operations, with
the only exception of internal force exchange: each element
needs to gather all contributions to the internal forces from
the neighboring elements, reading them according to the
local connectivity arrays, thus without a good pattern of
access. This problem can be slightly alleviated in the case
of structured meshes by renumbering the nodes, but in
general, with unstructured meshes, the accesses cannot be
coalesced. A possible solution to this problem can be found
exploiting the shared memory: threads in a block can read
all the values needed by the entire block of threads into
shared memory in a coalesced way and then from there
each thread can access the values it needs. Nevertheless,
for the present solver the performance impact of these non-
coalesced read operations is generally negligible if com-

pared to the computational time of one whole time step
and the increased code complexity does not make it worth
to be implemented.
To avoid read-and-write conflicts, a double-buffering ap-
proach is introduced for the storage of the element local
forces. Following the solution scheme introduced in section
3.2.1, at the beginning of the kernel internal and external
forces of the previous step are read for each element and at
the end the new ones are computed and stored. To avoid
synchronization, input and output forces are respectively
read and written using different buffers, which are then
swapped when executing the following time step.
As described above, with the proposed algorithm calcula-
tions are performed on a per-element basis, with all ele-
ments keeping their own copy of the local nodes. If com-
pared to a standard implementation, this means that some
nodal quantities are duplicated. It is possible to estimate
the memory consumption of this algorithm in order to
prove that wasting memory on duplicating these informa-
tion is not an issue. As far as GPU memory is concerned
(usually GPU boards are equipped with less memory than
the amount of available RAM, thus the bottleneck is GPU
memory size), the following buffers are allocated:

• Read/write buffers:

– DOF displacement and rotation values: 20 x
(number of elements) reals;

– DOF half-step velocities: 20 x (number of ele-
ments) reals;

– nodal directors: 4 x (number of elements) x (3
components) reals;

– nodal basis: 2 x 4 x (number of elements) x (3
components) reals;

– element local forces: 20 x (number of elements)
x 2 (because of the double-buffering) reals.

• Read-only buffers:

– initial nodal directors: 4 x (number of elements)
x (3 components) reals;

– mass on the DOFs: 20 x (number of elements)
reals;

– element material properties and external pres-
sures: 4 x (number of elements) reals;

– external nodal forces: 4 x (number of elements)
x (3 components) reals;

– initial node coordinates: 4 x (number of ele-
ments) x (3 components) reals;

– neighbors array: 2 x 4 x (max. number of neigh-
bors) x (number of elements) integers.

Let us assume that 6 is the maximum number of elements
sharing the same node. Summing up all contributions, it
results that each element requires 176 reals and 48 integers.
Considering double-precision arithmetic, so that reals are 8
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Figure 4: Example of coalescence of memory accesses.

bytes long, and 32-bit integers, each element requires 1600
bytes of storage. A low-range gaming GPU nowadays has
often at least 1 GB of video RAM. NVIDIA Tesla comput-
ing boards are equipped usually with several GBs of mem-
ory. For each GB, theoretically 671088 elements can be
stored. This consideration ensures that duplicating enti-
ties at element level is not an issue in the present approach,
since that with few GBs of memory real-life engineering
problems can be solved. Furthermore, if the memory is
not enough to contain the data of a very large discretiza-
tion, the structure of the presented solver allows the mesh
to be partitioned and asynchronously streamed to GPU
memory while executing, without substantial changes in
the code (just some specialized management of elements
at sub-domain interfaces).
Finally, additional performance improvements have been
achieved by means of specific implementation expedients.
For example, the code needs to know whether a DOF is
constrained or not. Instead of storing this information in
a separate buffer, it is contained in the sign of the mass:
if it is negative, it means that the corresponding DOF is
constrained. Even if it introduces a branch in the code,
this little optimization is fundamental to avoid an addi-
tional memory operation and results in an actual decrease
of computational time.
From earlier tests with CUDA profiling tools, it emerged
that in the presented CUDA kernel the biggest cause of
performance drop is caused by register spilling: there were
too many local variables to fit the available registers, thus
some of them were being stored in local memory (which
has the same latency as global memory) causing a signif-
icant drop in performance. This problem was alleviated
in two steps. In order to avoid storing values in tempo-
rary variables for the whole time step process, read and
write operations were moved before and after the actual
code using them, and not at beginning or end of the ker-
nel as it is usually done. Furthermore, in order to help
the CUDA optimizer, a meticulous process of local vari-
able scope tuning (enforced dividing manually the source
code in blocks using curly brackets) was performed, forc-
ing variable reuse whenever possible, with good results in
terms of performance gain (around 20%). Nevertheless, it
is important to highlight that, although alleviated, register
spilling remains a main concern. This is however related

to the choice of using a single long CUDA kernel: tests
have shown that this single-kernel structure remains the
best approach, when compared to implementations that
split calculations over different kernels, even if it reaches a
sub-optimal level of occupancy. In addition, the proposed
implementation supports different thread block sizes. At
the beginning of a simulation, a simple and quick auto-
tuning step is performed: different block sizes are tried
and the best one is kept for the entire simulation. This
ensures also a level of automatic adaptivity to different
hardware.

4. Numerical examples

In order to check the solver accuracy and to compare per-
formances, in this section three different test problems
are presented. The performances achieved by the pro-
posed GPU solver in the first two test cases are analyzed
and compared against the serial CPU implementation of
Abaqus, in order to have a comparison with a widely known
commercial software. In this case, Abaqus performance
has to be regarded just as a reference, since Abaqus Ex-
plicit is highly optimized for multicore CPU execution
(64/128/256 cores), a standard installation for many com-
mercial customers and not for serial, single CPU imple-
mentations of the type here considered. Abaqus simula-
tions are executed on a single core of an AMD Phenom X4
9950 Black Edition CPU at 2.6 GHz. GPU simulations run
on the same machine, equipped with a NVIDIA GeForce
GTX 470 board, provided with 448 CUDA cores (14 SM,
32 cores/SM). The simulations of the first two examples
are performed within a Linux environment, without graph-
ical user interface (to not interfere in any way with GPU
computations). Considering the third test case, the GPU
solver is executed with increasingly refined meshes, un-
til the GPU memory is almost completely filled. For this
problem, a more powerful GPU board is used: a Tesla K20
board, equipped with 2496 CUDA cores and 4800 MB of
memory, on a different host machine running Microsoft
Windows. The fact that the code has been tested in dif-
ferent configurations shows how the proposed implemen-
tation does not depend on the hardware or the operating
system.
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The performance studies are conducted simulating the large
displacement deformation characteristics of the given prob-
lem with different meshes. All meshes have been created
in Abaqus. Specifically, classical S4 four node shell el-
ements, without reduced integration, have been used for
the analyses with Abaqus, while the MITC4 four node shell
elements described at the beginning of Section 2 have been
used for the analyses with the GPU code. For each mesh,
the computational time taken to perform a complete sim-
ulation by Abaqus and by the presented solver is recorded.
These timings do not include any pre-processing or post-
processing, but only the actual computational time. It is
important to highlight that the duration of pre-processing
operations needed by the GPU solver is negligible (they
substantially consist in building connectivity arrays, nec-
essary to handle the unstructured mesh, and the kernel
thread block size auto-tuning process, which is optional).
In order to guarantee a fair comparison, the computational
time taken by Abaqus is measured as the wall-clock time
(i.e. the time measured by the computer clock, outside
the application) taken by the explicit solver executable to
complete the simulation. The amount of I/O to file per-
formed by both solvers is kept as similar as possible and
in general minimized.

4.1. Uniformly loaded circular plate

A circular plate of an isotropic homogeneous material is
analyzed under constant external pressure and simply sup-
ported edge conditions, i.e. out-of-plane displacements at
the plate edge are constrained, while free rotations and in-
plane displacements are allowed. The material is charac-
terized by a Young modulus E of 206000 MPa and a Pois-
son ratio ν of 0.3. The plate radius and thickness measure
10 mm and 0.1 mm, respectively. The external applied
pressure is of 0.0001 MPa. Considering a static analy-
sis of the problem, under small displacements assumption
and Reissner-Mindlin shell theory, the nodal displacements
can be computed analytically for verification purposes [26].
Figure 5 shows an example of the deformed mesh. The
results obtained with Abaqus and with the GPU code, in
terms of the vertical displacement of the plate central point
versus time, for the coarsest mesh considered, are shown
in figure 6.
For each mesh the total time taken to perform a complete
simulation of 120 seconds is recorded. Results obtained in
terms of computational times with double-precision and
single-precision floating point arithmetic, using seven meshes
of increasing finesse, are summarized in tables 1 and 2.
Abaqus is equipped with a time step size estimation al-
gorithm that adapts it during the simulation, trying to
keep it as large as possible, while preserving stability. For
the sake of comparison, the presented GPU solver uses
the smallest (to guarantee stability) time step size calcu-
lated by Abaqus throughout the simulation and keeps it
fixed. The columns marked as Abaqus adaptive show tim-
ings of Abaqus with time step adaptation turned on, while

Figure 5: Circular plate. Deformed mesh after 100 seconds (3023
elements). Displacements amplified by scaling factor 1000.

columns marked as Abaqus fixed present timings with fixed
time step size equal to the one used by the GPU solver.

Table 1: Circular plate. Computational time in seconds. Double-
precision arithmetic.

Elem. Abaqus adapt. Abaqus fixed GPU impl.
500 24.86 32.13 2.46
1125 88.02 118.54 5.29
2000 216.56 291.86 9.38
3125 435.28 576.10 15.24
4500 769.04 1023.15 24.46
8000 1884.61 2472.49 59.76
12,500 3753.52 4845.03 111.51

Table 2: Circular plate. Computational time in seconds. Single-
precision arithmetic.

Elem. Abaqus adapt. Abaqus fixed GPU impl.
500 13.57 18.32 1.18
1125 46.82 63.77 2.37
2000 115.92 158.13 4.05
3125 231.33 312.44 6.36
4500 408.17 541.74 9.73
8000 988.34 1318.71 24.12
12,500 1973.87 2606.35 42.43

Considering the mesh with the largest number of elements,
in double-precision, the GPU solver performs the same
simulation more than 33 times faster than Abaqus, when
time step adaptation is turned on. If a comparison is
made fixing the time step for both solvers, the gained
speedup is even higher, over 43x (see Fig. 7). While it
is not always fair or meaningful to do this kind of com-
parisons, it is indeed useful in order to have an estima-
tion of the performance obtainable relatively to a com-
mon and widely known software. Moreover, it is impor-
tant to highlight that these simulations are performed us-
ing a common GPU board suited for video-gaming and
not specifically conceived for scientific computing. De-
spite the good results shown using double-precision arith-
metic, these kind of video boards are much more suited
for 3D graphics and single-precision. In fact, running
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Figure 6: Circular plate. Comparison of the time evolution of the central point’s vertical displacement.
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Figure 7: Circular plate. Speedup for single-precision and double-precision arithmetic.

the simulations with single-precision arithmetic, speedups
of 46x and 61x are obtained considering Abaqus adap-
tive and fixed time step configurations respectively. Using
computationally-oriented GPU boards even better perfor-
mances are achievable and the speedup curve would satu-
rate at a higher value (see Fig. 7). The same problem has
also been tested using the first GPU implementation (see
section 3.1) obtaining a computing time at least 5 times
larger with respect to the results of tables 1-2.
It is also interesting to notice that, even with the finest
considered mesh, the GPU implementation is able to com-
pute a simulation of 120 seconds in less than 112 seconds of
computational time. This means that the problem can be
simulated completely in real-time, using the full MITC4
shell elements and without requiring reduced order ap-
proaches.

4.2. Clamped rectangular plate

A rectangular plate is fixed at one edge and subjected to a
tip load. The load (0.00156 MPa) is applied at time t = 0

and then kept constant during the whole simulation. The
plate is 100 mm long, 20 mm wide and 0.2 mm thick. It is
made of a flexible material characterized by Young modu-
lus E equal to 1768 MPa, Poisson ratio ν equal to 0.3 and
a density ρ of 3000 kg/m3. A dynamic analysis of the plate
is carried out for 0.35 seconds of simulation. This mesh is
a good test for the solver for two reasons: it involves large
displacements, so the accuracy of the small strains – large
displacements formulation is tested, and the geometry can
be discretized in a structured way: this is well suited for
the GPU implementation because the regularity of the grid
helps the internal forces intercommunication process (even
if the code is conceived for unstructured grids). In figure 8
the deformed mesh at different time instants obtained with
the GPU solver is shown.The evolution in time of the verti-
cal displacement of the cantilever tip, obtained by Abaqus
and the GPU code, for the coarsest mesh considered, is
shown in figure 9.
In order to compare performances of the GPU implementa-
tion against Abaqus, different mesh refinements are tested.
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(a) t = 0 s (b) t = 0.0525 s (c) t = 0.105 s

(d) t = 0.1575 s (e) t = 0.21 s (f) t = 0.2975 s

Figure 8: Deformations of the cantilever at different times (no displacement scaling factor used).
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Figure 9: Clamped rectangular plate. Comparison of the time evolution of the plate tip’s vertical displacement.

Total computational times taken by Abaqus (with both
adaptive and fixed time steps) and the GPU implemen-
tation are summarized in tables 3 and 4 for double and
single-precision arithmetic respectively. Thanks to the
time step adaptation process, Abaqus calculates and uses
during the whole simulation only two different time step
sizes: a first smaller one, used only for the first time incre-
ment, and a second one used in the rest of the simulation.

In this situation, however, these two time step sizes are
not so different, causing an unusual consequence: Abaqus
runs faster using a fixed time step (the smaller one) with
no time step adaptivity. This means that, in this case, the
time step size calculation process takes more time than
what it manages to save using bigger time increments. For
the sake of comparison, the GPU solver uses, as always,
the smallest time step size calculated by Abaqus. It is
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important to underline that, with respect to the previous
test case, this problem requires a much smaller time step
to describe the large displacements of the structure. Con-
sidering the finest mesh, for this example the time step
is of the order of 10−7, while for the previous one it was
of the order of 10−3; therefore the simulation cannot be
performed in real-time with the employed GPU board.

Table 3: Clamped rectangular plate. Computational time in seconds.
Double-precision arithmetic.

Elem. Abaqus adapt. Abaqus fixed GPU impl.
80 57.79 57.99 16.61
160 180.64 179.10 29.87
320 374.93 369.28 38.61
640 1294.34 1277.35 77.44
1280 2898.43 2858.18 113.54
2560 10214.82 10094.71 272.56
5120 22891.90 22517.00 499.73
10,240 81117.21 79891.72 1755.99

Table 4: Clamped rectangular plate. Computational time in seconds.
Single-precision arithmetic.

Elem. Abaqus adapt. Abaqus fixed GPU impl.
80 38.65 39.23 6.80
160 110.58 108.14 12.26
320 216.55 217.19 18.13
640 709.78 708.25 37.64
1280 1541.46 1553.88 47.34
2560 5541.72 5504.04 112.27
5120 12297.11 12316.41 194.08
10,240 43813.10 43300.00 685.66

In this simulation, the efficiency achieved by the GPU
implementation is even higher than the one obtained in
the uniformly loaded circular plate test case: speedup is
over 46x in double-precision and increases to 63x in single-
precision. This is probably due to the fact that the regular
geometry and discretization permit to take advantage of
the whole potential of the GPU implementation, exploit-
ing the performance of the parallelized algorithm. This is
clear also by looking at the speedup graphs in figure 10:
the software seems to reach a saturation point, where ca-
pabilities of the GPU are used at their maximum and the
speedup cannot increase any further. Obviously, these sat-
uration curves depend heavily on the GPU hardware: with
computationally-oriented GPU boards they are expected
to reach higher peak values.

4.3. Pinched cylinder

To assess the solver performance in a more severe appli-
cation, one of the numerical tests discussed in [27] is con-
sidered. A cylinder clamped to one end is analyzed under
the load of two opposite forces. The setup is the same as
in [27]: the cylinder has radius equal to 1.016 m, length of
3.048 m and thickness of 0.03 m; the material considered
has Young modulus of 2.0685 · 107 MPa, Poisson coeffi-
cient of 0.3 and density of 103 Kg/m3. The two opposite
concentrated loads have magnitude of 500 MPa. Figure 11

Figure 11: Pinched cylinder. Deformed configuration (contour plot
shows displacement magnitude).

Table 5: Pinched cylinder: performances of GPU implementation for
different meshes.

Elements DOFs Memory (MB) Time(s) Speed
294912 1478400 423 1259.67 62.21
524288 2626560 752 2242.23 34.95
819200 4102400 1175 3505.95 22.35
1280000 6408000 1836 5471.68 14.32
1843200 9225600 2644 7879.08 9.95
2508800 12555200 3598 10719.60 7.31
3276800 16396800 4700 14277.20 5.49

shows a snapshot of the deformed structure and Figure 12
compares the load-displacement curve with the results of
[27].
With this kind of geometry it is simple to refine the mesh
and thus analyze the solver performance with a number of
degrees of freedom regularly increasing. For all meshes, a
time step size ∆ t = 1.276110−5 seconds is considered, so
that the simulation is always stable. For each mesh the
simulation is run for 78363 time steps, which correspond
to about 1 second of physical time. With respect to the
previous examples, this performance test is conducted us-
ing a more powerful GPU board: a NVIDIA Tesla K20
(2496 CUDA cores) equipped with 4800 MB of memory.
To make results easier to compare, the GPU thread-block
size auto-tuning feature is turned off: all blocks are fixed to
32×32 threads. Information about the considered meshes
together with the total computational times are summa-
rized in table 5.
The column Speed lists the number of time steps processed
per second, which multiplied by the time step size gives the
physical time span which can be simulated in one second
of computation. The performance of the proposed imple-
mentation can be analyzed in figure 13, where the compu-
tational time is reported over the total number of degrees
of freedom. The relation is almost perfectly linear: this
means that the proposed implementation has not reached
a saturation point of the computational power, even us-
ing the finest mesh considered. Furthermore, with this
analysis we pushed the number of elements of the mesh to
the limit given by the amount of device memory on the
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Figure 10: Clamped rectangular plate. Speedup for single-precision and double-precision arithmetic.
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Figure 13: Pinched cylinder: total computational time vs number of DOFs.

GPU board. In table 5, in the column Memory, theoreti-
cal memory consumption estimates are reported (they dif-

fer from actual consumption measures by few megabytes).
Therefore, the trend shown in figure 13 is not affected even
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though the last mesh considered fills almost completely the
available GPU memory.

5. Conclusions and future developments

In this work a double-precision, explicit dynamics non-
linear finite element shell solver on unstructured grids, de-
signed specifically to carry out the whole computation on
a GPU has been introduced. To fully exploit the com-
putational power of GPUs, an innovative implementation
of the central difference scheme is proposed. Results show
how these kinds of problems are well suited for GPU imple-
mentation and thanks to the new algorithmic formulation
and the careful memory management, the GPU-only im-
plementation is able to reach very high performances with
limited memory consumption.
Explicit time integration requires a large amount of very
small time steps to be performed, but on GPU they can
be executed extremely quickly and overall performances
are satisfactory. It is also important to emphasize that
during these simulations the CPU is practically idle. This
fact can be exploited in more complex situations where
different systems have to be simulated concurrently: keep-
ing computation on GPU frees the CPU to perform other
demanding tasks.
The GPU solver has been built from scratch in order to be
completely free from constraints of an existing design and
to be organized and prepared for execution on GPU hard-
ware from the beginning of the development. It is often
possible to directly port a CPU application to GPU with
some adjustments; but it is only designing the algorithms
from scratch, with the clear purpose of running on GPU
in mind, that the best performances can be achieved.
Last but not least, with GPUs high performance comput-
ing can be obtained with very low power consumption.
The GPU board should approximately need 225 W while
dealing with real applications. Obtaining the same perfor-
mances on a CPU cluster would definitely require much
more power.
This work constitutes a starting point for the future solu-
tion of more complex problems. First of all, the GPU im-
plementation should be tested on computationally-oriented
GPU boards to assess the achievable performances in more
demanding real-life engineering case problems, possibly in-
cluding various sources of material nonlinearity. Another
important topic of future developments will be the intro-
duction of contact algorithms in the GPU implementa-
tion and the possibility of simulating fracture propagation.
With all these ingredients, the code will be able to guar-
antee effective computing times (near real-time in some
special cases) for the simulation of engineering problems
of real use.
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